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Overview

 Generic vs. bespoke PBTK models
Models available within R package “httk”
Model parameterization
 Physiologic parameters
 Chemical-specific parameters
Model evaluation
 The Concentration vs. Time Database (CvTdb)
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HTTK:  A NAM for Exposure
 Toxicokinetics is the predictive description of the absorption, distribution, metabolism, 

and elimination (ADME) of a chemical compound

 To provide toxicokinetics for larger numbers of chemicals collect in vitro, high 
throughput toxicokinetic (HTTK) data (for example, Rotroff et al., 2010, Wetmore et al., 
2012, 2015)

HTTK methods have been used by the pharmaceutical industry to determine range of 
efficacious doses and to prospectively evaluate success of planned clinical trials (Jamei, 
et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for bioactive in vitro 
concentrations from HTS (that is, in vitro-in vivo extrapolation, or IVIVE) (for example, 
Wetmore et al., 2015)

 A secondary goal is to provide open-source data and models for evaluation and use by 
the broader scientific community (Pearce et al, 2017a)
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High Throughput Toxicokinetics (HTTK)
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High Throughput Toxicokinetics (HTTK)
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High Throughput Toxicokinetics (HTTK)
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
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High Throughput Toxicokinetics (HTTK)

In vitro toxicokinetic data + generic toxicokinetic model 
= high(er) throughput toxicokinetics

httk
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Generic vs. bespoke PBTK 
models



10 of 70

Everyone Uses Models
 Toxicology has long relied upon model animal species

 People rely on mental models every day 
 For example, with repetitive activities like driving home from work

 Mathematical models offer some significant advantages:
 Reproducible
 Can (and should) be transparent

 …with some disadvantages:
 Sometimes reality is complex
 Sometimes the model doesn’t always work well
 How do we know we can extrapolate?

 …that can be turned into advantages:
 If we have evaluated confidence/uncertainty and know the “domain 

of applicability” we can make better use of mathematical models

USES MODELS
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Fit for Purpose Models

 A “fit for purpose” model is an abstraction of a complicated problem that allows us to reach a decision.

“Now it would be very remarkable if any system existing in the real world could be exactly represented 
by any simple model. However, cunningly chosen parsimonious models often do provide remarkably 
useful approximations… The only question of interest is ‘Is the model illuminating and useful?’”
George Box

 A fit for purpose model is defined as much by what is omitted as what is included in the model.

 We must accept that there will always be areas in need of better data and models – our knowledge will 
always be incomplete, and thus we wish to extrapolate.

 How do I drive to a place I’ve never been before?
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“Since all models are 
wrong the scientist 
cannot obtain a 
‘correct’ one by 
excessive elaboration. 
On the contrary, 
following William of 
Occam, they should 
seek an economical 
description of natural 
phenomena.”

George Box

Complexity should 
match the data…

We choose to make the complexity of 
the model and the number of 

physiological processes appropriate 
given the data and the decision context

Cho et al., 1990
PK of MDMA
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“Since all models are 
wrong the scientist 
cannot obtain a 
‘correct’ one by 
excessive elaboration. 
On the contrary, 
following William of 
Occam, they should 
seek an economical 
description of natural 
phenomena.”

George Box
Cho et al., 1990
PK of MDMA

Complexity should 
match the data…

Jones et al., 2012
PK of Statins

We choose to make the complexity of 
the model and the number of 

physiological processes appropriate 
given the data and the decision context

Cho et al., 1990
PK of MDMA

In this case they 
had transporter-

specific data
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“Among competing hypotheses, the one with 
the fewest assumptions should be selected.” 
William of Occam

“While Occam's razor is a useful tool in the 
physical sciences, it can be a very dangerous 
implement in biology. It is thus very rash to 
use simplicity and elegance as a guide in 
biological research. “
Francis Crick

“With four parameters I can fit an elephant, 
and with five I can make him wiggle his trunk.”
John von Neumann

Lex Parsimoniae
“Law of Parsimony”

Figure from Anran Wang

Over-fitting

Linear
function

Y

X
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Fit for Purpose Toxicokinetics
 Chiu et al. (2007) “…[P]arsimony in selecting model structures is an important and guiding principle in 

developing models for use in risk assessments.”

