
Supplement 1
Meshing with blockMesh

1



Meshing with blockMeshMeshing with blockMeshMeshing with blockMesh

• Let us take a close look to a blockMeshDict dictionary. 

• We will use the square cavity case.

• You will find this case in the directory:

$BM/101BLOCKMESH/C1

2

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.



Meshing with blockMeshMeshing with blockMesh

What are we going to do?

• We will use this simple case to take a close look at a blockMeshDict dictionary.

• We will study all sections in the blockMeshDict dictionary.

• We will introduce two features useful for parameterization, namely, macro syntax and inline 

calculations.

• You can use this dictionary as a blockMeshDict template that you can change automatically 

according to the dimensions of your domain and the desired cell spacing.

3



Meshing with blockMeshMeshing with blockMesh

17  convertToMeters 1;

18  

19  xmin 0;

20  xmax 1;

21  ymin 0;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

30  deltax 0.05;

31  deltay 0.05;

32  deltaz 0.05;

33  

34  lx #calc "$xmax - $xmin";

35  ly #calc "$ymax - $ymin";

36  lz #calc "$zmax – $zmin";

37  

38  xcells #calc "round(($lx)/($deltax))";

39  ycells #calc "round(($ly)/($deltay))";

40  zcells #calc "round(($lz)/($deltaz))";

41  

42  vertices

43  (

44  //BLOCK 0

45  ($xmin  $ymin  $zmin) //0

46  ($xmax  $ymin  $zmin) //1

47  ($xmax  $ymax  $zmin) //2

48  ($xmin  $ymax  $zmin) //3

49  ($xmin  $ymin  $zmax) //4

50  ($xmax  $ymin  $zmax) //5

51  ($xmax  $ymax  $zmax) //6

52  ($xmin  $ymax  $zmax) //7

64  );

The blockMeshDict dictionary. 

• The keyword convertToMeters (line 17), is a scaling 

factor.  In this case we do not scale the dimensions.

• In lines 19-24 we declare some variables using macro 

syntax notation. With macro syntax, we first declare the 

variables and their values (lines 19-24), and then we can 

use the variables by adding the symbol $ to the variable 

name (lines 45-52).

• In lines 30-32 we use macro syntax to declare another 

set of variables that will be used later.

• Macro syntax is a very convenient way to parameterize 

dictionaries.

4



Meshing with blockMeshMeshing with blockMesh

17  convertToMeters 1;

18  

19  xmin 0;

20  xmax 1;

21  ymin 0;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

30  deltax 0.05;

31  deltay 0.05;

32  deltaz 0.05;

33  

34  lx #calc "$xmax - $xmin";

35  ly #calc "$ymax - $ymin";

36  lz #calc "$zmax – $zmin";

37  

38  xcells #calc "round(($lx)/($deltax))";

39  ycells #calc "round(($ly)/($deltay))";

40  zcells #calc "round(($lz)/($deltaz))";

41  

42  vertices

43  (

44  //BLOCK 0

45  ($xmin  $ymin  $zmin) //0

46  ($xmax  $ymin  $zmin) //1

47  ($xmax  $ymax  $zmin) //2

48  ($xmin  $ymax  $zmin) //3

49  ($xmin  $ymin  $zmax) //4

50  ($xmax  $ymin  $zmax) //5

51  ($xmax  $ymax  $zmax) //6

52  ($xmin  $ymax  $zmax) //7

64  );

The blockMeshDict dictionary. 

• In lines 34-40 we are doing inline calculations using the 

directive #calc. 

• Basically, we are programming directly in the dictionary. 

OpenFOAM® will compile this function as it reads it.

• With inline calculations and codeStream you can access 

many OpenFOAM® functions from the dictionaries. 

• Inline calculations and codeStream are very convenient 

ways to parameterize dictionaries and program directly 

on the dictionaries.

5



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

• To do inline calculations using the directive #calc, we 

proceed as follows (we will use line 35 as example):

ly #calc "$ymax - $ymin";

• We first give a name to the new variable (ly), we then tell 

OpenFOAM® that we want to do an inline calculation 

(#calc), and then we do the inline calculation ("$ymax-

$ymin";).  Notice that the operation must be between 

double quotation marks.

6

17  convertToMeters 1;

18  

19  xmin 0;

20  xmax 1;

21  ymin 0;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

30  deltax 0.05;

31  deltay 0.05;

32  deltaz 0.05;

33  

34  lx #calc "$xmax - $xmin";

35  ly #calc "$ymax - $ymin";

36  lz #calc "$zmax – $zmin";

37  

38  xcells #calc "round(($lx)/($deltax))";

39  ycells #calc "round(($ly)/($deltay))";

40  zcells #calc "round(($lz)/($deltaz))";

41  

42  vertices

43  (

44  //BLOCK 0

45  ($xmin  $ymin  $zmin) //0

46  ($xmax  $ymin  $zmin) //1

47  ($xmax  $ymax  $zmin) //2

48  ($xmin  $ymax  $zmin) //3

49  ($xmin  $ymin  $zmax) //4

50  ($xmax  $ymin  $zmax) //5

51  ($xmax  $ymax  $zmax) //6

52  ($xmin  $ymax  $zmax) //7

64  );



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

• In lines lines 34-36, we use inline calculations to 

compute the length in each direction.

• Then we compute the number of cells to be used in each 

direction (lines 38-40).

• To compute the number of cells we use as cell spacing 

the values declared in lines 30-32.

• By proceeding in this way, we can compute automatically 

the number of cells needed in each direction according to 

the desired cell spacing.

