Towards a Foundation for Comprehensive
Scheme Support in Argumentative Dialogue

Games
1 Il

e iwl U] |||||
" A]3
Il

|tyo Al
@ICAILZO]S Ro

Intro: Argument & Dialogue

~ “Tackling the conceptual leap from problem domain to
deployment of arg-oriented fools (within that domain)”

~ Mixed human/agent arena supporting some combination of:
— (omputational Efficiency
— Scrutability & Introspection

— Alignment with Human Reasoning & Interaction Processes

What's the story?

~ Schemes look like o good way fo structure a KB about o
problem domain

' Chaining schemes - good way to structure interaction within
the domain - even richer if using dialogue games

~ Looks to be a good alignment between arguments (schemes)
& dialogue (games) [NB. Atkinson, Reed]

Games & Schemes

Explore (& optionally extend) the (scheme structured) KB

|
|
~ Feed arg process

— e.g. determine what to say next or which areas of domain
exploration have been neglected

~ Ultimately: interact more easily with intelligent
computational systems using mechanisms that are more
human-oriented

But it's not that easy...

' Practically it is not so straightforward to align games & schemes

 Generally, games do not do argument very well

— For “well” read: ‘explicitly’ in terms of mapping locutions to
argument building/manipulating acts

— all feels a bit rudimentary...

Expressiveness

Currently, often treat locutional confent as atomic: ranging from
statement variables, & propositions, through quite complex sentences

of language L
Interpretation is often left to the listener
Makes computational game players more difficult to produce

Essentially a form of loosely interpreted DuckTyping - not always clear
what the status of a piece of content is (argument, premise,
conclusion, ???)

Game Description

Schemes are quite simple & reasonable well structured

|
|
~ Games can be complex

— How do we structure a game so that it usefully supports
schemes & scheme components?

— How do we describe this support so it is useful /transparent
(meta-level)?

— (Can we provide useful guidelines to game designers?

" Computationally accessible (automated & unambiguous)
scheme sets (with namespacing)

— e.g. can refrieve {scheme_name, conclusion__desc,
minor/major_premise__desc, [critical_questions]}

Annotating Locutional Content

Remove ambiguity from inferpretation of what speaker meant

1 1

It | say that P is my conclusion & | want it to be interpreted as
such then why not be able to label it as such?

TRMA

- e.g. assert("conclusion":

' rather than the current fashion for overloading locutions:

1 I

e.g. assert_conclusion("p")

Similarly

~ We could go further & explicitly link moves & content with
specific schemes:

— e.g. assert { "conclusion™: "p", "scheme":

expert_opinion")

' or (to extend the earlier example):

— e.g. assert_scheme_conclusion("p")

Describing Games

~ When describing a game:

— {optionally | mandatorily} label content as some | all
{argument_part | scheme__part} using key:value style notation

~ When playing a game:

— Dependent upon rules; {optionally | mandatorily} label content
as some | all {argument_part | scheme_part} using key:value
style notation

Conclusions

~ Unpacking a lot that has been previously assembled into the locution
label, or left to interpretation, or deus ex machina solutions

— e.g. "assume some mechanism that can recognise that an argument
conforming to a particular scheme has been uttered"

~ (If) Games generate more explicit data - (naively assume) improves

computational tractability

— Remove class of interpretation related problems that depended upon working
out: where the content stood in the argument, what the arg meant, efc.

Future Work /Questions

'~ How does this affect strategy?

— Removing ambiguity could remove a whole class of
rhetorical devices

— can't rely on misrepresenting the form of an
opponent's argument

" How does this affect interpretation & analysis?