 Complexity is constrained by limited data available to calibrate and test the model and the need to 
justify both the model assumptions and predictions

 Bessems et al. (2014): We need “a first, 
relatively quick (‘Tier 1’), estimate” of 
concentration vs. time in blood, plasma, or cell

 They suggested that we neglect active 
metabolism. But thanks to in vitro 
measurements we can now do better

 We still neglect transport and other 
protein-specific phenomena

Bessems et al. (2014) 
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Bespoke, Tailored, Custom…
Requires specific measurements

Generic, Off-the-Shelf/Rack, One-Size-Fits-Most
Approximately fits certain categories

Bespoke vs. Generic 
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Why Use Generic Models?
 Each of the models provided by the R package “httk” 

is a generic model
 Each model is designed to used standardized 

chemical-specific in vitro measurements (fraction 
unbound in plasma, intrinsic hepatic clearance)

high(er) throughput 
toxicokinetics =

In vitro toxicokinetic data + 
generic toxicokinetic model 

 Standardized physiology is assumed, regardless of chemical:
 The same parameters such as volumes, flows, and rates are used
 The same processes are included (hepatic metabolism, glomerular filtration) or omitted

 The generic model is a hypothesis
 If we have evaluation data then we can check if we need to elaborate the model (for example, create a 

bespoke model)

 We can estimate the accuracy of a generic model for a new chemical using performance across multiple 
chemicals where data happen to exist
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Generic Models as a Hypothesis
 For pharmaceuticals, in vitro data plus a model 

including hepatic metabolism and passive 
glomerular filtration (kidney) are often enough 
to make predictions within a factor of 3 of in vivo 
data (Wang, 2010)

 For other chemicals there may be complications, 
for example there is thought to be (Andersen et 
al. 2006) active transport of some per- and poly-
fluorinated alkyl substances (PFAS) in the kidney

 We could add a renal resorption process to HTTK 
(that is, add a new generic model) only if there 
was some way to parameterize the process for 
most chemicals – otherwise we are back to 
tailoring the model to a chemical

PFAS (2)

Wambaugh et al. (2015)
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Generic PBTK Models

The idea of generic PBTK has been out there for a while…
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Why Build Another Generic PBTK Tool?

*Both PLETHEM (Pendse et al., 2020) and Web-ICE (Bell et al., 2020) provide GUI’s to HTTK and other models
Pre-computed HTTK results are also available at https://comptox.epa.gov/dashboard

SimCYP ADMET 
Predictor / 
GastroPlus

PK-Sim IndusChem
Fate

pbktool G-PBTK httk

References Jamei (2009) Lukacova (2009) Eissing (2011) Jongeneelen (2011) Punt (2020) Armitage (2021) Pearce (2017)

Availability License, but 
inexpensive for 

research

License, but 
inexpensive for 

research

Free Free Free Free Free

Open Source No No GitHub No GitHub Planned  Release [154] CRAN and GitHub
Default PBTK Structure Yes Yes Yes Yes Yes Yes Yes
Population Variability Yes Yes Yes No No No Yes

Data Needs High/Low High/Low High High Low Low Low
Typical Use Case Drug Discovery Drug Discovery Drug Discovery Environmental 

Assessment
Food and Drug 

Safety Evaluation
Environmental 

Assessment
Screening

Batch Mode Yes Yes Yes No No No Yes
Graphical User Interface Yes Yes Yes Excel No Excel No*

Built-in Chemical-
Specific Library

Many Clinical Drugs No Many pharmaceutical-
specific models 

available

15 Environmental 
Compounds

No No Pharmaceuticals and 
ToxCast: 998 human, 226 

rat
Oral Bioavailability 

Modeling
Yes Yes No No No No No (Will be available in 

the future version)
In Vitro Distribution SIVA VIVD

[155]
No No No No No Armitage Model

[21,22]
Exposure Route Oral, IV Oral, IV Oral, IV Oral, Gas, Inhalation, 

Dermal
Oral Oral, IV, Inhalation Oral, IV, Gas, Inhalation 

(Dermal, Aerosol, and 
Fetal forthcoming)

Ionizable Compounds Yes Yes Yes No No Yes Yes
Export Function No No Matlab and R No No No SBML and Jarnac

R Integration No No Yes (2017) No Yes Yes Yes
Reverse Dosimetry Yes Yes Yes No No No Yes

from Breen et al. (2021)

https://comptox.epa.gov/dashboard
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Regulatory Acceptance

“…the default state of new and modernized Government information 
resources shall be open and machine readable.”

“Although publication of a PBPK model in a peer-
reviewed journal is a mark of good science, subsequent 

evaluation of published models and the supporting 
computer code is necessary for their consideration for 

use in [Human Health Risk Assessments]”
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Why Build Another Generic PBTK Tool?