7

17  convertToMeters 1;

18  

19  xmin 0;

20  xmax 1;

21  ymin 0;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

30  deltax 0.05;

31  deltay 0.05;

32  deltaz 0.05;

33  

34  lx #calc "$xmax - $xmin";

35  ly #calc "$ymax - $ymin";

36  lz #calc "$zmax – $zmin";

37  

38  xcells #calc "round(($lx)/($deltax))";

39  ycells #calc "round(($ly)/($deltay))";

40  zcells #calc "round(($lz)/($deltaz))";

41  

42  vertices

43  (

44  //BLOCK 0

45  ($xmin  $ymin  $zmin) //0

46  ($xmax  $ymin  $zmin) //1

47  ($xmax  $ymax  $zmin) //2

48  ($xmin  $ymax  $zmin) //3

49  ($xmin  $ymin  $zmax) //4

50  ($xmax  $ymin  $zmax) //5

51  ($xmax  $ymax  $zmax) //6

52  ($xmin  $ymax  $zmax) //7

64  );



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

• By the way, as this dictionary is designed for blocks with 

positive vertices coordinates, there is a small catch in the 

way we compute the length (lines 34-36) and the number 

of cells (lines 38-40). 

• What will happen if xmin is negative?

• What will happen if xcells is negative?

• What will happen if xcells is a float with decimals?

• Can you find a solution to these small problems?

8

17  convertToMeters 1;

18  

19  xmin 0;

20  xmax 1;

21  ymin 0;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

30  deltax 0.05;

31  deltay 0.05;

32  deltaz 0.05;

33  

34  lx #calc "$xmax - $xmin";

35  ly #calc "$ymax - $ymin";

36  lz #calc "$zmax – $zmin";

37  

38  xcells #calc "round(($lx)/($deltax))";

39  ycells #calc "round(($ly)/($deltay))";

40  zcells #calc "round(($lz)/($deltaz))";

41  

42  vertices

43  (

44  //BLOCK 0

45  ($xmin  $ymin  $zmin) //0

46  ($xmax  $ymin  $zmin) //1

47  ($xmax  $ymax  $zmin) //2

48  ($xmin  $ymax  $zmin) //3

49  ($xmin  $ymin  $zmax) //4

50  ($xmax  $ymin  $zmax) //5

51  ($xmax  $ymax  $zmax) //6

52  ($xmin  $ymax  $zmax) //7

64  );



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

• In the vertices section (lines 42-64), we define the vertex 

coordinates of the geometry. 

• In this case, there are eight vertices defining a 3D block. 

• Remember, OpenFOAM® always uses 3D meshes, even 

if the simulation is 2D. For 2D meshes, you only add one 

cell in the third dimension. 

• Notice that the vertex numbering starts from 0 (as the 

counters in c++). This numbering applies for blocks as 

well.

9

17  convertToMeters 1;

18  

19  xmin 0;

20  xmax 1;

21  ymin 0;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

30  deltax 0.05;

31  deltay 0.05;

32  deltaz 0.05;

33  

34  lx #calc "$xmax - $xmin";

35  ly #calc "$ymax - $ymin";

36  lz #calc "$zmax – $zmin";

37  

38  xcells #calc "round(($lx)/($deltax))";

39  ycells #calc "round(($ly)/($deltay))";

40  zcells #calc "round(($lz)/($deltaz))";

41  

42  vertices

43  (

44  //BLOCK 0

45  ($xmin  $ymin  $zmin) //0

46  ($xmax  $ymin  $zmin) //1

47  ($xmax  $ymax  $zmin) //2

48  ($xmin  $ymax  $zmin) //3

49  ($xmin  $ymin  $zmax) //4

50  ($xmax  $ymin  $zmax) //5

51  ($xmax  $ymax  $zmax) //6

52  ($xmin  $ymax  $zmax) //7

64  );



Meshing with blockMeshMeshing with blockMesh

66  blocks

67  (

68  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

69  );

70  

71  edges

72  (

73  

74  );

The blockMeshDict dictionary. 

• In lines 66-69, we define the block topology, hex means that it is a structured hexahedral block.  In this case, 

we are generating a rectangular mesh.

• In line 68, (0 1 2 3 4 5 6 7) are the vertices used to define the block (and yes, the order is important).  Each 

hex block is defined by eight vertices, in sequential order.  Where the first vertex in the list represents the 

origin of the coordinate system (vertex 0 in this case).

• ($xcells $ycells $zcells) is the number of mesh cells in each direction (X Y Z).  Notice that we are using 

macro syntax, and we compute the values using inline calculations.

• simpleGrading (1 1 1) is the grading or mesh stretching in each direction (X Y Z), in this case the mesh is 

uniform.  We will deal with mesh grading/stretching in the next case.

10



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

• Let us talk about the block ordering hex (0 1 2 3 4 5 6 7), which is extremely important.

• hex blocks are defined by eight vertices in sequential order.  Where the first vertex in the list represents the 

origin of the coordinate system (vertex 0 in this case).

• Starting from this vertex, we construct the block topology.  So in this case, the first part of the block is made up 

by vertices 0 1 2 3 and the second part of the block is made up by vertices 4 5 6 7 (notice that we start from 

vertex 4 which is the projection in the Z-direction of vertex 0).

• In this case, the vertices are ordered in such a way that if we look at the screen/paper (-z direction), the 

vertices rotate counter-clockwise.

• If you add a second block, you must identify the first vertex and starting from it, you should construct the block 

topology. In this case, you might need to merges faces, we will address this later.

11

66  blocks

67  (

68  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

69  );

70  

71  edges

72  (

73  

74  );



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

• Edges, are constructed from the vertices definition.

• Each edge joining two vertices is assumed to be straight by default.

• The user can specify any edge to be curved by entries in the section edges.

• Possible options are; arc, spline, polyline, BSpline, line.

• For example, to define an arc we first define the vertices to be connected to form an edge and then we give an 

interpolation point.

• To define a polyline, we first define the vertices to be connected to form an edge and then we give a list of  the 

coordinates of the interpolation points.

• In this case and as we do not specify anything, all edges are assumed to be straight lines.

12

66  blocks

67  (

68  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

69  );

70  

71  edges

72  (

73  

74  );



Meshing with blockMeshMeshing with blockMesh

76  boundary

77  (

78  top

79  {

80  type wall;

81  faces

82  (

83  (3 7 6 2)

84  );

85  }

86  left

87  {

88  type wall;

89  faces

90  (

91  (0 4 7 3)

92  );

93  }

94  right

95  {

96  type wall;

97  faces

98  (

99 (2 6 5 1)

100 );

101 }

102 bottom

103 {

104 type wall;

105 faces

106 (

107 (0 1 5 4)

108 );

109 }

The blockMeshDict dictionary. 

