
1

Supplement 2
Meshing with snappyHexMesh

Continuous stirring tank reactor mesh with

moving regions

snappyHexMesh guided tutorials

$PTOFC/advanced_SHM/M2_CSTR

• Meshing with snappyHexMesh.

• Parallel meshing of a continuous stirring tank reactor mesh with moving

regions (internal mesh)

• You will find this case in the directory:

2

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh,

run_sampling.sh, run_solver.sh, and so on.

• These scripts can be used to run the case automatically by typing in the terminal, for example,

• $> sh run_solver

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and

type the commands in the terminal. In this way, you will get used with the command line interface and

OpenFOAM commands.

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts.

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional

comments.

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• In this case we are going to use multiple STL and eMesh files.

• Each color in the figure above represents a different STL.

• Working with multiple STL is no different from working with a single STL, we just need to read all

the STLs.

• When working with multiple STL we have more control on the local refinement.

3

snappyHexMesh guided tutorials

Inner region (rotating mesh)

Impeller

• We are going to work with sliding grids (the impeller will be rotating), therefore we need to divide

the mesh in two regions, one fix region and one rotating region.

• To split the mesh in two regions we are going to use another STL file (the green surface), plus a

few utilities to manipulate the mesh.

• We will show how to setup conforming patches between regions.

CSTR – Continuous stirring tank reactor mesh

http://www.wolfdynamics.com/training/meshing/image5.gif

4

http://www.wolfdynamics.com/training/meshing/image5.gif

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• In this case we are going to generate a body fitted mesh with two regions and using multiple

STL files.

• For simulation purposes, one of the regions will be in motion.

• This is an internal mesh.

• These are the dictionaries and files that will be used.

• system/snappyHexMeshDict

• system/meshQualityDict

• system/surfaceFeatureExtractDict

• system/decomposeParDict

• system/blockMeshDict

• constant/triSurface/impeller.stl

• constant/triSurface/impeller.eMesh

• constant/triSurface/inner_volume.stl

• constant/triSurface/inner_volume.eMesh

• constant/triSurface/shaft.stl

• constant/triSurface/shaft.eMesh

• constant/triSurface/sparger.stl

• constant/triSurface/sparger.eMesh

• constant/triSurface/vesel.stl

• constant/triSurface/vesel.eMesh
5

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• At this point, we are going to work in parallel.

• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> surfaceFeatures

3. $> blockMesh

4. $> decomposePar

5. $> mpirun -np 4 snappyHexMesh –parallel –overwrite

6. $> mpirun -np 4 checkMesh –parallel –latestTime

7. $> reconstructParMesh -constant

8. $> paraFoam

6

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• Let us take a look at the dictionary surfaceFeatures.

• Notice that we are reading multiple STL files.

Note:

An individual eMesh file will be generated
for each individual STL. That is:
vessel.stl → vessel.eMesh

sparger.stl → sparger.eMesh

shaft.stl → shaft.eMesh

Inner_volume.stl → inner_volume.eMesh

impeller.stl → impeller.eMesh
7

surfaces (“vessel.stl” “sparger.stl” “shaft.stl” “inner_volume.stl” “impeller.stl”)

includedAngle 150;

subsetFeatures

{

nonManifoldEdges yes;

openEdges yes;

}

writeObj yes;

Name of the STL.

The STL file is located

in constant/triSurface

Angle criterion

to extract features

If you want to save

the .obj files

Keep non-manifold edges

(edges with more that 2

connected faces)

Keep open edges

(edges with 1 connected face)

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• Let us take a look at the geometry section of the dictionary snappyHexMeshDict.

• Notice that we are reading multiple STL files.

geometry

{

vessel.stl

{

type triSurfaceMesh;

name vessel;

regions

{

inlet

{

name inlet;

}
outlet
{

name outlet;
}

}

}

inner_volume.stl

{

type triSurfaceMesh;

name inner_volume;

}

…

…

…

}

STL file to read.

Name of the surface inside snappyHexMesh.

Use regions if you have a STL

with multiple patches defined.
This is the name of the region or surface

patch in the STL file .
User-defined patch name.

This is the final name of the

patch.

Define every single STL that

you want to use.

8

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• Let us take a look at the castellatedMeshControls section of the dictionary
snappyHexMeshDict.

• Notice that we are reading multiple eMesh files.

castellatedMeshControls

{

...

...

...

//Explicit feature edge refinement

features

(

{

file ”vessel.eMesh";

level 0;

}

{

file ”shaft.eMesh";

level 0;

}

...

...

...

);

}

Define every single eMesh file that

you want to use.

Define every single eMesh file that

you want to use.

9

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• Let us take a look at the castellatedMeshControls section of the dictionary
snappyHexMeshDict.

• In this block we define the cellZone and faceZone, as follows,

castellatedMeshControls

{

...

...

...

//Surface based refinement

inner_volume

(

level (1 1);

cellZone cell_inner_volume;

faceZone face_inner_volume;

cellZoneInside insidePoint;

insidePoint (50 0 100);

);

...

...

...

}

Using the surface inner_volume we create a

mesh zone that we will use at a later time to

split the whole mesh in two regions.

Name of the cellZone.

Name of the faceZone.