When HTTK was first developed only PK-Sim was open source, and it focuses on bespoke models

SimCYP ADMET 
Predictor / 
GastroPlus

PK-Sim IndusChem
Fate

pbktool G-PBTK httk

References Jamei (2009) Lukacova (2009) Eissing (2011) Jongeneelen (2011) Punt (2020) Armitage (2021) Pearce (2017)

Availability License, but 
inexpensive for 

research

License, but 
inexpensive for 

research

Free Free Free Free Free

Open Source No No GitHub No GitHub Planned  Release] CRAN and GitHub
Default PBTK Structure Yes Yes Yes Yes Yes Yes Yes
Population Variability Yes Yes Yes No No No Yes

Data Needs High/Low High/Low High High Low Low Low
Typical Use Case Drug Discovery Drug Discovery Drug Discovery Environmental 

Assessment
Food and Drug 

Safety Evaluation
Environmental 

Assessment
Screening

Batch Mode Yes Yes Yes No No No Yes
Graphical User Interface Yes Yes Yes Excel No Excel No*

Built-in Chemical-
Specific Library

Many Clinical Drugs No Many pharmaceutical-
specific models 

available

15 Environmental 
Compounds

No No Pharmaceuticals and 
ToxCast: 998 human, 226 

rat
Oral Bioavailability 

Modeling
Yes Yes No No No No No (Will be available in 

the future version)
In Vitro Distribution SIVA VIVD

[155]
No No No No No Armitage Model

[21,22]
Exposure Route Oral, IV Oral, IV Oral, IV Oral, Gas, Inhalation, 

Dermal
Oral Oral, IV, Inhalation Oral, IV, Gas, Inhalation 

(Dermal, Aerosol, and 
Fetal forthcoming)

Ionizable Compounds Yes Yes Yes No No Yes Yes
Export Function No No Matlab and R No No No SBML and Jarnac

R Integration No No Yes (2017) No Yes Yes Yes
Reverse Dosimetry Yes Yes Yes No No No Yes

from Breen et al. (2021)
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Models available within R 
package “httk”
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

• Human-specific data for 998 chemicals
• Described in Pearce et al. (2017a) and 

Breen et al. (2020)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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HTTK Models Range in Complexity

Adapted from Pearce et al. (2017a)

Model
Hepatic 

clearance
Partition 

coefficients
Fraction 
unbound Hematocrit

Molecular 
weight

Ratio of 
blood to 
plasma

Elimination 
rate1

Volume of 
distribution2

Dynamic 
prediction

Steady state 
prediction

pbtk Yes Yes Yes Yes Yes Yes No No Yes Yes

Gas_pbtk Yes Yes Yes Yes Yes Yes No No Yes
Coming 

Soon

1compartment No No No No Yes No Yes Yes Yes Yes

3compartment Yes Yes Yes Yes Yes Yes No No Yes Yes

3compartmentss Yes No Yes No Yes No No No No Yes
1Partition coefficients are needed in calculating Vdist
2Clearances and fup are needed in calculating kelim

CLmetab

CLGFR

Gut Lumen
Primary

Compartment

kabs

CLmetab

CLGFR

Portal Vein

Gut Lumen

Liver Blood

Liver Tissue

Body Blood

Rest of Body

Qhepatic artery

Qportal vein

Qliv = Qha + Qpv

kabs

Inhaled Gas

Qliver

Qgut

Qgut

Kidney Blood

Gut Blood
Gut Lumen

QGFR Kidney Tissue

Liver Blood
Liver Tissue

Qrest

Lung Blood
Lung Tissue

Qcardiac

Qmetab

Body Blood
Rest of Body

Qkidney Arterial  BloodVe
no

us
  B

lo
od
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HTTK Models Range in Complexity

Adapted from Pearce et al. (2017a)

Model
Hepatic 

clearance
Partition 

coefficients
Fraction 
unbound Hematocrit

Molecular 
weight

Ratio of 
blood to 
plasma

Elimination 
rate1

Volume of 
distribution2

Dynamic 
prediction

Steady state 
prediction

pbtk Yes Yes Yes Yes Yes Yes No No Yes Yes

Gas_pbtk Yes Yes Yes Yes Yes Yes No No Yes
Coming 

Soon

1compartment No No No No Yes No Yes Yes Yes Yes

3compartment Yes Yes Yes Yes Yes Yes No No Yes Yes

3compartmentss Yes No Yes No Yes No No No No Yes

 The simplest models often allow predictions with a 
single equation

 More complex models often require numerical solvers 
to determine the solution to a system of differential 
equations as a function of exposure (dose) and time
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HTTK Models Range in Complexity