• In the section boundary, we define all the patches where 

we want to apply boundary conditions.

• This step is of paramount importance, because if we do 

not define the surface patches, we will not be able to 

apply the boundary conditions to individual surface 

patches.

13



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

• In lines 78-85 we define a boundary patch.

• In line 78 we define the patch name top (the name is 

given by the user). 

• In line 80 we give a base type to the surface patch. In 

this case wall (do not worry we are going to talk about 

this later). 

• In line 83 we give the connectivity list of the vertices that 

made up the surface patch or face, that is, (3 7 6 2). 

• Have in mind that the vertices need to be neighbors and 

it does not matter if the ordering is clockwise or 

counterclockwise.

14

76  boundary

77  (

78  top

79  {

80  type wall;

81  faces

82  (

83  (3 7 6 2)

84  );

85  }

86  left

87  {

88  type wall;

89  faces

90  (

91  (0 4 7 3)

92  );

93  }

94  right

95  {

96  type wall;

97  faces

98  (

99 (2 6 5 1)

100 );

101 }

102 bottom

103 {

104 type wall;

105 faces

106 (

107 (0 1 5 4)

108 );

109 }



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

• Have in mind that the vertices need to be neighbors and 

it does not matter if the ordering is clockwise or 

counterclockwise.

• Remember, faces are defined by a list of 4 vertex 

numbers, e.g., (3 7 6 2).

• In lines 86-93 we define the patch left.

• In lines 94-101 we define the patch right.

• In lines 102-109 we define the patch bottom.

15

76  boundary

77  (

78  top

79  {

80  type wall;

81  faces

82  (

83  (3 7 6 2)

84  );

85  }

86  left

87  {

88  type wall;

89  faces

90  (

91  (0 4 7 3)

92  );

93  }

94  right

95  {

96  type wall;

97  faces

98  (

99 (2 6 5 1)

100 );

101 }

102 bottom

103 {

104 type wall;

105 faces

106 (

107 (0 1 5 4)

108 );

109 }



Meshing with blockMeshMeshing with blockMesh

110 front

111 {

112 type wall;

113 faces

114 (

115 (4 5 6 7)

116 );

117 }

118 back

119 {

120 type wall;

121 faces

122 (

123 (0 3 2 1)

124 );

125 }

126 );

127 

128 mergePatchPairs

129 (

130 

131 );

The blockMeshDict dictionary. 

• In lines 110-117 we define the patch front.

• In lines 118-125 we define the patch back.

• You can also group many faces into one patch, for 

example, instead of creating the patches front and back, 

you can group them into a single patch named 

backAndFront, as follows,

backAndFront

{

type wall;

faces

(

(4 5 6 7)

(0 3 2 1)

);

}

16



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

• We can merge blocks in the section mergePatchPairs 

(lines 128-131).  

• The block patches to be merged must be first defined in 
the boundary list, blockMesh then connect the two 

blocks.

• In this case, as we have one single block there is no 

need to merge patches.

17

110 front

111 {

112 type wall;

113 faces

114 (

115 (4 5 6 7)

116 );

117 }

118 back

119 {

120 type wall;

121 faces

122 (

123 (0 3 2 1)

124 );

125 }

126 );

127 

128 mergePatchPairs

129 (

130 

131 );



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

• To sum up, the blockMeshDict dictionary 

generates a single block with: 

• X/Y/Z dimensions: 1.0/1.0/1.0

• As the cell spacing in all directions is 

defined as 0.05, it will use the following 

number of cells in the X, Y and Z directions: 

20 x 20 x 20 cells. 

• One single hex block with straight lines.

• Six patches of base type wall, namely, left, 

right, top, bottom, front and back.

• The information regarding the patch base type 
and patch name is saved in the file boundary. 

Feel free to modify this file to fit your needs.

• Remember to use the utility checkMesh to check 

the quality of the mesh and look for topological 

errors. 

• Topological errors must be repaired.

18



Meshing with blockMeshMeshing with blockMesh

The constant/polyMesh/boundary dictionary
18    6

19 (

20 top 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800;

26 }

27 left

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 23200;

33 }

34 right

35 { 

36 type empty;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600;

40 }

41 bottom

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 { 

57 type empty;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62 )

• First at all, this file is automatically generated after you 

create the mesh, or you convert it from a third-party format. 

• In this file, the geometrical information related to the base 

type patch of each boundary of the domain is specified.

• The base type boundary condition is the actual surface 

patch where we are going to apply a primitive type 

boundary condition (or numerical boundary condition).

• The primitive type boundary condition assign a field value 

to the surface patch (base type).

• You define the numerical type patch (or the value of the 
boundary condition), in the directory 0 or time directories.

• The name and base type of the patches was defined in the 
dictionary blockMeshDict in the section boundary.

• You can change the name if you do not like it.  Do not use 

strange symbols or white spaces.

• You can also change the base type.  For instance, you can 

change the type of the patch top from wall to patch.

19



Meshing with blockMeshMeshing with blockMesh

The constant/polyMesh/boundary dictionary
18    6

19 (

20 top 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800;

26 }

27 left

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 23200;

33 }

34 right

35 { 

36 type empty;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600;

40 }

41 bottom

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 { 

57 type empty;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62 )

• If you do not define the boundary patches in the dictionary 
blockMeshDict, they are grouped automatically in a default 

group named defaultFaces of type empty.

• For instance, if you do not assign a base type to the patch 

front, it will be grouped as follows:

defaultFaces

{ 

type empty;

inGroups 1(empty);

nFaces 400;

startFace 24800;

}

• Remember, you can manually change the name and type.

