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Your Help Needed
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Science is about experiments ...

Please open this online spreadsheet (PW: 1234)

T

In the spreadsheet, enter the following about
yourself there:

your gender (as 0 if female, 1 else)
your shoesize
your weight
your height

If you feel uncomfortable,
feel free to ...
make some of the numbers up
or modify by +1 or −1 so that
data cannot be tracked back to
you!
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https://cloud.hzdr.de/s/gAGATREJxMoYbee
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AI?
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A short (recent) history of AI …

Figure: from Sebastian Schuchmann History of the first AI Winter

failure (AI winters) and success (AI
Boom) alternate

mostly connected to high expectations
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https://towardsdatascience.com/history-of-the-first-ai-winter-6f8c2186f80b
https://en.wikipedia.org/wiki/AI_winter
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The Imagenet Moment 2012 [5]

taken from Wikipedia:ImageNet

curated database of ”images”
and labels
15M images in 21k synonym
classes
2017 (last): 2.25% classification
error
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https://commons.wikimedia.org/wiki/File:ImageNet_error_rate_history_(just_systems).svg
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AlphaFold2 [4]

Figure: CASP14 results 2020
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https://predictioncenter.org/casp14/zscores_final.cgi
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Where are we today?

Deep Learning
(CNNs)

Representation
Learning

(Shallow Au-
toencoders)

Machine
Learning

(Logistic Regression)

AI
(Knowledge

Bases)

Figure: adopted from I. Goodfellow, Deep Learning, MIT Press [3]
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Helmholtz AI
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What is Helmholtz AI?

initiative by President of the Helmholtz
Association, Prof. Otmar D. Wiestler

running over 7 years, 2019 - 2026
12 M€ per year
(people + projects)
central installation in Munich
(universities and Helmholtz center)
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Two Funding Lines

Helmholtz AI Projects Helmholtz AI Vouchers

unsplash.com:Glenn Carstens-Peters unsplash.com:Dominik Scythe

current call open until Dec 1, 2021
max. 3 years, max. 200k € (must be
matched)

voucher submissions open anytime
get in touch first:
consultant-helmholtz.ai@
hzdr.de
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https://www.helmholtz.ai/themenmenue/you-helmholtz-ai/funding-lines/project-call-2021/index.html
https://www.helmholtz.ai/themenmenue/you-helmholtz-ai/ai-consulting/index.html
mailto:consultant-helmholtz.ai@hzdr.de
mailto:consultant-helmholtz.ai@hzdr.de
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Helmholtz AI Local Unit For Matter At HZDR

Figure: Nico Hoffmann, YIG Lead

Figure: Peter Steinbach, Consultant Lead
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Helmholtz AI Consultant Team at HZDR

reproducible automated (ML)
pipelines
inverse problems & generative
modelling
(image) denoising
anomaly detection
regression & pattern
recognition
(object localisation, image
segmentation)
aspects of trustworthy ML
(uncertainties, robustness
and interpretability)
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Past and Present Vouchers
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Anomaly Detection at EUXFEL …

Can we automatically detect when damage
happens to the synchronization laser?

Data:
10 s time snippets
sensor output of healthy laser (training data)
sensor output of damaged laser of same type (for
testing)
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Our method: Feature extraction & Clustering

Feature extraction:
requirement: low dimensional
representation of time-courses
here: used tsfresh-package

simple features: mean, min,
max, ...
more sophisticated features:
fft-coefficients, entropy,
absolute energy, ...

Clustering:
Principal Component Analysis
kNN-Clustering

Results:
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https://tsfresh.readthedocs.io/en/latest/
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COSY simulation: MAD-X package @ FZJ [1]

ORM simulation w/ initial params (left), exp. (middle),
difference (right)

goal: improve simulation parameters
simulation f with 1500 parameters x⃗:
Ŷ = f(⃗x)

simulation output Ŷ: 1 Orbit Response
Matrix (ORM) with 3149 entries (only
upper left+lower right used), 2 tune
values, runtime ∼ 1 sec (fast!)
optimization: fix most of x⃗ by
measurements, optimization goal: 249
free params x⃗′ ∈ R249

data set y: 5 ORMs, 5× 2 tunes (very
small data set, need strong
physics-based model f = MAD-X)

P. Steinbach et al Machine Learning for Accelerator Physics and Engineering



17/31

Evolutionary algorithm optimization

x′∗ = best x′ per generation during opt run (top), final top
3 x′ from 6 runs

deap framework
https://github.com/DEAP/deap,
uses ”population” of possible x′

C∗ = ∥y − f(x′∗)∥ not as low as expected
many params x′∗i hit their allowed range
limits
repeat runs: very similar C∗ but different x′∗

