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Science is about experiments ...

Please open this online spreadsheet (PW: 1234)

In the spreadsheet, enter the following about
yourself there: If you feel uncomfortable,

feel free to ...

= your gender (as O if female, 1 else)
make some of the numbers up

= your shoesize or modify by 41 or —1 so that
= your weight dat? cannot be tracked back to
you!

= your height
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https://cloud.hzdr.de/s/gAGATREJxMoYbee

Al?
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A short (recent) history of Al ...

Turing test invented First AT winter Second Al winter
1980 2012
J e O e e o
1950 1973 1988 2019
Boom times Deep learning

revolution
Figure: from Sebastian Schuchmann History of the first Al Winter

% failure (Al winters) and $8 success (Al &4 mostly connected to high expectations
Boom) alternate
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https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b
https://en.wikipedia.org/wiki/AI_winter

The Imagenet Moment 2012 [5]

ImageNet competition results
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taken from Wikipedia:ImageNet
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https://commons.wikimedia.org/wiki/File:ImageNet_error_rate_history_(just_systems).svg

AlphaFold2 [4]
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Figure: CASP14 results 2020
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https://predictioncenter.org/casp14/zscores_final.cgi

Where are we today?

Representation
Deep Learning Learning

Machine Al

Learnin Knowled
(CNNs) (Shallow Au- g (Knowledge

(Logistic Regression) Bases)
toencoders)

Figure: adopted from I. Goodfellow, Deep Learning, MIT Press [3]
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Helmholtz Al
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What is Helmholtz Al?

H initiative by President of the Helmholtz
Association, Prof. Otmar D. Wiestler
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What is Helmholtz Al?

H initiative by President of the Helmholtz
Association, Prof. Otmar D. Wiestler

B running over 7 years, 2019 - 2026
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What is Helmholtz Al?

H initiative by President of the Helmholtz
Association, Prof. Otmar D. Wiestler

B running over 7 years, 2019 - 2026

B 12 M€ per year
(people + projects)
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What is Helmholtz Al?

H initiative by President of the Helmholtz
Association, Prof. Otmar D. Wiestler

B running over 7 years, 2019 - 2026
B 12 M€ per year
(people + projects)
E central installation in Munich
(universities and Helmholtz center)
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Two Funding Lines

Helmholtz Al Projects Helmholtz Al Vouchers

—

unsplas;.com:Glenn Carstens-Peters unsplash.com:Do’r’n.inik Scythe
B current call open until Dec 1, 2021 B voucher submissions open anytime
B max. 3 years, max. 200k € (must be B getin touch first:
matched) consultant-helmholtz.ail@
hzdr.de
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https://www.helmholtz.ai/themenmenue/you-helmholtz-ai/funding-lines/project-call-2021/index.html
https://www.helmholtz.ai/themenmenue/you-helmholtz-ai/ai-consulting/index.html
mailto:consultant-helmholtz.ai@hzdr.de
mailto:consultant-helmholtz.ai@hzdr.de

Helmholtz Al Local Unit For Matter At HZDR

Figure: Nico Hoffmann, YIG Lead

Figure: Peter Steinbach, Consultant Lead
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Helmholtz Al Consultant Team at HZDR

B reproducible automated (ML)
pipelines

B inverse problems & generative
modelling

B (image) denoising

B anomaly detection

H regression & pattern
recognition
(object localisation, image
segmentation)

B aspects of trustworthy ML

(uncertainties, robustness
and interpretability)
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Past and Present Vouchers
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(
n Anomaly Detection at EUXFEL ...

Can we automatically detect when damage

happens to the synchronization laser?

A U S NS

| I S |

Data: O A
M 10 s time snippets 1 | s s s B

? WIMNWGMNW‘

H sensor output of healthy laser (training data) [ O T—
B sensor output of damaged laser of same type (for " A
testing) I A | S

- D O O |

N O O | Y
| | | J
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}
n Our method: Feature extraction & Clustering

Feature extraction:
B requirement: low dimensional
representation of time-courses
B here: used tsfresh-package

= simple features: mean, min,
max, ...

= more sophisticated features:
fft-coefficients, entropy,
absolute energy, ...

Clustering:
B Principal Component Analysis
B kNN-Clustering

Results:

Principal component 2
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https://tsfresh.readthedocs.io/en/latest/

ﬁ COSY simulation: MAD-X package @ FZJ [1]

100keV-Cooler

M Dipole
= Quadrupole

S/ = Sextupole 2
£i == Position Monitor B
! @ Ho Monitor ¥

/ \
/ \
i \
/ \
/ \

2MeV-Cooler

NEMpP

Figure 1: COSY lattice diagram. 184m circumference, split
and extended 6-segment symmetry.

goal: improve simulation parameters

sjmulation fwith 1500 parameters X:

Y = f(X)

simulation output Y: 1 Orbit Response
Matrix (ORM) with 3149 entries (only
upper left+lower right used), 2 tune
values, runtime ~ 1 sec (fast!)
optimization: fix most of X by
measurements, optimization goal: 249
free params ¥ € R?4

data set y: 5 ORMs, 5 x 2 tunes (very
small data set, need strong
physics-based model f = MAD-X)
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ﬁ Evolutionary algorithm optimization

Best per Generation
TR o o

variable

Top 3 in last Generation

variable

10 10 10 -10- o 10 10 10 10

Xx'* = best x' per generation during opt run (top), final top
3 x' from 6 runs

P. Steinbach et al | Machine Learning for Accelerator Physics and Engineering

B deap framework
https://github.com/DEAP/deap,
uses "population” of possible x’

B C* = |y — f(xX*)|| not as low as expected

H many params x/* hit their allowed range
limits

H repeat runs: very similar C* but different x™*
(similar to neural network optimization!)

B our suggestion: improve population
initialization, do run monitoring (convergence
behavior), check simulation (not accurate
enough?), check values of fixed params not
contained in X, loss landscape analysis
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https://github.com/DEAP/deap

@ Prediction of spintune deviations at COSY synchrotron

B measurements at COSY of the spin tune over a period of several days showed
unexpected deviations over time

B many monitoring variables are measured simultaneously with the spintune

B Goal: understand causes of the deviation

B Approach: build (interpretable) machine learning models to predict spintune deviation

EXPJEDH Mon Spintune CoSYDPOS15AX cos¥oPOS 2:5AX COSYDPOS 6:5AX

2020 2021 e L] DU (TN ’W"’"

o6

spintune * 1.e-7
°

B a% 45 96 4% 40 A 90 9,0 O O AD |
2 022 g2 oA 02® A T 10 228> (P ] |
PRSP AN SON SOV SN SO\ WSS S A LI SR g
Rl Ll Ll Ll R UL N

Figure: Deviation of spintune measurements
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@ Challenges and approaches

H Challenges:
= data quality, outlier removal
= partition of data into training, validation and test (should model interpolate or extrapolate)
B Approaches:
= simple models (Linear regression, LASSO) do not give satisfactory performance, no
obvious cause for spintune deviation has been identified yet
= Kernel ridge regresion with laplacian kernel on PCA features looks promising, however

interpretatability is limited

train (RMSE=0.06) valid (RMSE=0.64)

train (RMSE=0.35) valid (RMSE=176)
- e + true
ypred . ypred
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Figure: Kernel ridge regression with laplacian

Figure: Linear regression prediction kernel on PCA features.
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ﬁ Inverting a beamline simulation at BESSY ...

UE112-PGM1 beamline for meV-RIXS
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B goal: given a beamline profile (knife-edge scan), which beam control properties would
result in this profile
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Lessons Learned
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Machine Learning needs a clear goal!

B narrow Al can solve/support many tasks

B needs mediation between domain experts
and ML consultants

m started to use ML canvas [2]
B helped tremendously to structure projects
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https://www.machinelearningcanvas.com/

Same method, different field!

m ML is software that can be tested! (Open
Reproducible Science)
B talking about methods across disciplines
= learn from others
= get (professional) perspectives
m reference datasets can help to check
feasibility (expectations)
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Data in the real world: Many Files in Many Directories (credits David Pape /
HZDR)
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Data in the real world: Many Files in Many Directories (credits David Pape /

HZDR)
B sorted chronologically and by data
camera +— 2019

| 2019_04_01

| 2019_04_03
AKO Bulli .vviiiiiiinnnnnnnnnn, camera name
Lanex
SpEM

L 2019_04_12

| 2020

| Shotlists

t2019
2020
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Data in the real world: Many Files in Many Directories (credits David Pape /
HZDR)

B sorted chronologically and by

camera
" . N d
H CSV files and images in camera fi
. 2019
directory
l_ZOl9_O4_O3

AKO Bulli
set1_2019-04-03_11h-46m-54s_0.csv
set1l_2019-04-03_11h-46m-54s_0_original.png
set1_2019-04-03_11h-52m-26s_1.csv

set1_2019-04-03_11h-52m-26s_1_original.png
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Data in the real world: Many Files in Many Directories (credits David Pape /
HZDR)

B sorted chronologically and by

camera

H CSV files and images in camera dfi
director 7
. y . L2019_o4_03

B important metadata encoded in [
the path

set1_2019-04-03_11h-46m-54s_0.csv
set1l_2019-04-03_11h-46m-54s_0_original.png
set1_2019-04-03_11h-52m-26s_1.csv

set1_2019-04-03_11h-52m-26s_1_original.png
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Data in the real world: Many Files in Many Directories (credits David Pape /
HZDR)

B sorted chronologically and by

camera
. . N d
H CSV files and images in camera fi
. 2019
directory
. . L2019_o4_03
B important metadata encoded in kO mur1s
the path set1_2019-04-03_11h-46m-54s_0.csv
n eStlmated 3~5 mllllon flles; set1l_2019-04-03_11h-46m-54s_0_original.png
2-8 TB set1_2019-04-03_11h-52m-26s_1.csv

set1_2019-04-03_11h-52m-26s_1_original.png
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Data in the real world: Many Files in Many Directories (credits David Pape /
HZDR)