20



Meshing with blockMeshMeshing with blockMesh

The constant/polyMesh/boundary dictionary
18    6

19 (

20 top 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800;

26 }

27 left

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 23200;

33 }

34 right

35 { 

36 type empty;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600;

40 }

41 bottom

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 { 

57 type empty;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62 )

Number of surface patches

In the list bellow there must be 6 patches 

definition.

bottom

left

back

top

right

front

21



Meshing with blockMeshMeshing with blockMesh

The constant/polyMesh/boundary dictionary
18    6

19 (

20 top 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800;

26 }

27 left

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 23200;

33 }

34 right

35 { 

36 type wall;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600;

40 }

41 bottom

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 { 

57 type wall;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62 )

Name and type of the surface patches

• The name and base type of the patch is given 

by the user.

• In this case the name and base type was 
assigned in the dictionary blockMeshDict.

• You can change the name if you do not like it.  

Do not use strange symbols or white spaces.

• You can also change the base type.  For 

instance, you can change the type of the 

patch top from wall to patch.

22



Meshing with blockMeshMeshing with blockMesh

The constant/polyMesh/boundary dictionary
18    6

19 (

20 top 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800;

26 }

27 left

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 23200;

33 }

34 right

35 { 

36 type wall;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600;

40 }

41 bottom

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 { 

57 type wall;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62 )

inGroups keyword

• This is optional. 

• You can erase this information safely.

• It is used to group patches during visualization 

in ParaView/paraFoam.  If you open this mesh 

in paraFoam you will see that there are two 

groups, namely: wall and empty.

• As usual, you can change the name.

• If you want to put  a surface patch in two 

groups, you can proceed as follows: 

2(wall wall1)

In this case the surface patch belongs to the 

group wall (which can have another patch) 

and the group wall1

23



Meshing with blockMeshMeshing with blockMesh

The constant/polyMesh/boundary dictionary
18    6

19 (

20 top 

21 { 

22 type wall;

23 inGroups 1(wall);

24 nFaces 400;

25 startFace 22800;

26 }

27 left

28 { 

29 type wall;

30 inGroups 1(wall);

31 nFaces 400;

32 startFace 23200;

33 }

34 right

35 { 

36 type wall;

37 inGroups 1(wall);

38 nFaces 400;

39 startFace 23600;

40 }

41 bottom

42 { 

43 type wall;

44 inGroups 1(wall);

45 nFaces 400;

46 startFace 24000;

47 }

48 front

49 { 

50 type wall;

51 inGroups 1(wall);

52 nFaces 400;

53 startFace 24400;

54 }

55 back

56 { 

57 type wall;

58 inGroups 1(wall);

59 nFaces 400;

60 startFace 24800;

61 }

62 )

nFaces and startFace keywords

• Unless you know what are you doing,  you do 

not need to change this information.

• Basically, this is telling you the starting face 

and ending face of the patch.

• This information is created automatically when 

generating the mesh or converting the mesh.

24



Meshing with blockMeshMeshing with blockMesh

Running the case

• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> paraFoam 

25



Meshing with blockMeshMeshing with blockMeshMeshing with blockMesh

• Let us take a close look to a blockMeshDict dictionary to study how to 

use mesh grading. 

• We will use the square cavity case.

• You will find this case in the directory:

$BM/101BLOCKMESH/C2

26

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.



Meshing with blockMeshMeshing with blockMesh

What are we going to do?

• We will use this case to study how to change mesh grading (growth rate).

• You can use this dictionary as a blockMeshDict template that you can change automatically 

according to the dimensions of your domain and the desired cell spacing and growth rate.

27



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

64  blocks

65  (

66  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1)

91  );

No grading

Mesh grading

• To control mesh grading, we use the simpleGrading keyword.

• Setting the values to (1 1 1) means no grading (uniform mesh).

• A value different from 1 will add grading to the edge, that is, it will cluster more cells towards one 

extreme of the block. 

• Let us take a look at a 2D mesh.

28



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

64  blocks

65  (

66  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (0.125 8 1)

91  );

Unidirectional grading

Unidirectional grading

64  blocks

65  (

66  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (8 8 1)

91  );

Stretching in the X direction (edge 0-1)

Stretching in the Y direction (edge 0-3)

Stretching in the X direction (edge 0-1)

Stretching in the Y direction (edge 0-3)

29



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

64  blocks

65  (

66  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (0.125 0.125 1)

91  );

Unidirectional grading

Unidirectional grading

64  blocks

65  (

66  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (8 0.125 1)

91  );

Stretching in the X direction (edge 0-1)

Stretching in the Y direction (edge 0-3)

Stretching in the X direction (edge 0-1)

Stretching in the Y direction (edge 0-3)

30



Meshing with blockMeshMeshing with blockMesh

BLOCK 0 BLOCK 1

BLOCK 3 BLOCK 2

The blockMeshDict dictionary. 

Multi-grading of a block

• Using a single grading to describe mesh 

grading permits only one-way grading of the 

block. 

• For example, to mesh the square cavity with 

grading towards all the walls requires four 

blocks, each one with different grading.

• To reduce complexity and effort we can use 

multi-grading to control grading within separate 

divisions of a single block, rather than have to 

define several blocks with one grading per 

block.

31



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

64  blocks

65  (

67  

68  hex (0 1 2 3 4 5 6 7)  ($xcells $ycells $zcells)

69  simpleGrading

70  (

71  // x-direction expansion ratio

73  (

74  (0.2 0.25 8) //Division 1    

75  (0.6 0.50 1) //Division 2   

76  (0.2 0.25 0.125) //Division 3

77  )          

78  

79  // y-direction expansion ratio

81  (

82  (0.2 0.25 8)    

83  (0.6 0.5 1)    

84  (0.2 0.25 0.125) 

85  )

86  

87  // z-direction expansion ratio

88  1 //no expansion ratio

89  )

90  

91  );

Multi-grading of a block

• Let us use multi-grading in the X-direction (lines 73-

77).

• First, we split the block into 3 divisions in the X-

direction representing 20% or 0.2 (division 1), 60% or 

0.6 (division 2), and 20% or 0.2 (division 3) of the 

block length.

