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This supplement is composed of four parts. Section A contains the proofs of the main results
in the paper. Section B provides the proofs of technical lemmas that are used in the proofs of the
main results. Section C presents four additional simulation studies: (i) the simulation studies
for mimicking the Chinese stock market; (ii) the simulation results of the PY test (Pesaran
and Yamagata, 2012); (iii) the generation of the error terms E; that is borrowed from Fan et
al. (2015); (iv) the simulation for the case where the summation of the GARCH coefficients is
smaller than 0.5. Section D presents the results of the real data analysis with a relatively short
window of length h = 60 and a long window of length A = 200 for both the US and Chinese
stock market data.

A Proofs of the Main Results in the Paper

This section contains four subsections A.1-A.4. Section A.l contains two lemmas about the
properties of B-splines that are used in the proofs of Theorems 1 and 2; A.2 shows Theorem 1
by employing Lemmas A.3-A.7; A.3 presents the proof of Theorem 2 by using Lemmas A.8-A.14
and also verifies Lemma A.8, which is the first result of Theorem 2; and A.4 provides the proof
of Proposition 1.

A.1 Two Technical Lemmas

We first present two lemmas regarding some properties of the spline approximation and B-spline
basis functions, and their proofs are given in Section B.

Lemma A.1. Define pnr,ior = 6;(t/T) — )\?Jé(t/T) and pntje = Bij(t/T) — )\?J-TB(t/T) for
1<j<dand1<i<N. Then, under Assumption (A1), there exist A% € R and )\?j c RE
such that

supy << |pNT0t] = O(L™") and supy<;<r [onT ije| = O(L™") as T — oo.



Lemma A.2. Under Assumption (A2), there exist constants 0 < ¢; < C; < 00 and 0 < Cy <
oo, with probability 1,

L™ < A\uin{(ZTZ)/TY < Auax{(Z"Z)/T} < C1L71, (A1)
Cr'L < Aninl{(Z72)/T} Y] < A {(Z272)/T} ') < 'L, (A2)

as T — oo, and for any nonzero vector a € RT with ||a|| = 1, aT {(ZZ")/T}a < CoL7L.

A.2 Proof of Theorem 1

Using the fact that
5.(t/T) + Bi(t/T) 8, = 2] (272) 2R,

the €;; given in (4) can be re-expressed as

€iu=Ry—2](Z"2Z)'Z™R,. (A.3)
Then the R;; in (2) can be re-written as

Rit = 6) + Z] X0 + eyt + pnrit,

where /\? (/\?]T,O <j< d)T and pNTit = PNT,i0t + 2?21 pNT,ijt fit- Note that, by Lemma
A.1 and Assumption (A2), we have

SupPi<¢<T ’PNTﬂ't’ =O0(L™) (A.4)
foreach 1 <3 < N.

Using the expressions of R;; and €;; given above, we further have

R; = 6017 + ZX\) + e; + pyp, (A.5)
and
& = MzR; = Mz(ZX\) + e; + pyr; + 6, 17)
= Mze; + Mzpyr,; + Mz 17,
where e; = (e;1,--,e;r)| € RT and PNt = (PNT15 ,pNT,iT)T. Subsequently, the statistic
JNp defined in (7) can be written as
Jyr = N'T! Zilaﬁﬂga ~ N7 Zz_ Zt et

N
= N-I771 22‘21(Mzei + MZpNT,i + Mzéi 1T)T1T1T (Mzei + MZpNT,i + Mz(S?IT)
_ _ N
NS e

N
= N‘lT_IZ eTleTlgMzei— N'T 121 12 1 ei;)

+N~ lp—1 Z 1}—MZ1T1TMZ1T
N
+NIT Z pNTiMZ]'T]-;MZpNTi +2NiT Z PN Mzlrly Mze;
i=1 ’ ’ i=1 ’

N N
+2N "It Zi:l 6917 Mz171] Mze; + 2N 17! Zz’:l 8917 Mz1lr1p Mzpyy,;.
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Accordingly,
Jyp — N71T~ 12 17 Mz171] Mglp
—1p— T
= (N7IT 1Zi:1ei Mz171pMze; — N~'T~ 1ZZ 12 . exn;)
N
+N_1T_1Z.7 pLTiMZlTl}rMZpNTi+2N_1T_1Z; pNTiMzlrlT Mze;
i=1 ’ ? i=1 )

N N
+oN 7! Zi:l 691) Mz171] Mge; + 2N 17! Zi:l 8917 Mz1r1: Mzpyy,
onT + (N1 + N2 + (N3 + CNT 4 (A.6)

It suffices to show that a;é«p]v;r LY N(0,1) and UﬁlTCNT,k =op(l) for k=1,---,4.

We begin to show U&ITQONT 4 N(0,1). The quantity oy can be re-written as

oyt = N7T71 Zil eiTleTlr}Mzei Nl ZZ ) Zt . zt’?t
= NI 211 ZZSzl cicistints = N1 Z =1 il
= N7 ZZ]\; Zt# eieisnins = N~ 1T~ Zt;ﬁs E, Esnins
= > N TR (Y Ba) =Y, enne (A7)
By Assumption (A3),

N t—1
E (N7t | Fnrp1) = 2N 1T Zi:l E (eit |[FnTe-1) nt(zs

In addition,
T T o t—1 2
S Bl Fare) = > ANTET 2E{(ZS_1EI B ) |fNT,t_1}
T t—1
DL ) D o (EtEtT |fNT,t_1) E., 7215, s,

T o t—1
= ZH ANT2T 2251 - E. SEq, 1105, 7s,-

. eisns) = 0.

As a result,

T T
Zt:2 E(phre) = E {thg E (@R [ FNT -1 )}
T t—1
- Zt:Q ANTIT 231752:1 E {E; 2Es, 771527731 7782}
T t—1
= v Et: 251,52:1 tr {E {E E,, 2]7715 Ns1 7782}}
Since E (ESE;— |]:NT75*1) =X and E (ES’EI |]:NT,371) = 0 for s’ < s, we have that
t— 1
Zt 2E (SONTt) = 4N2T~ 2215 22 E(n?n?)tr (E ) = o (A.8)
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Next we will show that U;,?[, 2?22 E (cp%mt \]'"NT,t_1> 21 and

T
> s o B (P (lonTdl > €ont) [Fari—1) 0

via verifying Lemmas A.3-A.6 below. Then, by the Martingale Central Limit Theorem (e.g.,
Corollary 3.1 of Hall and Heyde, 1980), we have that U;]}_,vQONT 4 N(0,1). By Lemma A.7
below, we have O'X[;CNT’;C = op(1) for k =1,---,4, where (y7 are given in (A.6). Then the
proof of Theorem 1 is complete.
Lemma A.3. Under Assumptions (A2)-(A3) and L*T~! = o(1), we have o3 ST, E(gp?\mt\
FNT+-1) N l,as (N, T) — oco.
Lemma A.4. Under Condition (C2), Assumptions (A2)-(A3), and L*T~' = o(1), we have
Unry = orr {1 +0(1)}, as (N,T) — oo.
Lemma A.5. Under Conditions (C1)-(C2), Assumptions (A2)-(A3), and L*T~' = o(1), we
have ZtT:QIE <<p‘}VTt) = o(oNy), as (N, T) — .
Lemma A.6. Under Conditions (C1)-(C2), Assumptions (A2)-(A3), and L*T~1 = o(1), we
have for any e > 0,
T

Zt:2 O-Rl%“E (‘P%VT,tI(|‘pNT,t| > €oNT) |]:NT,t—1) LS 0,

as (N, T) — oo.

Lemma A.7. Under Condition (C3) (i) and (ii), Assumptions (A1)-(A3), L3T—1 = o(1), and
the local alternative given in (8), we have oy Nt = 0p(1) fork=1,--+ 4, as (N, T) — oo.

The proofs of Lemmas A.3-A.7 are presented in Section B.

A.3 Proof of Theorem 2

We present the detailed proofs of the first two results of Theorem 2, namely O'R,%«(j}{;T —Jnr) =
0p(1) and 6%, = 0%7{1 + 0,(1)}. The third result, asymptotic normality, follows directly from
the first two results, Theorem 1, and Slutsky’s theorem. The following lemma shows the first
result.

Lemma A.8. Under Condition (C3), Assumptions (A1)-(A3), L3T~' = o(1), and the local
alternative given in (8), we have oy (Jip — Jip) = 0p(1), as (N, T) — cc.

Proof. By the fact that
a? —b* = (a —b)? +2(a — b)b, (A.9)

we can write
~ PN ~
JInt — Inr = DN1i + D2,



where
A 11 W LN 2.9
Dyri = N7'T Zi:l thl(eit —e;t)n; and
~ L N T
DNT,Q = 2N 1T 1 Zi:l Zt:l 2(€it — eit)eim?.
To prove Lemma A.8, we will show that 0]:,1T1A) NT.1 = 0p(1) and O'Xéwﬁ NT2 = 0p(1) given below.
Denote = =diag(n?, - - - ,77%). Since ©; = Mze; + Mzpyr,; + Mz08917, we have
~ N
Dyry = N'T71 Zi: —Pze; + Mzpny,; + Mz6917) T2 x

(—Pgei + Mzpyr,; + Mz8)17)
< 3(13NT,11 + ﬁNT,lQ + ﬁNT,lS)a

where Dyray = N7'T7 S ef Pa=EPge;, Dvraz = N7'T7 Y 1 PN MzEMzp N1, and
Dyraz = NIV SN (89217 MzEMg17. Let

Omax — maxlgign(gii)- (AlO)

By (A.1) and (B.8) that E(n?) < (dC")?E(1+||f||)? < C** for some constants 0 < C”, C** < oo,
we have {Amin(ZTZ/T)} " = 0,(L?) and Apax(ZEZ/T) = O,(L"). In addition,

N*lT*QZilE{(zTei)T(zTei)} = N7~ QZZ X Zt eiZu)?}
- 1T 222 1215 1 ZtZ

o T
< N 2Nopax thl E(Z2).
By B-spline properties, there exists a constant 0 < C < oo such that E(Z%) < CL™!. Hence,
N -
NT'T2Y 1E{(ZTei)T(ZTei)} < OmaxCLTITL,
1=

and thus N~17-2 Zi]\il(ZTei)T(ZTei) = O,(L™'T71). Using the above results, we have