Use an inner point to define location of the zone

Location of the insidePoint.

The point is located inside the surface

inner_volume, therefore the new zone is

created inside the surface selected.

10

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• Using paraFoam let’s take a look at the newly created zone.

face_inner_volume cell_inner_volume

11

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• To visualize the zones in paraFoam you will need to enable the option Include Zones

• Then select the mesh parts cell_inner_volume and face_inner_volume.

1. 2.
12

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• At this point and if you run checkMesh, you will get the following information:

• $> checkMesh

…

…

…

Checking topology…

Boundary definition OK.

Cell to face addressing OK.

Point usage OK.

UPPER triangular ordering OK.

Face vertices OK.

Number of regions: 1 (OK).

…

…

…

• As you can see, we only have one region, but we are interested in having two regions.

13

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• So far, we only generated the mesh.

• The next step will consist in splitting the mesh in two regions.

• Let us now create the two regions.

• We will use the following dictionaries and files:

• system/createBafflesDict

• system/createPatchDict

• system/topoSetDict

• The utility createBaffles, reads the dictionary createBafflesDict.

• The utility createPatch, reads the dictionary createPatchDict.

• The utility topoSet, reads the dictionary topoSetDict.

14

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• The utility createBaffles, reads the dictionary createBafflesDict.

• With this utility we create the interface patches between the fix zone and the rotating zone.

baffles

{

rotating

{

type faceZone;

zoneName face_inner_volume;

patches

{

master

{

name AMI1;

type cyclicAMI;

matchTolerance 0.0001;

neighbourPatch AMI2;

transform noOrdering;

}

slave

{

name AMI2;

type cyclicAMI;

matchTolerance 0.0001;

neighbourPatch AMI1;

transform noOrdering;

}

}

}

}

Boundary condition

for sliding grids

Boundary condition

for sliding grids

Name of the baffle group

Parameters for the master patch

Parameters for the slave patch

Name of the master patch (user defined)

Name of the slave patch (user defined)

Neighbour patch (slave patch or AMI2)

Neighbour patch (master patch or AMI1)

The master and slave patches

share a common face

Face to use to construct the AMI patches.

The nanme was defined in snappyHexMeshDict

Use faceZone

15

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• To create the two regions, we proceed as follows (notice that we are going to work in serial from

now on)

1. $> createBaffles –overwrite

2. $> splitBaffles –overwrite

3. $> createPatch –overwrite

4. $> splitMeshRegions –makeCellZones –overwrite

5. $> splitMeshRegions –detectOnly

6. $> transformPoints –scale ‘(0.01 0.01 0.01)’

16

• Steps 3-6 are optional.

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• So, what did we do?

• Step 1:

• Splits the mesh in regions using the baffles (faceZone), created during the meshing

stage.

• We also create the cyclicAMI patches AMI1 and AMI2.

• At this point we have two regions and one zone. However, the two regions are stich

together via the patches AMI1 and AMI2.

• Step 2: topologically split the patches AMI1 and AMI2. As we removed the link between

AMI1 and AMI2, the regions are free to move.

• Step 3 (optional): gets rid of zero faced patches if hey exist. These are the patches

remaining from the base mesh, as they are empty, we do not need them.

• Step 4 (optional):

• Splits mesh into multiple zones. It will create automatically the sets and zones.

• At this point we have two regions and two zones.

• Step 5 (optional): just to show the regions and names.

• Step 6 (optional): scales the mesh.

17

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

…

…

…

Checking topology…

Boundary definition OK.

Cell to face addressing OK.

Point usage OK.

UPPER triangular ordering OK.

Face vertices OK.

*Number of regions: 2

The mesh has multiple regions which are not connected by any face.

<<Writing region information to ”0/cellToRegion”

<<Writing region 0 with 136187 cells to cellSet region0

<<Writing region 1 with 67682 cells to cellSet region1

…

…

…

• At this point and if you run checkMesh, you will get the following information:

• $> checkMesh

• As you can see, we now have two regions.

• At this point the mesh is ready to use.

• You can visualize the mesh (with all the sets and zones) using paraFoam.
18

snappyHexMesh guided tutorials

CSTR – Continuous stirring tank reactor mesh

• At this point the mesh is ready to use. You can visualize the mesh using paraFoam.

• If you use checkMesh, it will report that there are two regions.

• In the dictionary constant/dynamicsMeshDict we set which region will move and the

rotation parameters.

• To preview the region motion, in the terminal type:

• $> moveDynamicMesh -checkAMI –noFunctionObjects

• The command moveDynamicMesh –checkAMI will print on screen the quality of the AMI

interfaces for every time step.

• Ideally, you should get the AMI patches weights as close as possible to one.

• Weight values close to one will guarantee a good interpolation between the AMI patches.

…

Calculating AMI weights between owner patch: AMI1 and neighbour patch: AMI2

AMI: Creating addressing and weights between 2476 source faces and 2476 target faces

AMI: Patch source sum(weights) min/max/average = 0.94746705, 1.0067199, 0.99994232

AMI: Patch target sum(weights) min/max/average = 0.94746692, 1.0004497, 0.99980782

…

AMI1 patch weights

AMI2 patch weights

Number of faces in
the AMI patches

Name of the AMI patch Name of the AMI patch

19