• Then, we assign 25% (0.25) of the total cells in the X-

direction in divisions 1 and 3, and the remaining 50% 

(0.50) in division 2.

• Finally, we apply a grading of 8 in division 1, a grading 

of 1 (uniform mesh) in division 2, and a grading of(1/8) 

in division 3.

32



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

64  blocks

65  (

67  

68  hex (0 1 2 3 4 5 6 7)  ($xcells $ycells $zcells)

69  simpleGrading

70  (

71  // x-direction expansion ratio

73  (

74  (0.2 0.25 8) //Division 1    

75  (0.6 0.50 1) //Division 2   

76  (0.2 0.25 0.125) //Division 3

77  )          

78  

79  // y-direction expansion ratio

81  (

82  (0.2 0.25 8)    

83  (0.6 0.5 1)    

84  (0.2 0.25 0.125) 

85  )

86  

87  // z-direction expansion ratio

88  1 //no expansion ratio

89  )

90  

91  );

Multi-grading of a block

• Let us use multi-grading in the Y-direction (lines 81-

85).

• First, we split the block into 3 divisions in the Y-

direction representing 20% or 0.2 (division 1), 60% or 

0.6 (division 2), and 20% or 0.2 (division 3) of the 

block length.

• Then, we assign 25% (0.25) of the total cells in the Y-

direction in divisions 1 and 3, and the remaining 50% 

(0.50) in division 2.

• Finally, we apply a grading of 8 in division 1, a grading 

of 1 (uniform mesh) in division 2, and a grading of(1/8) 

in division 3.

33



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

64  blocks

65  (

67  

68  hex (0 1 2 3 4 5 6 7)  ($xcells $ycells $zcells)

69  simpleGrading

70  (

71  // x-direction expansion ratio

73  (

74  (0.2 0.25 8) //Division 1    

75  (0.6 0.50 1) //Division 2   

76  (0.2 0.25 0.125) //Division 3

77  )          

78  

79  // y-direction expansion ratio

81  (

82  (0.2 0.25 8)    

83  (0.6 0.5 1)    

84  (0.2 0.25 0.125) 

85  )

86  

87  // z-direction expansion ratio

88  1 //no expansion ratio

89  )

90  

91  );

Multi-grading of a block

• Finally, as the mesh is 2D, we do not need to add 

grading in the Z-direction (line 88).

34



Meshing with blockMeshMeshing with blockMesh

Running the case

• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> paraFoam 

35



Meshing with blockMeshMeshing with blockMeshMeshing with blockMesh

• Let us take a close look to a blockMeshDict dictionary to study how to 

create multiple blocks. 

• We will use the square cavity case.

• You will find this case in the directory:

$BM/101BLOCKMESH/C3

36

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.



Meshing with blockMeshMeshing with blockMesh

What are we going to do?

• We will use this case to take a close look at a blockMeshDict dictionary.

• We will study how to work with multiple blocks.

• When working with multiples blocks, we need to deal with the common face between blocks.  If 
we do not connect these blocks, blockMesh will create a boundary patch and we will need to 

assign a boundary condition to this patch.

• When we connect the blocks, blockMesh will create an internal face (therefore we do not need 

to assign a boundary condition to the face).

• There are two ways to connect blocks, using face matching and face merging.  

• Hereafter we are going to study face merging. 

37



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

19  xmin 0;

20  xmax 1;

21  ymin 0.5;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

26  ymin2 0;

27  ymax2 0.5;

28  

29  xcells 20;

30  ycells 10;

31  zcells 1;  

39  

45  vertices

46  (

47  //BLOCK 0

48  ($xmin  $ymin  $zmin) //0

49  ($xmax  $ymin  $zmin) //1

50  ($xmax  $ymax  $zmin) //2

51  ($xmin  $ymax  $zmin) //3

52  ($xmin  $ymin  $zmax) //4

53  ($xmax  $ymin  $zmax) //5

54  ($xmax  $ymax  $zmax) //6

55  ($xmin  $ymax  $zmax) //7

56  

57  //BLOCK 1

58  ($xmin  $ymin2  $zmin) //8

59  ($xmax  $ymin2  $zmin) //9

60  ($xmax  $ymax2  $zmin) //10

61  ($xmin  $ymax2  $zmin) //11

62  ($xmin  $ymin2  $zmax) //12

63  ($xmax  $ymin2  $zmax) //13

64  ($xmax  $ymax2  $zmax) //14

65  ($xmin  $ymax2  $zmax) //15

76  );

Multiple blocks – Face merging

• To do a mesh with multiple blocks we proceed in the 

same as we have done so far.

• When using face merging, we need to define all the 

vertices that made up each block.

• In lines 19-27 we use macro syntax to declare the 

variables that we will use to define the vertices.

• In lines 29-31 we use macro syntax to define the 

number of cells in each direction.  As this is a 2D case 

there is only one cell in the Z-direction.

• In lines 45-76 we use macro syntax to define the 

vertices that made up each block.

38



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

78  blocks

79  (

80  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1) //BLOCK 0

81  hex (8 9 10 11 12 13 14 15) ($xcells $ycells $zcells) simpleGrading (1 1 1) //BLOCK 1

82  //hex (8 9 10 11 12 13 14 15) (40 $ycells $zcells) simpleGrading (1 1 1)

83  );

Multiple blocks – Face merging

• In lines 78-83, we define the blocks.

• In line 80, (0 1 2 3 4 5 6 7) are the vertices used to define 

block 0 (the top block). 

• Remember, the first vertex in the list represents the origin of 

the coordinate system (vertex 0 in this case). Starting from 

this vertex, we construct the block topology.  So, in this case, 

the first part of the block is made up by vertices 0 1 2 3 and 

the second part of the block is made up by vertices 4 5 6 7 

(notice that we start from vertex 4 which is the projection in 

the Z-direction of vertex 0).

• ($xcells $ycells $zcells) is the number of mesh cells in each 

direction (X Y Z).  Notice that we are using macro syntax.

