
Supplement 4
Qualitative postprocessing – Coprocessing

1

Coprocessing

• CFD simulations have the potential to overwhelm any

computer with the output obtained from simulations.

• The traditional approach is to run a simulation and save

the solution at given time-steps or intervals for post

processing at a later time.

• An alternative way to do post processing, is to extract

results while the simulation is running (on-the-fly), this is

coprocessing.

• For unsteady and big simulations, coprocessing is an

alternative if we do not want to overflow the system with

tons of data.

• In principle, coprocessing is similar to doing sampling

using functionObjects, but when we do coprocessing we

output pretty pictures (e.g., streamlines, iso-surfaces, cut-

planes).

• An added benefit of coprocessing is that results can be

immediately reviewed, and problems can be immediately

addressed.

• Coprocessing requires that you identify what you want to

see before running the simulation. You need to plan

everything in advanced.

• In OpenFOAM®, you can output on-the-fly streamlines,

cutting planes, iso-surfaces, near surface fields, and

forces data bins.

MESH

SOLVER

POST-PROCESSING

CO-PROCESSING

GEOMETRY

2

Coprocessing

$PTOFC/advanced_postprocessing/sport_car/

• Let us do some coprocessing. Go to the directory:

3

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

Coprocessing

Geometry and computational domain

4

• We will use this case to do coprocessing using functionObjects.

• We do not need to run the simulation for a long time, we just need to run a few iterations in

order to do coprocessing.

• We will run the simulation for 100 iterations and then we will visualize the solution.

• In this case we will use the solver potentialFoam to initialize the solution.

• Then we will use the solver simpleFoam with turbulence modeling enabled.

• You can run in serial or parallel.

• To run the case just execute the script run_solver.sh

• All the coprocessing functionObjects are defined in the dictionary controlDict.

Coprocessing

What are we going to do?

5

Coprocessing

The controlDict dictionary

180 functions

181 {

358 isoSurfaces1

403 isoSurfaces2

450 cuttingPlanes1

521 nearWallField1

549 patch_surface1

584 patch_surface2

618 streamlines1

659 streamlines2

697 wallBoundedStreamLines1

941 };

• Let us take a look at the definition of the
functionObjects in the dictionary controlDict.

• In this case, we have defined many functionObjects.

• We will only comment on the functionObjects related to

coprocessing.

• In lines 358 and 403 we defined the functionObjects to

compute iso-surfaces.

• In line 450 we defined the functionObjects to compute

cut-planes.

• In line 521 we defined the functionObjects to compute

near wall fields.

• In lines 549 and 584 we defined the functionObjects to

compute fields on patches.

• In lines 618, 659, and 697 we defined the

functionObjects to compute streamlines released from

different locations.

• It is important to stress that in coprocessing we are only

saving the requested information, we do not save the

whole mesh with all fields.

6

Coprocessing

The controlDict dictionary – Iso-surfaces functionObject

358 isoSurfaces1

359 {

360 type surfaces;

361 functionObjectsLibs (“libsampling.so”)

363 enabled true;

368 writeControl timestep;

369 writeInterval 10;

371 surfaceFormat vtk;

372 fields (p U k omega);

374 interpolationScheme cellPoint;

376 surfaces

377 (

379 p_constantIso

380 {

381 type isoSurface;

382 isoField p;

383 isoValue 30;

384 Interpolate false;

385 }

...

...

...

395);

397 }

• Let us take a look at the iso-surfaces definition.

• In lines 360-361 we select the library and type of functionObject.

• In line 363 we can turn-on and turn-off the functionObject. This

can be done on-the-fly.

• In lines 368-369 we select the saving frequency. The saving

frequency can be different from the saving frequency of the

solution.

• In line 371 we select the output format (many formats are

available).

• In line 372 we select the fields to save with the iso-surface. No

need to mention that the fields must exist.

• In lines 374 we select the interpolation method.

• In lines 376-395 we define the iso-surfaces. You can add as many

as you like.

• Remember, to define the iso-surface we need to know the iso

value a priori or at least have a rough reference of the value of the

iso-surface.

7

Coprocessing

358 isoSurfaces1

359 {

360 type surfaces;

361 functionObjectsLibs (“libsampling.so”)

363 enabled true;

368 writeControl timestep;

369 writeInterval 10;

371 surfaceFormat vtk;

372 fields (p U k omega);

374 interpolationScheme cellPoint;

376 surfaces

377 (

379 p_constantIso

380 {

381 type isoSurface;

382 isoField p;

383 isoValue 30;

384 Interpolate false;

385 }

...

