
Towards a Foundation for Comprehensive
Scheme Support in Argumentative Dialogue

Games
Simon Wells

University of Aberdeen
CMNA 13 @ ICAIL 2013, Rome

Intro: Argument & Dialogue

“Tackling the conceptual leap from problem domain to
deployment of arg-oriented tools (within that domain)”

Mixed human/agent arena supporting some combination of:

Computational Efficiency

Scrutability & Introspection

Alignment with Human Reasoning & Interaction Processes

What’s the story?

Schemes look like a good way to structure a KB about a
problem domain

Chaining schemes - good way to structure interaction within
the domain - even richer if using dialogue games

Looks to be a good alignment between arguments (schemes)
& dialogue (games) [NB. Atkinson, Reed]

Games & Schemes
Explore (& optionally extend) the (scheme structured) KB

Feed arg process

e.g. determine what to say next or which areas of domain
exploration have been neglected

Ultimately: interact more easily with intelligent
computational systems using mechanisms that are more
human-oriented

But it’s not that easy...

Practically it is not so straightforward to align games & schemes

Generally, games do not do argument very well

For “well” read: ‘explicitly’ in terms of mapping locutions to
argument building/manipulating acts

all feels a bit rudimentary...

Expressiveness
Currently, often treat locutional content as atomic: ranging from
statement variables, & propositions, through quite complex sentences
of language L

Interpretation is often left to the listener

Makes computational game players more difficult to produce

Essentially a form of loosely interpreted DuckTyping - not always clear
what the status of a piece of content is (argument, premise,
conclusion, ???)

Game Description
Schemes are quite simple & reasonable well structured

Games can be complex

How do we structure a game so that it usefully supports
schemes & scheme components?

How do we describe this support so it is useful/transparent
(meta-level)?

Can we provide useful guidelines to game designers?

Assumptions

Computationally accessible (automated & unambiguous)
scheme sets (with namespacing)

e.g. can retrieve {scheme_name, conclusion_desc,
minor/major_premise_desc, [critical_questions]}

Annotating Locutional Content

Remove ambiguity from interpretation of what speaker meant

If I say that P is my conclusion & I want it to be interpreted as
such then why not be able to label it as such?

 e.g. assert("conclusion": "p")

rather than the current fashion for overloading locutions:

e.g. assert_conclusion("p")

Similarly

 We could go further & explicitly link moves & content with
specific schemes:

e.g. assert ("conclusion": "p", "scheme":"expert_opinion")

or (to extend the earlier example):

e.g. assert_scheme_conclusion("p")

Describing Games

When describing a game:

 {optionally|mandatorily} label content as some|all
{argument_part|scheme_part} using key:value style notation

When playing a game:

Dependent upon rules; {optionally|mandatorily} label content
as some|all {argument_part|scheme_part} using key:value
style notation

Conclusions
Unpacking a lot that has been previously assembled into the locution
label, or left to interpretation, or deus ex machina solutions

e.g. "assume some mechanism that can recognise that an argument
conforming to a particular scheme has been uttered"

(If) Games generate more explicit data - (naively assume) improves
computational tractability

Remove class of interpretation related problems that depended upon working
out: where the content stood in the argument, what the arg meant, etc.

Future Work/Questions

How does this affect strategy?

Removing ambiguity could remove a whole class of
rhetorical devices

can't rely on misrepresenting the form of an
opponent's argument

How does this affect interpretation & analysis?