• simpleGrading (1 1 1) is the grading or mesh stretching in 

each direction (X Y Z), in this case the mesh is uniform. 

39



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

78  blocks

79  (

80  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1) //BLOCK 0

81  hex (8 9 10 11 12 13 14 15) ($xcells $ycells $zcells) simpleGrading (1 1 1) //BLOCK 1

82  //hex (8 9 10 11 12 13 14 15) (40 $ycells $zcells) simpleGrading (1 1 1)

83  );

Multiple blocks – Face merging

• In line 81, (8 9 10 11 12 13 14 15) are the vertices used to 

define block 1 (the bottom block). 

• The first vertex in the list represents the origin of the 

coordinate system (vertex 8 in this case). Starting from this 

vertex, we construct the block topology.  So, in this case, the 

first part of the block is made up by vertices 8 9 10 11 and the 

second part of the block is made up by vertices 12 13 14 15 

(notice that we start from vertex 12 which is the projection in 

the Z-direction of vertex 8).

• ($xcells $ycells $zcells) is the number of mesh cells in each 

direction (X Y Z).  Notice that we are using macro syntax.

• simpleGrading (1 1 1) is the grading or mesh stretching in 

each direction (X Y Z), in this case the mesh is uniform. 

40



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

91  boundary

92  (

93  movingWall

94  {

95  type wall;

96  faces

97  (

98  (3 7 6 2)

99  );

100  }

101 fixedWalls

102  {

103  type wall;

104  faces

105 (

106 (0 4 7 3)

107 (2 6 5 1)

109 (11 15 12 8)

110 (10 14 13 9)

111 (8 9 13 12)

112 );

113 }

131 back

132 {

133 type empty;

134 faces

135 (

136 (0 3 2 1)

137 (8 11 10 9)

138 );

139 }

148 }

Multiple blocks – Face merging

• In lines 91-148 we define the boundary patches of the 

domain. 

• We are defining the external patches.

41



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

140 front

141 {

142 type empty;

143 faces

144 (

145 (4 5 6 7)

146 (12 15 14 13)

147 );

148 }

152 interface1

153 {

154 type wall;

155 faces

156 (

157 (0 1 5 4)

158 );

159 }

160 

161 interface2

162 {

163 type wall;

164 faces

165 (

166 (11 10 14 15)

167 );

168 }

169 );

170 

171 mergePatchPairs

172 (

173 (interface1 interface2)

174    );

Multiple blocks – Face merging

• In lines 152-168 we define the boundary patches 

common to each block (interfaces).

• In this case we need to use mergePatchPairs to 

create an internal face, otherwise OpenFOAM® will 

see this patch as a boundary patch.

• To merge patches, we need to define them in the 
section boundary of the blockMeshDict dictionary.

• In line 173 we merge the patches. The first entry 

corresponds to the master patch and the second entry 

is the slave patch.

Master Slave
42



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

Multiple blocks – Face merging

• The advantage of using face merging instead of face matching, is that we can use blocks with different 

grading and number of cells.

• If the blocks are different, blockMesh will modify the block that owns the slave patch in order to have a 

conforming mesh.

• The block that owns the master patch remains unchanged.

43



Meshing with blockMeshMeshing with blockMesh

Running the case

• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> paraFoam 

44



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

78  blocks

79  (

80  hex (0 1 2 3 4 5 6 7) ($xcells $ycells $zcells) simpleGrading (1 1 1) //BLOCK 0

81  //hex (8 9 10 11 12 13 14 15) ($xcells $ycells $zcells) simpleGrading (1 1 1)

82  hex (8 9 10 11 12 13 14 15) (40 $ycells $zcells) simpleGrading (1 1 1) //BLOCK 1

83  );

Multiple blocks – Face merging

• To have different blocks, we changed the number of 

cells in the X-direction of the bottom block (line 82).

• The definition of the block topology remains unchanged, 

i.e., (8 9 10 11 12 13 14 15).

• Also, the grading does not change.  If you want, you can 

use a non-uniform grading.

• Have in mind that the mesh will no longer be 2D 
because blockMesh will add cells to make the blocks 

conforming.  To get the 2D mesh, you will need to use 
the utility extrudeMesh, which reads the 

extrudeMeshDict dictionary. 

• Type in the terminal,

• $> extrudeMesh

45



Meshing with blockMeshMeshing with blockMesh

The extrudeMeshDict dictionary. 

17 constructFrom patch;

18

19 sourceCase “.”

20 

21 sourcePatches (back);

22

23 exposedPatchName front;

24

27 extrudeModel linearNormal

28

29 nLayers 1;

30

31    linearNormalCoeffs

32 {

33 thickness 1;

34 }

35

38 mergeFaces false;

• The utility extrudeMesh will create a 2D mesh by projecting the source patch into the exposed

patch.

• To create the 2D mesh, you will need to use 1 layer (nLayers). 

• It is also recommended to set the extrusion thickness to 1.

Name of source patch

Name of the mirror patch

Number of layers to use in the linear extrusion.

As this is a 2D case we must  use 1 layer

Thickness of the extrusion.

It is highly recommended to use a value of 1

46



Meshing with blockMeshMeshing with blockMeshMeshing with blockMesh

• Let us take a close look to a blockMeshDict dictionary to study how to 

create multiple blocks.

• We will use the square cavity case.

• You will find this case in the directory:

$BM/101BLOCKMESH/C4

47

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.



Meshing with blockMeshMeshing with blockMesh

What are we going to do?

• We will use this case to take a close look at a blockMeshDict dictionary.

• We will study how to work with multiple blocks.

• When working with multiples blocks, we need to deal with the common face between blocks.  If 
we do not connect these blocks, blockMesh will create a boundary patch and we will need to 

assign a boundary condition.

• When we connect the blocks, blockMesh will create an internal face (therefore we do not need 

to assign a boundary condition to the face).

• There are two ways to connect blocks, using face matching and face merging.

• Hereafter we are going to study face matching. 