Adapted from Pearce et al. (2017a)

Model
Hepatic 

clearance
Partition 

coefficients
Fraction 
unbound Hematocrit

Molecular 
weight

Ratio of 
blood to 
plasma

Elimination 
rate1

Volume of 
distribution2

Dynamic 
prediction

Steady state 
prediction

pbtk Yes Yes Yes Yes Yes Yes No No Yes Yes

Gas_pbtk Yes Yes Yes Yes Yes Yes No No Yes
Coming 

Soon

1compartment No No No No Yes No Yes Yes Yes Yes

3compartment Yes Yes Yes Yes Yes Yes No No Yes Yes

3compartmentss Yes No Yes No Yes No No No No Yes

 At steady-state all compartments are at equilibrium and the 
concentrations can be predicted with a single equation, but:
 The exposure (dose) must be constant
 Enough time must pass to reach equilibrium 
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Simple Model for Steady-State Plasma 
Concentration (Css)

𝐶𝐶𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 + 𝑄𝑄𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 ∗
𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑄𝑄𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Wilkinson and Shand (1975)

CLmetab

CLGFR

Portal Vein

Gut Lumen

Liver Blood

Liver Tissue

Body Blood

Rest of Body

Qhepatic artery

Qportal vein

Qliv = Qha + Qpv

kabs

 This equation is the steady-state solution for a three-compartment model (3compartmentss):
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Simple Model for Steady-State Plasma 
Concentration (Css)

𝐶𝐶𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 + 𝑄𝑄𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 ∗
𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑄𝑄𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Wilkinson and Shand (1975)

CLmetab

CLGFR

Portal Vein

Gut Lumen

Liver Blood

Liver Tissue

Body Blood

Rest of Body

Qhepatic artery

Qportal vein

Qliv = Qha + Qpv

kabs

Estimated fraction not 
metabolized in first pass 
through liver before 
systemic circulation

 This equation is the steady-state solution for a three-compartment model (3compartmentss):
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Simple Model for Steady-State Plasma 
Concentration (Css)

Passive Renal Clearance
(GFR: Glomerular filtration 

rate
fup: fraction unbound in 

plasma)

𝐶𝐶𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 + 𝑄𝑄𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 ∗
𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑄𝑄𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Wilkinson and Shand (1975)

CLmetab

CLGFR

Portal Vein

Gut Lumen

Liver Blood

Liver Tissue

Body Blood

Rest of Body

Qhepatic artery

Qportal vein

Qliv = Qha + Qpv

kabs

 This equation is the steady-state solution for a three-compartment model (3compartmentss):
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Simple Model for Steady-State Plasma 
Concentration (Css)

Hepatic Metabolism
(Clhepatic: Scaled hepatic 

clearance
Ql: Blood flow to liver)

𝐶𝐶𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝐹𝐹ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 + 𝑄𝑄𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 ∗
𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑄𝑄𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

Wilkinson and Shand (1975)

CLmetab

CLGFR

Portal Vein

Gut Lumen

Liver Blood

Liver Tissue

Body Blood

Rest of Body

Qhepatic artery

Qportal vein

Qliv = Qha + Qpv

kabs

 This equation is the steady-state solution for a three-compartment model (3compartmentss):
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The “httk” General Physiologically-based 
Toxicokinetic (PBTK) Model

 Tissues are modeled by compartments:
 Some tissues (for example, arterial blood) are simple compartments 
 Others (for example, kidney) are compound compartments consisting 

of separate blood and tissue sections with constant partitioning (that 
is, tissue specific tissue:plasma partition coefficients)
 Remaining tissues (for example, fat, brain, bones) are lumped into the 

“Rest of Body” compartment

 Clearance from the body depends on two processes:
 Metabolism in the liver (estimated from in vitro clearance and binding)
 Excretion by glomerular filtration in the kidney (estimated from in vitro 

binding)

 Model parameters are either:
 Physiological: determined by species and potentially varied via Monte 

Carlo (including HTTK-pop, Ring et al. 2017)
 Chemical-specific: physico-chemical properties (Mansouri et al., 2018) 

and equilibrium partition coefficients plus plasma binding and 
metabolism rates that are determined from in vitro measurements or 
potentially predicted from structure
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Pearce et al. (2017a)
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Generic Gas Inhalation Model