...

...

395);

397 }

• In lines 379-385 we define the p_constantIso object.

• In line 379 we give a unique name to this object.

• In line 381 we define the type (iso-surface).

• In line 382 we select the field to compute the iso-surface.

• In line 383 we select the iso value.

• In this case we are saving an iso-surface of the pressure

field pressure with a value of 30.

• The iso-surfaces contain the information of the fields

defined in line 372.

• The output of this functionObject is saved in the directory
postProcessing/isoSurface1

• The output is saved in this directory because in line 286 we

defined a unique name for the functionObject.

• In this directory, you will find many time directories with the

sampled data.

• Inside each directory you will find a series of files with the VTK

extension, you can open these files in paraFoam/paraview.

• The rest of the iso-surfaces functionObjects are defined in a

similar way.

• As usual, to know all the options available, you can use the

banana trick.

8

The controlDict dictionary – Iso-surfaces functionObject

Coprocessing

• Iso-surfaces sampled using functionObjects.

• By using coprocessing, we only saved this specific iso-surface information.

• There is not need to save the whole solution.

• This can significantly reduce the amount of data stored and help us in doing faster post-

processing.

Iso-surfaces of pressure field

9

Coprocessing

• Iso-surfaces of Q criterion colored using the velocity field.

Iso-surfaces of Q criterion

10

Coprocessing

450 cuttingPlanes1

451 {

452 type surfaces;

453 functionObjectsLibs (“libsampling.so”)

455 enabled true;

460 writeControl timestep;

461 writeInterval 10;

463 surfaceFormat vtk;

464 fields (p U k omega);

466 interpolationScheme cellPoint;

468 surfaces

469 (

470 xNormal

471 {

472 type cuttingPlane;

473 planeType pointAndNormal;

474 pointAndNormalDict

475 {

476 basePoint (0 0 0);

477 normalVector (1 0 0);

478 }

479 Interpolate true;

480 }

...

...

...

506);

508 }

• Let us take a look at the cut planes definition.

• The options in lines 452-466 are similar to the iso-surfaces

functionObject.

• Remember, the saving frequency can be different from the saving

frequency of the solution and other functionObjects.

• In lines 466-506 we define the cut-planes. You can add as many

as you like.

• In lines 470-480 we define the xNormal object.

• In line 470 we give a unique name to this object.

• In lines 471-480 we define the cut-plane.

• To define cut-planes, there are many options available.

• To know all the options, you can use the banana trick or read the

source code.

• Remember, to define the cut-planes we need to know their

location a priori or at least have a rough reference of the domain

dimensions.

11

The controlDict dictionary – Cut-planes functionObject

Coprocessing

450 cuttingPlanes1

451 {

452 type surfaces;

453 functionObjectsLibs (“libsampling.so”)

455 enabled true;

460 writeControl timestep;

461 writeInterval 10;

463 surfaceFormat vtk;

464 fields (p U k omega);

466 interpolationScheme cellPoint;

468 surfaces

469 (

470 xNormal

471 {

472 type cuttingPlane;

473 planeType pointAndNormal;

474 pointAndNormalDict

475 {

476 basePoint (0 0 0);

477 normalVector (1 0 0);

478 }

479 Interpolate true;

480 }

...

...

...

506);

508 }

• The output of this functionObject is saved in the directory
postProcessing/cuttingPlanes1

• The output is saved in this directory because in line 450 we

defined a unique name for the functionObject.

• In this directory, you will find many time directories with the

sampled data.

• Inside each directory you will find a series of files with the VTK

extension, you can open these files in paraFoam/paraview.

• The rest of the cut-planes functionObjects are defined in a

similar way.

• As usual, to know all the options available, you can use the

banana trick.

12

The controlDict dictionary – Cut-planes functionObject

Coprocessing

• By using coprocessing, we only saved this specific information.

• There is not need to save the whole solution.

• This can significantly reduce the amount of data stored and help us in doing faster post-

processing.

Cut-planes location

13

Coprocessing

• Cut-planes colored using field variables (U, p, k, omega).