IA

Dnr11 Aax(Z'Z) 2 EZ(ZTZ) ) {N"'T~ 12 (Z"e;)) (Z"e)}
< {Amm(zTZ/T)}*QAmaX(zTEZ/T){NflT*QZ,_l(zTei) (Z7e;)}

OP(LQ)OP(LA)OP(LATA) = Op(Til)-

By (B.14) that
2¢3 N 72tr (22) {1+ o(1)} < ofp < 2C3, N 2tr (22) {1+ o(1)},
and Condition (C3)(iii), we have

oDt a1 = Op[TTIN{tr (82) 1712 = 0,(1). (A.11)
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It is worth noting that
MzEMz = Z —2Pz= 4+ Pz=EPz < 22+ 2PzEPy,

and by the result in Lemma A.2, we have \pax(Pz=Pz) = Op(L_Q). These results, together
with (B.14), imply

— = —_— —_ —_ N —
oxrDNra2 < 208N N7ITTH Zi:l p;T,i:pNT,i
N
+2Xmax(PzEPz)o Ny ( NTIT7! Zi:l PNTPNT,)
— — -_— N —
= oypNT'T! Zi:l o1 EE) pnri{l + 0p(1)}

N
+Op(L oy ( NI Zizl PLT,iPNT,i)
= Op[N{tr (Z2)} VANITINTL™]
= OL7N{tr (2)}712] = 0,(1), (A.12)

where the last equality follows from Condition (C3)(i). By Condition (C3)(iii) and (8), we have
2\1—1 a7l N 0\2
{tr(Z*)} Ny ()
N
= {tr(E))TANTerTINTTY ()P = o(D), (A.13)

1=

for any o > 0. Also

T
1 MzEMz1r < 2{ S+ AmaX(PZEPZ)T}
= O)(T+TL?) = 0,(T).
The above results imply that, with probability approaching 1,

—1 A
ontDNT 13

IN

N 0\2
:1(51)

(2¢3; + o(1) V2N {tr ()} VANTITIO(T) Zi
= (2} +o(1) 2N {tr (22)} N o) Y
= Oftr (=) 23 @] = o[t (=) NI (9] =o1).  (A14)

Consequently, (A.11), (A.12) and (A.14) conclude that U;,%,JA)NTJ = op(1).

(67)*

We next show the order of UR,IT]j NT,2 by expressing

~ N
Dyra = 2N7'T7 Zizl(_PZei + Mzpyr,; + Mz517) Ze;

= Dnro21 + Dn722 + DNTj23,



where

A A1\ T =

Dyror = —2N7'T7') 0 e PrZe;,

~ N

Dnrg2 = 2N'T7! Zi:l p}T,iMzEei and

~ N

DNT,23 = oN~Ii7! Zi:l 5?1;MzEei.
It is worth noting that

A1\ T =
INT'T Z e, PzZe;|
< |i@"z/m) { Y el z/1llle] 22/} = 0,(LT ).

This, together with (B.14) and Condition (C3)(iii), implies that

ok Dyror = 0, [LT—lN{tr (22)}—1/2} = 0,(1).

In addition, employmg the same techmques as those used in the proof of Lemma A.7, we can
show that O‘NTDNT 92 = 0p(1) and O’NTDNT 23 = 0p(1). As a result, O'NTDNTQ = 0p(1), which
completes the proof. ]

Next, we show the second result that 63, = 0%,{1 + 0,(1)}. Prior presenting Theorem 2,
we have introduced the scaled estimator,

G3p = 2N 2772 Z un nztr(EQ)

where tr(£2) = T*(T + (1 +d)L — 1)~1(T — (1 + d)L)*l{tr@Q) —t2(E)/(T - 1+ d)L)}. By
Lemmas A.9-A.10 below, we will demonstrate that

T720(8) = T7Y%r(2) + 0, {trt/3(22)}. (A.15)
By Condition (C3)(ii) that T-/2N{tr (22)}_1/2 = O(1), we have

T7210(2) < omaxT V2N = O{tr(2%)}. (A.16)
Hence, R

T Htr(2) =T H{tr(2)}? + 0, {tr(E?)}. (A.17)
By Lemmas A.11-A.14 below, we will show that

tr(S%) = tr(32) + T~ Htr(2)}2 + 0, {tr(52)}. (A.18)

This, together with (A.17), implies that

tr(S%) = T Y{tr(2)}2 — tr(52) = 0, {tr(52)}.



Using the fact that T>(T+ (1+d)L—1)"Y(T - (1+d)L) " =1+o0(1) and T(T — (1 +d)L)~! =
14o0(1), we then have tr(X?) = tr(X?)+o,(tr(X?)). Therefore, we have 53, = o7{1+0,(1)}.

To verify (A.15), we follow the definition of T~1/2¢r(£) with &; = Mzei+Mzpyr,;+Mz6 1y
and obtain

T2t (8) = T~ V2tr (%)
= T2y AT e — (Tl 1) (T e 1)} — T2 ) E(ef)
— — N ~1 - - ra -
= Ty Ee -1 2ZZ~ & 17178 — T WZ E(e;)
. _ N
= T7'PT71Y 0 (ei+ pyri+0017)  Ma(ei + pyp; + 0 17)
N
T2 Zizl(ei +PNT T 5?1T)TM21T1;MZ(QZ' + PN+ 5?1T)
125 g2
T Z¢:1E e
N
= {17! Z e] Mze; — UQZ eq)}y+ T Z prVTviszNT’i
47121 Z (6921 Mgl + 271271 Z e] Mzpnr,
12r 2T S0l Myly 42T AT Y 5°pﬁTz~MZ1T
1PN el Mglp1f Mye; — TS (89)° 1 M1 1] Mgy
1=
S A A Zz’:l pNTMzlrly Mzpyr; — 272 Zi:l pirMzlrly Mze;
—2rPTRY T 60 M lr 1y Mge; — 2T T2 " 617 Mzlrly Mzpyr,

6 6
= ijl ENTj — ijl UNT,;- (A.19)

Lemma A.9. Under Condition (C3), Assumptions (A1)-(A3), L3T~! = o(1), and the local
alternative given in (8), we have {tr(22)}*1/2T1/2+9?9NT7j = op(1), for j = 1,3,---,6, and
{tr(Z2)YV2TY2NI Ny 5 = 0,(1), as (N, T) — oo, where o is given in Condition (C3)(iii).

Lemma A.10. Under Condition (C3), Assumptions (A1)-(A3), L3T~' = o(1), and the local
alternative given in (8), we have {tr(32)}~/2¢nr; = 0,(1), as (N, T) — oo, for j =1,--- ,6.
By Lemmas A.9-A.10 and (A.19), we have verified (A.15). We next demonstrate (A.18).
Let 7;; be the ij-th element of X, which is
i =T 'e/e; — (T7'e/ 17)(T 8] 17). (A.20)
Then,

(S = Z” AT %e]e; — (17161 )(T—la]HT)}?
= Y el -2y tele) e 1) (e 1)
+{Zi:1(T_laiT1T) 12



By Lemmas A.11-A.14 below, we have
) Y (e — r(2) - T ir(2))} = 0,1
ij=1 AR

{tr(E)) 7 00 (T €)(T716] 1) (T8 17) = 0p(1), and {tr(£%)} /2 32 (1716 17)? =
0p(1). Thus, the result of (A.18) follows.

Lemma A.11. Under Conditions (C1) and (C3), Assumptions (A1)-(A3), L'T~3/? = o(1),
L3T~! = o(1), and the local alternative given in (8), we have {tr(EQ)}*l{Zgjzl(TfléiT/éj)Q -
tr(2?) — T~Htr(2)}?} = 0,(1), as (N, T) — o0

Lemma A.12. Under Condition (C3), Assumptions (A2)-(A3), L'T~3/> = o(1), L3T_ (1),
and the local alternative given in (8), we have {tr(£*)} *Anr1 = 0,(1), as (N,T) —
Lemma A.13. Under Condition (C3), Assumptions (A2)-(A83), L'T~3/% = o(1), LST_ (1),
and the local alternative given in (8), we have {tr(2?)} LAnr2 = 0,(1), as (N, T) —
Lemma A.14. Under Condition (C3), Assumptions (A1)-(A8), L'T—3/2 = o(1), L*T~! = o(1),

and the local alternative given in (8), we have
{tr(Z?)} 1/22 T8/ 17)* = o0,(1) and
{tr(=%)}~ Z” (T8l e) (181 )(T’lejTlT) = op(1),

as (N,T) — oo

The proofs of Lemmas A.9-A.14 are given in Section B.

A.4 Proof of Proposition 1

Proof. Let a;s = Z) (ZTZ) 'Z, — F] (FTF)"'F,. Then
(T—d—1)CY = e (Pg— Pp)ei/5?
_ Zt 12 est (zT (Z27Z)"'Z, —FJ(FTF)—lFS) e1s /52
= thl e au /57 + 221&:2(23:1 Cit€istys) /02, (A.21)
where 52 = (T — d — 1)~ 'e] Mre;. We can readily show that

Z tatt‘F —0'22 Q¢ =0, 2tI‘ PZ PF) —O' (d+ 1)( ].)

This result, together with 8? RN JZ»Q , implies

S hoa/a? = (@4 1)(L—1) +oy(1). (8.22)
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Using the fact that PzPr = PrPz = Pr, we have

T t—1 2
Zt ) E[(2 2321 eit€istrs) | Fi—1]
t—1 t—1
= 40’22t QZS 1 Z €isCirAtsQtr = 40 Zt QZ zs ats + Op(l)
= glegt#ng a2, + 0,(1) = 20}tr[(Pz — Pr)?] + 0p(1)
= 20ttr(Pz — Pr) +0,(1) = 207 (d 4+ 1)(L — 1) + 0,(1).

With the above result, and applying the Martmgale Central Limit Theorem and subsequently
verifying the Lindeberg’s condition of 2 Zt 2(2 — 11 eztezsats) we have

\/2 d+ 1 QZt 9 Z eztezsats) i N(O, 1)

. 9 D
Since 62 = o2, we further have

Vel d+ o AQ Zt ) Z eztezsats) LN N(0,1). (A.23)

y (A.21), (A.22) and (A.23), we ﬁnally obtain that

(T—d—1)C¥ — (L—-1)(d+1) 4 .
\/Q(d TO(L—-1) — N(0,1) (Wilks phenomenon).