Lung Tissue
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Gut Blood
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Exhaled Breath

(MM Elim)

Mucous
 Inhalation is an important route of exposure, particularly for 

occupational settings

 The structure of the inhalation model was developed from 
two previously published physiologically-based models from 
Jongeneelen et al. (2011) and Clewell et al. (2001) 
 The model can be parameterized with chemical-specific in 

vitro data from the HTTK package for 917 chemicals in 
human and 181 chemicals in rat

 Model was made publicly available with the release of httk 
v2.0.0 in February 2020

Linakis et al. (2020)
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Model parameterization
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Parameter Definition Value 
(Mean)

Units Reference

Qliverc Total blood flow to liver 
(arterial, gut)

3.6 1/h/kg BW Davies and Morris (1993)

QGFR Flow to glomerulus 
(glomerular filtration rate)

0.32 1/h/kg BW Davies and Morris (1993)

ncell_density Hepatocellularity 110 Millions of 
cells / g Liver

Carlile et al. (1997)

Vliverc Liver volume 0.0245 1/kg BW Davies and Morris (1993)
dliver Liver density 1.05 g/ml International Commission 

on Radiological 
Protection (1975)

Hematocrit Fraction of blood that is red 
blood cells

0.43 Unitless Davies and Morris (1993)

Cprotein Concentration of protein 
used in fup assay

5 µM Wambaugh et al. (2019)

Model parameters are either:
Physiological: determined 
by species and potentially 
varied via Monte Carlo 
(including HTTK-pop, Ring 
et al. 2017)
Chemical-specific: physico-
chemical properties 
(Mansouri et al., 2018) and 
equilibrium partition 
coefficients plus plasma 
binding and metabolism 
rates that are determined 
from in vitro 
measurements or 
potentially predicted from 
structure

Key Physiological Parameters for In Vitro-In Vivo 
Extrapolation

Breen et al. (2021)

𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 × 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 × 𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 × 𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖
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Species-Specific Physiological Parameters for 
Physiologically-Based Toxicokinetics

• Davies, Brian, and Tim Morris. "Physiological parameters in laboratory animals and humans." Pharmaceutical research 10.7 (1993): 1093-1095.
• Brown, Ronald P., et al. "Physiological parameter values for physiologically based pharmacokinetic models." Toxicology and industrial health 13.4 (1997): 407-484.
• Birnbaum, L., et al. "Physiological parameter values for PBPK models." International Life Sciences Institute, Risk Science Institute, Washington, DC (1994).
• Robertshaw, D., Temperature Regulation and Thermal Environment, in Dukes' Physiology of Domestic Animals, 12th ed., Reece W.O., Ed. Copyright 2004 by Cornell University.
• Stammers, Arthur Dighton. "The blood count and body temperature in normal rats." The Journal of physiology 61.3 (1926): 329.
• Gordon, Christopher J. Temperature regulation in laboratory rodents. Cambridge University Press, 1993.
• Gauvin, David V. "Electrocardiogram, hemodynamics, and core body temperatures of the normal freely moving cynomolgus monkey by remote radiotelemetry", Journal of Pharmacological 

and Toxicological Methods

Parameter Units Mouse Rat Dog Human Rabbit Monkey
Total Body Water ml/kg 725.000 668.000 603.600 600.000 40.812 693.000
Plasma Volume ml/kg 50.000 31.200 51.500 42.857 110.000 44.800
Cardiac Output ml/min/kg^(3/4) 150.424 209.304 213.394 231.401 266.576 324.790
Average BW kg 0.020 0.250 10.000 70.000 2.500 5.000
Total Plasma Protein g/ml 0.062 0.067 0.090 0.074 0.057 0.088
Plasma albumin g/ml 0.033 0.032 0.026 0.042 0.039 0.049
Plasma a-1-AGP g/ml 0.013 0.018 0.004 0.002 0.001 0.002
Hematocrit fraction 0.450 0.460 0.420 0.440 0.360 0.410
Urine Flow ml/min/kg^(3/4) 0.013 0.098 0.037 0.040 0.042 0.151
Bile Flow ml/min/kg^(3/4) 0.026 0.044 0.015 0.010 0.083 0.004
GFR ml/min/kg^(3/4) 5.265 3.705 10.901 5.165 3.120 2.080
Average Body Temperature C 37.000 38.700 38.900 37.000 39.350 38.000
Plasma Effective Neutral Lipid Volume Fraction unitless 0.004 0.002 0.001 0.007 0.002 0.007
Plasma Protein Volume Fraction unitless 0.060 0.059 0.090 0.070 0.057 0.070
Pulmonary Ventilation Rate l/h/kg^(3/4) 24.750 24.750 24.750 27.750 24.750 27.750
Alveolar Dead Space Fraction unitless 0.330 0.330 0.330 0.330 0.330 0.330