B sorted chronologically and by

camera
H CSV files and images in camera dfi
directory 210_19
2019_04_03
B important metadata encoded in R
the path set1_2019-04-03_11h-46m-54s_0.csv
i estimated 3.5 million files, set1_2019-04-03_11h-46m-54s_0_original.png
2-8 TB set1_2019-04-03_11h-52m-26s_1.csv
B most files follow a template, but set1_2019-04-03_11h-52m-26s_1_original.png
are often named and moved
manually
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FAIR principles[6]

ROSDARE EENEEEEEEY : -«

Findable

Recent uploads RODARE Docs 0

ersnbe 27,2020 sy 2019) | e especss | o Havea ookat the restrctured .
" " . . documentation and bog system of
Process Simulation: Zinc and Cadmium production, Lead refining RODARE W now can more easlly notfy abors C C e S S I e
Bare, Nell Jaogues; © Helbeck iews and features. You sl fn tutorils there
A process simuation model o fcation of Lea 9 (RLE) process st ntps rocare e cfsbout

03 e st ot it Caamiu, ko s 2 procsss ormep ecipitaion of jarosite, and

i Intero pera ble

RODARE now offers usage
statistics!

vew Thanks to the great foks

CdTe refining + pnmovonam manufacturing + recycling HSC model

¥, Megdaiens ues;  Abadias Liamzs, Afandro; -
This file contains an HSC mogel for cadmium and tellurium refining starting from by-products coming from a copper Read the blog post to get more Information about
precious metas tefinery, ead and znc flowsheels, manufacturing of yeling process e new feature

based on data found in Herature. The mods! was used Lo,

e -~  ROSDARE BigData + FAIR = Necessity for

HIM FIBID dataset for Superconducting properties of in-plane W-C nanowires grown by

Her+ Focused lon Beam Induced Deposition ROSSENDORF DATA REPOSITORY M L
facek. Grege Welcome to Rodare!

HIM images and NPVE dataset created during the preparation of the W(COJG narcvires S —

ploac Novernber 11,20 HZDR.

Read more about Rodare o our
ovenview pag:

HZDR Invenio open source software,

see also zenodo.org
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https://github.com/inveniosoftware/invenio
https://zenodo.org

Go FAIR with a ¢SV (credits David Pape / HZDR)

Findable Accessible

Interoperable Reusable

Automate and document the above as soon as possible!
HELMHOLTZ
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https://www.go-fair.org/fair-principles/
https://datacite.org/

Demo Notebook: Predicting Shoe Sizes
(doi:10.5281/zen0do.5541746)

1.

P. Steinbach et al | Machine Learning for Accelerator Physics and Engineering

share data publicly
(doi:10.5281/zenodo.5541145)

. download
. open & check

(pandas)

. normalize, train and cross-validate

(scikit-learn)

. predict

HELMHOLTZAI
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https://doi.org/10.5281/zenodo.5541746
https://doi.org/10.5281/zenodo.5541145
https://pandas.pydata.org/
https://scikit-learn.org/

Summary
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Conclusion

= Helmholtz Al open for projects
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Conclusion

= Helmholtz Al open for projects
» already learned a lot about ML consulting projects
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Conclusion

= Helmholtz Al open for projects
= already learned a lot about ML consulting projects

= ML needs a concrete goal (expectations, testability,
trustworthiness)
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Conclusion

= Helmholtz Al open for projects
= already learned a lot about ML consulting projects

= ML needs a concrete goal (expectations, testability,
trustworthiness)

= ML works well on a FAIR dataset
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Conclusion

Helmholtz Al open for projects
already learned a lot about ML consulting projects

ML needs a concrete goal (expectations, testability,
trustworthiness)

ML works well on a FAIR dataset

Questions, Comments, Feedback or Concerns are highly welcome!
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ﬁ Evolutionary algorithm optimization

Bk

(B

|meas — simint| |meas — simpest| |meas — simjni¢| — |meas — simpest|

ORM diff. to exp. from EA-optimized x™* (middle)

Best per Generation

o 50 100 150 200
variable

Top 3 in last Generation

variable

X"* = best x’ per generation during opt run (top), final top
/

X o 0O 0
P. Steinbach et al | Machine Learning for Accelerator Physics and Engineering

B deap framework
https://github.com/DEAP/deap,
uses "population” of possible x’

B C* = ||y — f(x*)|| not as low as expected

B many params x;* hit their allowed range
limits

H repeat runs: very similar C* but different x*
(similar to neural network optimization!)

B our suggestion: improve population
initialization, do run monitoring (convergence
behavior), check simulation (not accurate
enough?), check values of fixed params not
contained in X', loss landscape analysis

B possible: loss landscape analysis (many
optima, tune EA exploration behavior based
on that)
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https://github.com/DEAP/deap
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