B Proofs of the Technical Lemmas

In this section we provide proofs of the technical lemmas to which we referred in Section A.

B.1 Proof of Lemmas A.1-A.2 Used in the Proofs of Theorems 1-2

Proof of Lemma A.1. By Corollary 6.21 in Schumaker (1981), we have supy <;<7 [onT,ij¢| =
O(L™") for every 1 < j < d. By the same corollary, there exists )\10 € R” such that SUPy<t<T
lo (t/T) — A% B(t/T)| = O(L™"). As a result,

Supi<¢<T |pNT o]

supy <7 |i(t/T) — N B(t/T)| + |T 12 X B(t/T) - Z o (t/T)

IN

IN

supy <y |ai(t/T) — Ny B(t/T)| + T~ thl supy <y |ai(t/T) — Xy B(¢/T)| = O(L™").
O

10



Proof of Lemma A.2. Following a similar procedure to that in the proof for Lemma A.7 of
Ma and Yang (2011), we have that, for any nonzero vector ag € RU¥H1D) with ||ag|| = 1, for

sufficiently large T,
L7t <apy"{E(Z'Z)/T}ay < C'L71 (B.1)

for some constants 0 < ¢/ < C’ < oo, and, with probability approaching 1,
{ +o(IL™ < \uin{(Z"2)/T} < Mnax{(ZTZ)/T} < {C" +0(1)}L 71,

as T — oo. Accordingly, this completes the proof of (A.1) by letting ¢; = ¢ + o(1) and
C1 = C"+0(1), and the result of (A.2) follows immediately from (A.1). Note that Ma and Yang
(2011) used the B-spline basis function multiplied by LY/2 hence, L=t would disappear in both
sides of the above inequalities.

For any 1 <t < T and 1 < ¢ < L, there exists some constant 0 < M; < oo such that 0 <

By(t/T) < M. Also by Condition (A2), we have E||f;||> < M" for some constant 0 <M < co.
Thus, for any nonzero vector a = (a1,--- ,ar)' with [|a]| = 1, we have

d L T
a E(ZZ)a < Zj:1 ZH E{thl By(t)T) fjta}*
L
12
< 2M Ze=1 Zte{t:\e(t)mgqq} ZSE{S:M(S)fﬁgqfl} By(t/T)Be(s/T)lau|as|
2752 N\ 2
2MM; Zézl(zte{t:\é(t)—é\gq—l} Jat])

27 2 ey —1 N 2
ZMEMYCTTL 24:1 Zte{t:|€(t)—€|§q—1} sl
< 2MPMEC*TL 'q||a||* = Cylla|*TL ™! = CoTL™!

IN

IN

for some constant 0 < C* < oo, where Cy = 2M"?>M2C*q. By Bernstein’s inequality given in
Bosq (1998), we obtain |a' (ZZ")a—a E(ZZ")a| = 04 (TL™"). This completes the proof of
Lemma A.2. O

B.2 Proofs of Lemmas A.3-A.7 Used in the Proof of Theorem 1

Proof of Lemma A.3. Clearly, E {ZtT:ﬂE (cp?\mt \]—"NT’t_1>} = o%,. Hence, to prove this
lemma, we only need to show that

o\ I 2
Var {UNT . (pRere [FNT1 )} =o(1). (B.2)
Let
T ) 2
E {Zt:2 E (‘PNT,t | FNT -1 )} =VUn71 + UNT2,

where

T
Uyt = E{222<t1<t2E(@?\/T,tl Fvre-1) E (P, ’fNT,tzl)} and

T T
Unro = Zt:2 E{E (SO?VT,t | FNTi—1) }2 < thz E (‘PZJIVT,t) .
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By Lemmas A.4 and A.5 below, we have that Wyp = 0% {1 +0(1)} and 3|, E (gp?‘\mt) =

2
(UNT) Hence, E {Zt 2 (SO?VT,t ’fNT,t—l)} = U?VT + O(U?VT) and

T
Var {thz E (W%VT,t | FNT -1 ) }
T ) 2 , \
= B {Zt:Q E (SDNT,t |‘FNT,t—1 )} —ONT = O(UNT)'

This completes the proof of (B.2). O

Proof of Lemma A.4. We write

T
_ 2 2 T 2
\IJNT,I = 2 22<t1<t2 {<4N T ZSI so=1 Es1 zEsznt1n81n82> X

CLU D DRI e ) S

By Condition (A3), E (E] XE,,E] XE,|f) # 0, only holds under the following four scenarios:
(1) Es, = Es, # Es; = Eg; (2) E;; = Egy # Es, = Eyy; (3) Es; = E;, # E, = Egy; (4)
E,, = E,, = E;;, = E,,. Thus,

Unt1 = YN711 + YnT12 + UNT 3,

where

T t1—1 to—1
_ § 2 § § T T 2.2 .22
\]:/NT711 - 2 2§t1<t2 E{ 4N T s1= 1 1S53#51 E81 2E51E532E5377t1n81 nt2n53 }7

T _ _oN2 t1—1
Unp1o = 222<t1<t2 E{(4N~2T"?) Zl<$1#2 E,| XE,E/ SE, n? n? ninZ} and

T 222X T (T 2 22
\IINT,13:222<t1<t2E{(4N TN (E EEslmmsl) .

1

We next demonstrate that U nr11 = 0%0{1 + o(1)}, Unr12 = 0(0%p) and YUyt 13 = o(okr),
via items (i), (ii) and (iii), respectively.

(i) After simple calculation, we have

B T t1—1 ta—1 —2—2\2, 2,2 2.2 2 2
\IINT,II - 222§t1<t2 281 IZI<537551 4N T ) tr (2 )E(T}tlnslntgnsg,)‘

By Bernstein’s inequality given in Bosq (1998) and the same proof for Lemma A.8 of Ma and
Yang (2011), under L3*T ! = o(1), we obtain

1Z"17/T —B(Z"17)/T||sc = Oq.s.(log(T)/VTL) (B.3)

12



and HZTZ/T—IE(ZTZ/T)HOo = Og.5.(log(T)/v/TL). Furthermore, using Assumption (A2) (ii),

we have
IE(ZT17)/T |0 < max T~ 12 |Bo(t/T)|( 1+Z CElfl)

M m?X Zte{t:|€(t)—€|§q—1} |Be(t/T)]
< M*M*T7T'TL™' = M*M* L7, (B.4)

IA

for some constants 0 < M*, M** < oo, which leads to ||Z"17/T||cc = Oas (L71).
By (A.2 ), (B.1) and the result in Demko (1986), we have, with probability 1,
T -1 T -1
1{(Z72/T)} [l < CsL and || {E(ZTZ/T)} || < CsL, (B.5)

as T' — oo, where 0 < C3 < co. The above results imply that

‘(ZTZ/T)l— {E(ZTZ/T)}_l‘

= Ous(?)|272/T-E@2Z/T)||

e}

= O (L?log(T)VTL). (B.6)

Define 7y = 1—Z, {IE(ZTZ)}‘1 E(ZT17). Then by (B.4), (B.5) and the fact that | ¢, By(t/T)]
is bounded, we have

~ (14+d)L -1
il o< 1y |ztk\||{E<zTZ/T>} oolIE(ZT 1) /T |
< 1+c’1+z \fi)LL™" < dC"(1 + ||&]]) (B.7)

for some constants 0 < C’,C” < co. Analogously, we have, with probability 1
mel <1+ Z 227 2/ T) 7 1oll(Z7 1) [T oo < dC" (1 +|[81]): (B.8)

The above two results, together with (B.3), (B.6) and the Lemma’s assumption L3T~! = o(1),
imply that, with probability 1,

7 — | < (Z | Be(t/T) fiel + > ‘Ee(t/T)‘ ) H(sz/T)l_ {E(sz/T)}—lu
0,j 0

X ||Z"17/T —E(Z"17)/T)|so
< C" L2\ /1og(T) /(T L)\/1og(T)/(TL)(1 + ||£|) = (1 +||f]])o(1),

for some constant 0 < C" < co. Hence, with probability 1,

7 = | < (7] + [mel) |7 — el < 2dC" (1 + [[£][) (1 + (1] Do(1).
By the above results and Assumption (A2)(ii), we have
BT, (72, = 03,3,
E[(1+ [[f, )21+ 1 ID*( + [ D (1 + [[£5]1)%]0(1)
{EL+ [[£ D B + |18, IDPE( + |8 [D*E(L + [[fi])*}*0(1) = o(1).

IN
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Similarly, we have [E{(1, 37, ), 2, } = o(1), [EGR, 72, (0~ 2, }) = o(1). and B, 72, 7
(7733 - 7733)}\ = 0(1). Accordingly,

[E(nf, n2,mim3,) — E@7 72, 615, )|

< [E{(mi — ) mimina | + (B (02, — 2 ninz,
+HE{77 12, (08, — Tt )0z, H + [E{7 112,715, (03, — T2,) H
= o(1). (B.9)
This leads to
v = 23 SUNSR (uN ) (SR EGR LR, + o(1)
NT,11 2<t, <to s1=1 1<s3#£81 77t1775177t27753
_ _ 2 3
= THANT2T2) 62 (32)0(1) + Uiy, + O + U
where
(1) _ —2m—2\2, 2 ~D ~D ~D ~D
YNt = 2251@1353«2 (ANT2T72) " tr (BB, 72,175,
(2) _ —2—2\2, 2/§12 ~D ~D ~D ~D
Ut = 23, (ANTETTR) e (SR 72,7, 5,
(3) _ —2—2\2, 2 ~D D ~D ~D
Unrn = 23 o, (ANTETTR) et (SEEGE 72,7, 5

When s1 < t1 < 83 < t9, we have E(ﬁ?lﬁfl?]?zﬁfg) :cov(ﬁflﬁ?l,ﬁfjﬁg) +E (?73177;21)1@(7“7’327733)
This yields

v 1) 1)
NT 1= ‘I’NT,111 + ‘I'NT,112>
where
(1) _ —2—2\2, 2,512 ~2 ~2  ~2 ~D
Ynrin = 2281<t1<33<t2 (4N T ) tr=(37)cov (g, 15, 1, 7s,) and

(1) _ —2—2\2 1 22\ (=2 =2\ =2 2
‘I’NT,112 = 2Zsl<t1<33<t2 (4N T ) tro(% )E(Utlﬁsl)E(nt2ﬁ33)-
Applying Davydov’s inequality given in Corollary 1.1 of Bosq (1998), we have for s > 0,

lcov(@E T2 TET) | < 2025t + D{E@R 2 G EGE 72, )y ()
x{2a(|tr — s3)) /).