 Rates, volumes, and tissue-specific information (not shown) are needed for a species
 Users can choose to add new species to HTTK by providing this information
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PBTK Partition Coefficients
 Although in our model there are really three separate 

concentrations (C) that describe a tissue, we assume that 
they are related to each other by constants

 We assume that the ratio between the blood and plasma 
(𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏:𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) is a uniform constant throughout the body

 We assume that all the tissues are “perfusion limited”, which 
means that the tissue concentration instantly comes to 
equilibrium with the free fraction in plasma (concentration is 
limited by flow to the tissue)  

Tissue

Arterial 
Plasma

Venous 
Plasma

Tissue 
Plasma

Venous 
RBCs

Tissue 
RBCs

Arterial 
RBCs

tissueQtissueQ

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏:𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐾𝐾𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡:𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∗ 𝑓𝑓𝑢𝑢𝑝𝑝 ∗ 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Ktissue:plasma is the tissue 
partition coefficient 

which we either 
measure experimentally 

or predict in silico (for 
example Schmitt’s 

method)
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Tools for Chemical-Specific PBTK 
Parameters

Physiological parameters depend on species, but we must also make chemical-specific estimates of tissue 
partitioning…
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Schmitt’s Method (2008)
 Depending on its structure a chemical partitions differently into water, fats, and charged materials
 Schmitt’s method predicts chemical affinity based on the composition of a tissue
 Users can choose to add new tissue to HTTK by providing this information

Fraction of total 
volume Fraction of cell volume Fraction of total lipid

Tissue Cells Interstitium Water Lipid Protein Neutral Lipid
Neutral 

Phospholipid
Acidic 

Phospholipid pH
Adipose 0.86 0.14 0.02 0.93 0.05 0.94 0.06 0.01 7.10

Bone 0.90 0.10 0.26 0.02 0.21 0.85 0.11 0.04 7.00
Brain 1.00 0.01 0.80 0.11 0.08 0.37 0.46 0.17 7.10
Gut 0.90 0.10 0.78 0.07 0.15 0.69 0.26 0.05 7.00

Heart 0.75 0.25 0.70 0.14 0.17 0.89 0.08 0.03 7.10
Kidney 0.84 0.17 0.77 0.06 0.17 0.64 0.29 0.07 7.22
Liver 0.77 0.23 0.72 0.09 0.18 0.72 0.23 0.05 7.23
Lung 0.80 0.20 0.80 0.01 0.18 0.30 0.56 0.14 6.60

Muscle 0.85 0.15 0.80 0.02 0.18 0.54 0.38 0.08 6.81
Skin 0.40 0.60 0.43 0.28 0.29 0.36 0.50 0.14 7.00

Spleen 0.75 0.26 0.77 0.04 0.19 0.53 0.39 0.07 7.00
Red blood cells 1.00 0.00 0.66 0.01 0.33 0.40 0.50 0.10 7.20
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HTTK Partition Coefficients
 We use a modified Schmitt (2008) 

method with elements of                 
Peyret et al. (2010)

 Pearce et al. (2017b) analyzed 
literature measurements of chemical-
specific partition coefficients (PC) in rat
• 945 tissue-specific PC
• 137 unique chemicals
• Mostly pharmaceuticals

 We use tissue-specific calibrations for 
the in silico predictors

 Pearce et al. (2017b) evaluated with 
human measured volumes of 
distribution for 498 chemicals from 
Obach (2008) – root mean squared 
error was 0.48
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Review: HTTK model parameters
Chemical-specific parameters
Intrinsic hepatic clearance rate (CLint) Measured in HT in vitro assays (Rotroff et al. 