48



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

19  xmin 0;

20  xmax 1;

21  ymin 0.5;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

26  ymin2 0;

27  ymax2 0.5;

28  

29  xcells 20;

30  ycells 10;

31  zcells 1;  

39  

45  vertices

46  (

47  //BLOCK 0

48  ($xmin  $ymin  $zmin) //0

49  ($xmax  $ymin  $zmin) //1

50  ($xmaax $ymax  $zmin) //2

51  ($xmin  $ymax  $zmin) //3

52  ($xmin  $ymin  $zmax) //4

53  ($xmax  $ymin  $zmax) //5

54  ($xmax  $ymax  $zmax) //6

55  ($xmin  $ymax  $zmax) //7

56  

57  //BLOCK 1

58  ($xmin  $ymin2  $zmin) //8

59  ($xmax  $ymin2  $zmin) //9

60  ($xmin  $ymin2  $zmax) //10

61  ($xmax  $ymin2  $zmax) //11

73  );

143 mergePatchPairs

144 (

145

146 );

Multiple blocks – Face matching

• To do a mesh with multiple blocks we proceed in the 

same way as we have done so far.

• When using face matching, we do not need to define 

all the vertices that made up each block.

• For the common face between blocks, we only need to 

define one set of vertices.

• In lines 19-27 we use macro syntax to declare the 

variables that we will use to define the vertices.

• In lines 29-31 we use macro syntax to define the 

number of cells in each direction.  As this is a 2D case 

there is only one cell in the Z-direction.

49



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

19  xmin 0;

20  xmax 1;

21  ymin 0.5;

22  ymax 1;

23  zmin 0;

24  zmax 1;

25  

26  ymin2 0;

27  ymax2 0.5;

28  

29  xcells 20;

30  ycells 10;

31  zcells 1;  

39  

45  vertices

46  (

47  //BLOCK 0

48  ($xmin  $ymin  $zmin) //0

49  ($xmax  $ymin  $zmin) //1

50  ($xmaax $ymax  $zmin) //2

51  ($xmin  $ymax  $zmin) //3

52  ($xmin  $ymin  $zmax) //4

53  ($xmax  $ymin  $zmax) //5

54  ($xmax  $ymax  $zmax) //6

55  ($xmin  $ymax  $zmax) //7

56  

57  //BLOCK 1

58  ($xmin  $ymin2  $zmin) //8

59  ($xmax  $ymin2  $zmin) //9

60  ($xmin  $ymin2  $zmax) //10

61  ($xmax  $ymin2  $zmax) //11

73  );

143 mergePatchPairs

144 (

145

146 );

Multiple blocks – Face matching

• In lines 45-73 we use macro syntax to define the 

vertices that made up each block.

• In lines 48-55 we define the vertices that made up the 

top block.

• In lines 58-61 we define the vertices that made up the 

bottom block. Notice that we are only defining the new 

vertices (8 9 10 11).

• The vertices (0 1 4 5), that are common between the 

block are not redefined.

50



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

Multiple blocks – Face matching

• Have in mind that the blocks need to be identical, that is, 

same number of cells and same grading.

• If the blocks are different, blockMesh will not generate 

the mesh.

• You do not need to define the common patches in the 
section boundary of the blockMeshDict dictionary.

• Finally, we do not need to define the patches in the 
keyword mergePatchPairs as blockMesh will 

automatically merge the common faces.

51



Meshing with blockMeshMeshing with blockMesh

Running the case

• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> paraFoam 

52



Meshing with blockMeshMeshing with blockMeshMeshing with blockMesh

• Let us take a close look to a blockMeshDict dictionary to study how to 

create non-straight edges. 

• We will use the square cavity case.

• You will find this case in the directory:

$BM/101BLOCKMESH/C5

53

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.



Meshing with blockMeshMeshing with blockMesh

What are we going to do?

• We will use this case to take a close look at a blockMeshDict dictionary.

• We will study how to create non straight edges. 

• Possible options are; arc, spline, polyline, Bspline, line.

• Edges are constructed from the vertices definition.

• Each edge joining two vertices is assumed to be straight by default.

• The user can specify any edge to be curved by entries in the section edges.

• For example, to define an arc we first define the vertices to be connected to form an edge and 

then we give an interpolation point.

• To define a polyline, we first define the vertices to be connected to form an edge and then we 

give a list of  the coordinates of the interpolation points.

• Let us study how to create curved edges using the square cavity case with face merging.

54



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

75  edges

76  (

112 spline 0 1 

113 (

114 (0.25 0.4 0)

115 (0.5 0.6 0)

116 (0.75 0.4 0)

117 ) 

118 spline 4 5 

119 (

120 (0.25 0.4 1)

121 (0.5 0.6 1)

122 (0.75 0.4 1)

123 ) 

124

125 spline 11 10

126 (

127 (0.25 0.4 0)

128 (0.5 0.6 0)

129 (0.75 0.4 0)

130 ) 

131 spline 15 14

132 (

133 (0.25 0.4 1)

134 (0.5 0.6 1)

135 (0.75 0.4 1)

136 ) 

138 );

• In lines 75-138 we define spline edges.

• As we are using face merging, we need to define the splines 

in each common patch.

• To define a spline, we first define the vertices to be connected 

to form an edge and then we give a list of  the coordinates of 

the interpolation points.

• In lines 112-123 we define the splines belonging to block 0.

• In lines 125-136 we define the splines belonging to block 1.

Interpolation 

points

Interpolation method

Vertices to connect

55



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

75  edges

76  (

78  arc 0 1   (0.5 0.3 0)

79  arc 4 5   (0.5 0.3 1)

80  arc 11 10 (0.5 0.3 0)

81  arc 15 14 (0.5 0.3 1)

138 );

• In lines 78-81 we define arc edges.

• As we are using face merging, we need to define the arcs in 

each common patch.

• To define an arc, we first define the vertices to be connected 

to form an edge and then we give an interpolation point.

• In lines 78-79 we define the arcs belonging to block 0.

• In lines 80-781we define the arcs belonging to block 1.