In addition, using (B.7) and Assumption (A2)(ii), we obtain

B2 < (B T)EGEE))1/2
< (dC"Y TR + ||, ) CTIE(L + ||£, ) T} <

for some constant 0 < C' < oo. Analogously, we can show that E(n7,n2,)* T < C' for some

constant 0 < C’ < co. Hence,

[cov (T, 72, iy Ta)| < 2(23¢ + 1)(CO)Y ) {2a |ty — s5])y /7).

14



This leads to

IN

1 o /(24 )
¢ Zs1<t1§83<t2 a(|t1 83’)

6//T3 Zzio Oé(k‘)%/(QJr%),

~2 ~2 ~2 2
CcCov
Zsl<t1§53<t2 (77t17731 ) T]tgnSg)

IA

where C" = 2(25¢71 4 1)(CC")Y/ (2+2)27/(2+7) - Accordingly,

T

2/ (245)
ok,

~ —2—2)\ 2
|\P§\1I)T,111| <2C" (4N 2T 2) tr2(22)T3Z
which implies that \I’%)T,ln — 71 (4N‘2)2 tTQ(EZ){ZgZO a(k;)%/(2+%)}0(1)'

Following similar techniques to those used in the proof in (B.9), we have |E(7272) —E(n?n?)| =
o(1) and |E(7?) — E(n?)| = o(1). As a result,

(1) _ —2—2\2 ; 2/%2 2,2 2,9
VT2 = 2Zsl<t1§33<t2 (4N T ) tr=(3°)E(ng, ms, ) E(nz, s, )-
This, in conjunction with the above results, yields
T
U = THANT EAEN(Y] alk)/P00)

— —_9\2
+2 Zsl<t1<53<t2 (4N 2T 2) tr2(22)E(7]3177§1)E(77t2277§3)

In the scenarios of 51 < s3 < t; <tz and s3 < s1 < t; < t2, we have E(77, 73, 13,772, ) =cov(72, 73,

nent) +E@2 m2,)E@E 77,). Then, following the same procedure as above, we also have

- - 2 T Vs Vs
Uy = TTHEANT) AEN(Y alkyCHI}0()

_ —_9\2
+2) o, (AN (SRR, 0 B ) and

_ —_9\2 T » »
W = THANT eAEN(Y alk)/E00)

_ —9\2
+2) 0, (ANTETT) T2 (SR 03, JE 7, 7).

Hence, employing Assumption (A2)(iii) that 72, a(k)*/?+*) < 0o, we further obtain

Unrin = {4N—2T—2 ZtT:2 Zi:l E(nin?)tr (52) }2{1 +o(1)}
4T (4N72)? trQ(EQ){ Z::o a(k)”/(er”)}O(l)

+ (AN tr2(22)o(1)
— ok 4 okro(1) + (ANT2)2 tr2(22)o(1). (B.10)

15



It is worth noting that, by (B.9), we have
2 —2m—2 N\ t=1 2 ~2~2
oy = 4ANTT thg 25:1 tr (%) {E(@75) + o(1)}
T t—1 e o T t—1 9~
— AN"272 thz Zs:l tr (22) E(nt?)E(ng) +ANT272 thz 23:1 tr (22) cov(ntz, 773)
+4N"2tr (22) o(1). (B.11)

Also,

AN2T? Z; Zt: tr (27) E(7;)E(7;)
= 2N2T % (X?) (Z; E(n}))? — 2N 2T %tr (2?) Z; E2(n?)
+AN 72T 2 Z; Z: tr (£%) o(1)
— N7 2 (32) (B (15 Mz1r))° — 2N 72Tt (3%) O(1) + AN 217 (32) o(1).

Since My is idempotent, its eigenvalues are either 0 or 1 and a' Mza > 0 for any a € R” with
lla]| = 1. In addition, a’ Mza = Auin(Mz) = 0 when a is an eigenvector corresponding to
Amin(Mz). Since 17/v/T is not an eigenvector, we have (17/vT)T Mz(17/v/T) > ¢y for some
constant 0 < cpy < oo. Thus, 1;leT > cyT. By the result in Lemma A.2, we further have,
with probability 1, 1;MZ1T < CyT for some constant 0 < Cjy < 0o. As a result,

enT < 11 Mzlp < CyT,
which leads to
263, N"2tr (£%) < aN 2T %tr (22) (E (15 Mz17))” < 203, N %tr (£2) .
The above results imply that

2¢, N %tr (22) {1+ o(1)}

IN

NPT Y S (5 BREGE)
202, N~"2tr (22) {1+ o(1)}. (B.12)

A

By (B.7), E(7?)*t* < (dC")***E(1 + ||f;||)2***) < ¢ for some constant 0 < ¢ < co. Hence,
using Davydov’s inequality given in Corollary 1.1 of Bosq (1998), we have
2(2%71 + 1){E(~2)2+%}1/(2+n){E(ﬁg)2+%}1/(2+n){2a(|t _ S|)}%/(2+%)
c’a(\t ‘)%/ 2+x)

lcov(@, )| <
<

for some constant 0 < ¢’ < oo, and thus,

T t—1 t—1
|AN—27—2 Zt ) Z G (22) cov(if, 72)| < 4INT %tr (% Zt 2 Z a(lt — s|)/2+%)
= S=
< AN (2 {Z k)*/ )y
= N2tr (2% o(1). (B.13)



This, together with (B.11) and (B.12), leads to
2¢5 N 72t (22) {1+ 0(1)} < oy < 2C3, N 2tr (22) {1+ o(1)}. (B.14)

By (B.10) and (B.14), we have U711 = o5p{1 + o(1)}, which completes the proof of (i).

(ii) By (B.7) and Assumption (A2)(ii), we have, for any 1 <11, s1,%2,50 < T,

E{n 02,715,715, }
< (dC"E[(1 + |[£, )2 (1 + [[£6, 1) (1 + |1£, )2 (1 + [[£s,]])7]
< (dC"Y{E(L + |[f, [)PEQ + [|£5, IDPE(L + || ||)PEL + [|£s,])®H/* < M,

where 0 < M’ < oo. This, in conjunction with (B.9), implies that, for any 1 < t1, s1,t2,82 < T,
Thus,
B T o2 i1l 4 2.2 2 2
Unpio = 2D, (NI n(® )E(ntmsmt27752)

t1—1
< ! 2
- 2M 4N T Z2<t1<2§2 Zl<517552

< 20"M' (4NT2T2) THr(S4) = 207" M (4N %)% tr()

for some constant 0 < C"" < co. By the condition that ¢r (24) = o{tr? (£*)} in Condition
(C2)(i) and (B.14), we obtain W 712 = o(o’sr), which completes the proof of (ii).

(iii) By (B.15), we have

/ 2 ti—1 T T
Unras < 2M(ANTT)PST ST E(E]SE,E]SE, )
< M (4N“2 QZ (ESTEESESTSJES)
= M' (4N~ ) o(tr? (22)),

where the last step follows from Condition (C2)(ii). Hence, ¥ 713 = o(o% ;) and (iii) follows.
O

Proof of Lemma A.5. By (A.7)
(P?VTt
t—1 t—1
= (Z_ ONITIE] Esnms) (2N~'7 ! ZSI 1232 lEj Es, E] Eq, 01,75,

t—1 t—1 -1
= (N7 Y BIEEEap+ 2N T 2Y 3 BIEGE By,

s=1

= YNT + UNT 2.
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Then,

T 4 T 2 T 2
ZtZQE(SONT,t)ﬁz ZtZQEWNT,ﬂ)+Zt:2E(”¢NT,t2) . (B.16)
In addition,
2
E(@hra) = @NIT)'E(Y BIEEBa?)
_ 1 -1 T T T T
— (eN"'7- ZSI 1252 1 (E E, E! EE/E,,E] Etntnsln32>
= WNT1 T WNT2, (B.17)
where
t—1 so—1
wytn = (2N 2252 DI (ETE B! B,;E/ E,,E| Emtnslns2> and
11\ 4 t—1
vt = CNTT)'STE((EBTE) i)

Employing Assumptions (A3) (ii) and (iii) and (B.15), we obtain,

T t—1
S enta = (eNTTTY Zt DS E (E/ By B BB E,ELEmin? i)
t—1
= (en“iT ! Zt S 81#2151(ETEEtETEEmtnSlnSQ)
(

aN-171) 2 pr T2Z <EtT2EtEt EEt)
4

’ﬂ

= (N'TH 2M'To( (22)),

where the last step follows from (C2)(ii). This, in conjunction with (B.14), implies that
T
S wnra =2M (2N o(tr? (32)) = o(okir). (B.18)
By (B.15), we have
T “1p—1\4 o N =1 T \4
thz w2 < (2NN M thg 25:1 E(E/E,)
Under Assumption (A3)(ii) and Condition (C1), we adopt the same procedure as given on page

i)
24 of Chen and Qin (2010) and obtain E(E] E,)* = O(tr? (£?)) 4+ O (tr (£*)). This, together
with Condition (C2)(i) and (B.14), leads to

S enre = M N 0w (s +0(r(5Y) ) (Ba9)
— M 2N"Y' 720t (%)) = o(okr).

Accordingly, (B.17 ), (B.18) and (B.19) yield

Z;E (VRra1) = olonr)- (B.20)

18



Using the result of (B.15), we have that

T T t—1 2
Zt:z E (w?VT,tQ) - (2N_1T_1)4 Zt:2 E (ZlgsﬁésQ E:E51E:E3277t277517732)

_ 2
Ny S IE(QZt ' E/E,E/E,,)

t=2 1<s1<s2

IN

_ —1p—1\4 3 o T t-1 t—1 T T T T
= (2N7'T )M4Zt2221S81<s221S83<84E(Et E, E]EE/E,E] E,).