2010; Wetmore et al. 2012, 2014, 2015; Wambaugh 
et al. 2019) or predicted in silico (Sipes et al. 
2017)

Fraction unbound to plasma protein (Fup)

Tissue:blood partition coefficients (for 
compartmental models)

Predict from phys-chem properties and 
tissue properties (Pearce et al., 2017)

Physiological parameters
Tissue masses (including body weight)

Gathered from data available in the 
published literature [Wambaugh et al. 2015; 

Pearce et al. 2017a]

Tissue blood flows
Glomerular filtration rate 
(passive renal clearance)
Hepatocellularity
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Model evaluation
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Verifying 
PBTK Models

Process for the Evaluation of PBPK Models
1. Assessment of Model Purpose
2. Assessment of Model Structure and 

Biological Characterizations
3. Assessment of Mathematical Descriptions
4. Assessment of Computer Implementation
5. Parameter Analysis and Assessment of 

Model Fitness
6. Assessment of any Specialized Analyses

McLanahan et al. (2012)

Clark et al. (2004)
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Why Build Another Generic PBTK Tool?

PK-Sim added integration with the R statistical analysis language after HTTK was developed

SimCYP ADMET 
Predictor / 
GastroPlus

PK-Sim IndusChem
Fate

pbktool G-PBTK httk

References Jamei (2009) Lukacova (2009) Eissing (2011) Jongeneelen (2011) Punt (2020) Armitage (2021) Pearce (2017)

Availability License, but 
inexpensive for 

research

License, but 
inexpensive for 

research

Free Free Free Free Free

Open Source No No GitHub No GitHub Planned  Release [154] CRAN and GitHub
Default PBTK Structure Yes Yes Yes Yes Yes Yes Yes
Population Variability Yes Yes Yes No No No Yes

Data Needs High/Low High/Low High High Low Low Low
Typical Use Case Drug Discovery Drug Discovery Drug Discovery Environmental 

Assessment
Food and Drug 

Safety Evaluation
Environmental 

Assessment
Screening

Batch Mode Yes Yes Yes No No No Yes
Graphical User Interface Yes Yes Yes Excel No Excel No*

Built-in Chemical-
Specific Library

Many Clinical Drugs No Many pharmaceutical-
specific models 

available

15 Environmental 
Compounds

No No Pharmaceuticals and 
ToxCast: 998 human, 226 

rat
Oral Bioavailability 

Modeling
Yes Yes No No No No No (Will be available in 

the future version)
In Vitro Distribution SIVA VIVD

[155]
No No No No No Armitage Model

[21,22]
Exposure Route Oral, IV Oral, IV Oral, IV Oral, Gas, Inhalation, 

Dermal
Oral Oral, IV, Inhalation Oral, IV, Gas, Inhalation 

(Dermal, Aerosol, and 
Fetal forthcoming)

Ionizable Compounds Yes Yes Yes No No Yes Yes
Export Function No No Matlab and R No No No SBML and Jarnac

R Integration No No Yes (2017) No Yes Yes Yes
Reverse Dosimetry Yes Yes Yes No No No Yes

from Breen et al. (2021)



46 of 70

Statistical Analysis with HTTK

 If we are to use HTTK, then we need confidence in its predictive ability

 In drug development, HTTK methods estimate therapeutic doses for clinical studies – predicted 
concentrations are typically on the order of values measured in clinical trials (Wang, 2010)
 For most compounds in the environment there will be no clinical trials 

 Uncertainty must be well characterized
 We compare to in vivo data to get empirical estimates of HTTK uncertainty
 ORD has both compiled existing (literature) TK data (Wambaugh et al., 2015) and conducted 

new experiments in rats on chemicals with HTTK in vitro data (Wambaugh et al., 2018)
 Any approximations, omissions, or mistakes should work to increase the estimated uncertainty 

when evaluated systematically across chemicals
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Building Confidence in TK Models

Predicted Concentrations
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Specific 
Model

 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

Cohen Hubal et al. (2019)
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Building Confidence in TK Models

Predicted Concentrations
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

Cohen Hubal et al. (2019)
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Building Confidence in TK Models
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties

Cohen Hubal et al. (2019)
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Building Confidence in TK Models
 To evaluate a chemical-specific TK model for “chemical x” you 

can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
 Can consider using model to extrapolate to other situations 

(chemicals without in vivo data) Predicted Concentrations
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Building Confidence in TK Models

Predicted Concentrations
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 To evaluate a chemical-specific TK model for “chemical x” you 
can compare the predictions to in vivo measured data
 Can estimate bias
 Can estimate uncertainty
 Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you have no data

 However, we do not typically have TK data

 We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
 We do expect larger uncertainty, but also greater confidence 

in model implementation 
 Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
 Can consider using model to extrapolate to other situations 

(chemicals without in vivo data)

z

z

All of the 
values for z

are over-
predicted!
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Evaluation Example: Observed Total Clearance