Interpolation points

Vertices to connect

Interpolation method

56



Meshing with blockMeshMeshing with blockMesh

Running the case

• Choose any of the previous cases.

• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> paraFoam 

57



Meshing with blockMeshMeshing with blockMeshMeshing with blockMesh

• Let us take a close look to a blockMeshDict dictionary to study how to 

create an O-grid mesh. 

• We will use the square cavity case.

• You will find this case in the directory:

$BM/101BLOCKMESH/C6

58

• In the case directory, you will find a few scripts with the extension .sh, namely, run_all.sh, run_mesh.sh, 

run_sampling.sh, run_solver.sh, and so on.  

• These scripts can be used to run the case automatically by typing in the terminal, for example, 

• $> sh run_solver 

• These scripts are human-readable, and we highly recommend you open them, get familiar with the steps, and 

type the commands in the terminal. In this way, you will get used with the command line interface and 

OpenFOAM commands.  

• If you are already comfortable with OpenFOAM, run the cases automatically using these scripts. 

• In the case directory, you will also find the README.FIRST file. In this file, you will find some additional 

comments.



Meshing with blockMeshMeshing with blockMesh

What are we going to do?

• We will use this case to take a close look at a blockMeshDict dictionary.

• We will create a 3D pipe using an O-grid topology.

• To create the O-grid topology we will use five blocks.

• At a first glance, this seems to be an easy task, but it requires some work to layout the topology.

• We will use face matching.

59



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

17  convertToMeters 0.025;

18  

19  vertices

20  (

21  //block0 vertices

22  (-0.25 0.25 0) //0

23  (-0.707106 0.707106 0) //1

24  (0.707106 0.707106 0) //2

25  (0.25 0.25 0) //3

26  (-0.25 0.25 100) //4

27  (-0.707106 0.707106 100) //5

28  (0.707106 0.707106 100) //6

29  (0.25 0.25 100) //7

30  

31  //block1 new vertices

32  (0.25 -0.25 0) //8

33  (0.707106 -0.707106 0) //9

34  (0.25 -0.25 100) //10

35  (0.707106 -0.707106 100) //11

36  

37  //block3 new vertices

38  (-0.25 -0.25 0) //12

39  (-0.707106 -0.707106 0) //13

40  (-0.25 -0.25 100) //14

41  (-0.707106 -0.707106 100) //15

42  );

43  

44  

45  xcells 20;

46  ycells 40;

47  zcells 60;

48  

49  xcells1 20;

50  ycells1 20;

51  zcells1 60;

52  

53  stretch 0.25;

• In this case we use and scaling factor of 0.025 (line 17).  

• We can also scale the mesh using the mesh utility 
transformPoints.

• In lines 19-42 we define the coordinates of all the vertices.  

Remember, we are using face matching.

• In lines 45-53 we use macro syntax to declare a set of 

variables that will be used later.

60



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

54  

55  blocks

56  (

57  //block0

58  hex (0 3 2 1 4 7 6 5) ($xcells $ycells $zcells) simpleGrading (1 $stretch 1)

59  //block1

60  hex (3 8 9 2 7 10 11 6) ($xcells $ycells $zcells) simpleGrading (1 $stretch 1)

61  //block2

62  hex (8 12 13 9 10 14 15 11) ($xcells $ycells $zcells) simpleGrading (1 $stretch 1)

63  //block3

64  hex (12 0 1 13 14 4 5 15) ($xcells $ycells $zcells) simpleGrading (1 $stretch 1)

65  //block4

66  hex (0 12 8 3 4 14 10 7) ($xcells1 $ycells1 $zcells1) simpleGrading (1 1 1)

67  );

• In lines 55-67, we define all the blocks that made up the 

O-grid topology. 

• Notice that we are creating five blocks.

• We also define the number of cells of each block and 

the grading.

• As we are using face matching, the grading and 

number of cells in the common faces need to be the 

same.

61



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

69  edges

70  (

71  //block0 arc

72  arc 1 2  (0 1 0)

73  arc 5 6  (0 1 100)

74  

75  //block1 arc

76  arc 2 9  (1 0 0)

77  arc 6 11 (1 0 100)

78  

79  //block2 arc

80  arc 9 13  (0 -1 0)

81  arc 11 15 (0 -1 100)

82  

83  //block3 arc

84  arc 1 13  (-1 0 0)

85  arc 5 15  (-1 0 100)

86  );

87  

88  boundary

89  (

90  

91  inlet

92  {

93  type patch;

94  faces

95  (

96  (0 1 2 3)

97  (2 3 8 9)

98  (8 9 13 12)

99  (13 12 0 1)

100 (0 3 8 12)

101 );

102 }

103 

• In lines 69-86 we define arc edges.

• In lines 88-129 we define the boundary patches.

• In lines 91-102 we define the patch inlet. Notice that this 

boundary patch has five faces.

62



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

104 outlet

105 {

106 type patch;

107 faces

108 (

109 (4 5 6 7)

110 (6 7 10 11)

111 (15 11 10 14)

112 (15 14 4 5)

113 (4 7 10 14)

114 );

115 }

116 

117 pipe

118 {

119 type wall;

120 faces

121 (

122 (1 5 6 2)

123 (2 6 11 9)

124 (9 11 15 13)

125 (15 13 5 1)

126 );

127 }

128 

129 );

130 

131 mergePatchPairs

132 (

133 );

• In lines 88-129 we define the boundary patches.

• In lines 104-115 we define the patch outlet. Notice that this 

boundary patch has five faces.

• In lines 117-127 we define the patch pipe. Notice that this 

boundary patch has four faces.

• In this case we do not use face merging (lines 131-133).

63



Meshing with blockMeshMeshing with blockMesh

The blockMeshDict dictionary. 

O-grid topology (outlet patch)3D pipe

64



Meshing with blockMeshMeshing with blockMesh

Running the case

• To generate the mesh, in the terminal window type:

1. $> foamCleanTutorials

2. $> blockMesh

3. $> checkMesh

4. $> paraFoam 

65