By Assumption (A3)(i), for s; # s9 and s3 # s4, we have E(E:Ele;— E,:E;FES?)E;r E;) # 0 only

2 4

when s; = s3 and sy = s4. The above results, together with Condition (C2)(ii) and (B.14),
imply that

T T t—1
thz E (Y37.42) (2N 1) Mra thg Zl§31<32 E(E/E,E! E,E/E,E] E,)

1 2

IN

_ —1p—1\4 T t—1 T T
= (2N7'T )M4Zt:221§81<82E(Et SE/E/; ZE;)

T
< AM (2N Y)iT? > E(E/SEE]SE)
— aM’ 2NV o(tr? (32)) = (k). (B.21)

Consequently, by (B.16), (B.20) and (B.21), we have shown ZtTZQIE (cp‘]l\,ﬂt) = o(o). O

Proof of Lemma A.6. By Cauchy—Schwarz inequality and Chebyshev’s inequality, we have

T —
>, ontE (Pmal (lonrel > conr) | Fare-t)

T
< 0'1:7%“672 thz E (SojlvT,t |fNT,t71) .

From Lemma A.5, we obtain

T T
E{ Zt:2 E (¢hre [FNri-1) } - ZtZQ E (onr:) = o(onT)-
The above two results lead to Lemma A.6, which completes the proof. ]

Proof of Lemma A.7. Using the fact that Mz is idempotent, we have Apax(Mz) = 1. Thus,
/\maX(leTI;MZ) = )\maX(I}MZleT) < )\maX(Mz)(lng) = T. This, in conjunction with
(A.4) that sup;<;<r |onT,it| = O(L™") for each 1 <4 < N, results in

N
(nrg = N7 Zi:l PNTiMz1lT1e Mzpyr,
N
< Amax(Mzlplp Mz)N~'T! Zi:l PNTPNT.

N
< N7! Zi:l p}T,ipNT,i = O(L™>'T).
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By (B.14) and Condition (C3)(i) that TL™?"N {tr (22)}71/2

op(1).

= o(1), we have O‘&;CNTJ =

Define TWNT,i = ZZ:l NsPNT,is- Then CNT,Q = 2N~ 171 sz\il ZtT=1 TONT,iMtCit - In addition,
using the result under (B.8), we obtain

E(ni) < (dC")’E(1 + [|£]])* < ¢ (B.22)

for some constant 0 < C** < co. Furthermore, by Lemma A.1 and (B.22), we have |wy7,| =
O(TL™"). This, together with Assumption (A3)(i) and (B.22), implies that

T N
Var((nrp) = (N7 > L E <Zl: WNT,mtez‘t>

(eN~iT! Zt 12}3 ) E(@NTi®@NT 7704

(2N~iT7Y) Nzt X (Z” 103]>1/ O{(TL™")*}

= O(N7'TL 7tr1/2(x?)),

2

IN

where o;; is the ij-th element of X. Hence, |[(n72| = O) [N_l/QTl/QL_T {tr(EQ)}1/4]. Using
this result, Condition (C3)(i), and (B.14), we have

oGy = 0y [NVATV2L {tr(5%)) 7] = 0,(1).

Define @wy; = 5?1;M21T. Then, we obtain, wi,; < T|69|. This, in conjunction with
(B.22), implies that

T N
Var(vrg) = @NTITTY 1Z.J | E(@hr @i 770
< (2N—1T—1)2T C**TZ |50H50||0”|
< (eN“'TY1T20eTe 12 (072 + 1671 o]
< Ny oY |5?\ ijl o51-

Therefore,
|cNT,3|=o[ EAGOINIEEE T m}m].

This, in conjunction with (B.14), leads to
oilivrs = O, [{tr( NN TS 0P a3 oyl 1/2]
- 0, [{tr<22 AL SN LICTE S mr}m]
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By the assumption that 6 = N~1/27=1/2{tr(£2%)}1/40 we have
oxrénts = Op [{”(22 PN @ max{z |o51}] 1/2}
= 0, (= a7 o] = (1),

where the last equality follows from Condition (C3)(ii). By Lemma A.1 and (B.22), we have
with probability approaching 1,

(vl < 2N_1Z |67 Z IneonT,itl = O(N~'TL™ Z 169)).
This, together with (B.14) and Condition (C3)(i), we have
= Oyl{tr (=)} LY 1Y)
_ [{tr (22)} V4 p1/2 57121 —r g1 ZL \C?\}
= Op [ {tr (22)) VA2 N2 LN Zjil |c?|2}1/2}

= Oy {tr (=)} TAN2LT| = 0, (1),

The proof is complete. ]

B.3 Proofs of Lemmas A.9-A.14 used in the Proof of the Second Result of
Theorem 2

Proof of Lemma A.9. We decompose Un1,1 = UnT,11 + UNT 12, Where
0 = T2 ZN e Mz1r1) Mge; — T—1/272 ZN ZT eZn? and
NT,l]. i=1 3 ZiTim YA i=1 =1 it

N T
UNT12 = 7122 Zi:l thl ;.

In addition, ¥nr,11 can be expressed as

B B N T
Onri1 = T V72 E 1 § oy Cit€isTIiTs = 7127 25 enn;
1272\ s _ pe1/27-2
T T g i1 g tohs €it€isTtTs = T T E tts Et Esﬁtﬂs

T — _ t—1 T
_ ZH op-1/27 2EtT77t(Zs:1 E,ns) :thg Nt

By Assumption (A3),

t—1

N
E Genre [Fvre1) = 2072772 Y 00 B (e | Fre-1) (Y eistis) = 0.

=1
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Moreover, we have

(dC"V'E(L + [[f])*(L + |I£]])?
(dC"YHEL + I )*E(L + [IE|)*}/? < " (B.23)

E(nin?) <
<

for some constant 0 < M” < co. Then applying the same techniques as those used in the proof
of (A.8), we obtain

T 2 T 1
E(ZH %NT,t> => L E () =4T" 5Zt QZZ (E@mind)tr (3%) < 2M"T~%tr (7).

Accordingly, Inr11 = op[T_3/2{tr (22)}1/2], which implies that {¢r (22)}_1/2T1/2+919NT711 =
op(1). By (B.22) and Condition (C3)(iii), we have

E[{tr(£2)} V2TV e yr1y] < {tr(S2)} V2TV 2 e = 1/2- 221 1Zt 1 ()
—  {tr(Z2)) V2TV 21 2 Ziﬂg
< {tr(EH} V20 TN oy = o(1).
Hence, {tr(X?)}~Y/2TY2+ 29 119 = 0,(1). Consequently,

{tr ()} 12T 09 nr 1 = 0p(1).

Moreover, Inr,2 < T-1/2 21111 (5?)2. Hence,

7

N
{tr (Z2)}VPTV2N N < {tr (Z2))VPTVPT1 AN (69)%.

Using the result {tr (£2?)}~1/2 = O[{tr(£?)}~1N] and applying (A.13), we obtain

{tr ()} V2TY2N% 12 = 0p(1).

y (A.4), we have

_ _ N _ _ N
Inrs < T7'°T ZTZizlp}T,iszNT,i <771 QTZ,-ZI PNTPNT.
T71/2NL727"

Employing Condition (C3)(i), we then obtain that

{tr (Z2)}V21V2 ey nrs < {tr (22) ) V2TENL™ = o(1).

Recall that wyr; = Zstl mpNT,is defined in Lemma A.7. Then
N T
Inra =207 PT2Y 0 N wnramer.
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By Lemma A.1 and (B.22), we have |wy7;| = O(TL™"). This, together with Assumption (A3),
implies

~1/2 N7 N ’
Var(Inr4) = (2T T ) t 1E <Zz: wNT,mteit>
— (2 712~ ) Zt 12” . wNTszTJnt)JU

12
27~ 1/2T ) Nzt 1<Z” lo?j) O{(TL™")*}

= O(T2NL Z#r'/2(x2)).

IN

Under Condition (C3)(i), we thus have

{t?” (22)}71/2T1/2+g‘19NT74‘ — Op({tr (22)}71/4T71/2+QN1/2L7r) _ Op(l).

Recall that @y, = 6917 Mz17 defined in Lemma A.7. Then, we obtain, Wt < T|89|.
As a result,

Var(Vnrs) = (2T—1/2T 2)22t 1Zu 1 wNTszTjnt)UZJ
< (arer) ey e
2
< (2T—1/2T 2)* 730wt (532) + (2T—1/2T—2)20*2T30**{ZZV1 (5?)2}

2
N
= 4CTT2r(E?) + 40T~ {Z,l (5?)2}
This, in conjunction with (A.13), leads to
_ _ N
{tT(EQ)} 1/2 T1/2+Q‘79NT,5’ — Op |:T—1/2+Q+ {tT(EQ)} 1/2 T—1/2+g Zi:1 (5?)2:|

= 0, [T‘1/2+9+ {tr(22)} 7 NT /2 ZL (5?)2} = 0,(1).

By Lemma A.1, (B.22), we have

N
E[Inrs| = E[2T /272 Zi:l 0917 Mz1lp1p Mzpyr,|

T
E {QT—I/QT—I Zil ‘5?‘ Z 77tpNT,z't|}
t=1

~ N
< (C**)l/QszTfl/ZLfr ZiZI ‘5? 7

IN

23



for some constant 0 < C’p < 00. By Condition (C3)(i), we thus have, with probability approach-
ing 1,

{t’l“ (22)}—1/2T1/2+g |19NT,6| < (C**)l/QCNr Q{tT (22)}—1/2TQL—7‘ Zj\i ‘50’

< C’{tr( )} 1/4Tg 1/2N1/2L T{N IZ }1/2
= o(1), (B.24)
where C’ = 2(C**)1/2C,. This completes the proof. O

Proof of Lemma A.10. Write En71 = EnT11 + EnT,12, Where
gNT,ll = T_l/QT_l Zz e, MZeZ T_l/zT 1 Z e e; and
_ p—1/27—1  p—1/2p—1
§NT,12 = T T Zi:l €, e; T T Zi:l E e e
After simple calculation, we have
T-1/2-1 B 121N T Ton—1nT.
ENTIL = T Zl_ Mz —1Ir)e; =TTy " o] Z(Z'2)'Ze;.
By (A.2), we obtain that, with probability approaching 1,
S - N o To5T
Envtan| < e 'T7VPT L Zizlei 77 e,
as T — oo. In addition, by Assumption (A3),

(1+d)L (1+d)L T
E(eZTZZTeZ-) = Z Z Ztkezt = Zk—l Zt:l E(Ztkeit)2
(1+d ~
= O'uz Zt ) E(Zy,)? < CroiuT (B.25)

for some constant 0 < C; < co. This, together with Chebyshev’s inequality, implies that
N
vt = Oy (T‘l/QT QLZ Tii ) =0, (T‘l/QT_lL > 0>
= 0y (T™?LNoway ) -
Accordingly, by Condition (C3)(iii), we have

{tr(2))V2lenrnl = Opl{tr(£3)} T3 LNowax] = o(1).

y (B.31) demonstrated later, we have
2 2
Z 1,7=1 Zt 1 Zte T{tr( )} + 2TtT(2 ){1 + 0(1)}
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B e = 3 3 ) =3 STEES) Y, S B
= Z”Z zte]t +Z Zt# 0ii0jj

= T{tr(Z )}2+2Ttr(22){1+o( )} 4 T(T - 1) {tr()}>

As a result,

var({nr12) = T_3[IE(Z.: e el {Z e e)}
= T3T{tr(X)}? + 2Ttr(22){1 +o(1)} + T( — D {tr(Z)}? - {Ttr()}?]
T732Ttr(Z2){1 + o(1)}] = 2T *tr(Z*){1 + o(1)}.