Pharmaceuticals
Other Chemicals

Wambaugh et al. (2018)

 We estimate clearance from two 
processes – hepatic metabolism 
(liver) and passive glomerular 
filtration (kidney)

 This appears to work better for 
pharmaceuticals than other 
chemicals:
 ToxCast chemicals are 

overestimated

 Non-pharmaceuticals may be 
subject to extrahepatic metabolism 
and/or active transport
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CvTdb:  An In Vivo TK Database

 EPA has developed a public database of concentration 
vs. time data for building, calibrating, and evaluating TK 
models

 Curation and development is ongoing, but to date 
includes:
 198 analytes (EPA, National Toxicology Program, 

literature)
 Routes: Intravenous, dermal, oral, sub-cutaneous, 

and inhalation exposure

 Standardized, open-source curve fitting software 
invivoPKfit used to calibrate models to all data:

53

https://github.com/USEPA/CompTox-PK-CvTdb

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

Sayre et al. (2020)

https://github.com/USEPA/CompTox-PK-CvTdb
https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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Developing Models with the CvT Database

 USAF and EPA developed generic gas inhalation 
physiologically-based toxicokinetic (PBTK) model 

 Evaluated HTTK with CvTdb: 142 exposure 
scenarios across 41 volatile organic chemicals 
were modeled and compared to published in 
vivo data for humans and rat
 R2 was 0.69 for predicting peak concentration

 R2 was 0.79 for predicting time integrated plasma 
concentration (Area Under the Curve, AUC)

Linakis et al. (2020)
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Units on axis in 
literature figure 

caption were 
wrong

 Access to in vivo concentration vs. time data 
made it easier to identify coding and other 
modeling errors

 Access to in vivo concentration vs. time data 
also made it easier to find fault with specific 
data sets

Linakis et al. (2020)

1:1 Perfect Prediction

Developing Models with the CvT Database
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 Armitage et al. (2021) found that the performance of generic PBTK models in “data poor” situations was 
both “acceptable in qualitative (that is, shape of concentration versus time (CvT) profiles) and quantitative 
terms for most of the selected chemicals.”

 World Health Organization (2010): PBTK models are “adequate” when predictions “are, on average, within 
a factor of 2 of the experimental data” 
 Predictions of full concentration vs. time curve (that is, all time points for all chemicals):
 Linakis et al. (2020): For forty volatile, non-pharmaceutical chemicals root mean squared error (RMSE) 

of 1.11 (on a log10 scale, therefore a factor of 13x) and a coefficient of determination (R2) of 0.47
 Prediction of TK summary statistics such as peak concentration and time-integrated (“area under the 

curve” or AUC) concentration:
 Wang (2010): For 54 pharmaceutical clinical trials the predicted AUC differed from observed by 2.3x
 Linakis et al. (2020): RMSE = 0.46 or 2.9x for peak concentration and RMSE = 0.5 or 3.2x for AUC
 Wambaugh et al. (2018): For 45 chemicals of both pharmaceutical and non-pharmaceutical nature, 

RMSE of 2.2x for peak and 1.64x for AUC
 Pearce et al. (2017b):The calibrated method for predicting tissue partitioning that is included in httk 

similarly predicted human volume of distribution with a RMSE of 0.48 (3x)

Review of HTTK Evaluations

Breen et al. (2020) 
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Conclusions



58 of 70

Verifying the HTTK R Package

Clark et al. (2004) 
Process for the Evaluation 
of PBPK Models

Evaluation of HTTK R Package

Assessment of Model 
Purpose

Assessment of Model 
Structure and Biology

Assessment of Mathematical 
Descriptions

Assessment of Computer 
Implementation

Parameter Analysis and 
Assessment of Model Fitness

Assessment of any 
Specialized Analyses
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Verifying the HTTK R Package

Clark et al. (2004) 
Process for the Evaluation 
of PBPK Models

Evaluation of HTTK R Package

√ Assessment of Model 
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Population variability simulator httk-pop has been published (Ring et al., 2017) 
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Testing Predictions 
with CvTdb

IVIVE for
Risk Prioritization

Conclusions

 The in vitro-measured chemical specific 
parameters may be used to build a 
variety of models ranging in complexity 
from steady-state to full PBTK

 Chemical-independent information on 
physiology and tissue composition 
allow predictions of chemical 
distribution

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA

Generic models allow for verification of model implementation
 Comparing model predictions for chemicals with in vivo data allows estimation of 

confidence in predictions for chemicals without in vivo data
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Questions?
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