Cut-planes – Field variables contours

14

Coprocessing

549 patch_surface1

550 {

551 type surfaces;

552 functionObjectsLibs (“libsampling.so”)

554 enabled true;

559 writeControl timestep;

560 writeInterval 10;

562 surfaceFormat vtk;

563 fields (p U k omega yPlus);

566 interpolationScheme cellPoint;

568 surfaces

569 (

571 patch_car

572 {

573 type patch;

574 Patches (“car”);

575 }

576);

578 }

• Let us see how to save the information at a given patch.

• The options in lines 551-566 are similar to those of the previous

functionObjects.

• In lines 568-576 we define the sampling at a given patch.

• In line 574, we select the patch where we want to save the fields

information.

• The fields used are defined in line 563.

• The patch (or patches) where you want to sample must exist.

• No need to say that the fields must exist as well.

• The output of this functionObject is saved in the directory
postProcessing/patch_surface1

• The output is saved in this directory because in line 549 we

defined a unique name for the functionObject.

• In this directory, you will find many time directories with the

sampled data.

• Inside each directory you will find a series of files with the VTK

extension, you can open these files in paraFoam/paraview.

• The rest of the functionObjects are defined in a similar way.

15

The controlDict dictionary – Patch sampling functionObject

Coprocessing

• Surface patches sampled using functionObjects.

• By using coprocessing, we only saved this specific iso-surface information.

• There is not need to save the whole solution.

• This can significantly reduce the amount of data stored and help us in doing faster post-

processing.

Surface patches – y+ contours

16

Coprocessing

618 streamlines1

619 {

620 functionObjectsLibs (“libfieldFunctionObjects.so”)

621 type streamLine;

623 enabled true;

628 writeControl timestep;

629 writeInterval 20;

631 setFormat vtk;

633 direction forward;

635 U U;

637 fields (U p);

639 lifetime 10000;

643 nSubCycle 5;

645 sedSampleSet

646 {

647 type lineUniform;

648 axis x;

649 start (-2 0.7 4);

650 end (2 0.7 4);

651 nPoints 100;

652 }

653 }

17

• Let us take a look at the streamlines definition.

• In lines 620-621 we select the library and type of functionObject.

• In line 623 we can turn-on and turn-off the functionObject. This

can be done on-the-fly.

• In lines 628-629 we select the saving frequency. The saving

frequency can be different from the saving frequency of the

solution or other functionObjects.

• In line 631 we select the output format (many formats are

available).

• In line 633 we select the tracking direction of the streamlines

(forward, backward, or both).

• In line 635 we select the velocity field used to compute the

streamlines.

• Most of the times you will use the field U.

• But have in mind that you can use Umean (computed

using average values functionObject), UNear (computed

using nearWallFields functionObject), and so on.

• In line 637 we select the fields to save with the streamlines. No

need to mention that the fields must exist.

The controlDict dictionary – Streamlines functionObject

Coprocessing

618 streamlines1

619 {

620 functionObjectsLibs (“libfieldFunctionObjects.so”)

621 type streamLine;

623 enabled true;

628 writeControl timestep;

629 writeInterval 20;

631 setFormat vtk;

633 direction forward;

635 U U;

637 fields (U p);

639 lifetime 10000;

643 nSubCycle 5;

645 sedSampleSet

646 {

647 type lineUniform;

648 axis x;

649 start (-2 0.7 4);

650 end (2 0.7 4);

651 nPoints 100;

652 }

653 }

18

• In lines 639 and 643 we select the options related to the

streamlines tracking.

• lifetime - Steps particles can travel before being removed.

• trackLength - Size of single-track segment.

• nSubCycle - Number of steps per cell (estimate). Set to 1

to disable subcycling.

• trackLength and nSubCyce are mutually exclusive.

• In lines 647-651 we define the seeding method. The streamlines

will be released from this location.

• The output of this functionObject is saved in the directory
postProcessing/sets/streamlines1

• The output is saved in this directory because,

• Seeding method belong to sets.

• In line 618 we defined a unique name for the

functionObject,

• In this directory, you will find many time directories with the

sampled data.

• Inside each directory you will find a series of files with the VTK

extension, you can open these files in paraFoam/paraview.

• As usual, to know all the options available, you can use the

banana trick.

• The rest of the functionObjects are defined in a similar way.

The controlDict dictionary – Streamlines functionObject

Coprocessing

• By using coprocessing, we only saved this specific information.

• There is not need to save the whole solution.

• This can significantly reduce the amount of data stored and help us in doing faster post-

processing.

Streamlines

19

Coprocessing

• Streamlines can also be released from a surface and constrained to a patch.

Streamlines

20