Therefore,
var({tr(Z3)} Y 2en112) = 2771 4 0(1)} = o(1),

which implies that {tr(2%)}~/2¢n719 = 0,(1). Consequently, we have

{tr(Z*)} 1 2enra = 0p(1).

y (A.4) and Condition (C3)(i), we have

{tr(B%)} 1 2enrel < {tr(Z? I/QT_S/QZ PNTPNT,
< {tr(x? )} V2p=32P N~ o =o(1).

y (A.4) and Condition (C3)(iii), we also obtain that
N
{tr(Z))lenrsl < {tr(S)VPTTRTTNY ()T
_ 21 -1/2-1/2 NV /5012
— ey

N
= O[tr(Z*)}'NT2Y " (67)%] = o(1).
=1
Denote Mzpnr,; = Ynr,; = (Y715 »InTar) |- Then
(Elynral?)'? < {(Tmté}x|/)NT,it'|)2E\Th\2}1/2 < CoTL™" (B.26)

for some constant 0 < Cy < co. By Assumption (A3), we obtain that

N N T
E(T 7! 21:1 e Mzpyr,)* =T Zl . thl E(eneityNT it YNT,i't)

B N T B ~ B N
=77° Zm.,:l thl o B(ynraynrin) < T °T(Co)* T L% Zm.,:l |0 |
< (Co)’ L~ N{tr(=H)}/2.
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Applying Condition (C3)(i), we have E[{tr(2?)}Y2¢nr4]? < 4(Co)?L~ 2 N{tr(X?)}~1/2 =

o(1). Accordingly, we obtain
{tr(2%)} " 2enra = op(1).

After algebraic simplification and using (B.22), we have
7121 ZZ (50 TleT = SZZ z'_12 (5 (5 1E( enez/tnt)
<TTOT Y Il < CUTE(Y B + O T (5,
This, together with (A.13), leads to
E[{tr(S2)} Venrs? < (SR} ITA(Y 1002+ O
= O{{tr(ZM)} AT )Y 4T
= OH{r(E)yINT (Y (00 4T = o(1).

As a result, we have
{tr(Z%)}2énTs = 0p(1).

By (A.4) that sup;<i<r [onTitl = O(L7"), (B.22), and Condition (C3)(i), by following the

same reasoning as the proof for (B.24), we have that

_ B N T
{tr(Z*)} Plenrel < {tr(3)}VPR{2T VAT Doy I}
. N
< GO {er(B)y VAP Y D 1)) = o(1),
1=
for some constant 0 < C3 < co. This completes the proof.
Proof of Lemma A.11. By Assumption (A3), we have
-2 2
Z i,j=1 Zt 1 e’tejt) =1 Z i,j=1 Zt =1 Eeiejieive;v)
—92 -2
=T Zz’,jzl Zt#t’ E eitejt E eit/ejt/ +T Zz’,j:l Zt:l E eitejteitejt). (B.27)

Also,

N T _ N _
T qu Zt;ﬁt/ E(enejo)Eewer) =T °T(T—1) Zi,j=1 oy =T T(T-1)ir(37). (B.28)
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Let I';, be the (i, h) component of I'. By Condition (C1), we have
E(eiejieiejr) = Zhl,hz,hs,lu B (Wi, Wehy Wens Wiy )it Ding Dina T s
- Zh E(w},)DanTinljnljn + Zhlh E(wd, )E(w,, ) Tiny Diny LjnoTjns
+ Zhw E(wi,, )E(wih, ) Tiny Dino T jny Ting
+ Z,“M E(wg, VE(wi, ) Tin Ding oL, -

Since E(wth) =3+A,E (wth )=1and ), Tip,Tyn, = 0y, we have

22” 1215 1 eztejtezte]t IZ” eztejteitejt)
_ -1 1
= T7'3+A4) Zj Z i Linljnlin + T ZJ 0ii0j; 4+ 2T~ ZH o0
= T7'3+A4) Z 12 T2 1%, + 77 Hir(2)} + 27 Hr(2?). (B.29)
7]

Using the fact that

3+A Zzg IZ Flhr h—O{ZZ] 12 thh Jh} _0{ Z U”) }—OHtT( )}2]

(B.30)
we further obtain that
TS S Bleweqeaen) = THI ()P 42T (S 1 +o()). (B3
This, together with (B.27), (B.28), and (B.31), leads to
2N TooToN _ 2 2
T Zid:l E(e; eje; ej) = Z” ) Zt 1ezte]t)
= tr(E){1+o(1)} + T {tr(Z) {1 + o(1)}.
By (A.16) that T-Y2tr(X) = O(tr'/?(3?)), we have
N
T2y X E(e; eje] e;) = tr(X?) + T~ Htr(X)}? + o{tr(=?)}. (B.32)
4J)=
We next show that
Toal
22 it E(e; Mze;e] Mze;) — QZ o E(e;, eje/ e;) = o{tr(X?)}. (B.33)
Since Mz = Iy — Pz, we have
—a\N o7 —2
T Zm‘:l Mzeje Mze;) — Z” . e eje; e])
N N
= 772 Z (e] Pzeje/ e;) —2 Z e/ eje] Pze;) + T2 Z E(e; Pzeje, Pze;).
ig=1 ig=1 ig=1
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Let Py be the (t,t') component of Pz. Then

N
—2 T T
T Zl _E(e; Pzeje; e;)

7.]_1

= T ZN § E(Pytzeit, €jt2€it3€jt3)
ij 1 t1,t2,t3

N
-2 —2
= Z Z (Peyty )E(€it, €it1 )E(eit3ejt3) +T E E E(FPyu)E (e, €jt1Cita ejtl)

i,j=1 tl#tS ,j=1 t1

= _2 E t t N 0'-2' +T_2 E(Pt t ) N E(e-t €4ty Eit, €4t )
t17$t 1 Zi,j:l & Ztl 1t1 § :i,j:I it1 €5t Cit1 €4ty )-

In addition,
T Ztl;«ét tltl Zi,' 7,]‘ <T" ! Z Pt1t1 t?“ 22)
= TﬁlE{tr(Pz)}tr(ZQ) = T 'rank(Pz)tr(2?) = T~ (1 + d) Ltr(Z?) = o{tr(Z?)}.
This, injunction with (A.16), (B.29), and (B.30), implies that
_ N
T? Z E(FP,) Zl =1 E(ei, €jt1 City ejtl)
N
— 72 Z E(Pue){B+2)) . Y, DAl + {tr(2)) + tr(=%))
= T Z E(Pyyt, )[tr(Z2){1 + o(1)} + {tr()}]

= 2IE{tr(Pz)}[t?”(Ez){l +o(1)} + {tr(X)}?)
= T2+ d)L[tr(Z*){1 + o(1)} + {tr(X)}*] = oftr(X?)}.

Hence,
N
T2 Zij:l E(e; Pzeje/ ej) = o{tr(Z?)}. (B.34)
Analogously, we can show that
-2 2
eeePe = of{tr(X B.35
T2y E(eleje] Prej) = oftr(E%)), (B.35)
Moreover,
N
- ol
T2 ZZ j* PZeJe Pzej) = 2 Z ij=1 Ztl to ts, t4 (Prity Pesta JE(€it, €jts €its €5t )

=7 Z ij=1 Ztlgét Biyty Prsts JE(eit, €t )E(its €5t )

+T7° Zi’jzl Ztl#2 E(Pry 1, Pty )E(€it, €3ty )E(€j1,€515)

+T72 Zi;zl Ztl#z E( Pty Proty JE(€ity €51, JE(€jt,€ity)

+77 ijzl Z E(Prt, Pty )E(eit, €, €3ty €ty )

= T2 Zh#g Pt1t1Pt3t3)t7“(22 472 Z s E(P,y1, Pryt,) {tr(2))2

+ T? Ztlyétz Pt1t2Pt2t1)tr(22 + T? Ztl E Pt1t1Pt1t1)[t7'(22>{1 + 0(1)} + {tT(Z)}2].
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It is worth noting that 3=, , E(Pyt, Praty) < E[{tr(Pz)}?] = {rank(Pz)}? = {(1+d)L}?. Thus,

T2y, Loy B(Put Pty )tr (22) < T7{(1 4+ d)LY2r(32) = oftr(3%)}.