(similar to neural network optimization!)
our suggestion: improve population
initialization, do run monitoring (convergence
behavior), check simulation (not accurate
enough?), check values of fixed params not
contained in x′, loss landscape analysis
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https://github.com/DEAP/deap
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Prediction of spintune deviations at COSY synchrotron

measurements at COSY of the spin tune over a period of several days showed
unexpected deviations over time
many monitoring variables are measured simultaneously with the spintune
Goal: understand causes of the deviation
Approach: build (interpretable) machine learning models to predict spintune deviation

Figure: Deviation of spintune measurements Figure: Features to predict spintune from
P. Steinbach et al Machine Learning for Accelerator Physics and Engineering
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Challenges and approaches

Challenges:
data quality, outlier removal
partition of data into training, validation and test (should model interpolate or extrapolate)

Approaches:
simple models (Linear regression, LASSO) do not give satisfactory performance, no
obvious cause for spintune deviation has been identified yet
Kernel ridge regresion with laplacian kernel on PCA features looks promising, however
interpretatability is limited

Figure: Linear regression prediction Figure: Kernel ridge regression with laplacian
kernel on PCA features.
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Inverting a beamline simulation at BESSY …
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= x⃗

simulation

x⃗ = fsim(ϑ⃗)

inversion?
ˆ⃗
ϑ = f−1

sim(x⃗)

goal: given a beamline profile (knife-edge scan), which beam control properties would
result in this profile
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Lessons Learned
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Machine Learning needs a clear goal!

narrow AI can solve/support many tasks
needs mediation between domain experts
and ML consultants
started to use ML canvas [2]
helped tremendously to structure projects

P. Steinbach et al Machine Learning for Accelerator Physics and Engineering

https://www.machinelearningcanvas.com/
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Same method, different field!

ML is software that can be tested! (Open
Reproducible Science)
talking about methods across disciplines

learn from others
get (professional) perspectives

reference datasets can help to check
feasibility (expectations)
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Data in the real world: Many Files in Many Directories (credits David Pape /

HZDR)

sorted chronologically and by
camera
CSV files and images in camera
directory
important metadata encoded in
the path
estimated 3.5 million files,
2.8 TB
most files follow a template, but
are often named and moved
manually
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2019

2019_04_01
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2020
Shotlists

2019
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FAIR principles[6]

HZDR Invenio open source software,
see also zenodo.org

Findable
Accessible
Interoperable
Reusable

BigData + FAIR = Necessity for
ML

P. Steinbach et al Machine Learning for Accelerator Physics and Engineering

https://github.com/inveniosoftware/invenio
https://zenodo.org
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Go FAIR with a csv (credits David Pape / HZDR)

Findable

use a public repository
obtain unique global ID
enrich metadata

Accessible

nobody to ask
automated retrieval: data and
metadata can be obtained by a freely
implemented protocol

Interoperable

document based on standards (SI,
datacite, ...)
use established machine-readable
formats (yaml, json, hdf5, tiff, ...)

Reusable

Choose a license!
data meets community standards
(description, i/o libraries, ...)

Automate and document the above as soon as possible!
P. Steinbach et al Machine Learning for Accelerator Physics and Engineering

https://www.go-fair.org/fair-principles/
https://datacite.org/
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Demo Notebook: Predicting Shoe Sizes
(doi:10.5281/zenodo.5541746)

1. share data publicly
(doi:10.5281/zenodo.5541145)

2. download
3. open & check

(pandas)
4. normalize, train and cross-validate

(scikit-learn)
5. predict

P. Steinbach et al Machine Learning for Accelerator Physics and Engineering

https://doi.org/10.5281/zenodo.5541746
https://doi.org/10.5281/zenodo.5541145
https://pandas.pydata.org/
https://scikit-learn.org/
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Summary
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Conclusion

Helmholtz AI open for projects

already learned a lot about ML consulting projects
ML needs a concrete goal (expectations, testability,
trustworthiness)
ML works well on a FAIR dataset
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Questions, Comments, Feedback or Concerns are highly welcome!
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Evolutionary algorithm optimization

ORM diff. to exp. from EA-optimized x′∗ (middle)

x′∗ = best x′ per generation during opt run (top), final top
3 x′ from 6 runs

deap framework
https://github.com/DEAP/deap,
uses ”population” of possible x′

C∗ = ∥y − f(x′∗)∥ not as low as expected
many params x′∗i hit their allowed range
limits
repeat runs: very similar C∗ but different x′∗

(similar to neural network optimization!)
our suggestion: improve population
initialization, do run monitoring (convergence
behavior), check simulation (not accurate
enough?), check values of fixed params not
contained in x′, loss landscape analysis
possible: loss landscape analysis (many
optima, tune EA exploration behavior based
on that)
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