Since >34, sy, E(Prty Pryty) < E{tr(PzPz)} = E{tr(Pz)} = (1 + d)L, we obtain

), 44 E(Pyyty Py {tr(2)} < T2(1+d)L{tr(X)}?
= oI Htr(2)}’] = oftr()}

and
T2 § E(Pi, 1, Pyt )tr(2?) < T72(1 + d) Ltr(X?) = oftr(XZ?)}.
t1#£t

Using the fact that >, E(Pyt Py ) = O{E(Q ,, Pun)} = OE{tr(Pz)}] = O{(1 + d)L}, we

have
-2 Z (Pryty Pryey ) [tr(ED{1 + 0o(1)} + {tr(2)}?]
= O[T~ (1 +d)L{tr(Z?) + {tr(Z)}*}] = o[ T {tr(Z?) + {tr(2)}?}] = o{tr(=?)}.
Accordingly,
T2 ijzl E(e] Pzeje] Pze;) = o{tr(S2)}, (B.36)

and the result of (B.33) follows directly from (B.34), (B.35) and (B.36). By (B.32) and (B.33),
we have

T Zj-vjzl E(e] Mzeje] Mge;) = tr(32) + T~ {tr(X)}* + oftr(3?)}. (B.37)

This allows us to express

N

>, (T e — (3% - T (D)
N 1T _ N
= 17 Zl i1 ¢ e8¢ —T7" Z.j 1E (e Mzeje, Mze;) + o{tr(X2?)}
_ -2\ STas 76— T
= {T Zi,j:l e, eje Z”_

2\ —2oN\N T T 2
H{T2Y0 el Maeje] Mye; ~T72Y" " E(e] Mgeje] Mye)) | + oftr(3?)}
= ANT71 + ANT,Q + o{t'r(ZQ)}.

e/ Mzese] Mze; }

In the following two lemmas, we will show {tr(ZQ)}_lANTJ = 0p(1) and {tr(EQ)}_lANTQ =
0p(1) to complete the proof of Lemma A.11. O

29



Proof of Lemma A.12. Let vnr; = (VnTit, 1 <t < ' = PNt + 5?1T. Then
N
-2 ATAA 8 — -2 ol T ,
|T Zi’jzl e, eje Z — e, Mzeje; Mze;j|
N N
-2 -2 T T
= 22T Zij:l e Mzejei Mzvntj +T Zij:l e; Mzejvnr  MzvNT ;

725N (e el M v M )2
+ i1 @ Mzvnt +e; Mzynri + vy Mzvnr;)7|

IN

2NN T T =2\ T T
2|12T E I Mzeje; Mzvnt ;| + |T E i1 & Mzevnr Mzyne,j
N
— § : T T
+3T 2 . e, le/NTje- MZVNTj
7]_
2 § : 2 E :
+37~ i j=1 e le/NTZe MZVNT2+3T VNTZMZVNTjVNTzMZVNT,]

= 2 Zk:l TNT,k;-

In the following, we will show that {tr(3?)} 'Y yrx = 0p(1) for k=1, ,5. Moreover,

Tnry = [2T7 22 o | Mzeie] Mzvnr,j| < 2T~ 22 leie] | |1Mz] P leg[[[vxr;
T 2 T
< 27" ZZ e [lllejl[llvnrll =27~ Z leie; HZFI lejllll -
For any vector a €RT with ||a]| =1, E(a'e;e] a)= (Zt Lazeir)? = oy Hence, Ellee] || = 0y,

which leads to N N
S lleiel 1= 0y o) = Optr(2)}.

In addition, E|le;| < (Elle,||*)1/2 = T20/%. Thus, S5, |le;l[[vnrl| = Op{T S, o)/ (L "+

‘5?‘)} Since Urln/fx < 00, we further have

N N
ijluejHHVNT,j _Op{TZj: (L7 +|69)} = Op{T(NL™" +Z ‘50

By the above results, we have

TNT,l = Op{TiltT NL + Z ‘(50
Using the fact that T~ 1/2tr(X) = O(tr'/2(3?)), we obtain
-1 —r N 0
TNT,l = Op{T tT’(E)(NL + Zj:l ‘53 ‘)}
—1/2 A T =T 1/2 (02 —1/2,, 1/2(52y N (50
= O T 'ANLtr'2(2)} + O {T~V2tr1/2(= )ijl\(sj]}.
Under the local alternative given in (8) and Condition (C3)(iii), we have

T2 ()2 16|
-

IA

N
T_1/2{tr(22)}_1/4NN_1/2T_1/2{N_1 ijl |c§-) ‘2}1/2

= O[T INY2{tr(2?)} Y4 = o(1).
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This, together with Conditions (C3)(i) and the Lemma’s assumption, L'T~3/2 = O(1),
implies that

{tr(Z2)} Yvra = Op[T 7 ANLT {tr(3%)} 2] 4 Op [T~ 2 {tr(£2)} 712 ZN |93[] = op(1).
7=1

It is worth noting that

Tnre < T2 Z \e

< 772 ZMZI le] Mze;|T(C4L™" + \5?\)

il

N ~
< or! Z ) _ e Myzej|(CRL7 + 169)%)

IN

2T IZ ||ez\|!|ea||(C4L_2r+\50\
for some positive constant Cy. Since E||e;|| < {E||e;||?}!/2 < T1/203i/2, we have
BT Y el (R + ]3]}

< 203 1/2> L2 42023 oY e

< 2CINL™Ztr(Z) + 2amaXNZ \50
This, in conjunction with Condition (C3)(i) and (A.13), leads to

(@) B{20R T3 Hledllles (G318}
= O[T'’NL > {tr(%?)}~ 1/2}+0{tr »?2)} 1NZ ya;?| |=0o(1).  (B.38)
Accordingly, {tr(E%)} Y72 = 0,(1).
After algebraic simplification, we obtain that

E(Ynr3) < 377 22 E(|les!*[| Mzl P|lvnr*) < 3C3T QZ _ Elleil Pyl

3%(211%) 30 G ) < 63D au><NO4L—2"+Z o)

< 601%4(32NL*2%»(2)+6CMamaXNZ \50

IN

Employing the same techniques as those used in the proof of (B.38), we have {tr(3?)} 'E(Tnr3) =
o(1). Since Yyr3 is nonnegative, we have {tr(£*)} 1Yyr3 = 0,(1). Analogously, we can
demonstrate that {tr(X%)} ! Tnr4 = 0,(1).
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Lastly,

IN

37~ 22 M| Pllonrl Py e, P

6CMC’4(NL_2’") +60M{Zj:1 [89]°y2.

Y1 < 3CY}(NCIL™> + Z \50

IN

Hence, by Condition (C3)(i) and (A.13), we have
{tr(Z)} " Tnrs < 6CHCHNL ™ {tr (?) }71/2]2 +6C3,[{tr (2?) }*1/2 Z ‘ ; ’
— O[INL™ {tr (3)} P2 4+ {tr (37)}~ NZ 021 = o),

which completes the whole proof.

Proof of Lemma A.13. We make the following decomposition

- Z”_ e/ Mzeje; Mze;)?
= T_4Z, o e;—MZej)2(e;Mzej/)2
03543’
—4 TaV2(ala. )2 —4 T 2/, T 2
= T Blele)(egey)? + Ty E(e] Pre;)(e) Prej)

—4 To ol T —4 To. aT T
-T Zijij E{2e/eje; Pze;(e)e;)’} — T Z E{2e;eje; Prej(e e;)’}

(N

T~ 42”” E{2(e] Pze;)? e,e]/e/Pze]} T 42 (E{2(e) Pzej)%e] eje] Pze;}

1,535
— T — T
Y B Py el P TN e Pre)el e

+74 E o E(4e;reje;erejei, eje, Pze;)
4,345’

9
Zk:l YNT k-

In the following, we will show that

{tr(=%)}*[¥nra — {E(T Z (i Mzeje] Mze;)}?] = o(1) (B.39)

and {tr(2?)} 2¢n7x = o(1) for k =2,---,9. Then Lemma A.13 follows immediately.
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It is worth noting that

YNT1
- T74 ZZ Jit' 5! Zt17t27t3,t4 ]E(eitl €ity€jit1€jtaCit3€it4 €5/t ej’t4)
—4 T - ,
B Ztlatzﬂfs,tz; EtlEt2) (Et3Et4) }
= 77" Y E(E/|E.E/E.E/E,EE,)+ T Y E(E]E,E]E,E E,ELE,)
A t1#t2
+2T thétg# E(E,, EE, E E, E,E Ey,) + T Z E(E] E,)

— T T T T
4774 ZH#Q (B E,E B ,E E,E/E,) +27" "> E(E|E,E/E,E/E,E/E,)

t1#£t2
—4
+4T Ztl##tsE(EtlEtQEtlEtQEtlEt3EtlEt3)

7
Z 'QZ}NT,Is-
s=1

By (A.16), (B.28), and (B.31), we have

nrn o~ {T72 Ztl#h E(E/ E,E/ E,)}?

- N 2 2\12
= 1Y 3, Blemein ) Blemen)} ~ {tr(S1)),

b = Ty E(E) By By By )E(E,ELE,E)

~ AT~ QZ E(E)EyE E)}* = {T" 22” ) E(eitlejtleitlejtl)}Q
= AT Htr(2)} + 2T " tr(Z) {1+ o(1)}}? = {T~ 1{”’(2)}2}2 + ol {tr(2%)}?],

and

Ynras = 2T° Zh##m E(E{ E, E( E;, )E(E/,E,E},E,)}

~ 2{T_2 Zt E(EZ Et1E;E Et1)}{T_2 Zt 4t E(E;EtsEi—EgEts)}
~ 2 (ST Htr (3)F + T (SH){1 + o(1)}} = 26r (ST Hir(3) 1} + o[{tr(2%)}7].

Hence, ¥n1,11 + z/JNT 12+ @bNT 13 = [tr(2?) + T H{tr(2)}2)% + o[{tr(2?)}?]. In addition, (B.37)
leads to {E(T~ Z” Le] Mzeje] Mze;)}? = [tr(2?) + T {tr(2)}2)? + o[{tr(£?)}?]. Accord-
ingly, we have

Y111+ YNt a2 + YTz — {E(T Z TMZeje;‘rMZej)}Q = o[{tr(Z%)}?].

To complete the proof of (B.39), we will show that {tr(2?)}~2n715 = o(1), for s = 4,--- | 7,

given below. By Condition (C3)(iii), we have {tr(32?)}nr14 = O[{tr(Z?)}2T~*TN4] = o(1).
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Also,
{tr(Z*)} *Ynrs
= {tr(*)) 24T 42 i Ztl#b e, mezltle]/tl)E(ei/mej/tz)
< ACs{tr(Z2)y 2T 4Zi7j7i,j, Zh#z \ai/j/]§405{tr(22)}_2T_2N2N(Zi/jl o5
< ACs{tr(22)} 32T IN? = o(1),

for some constant 0 < C5 < 00, Applying the same techniques as those used in the proof of
(B.29), we have

¢NT,16 = 27" 42 i gl Ztl#t eltlei’t16jt1ej’tl)E(eitzei’t2ejt2ej’t2)
= 2T'T(T - 1) Z” oy @7+ 0ijroii)?(1+ o(1))
—4
< 4T - 1)(2”” TR D )( +o(1))
= ST74T(T — D){tr(Z?*)}2(1 + o(1)).

As a result, {tr(2?)} 2116 < 8T 4T(T — 1)(1 + 0o(1)) = o(1). Subsequently,

= 4T_4§ E E(€it, CitoCity CitoCitts €ilpaCitys €ir
wNT717 iidli! tAtaEts ( it Cita €4t1 €5ta€i't1 €i't3 €5/t ]tg)
= 4T_4E E E(eit, €it, €5 €ire VE(€405 €60 VE(€574 €51
il by Etatts ( ity €5ty Ci'ty jtl) ( it ]tz) ( i't3 Jts)
1
= 4T~ E i ooy +oijou;)oijoy (1 + o(1))

= 47 1 Zijilj/(aii/()'jj/aijai/j/ + o-ij’o-i/jo-ijo-i’j’)(]- + 0(1))

IN

27! Zm,i/j,( o+ 0500+ oo + o) (14 0(1)) = 2T {tr(5%) 12 (1 + o(1)).

Thus, {tr(£%)}2¢n717 < 27711+ 0(1)) = o(1), which completes the proof of (B.39).

We next only demonstrate {tr(X%)} 2 n12 = o(1), since the proofs of {tr( 2]2)}*217/1]\@;g =
o(1) for k = 3,--- ,9 are quite similar and hence we omit them. By (B.36), we have T2 ZZ =1 (e Pze;)?

= 0,{tr(X?)}. Thus, T_4{Z” (e] Pze;)?}? = o,[{tr(£%)}2]. Consequently, we obtain

{tr(2%)} ¥t = ol{tr(3%)} {tr(S%)}] = o(1),

which completes the proof of the lemma. O
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Proof of Lemma A.14. We decompose

S e 1) 1)
— ZN1T (ei + py7i + 0717) " Mzlrly Mz(e; + pyr, + 6y 17)
= 22 e; leTlr}—Mzei —|—T_ZZ PETiMZlTl’jF—MZPNT,i
+T~ QZ (69217 Mz1p1  Mgly + 2T QZ e] Mz171] Mzpyr,

+2T_2 Zi:l e;-l—Mz]_T]_TMz(Si ]—T + 2T_2 Zi:l (Sgp%Tﬂ-leTl;leT
= WNT,1 T WNT2 +WNT3 +WNT 4+ WNT5 + WNT6-
It can be seen that wnr; = T1/219NT,]- for j = 1,---,6, and Yy s are defined in (A.19).

Then, by Lemma (A.9), we have {tr(2?)}~"2wnr; = op(xnT) for j = 1,--- ,6, where xn7 =
N=¢4T7¢ Accordingly,

{tr(Z2)} 1/22 L ( T8 17)2 = 0,(xnT) = 0p(1). (B.40)
In addition,
N o~ —_]~
{r() Y (88T e 1) (1718 1)

_ N ATA 1/2 T AT 1/2
< {tr(22) 12,’1, (! )2XN/T+{tr »2)}- ZJ (T 1A (T e 1y )Xt
2 ATA 2. 1/2 2 AT 1/2

= {tr(Z?)}~ Z,]l —18l6) 2 + {tr(Z?)) 1{2 el 1) 2 el

By (B.40), we have {tr(Z?)} {2 N (T7'¢] 17) }QX]_VIT/Q = Op(XNTXNlT/Z) = 0p(1). Moreover,

Lemma A.11 and (A.16) lead to Z%ZI(T_IATA )2 = O,{tr(X?)}. As a result,

()Y T8 N = 0p{tr(59) (ST = Ouxi7} = 0p(1):
Consequently, we have {tr(%2)}~1 SN i (T “tele) (T e 11) (T~ 1eTlT) = 0p(1), which com-

pletes the proof. O

C Four Additional Simulation Results

In this section we present four additional simulation results: (i) the simulation studies for
mimicking Chinese stock market; (ii) the simulation results of the PY test; (iii) the generation
of the error terms E; that is borrowed from Fan et al. (2015); (iv) the simulation for the case
where the summation of the GARCH coefficients is smaller than 0.5.
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C.1 Three Examples to Mimic the Chinese Stock Market Data

Example S1. The setting is similar to Example 1 except that f; is generated from the coeffi-
cients in the Chinese stock market example in Section 5. Specifically, we assume that f; follows
an AR(1)-GARCH(1,1) process,

fo—0.24 = 0.07(fi_1 — 0.24) + hl/%¢,
where (; follows a standard normal distribution, h; is generated from the process

hi = 0.61 + 0.56h;_1 + 0.14h;_1¢2 4,

and the above coefficients are obtained by fitting the model to the Chinese stock data given in
Section 5. The generations of the factor loadings, alphas and error terms are the same as those
in Example 1.

The above process is simulated over the periods ¢t = —24,---,0,1,--- ;T with the initial
values R; _95 =0, h_o5 =1, z_25 = 0 and 0%25 = 1. To offset the start-up effects, we drop the
first 25 simulated observations and use t = 1,--- ,T in our studies.

Example S2. The setting is similar to Example 2 except that f; is generated from the coeffi-
cients in the Chinese stock market example in Section 5. Specifically, we assume that the three
factors are correspondingly simulated from the following AR(1)-GARCH(1,1) processes,

Market factor: f1; — 0.24 = 0.07(f1—1 — 0.24) + h}fglt,

SMB factor: for — 0.14 = 0.03(far_1 — 0.14) + hi/*Car,
HML factor: fa; — 0.09 = 0.04(far_1 — 0.09) + hi!*Cay,

where (j¢ (j = 1,2 and 3) are simulated from a standard normal distribution, hj; (j = 1,2 and
3) are, respectively, generated through the following processes,

Market factor: hi; = 0.61 + 0.56h1;_1 4+ 0.14hy1C3 4,

SMB: hg; = 0.45 + 0.56h9; 1 + 0.14ha 1(5,_1,
HML: hg; = 0.40 + 0.72h3; 1 + 0.01h3s_ 151,

and the above coeflicients are obtained by fitting the model to the Chinese stock data given in
Section 5. The generations of the factor loadings, alphas and error terms are the same as those
in Example 2.

Example S3. The setting is similar to Example 3 except that we follow Example S2 to generate
the three factors of the model.
The simulation results for the above three examples for three different sample sizes (7" = 100,

200, 500) and four different numbers of stocks (N = 3, 200, 500, 1,000) are summarized in Table
S1 and they are similar to those in Table 1 of the manuscript.
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Table S1:The empirical sizes of the HDA and LY tests from Examples S1-S3 for testing conditional
alphas with a nominal level of 5%, where Normal Distribution, Exponential Distribution, and Mixture
Distribution refer to the distribution from which the error term E; is generated.

Normal Distribution | Exponential Distribution | Mixture Distribution

Example N T | HDA LY-test | HDA LY-test | HDA LY-test
S1 3 100 | 0.052 0.058 | 0.062 0.057 | 0.041 0.047
200 | 0.050 0.066 | 0.039 0.051 | 0.048 0.052

500 | 0.059 0.037 | 0.048 0.050 | 0.039 0.042

S1 200 100 | 0.040 1 | 0.046 1| 0.062 1
200 | 0.055 1| 0.062 1| 0.039 1

500 | 0.036 1] 0.038 1| 0.057 1

S1 500 100 | 0.055 1| 0.047 1 0.071 1
200 | 0.052 1| 0.053 1| 0.056 1

500 | 0.043 1| 0.051 1| 0.065 1

S1 1000 100 | 0.045 1| 0.035 1| 0.044 1
200 | 0.049 1 | 0.048 1| 0.033 1

500 | 0.039 1| 0.042 1| 0.058 1

S2 3 100 | 0.051 0.046 | 0.048 0.039 | 0.032 0.037
200 | 0.052 0.068 | 0.057 0.049 | 0.043 0.041

500 | 0.049 0.066 | 0.063 0.052 | 0.055 0.054

S2 200 100 | 0.043 1| 0.062 1| 0.058 1
200 | 0.038 1| 0.045 1| 0.065 1

500 | 0.047 1| 0.039 1| 0.038 1

S2 500 100 | 0.069 1| 0.055 1| 0.057 1
200 | 0.060 1] 0.061 1] 0.047 1

500 | 0.052 1| 0.033 1| 0.042 1

S2 1000 100 | 0.054 1| 0.042 1| 0.056 1
200 | 0.052 1| 0.051 1| 0.054 1

500 | 0.033 1| 0.040 1| 0.049 1

S3 3 100 | 0.054 0.037 | 0.043 0.061 | 0.058 0.052
200 | 0.042 0.055 | 0.060 0.057 | 0.042 0.053

500 | 0.059 0.038 | 0.046 0.039 | 0.054 0.044

S3 200 100 | 0.049 1| 0.032 1| 0.037 1
200 | 0.044 1| 0.042 1| 0.054 1

500 | 0.063 1| 0.035 1| 0.045 1

S3 500 100 | 0.040 1| 0.062 1| 0.052 1
200 | 0.042 1| 0.062 1| 0.060 1

500 | 0.046 1| 0.055 1| 0.043 1

S3 1000 100 | 0.033 1] 0.064 1] 0.047 1
200 | 0.036 1| 0.048 1| 0.042 1

500 | 0.046 1| 0.060 1| 0.057 1

C.2 Simulation Results of the PY Test

Since the PY test (Pesaran and Yamagata, 2012) can be used for testing alpha coefficients in high
dimensional assets, we follow an anonymous referee’s suggestion to conduct simulation studies
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for Example 1 across three different sample sizes, three different numbers of stocks, and three
different error distributions. The results are summarized in Table S2, and indicate that the PY
test exhibits serious size distortions. This finding is not surprising since the PY test is designed
for time-invariant factor loadings, while the setting in Example 1 is based on time-varying factor
loadings.

Table S2: The empirical sizes of the PY test for testing conditional alphas with a nominal level
of 5%, where Normal, Exponential and Mixture refer to the distribution from which the error
term E; is generated.

N T | Normal Exponential Mixture

200 100 0.481 0.493 0.512
200 0.472 0.448 0.491
500 0.491 0.469 0.472
500 100 0.672 0.631 0.645
200 0.691 0.644 0.678
500 0.701 0.722 0.682
1000 100 0.805 0.766 0.782
200 0.817 0.789 0.794
500 0.803 0.815 0.786

C.3 Simulation Results for an Alternative Error Structure

The simulation setting is similar to Example 1 except that the error terms E; are generated as in
Fan et al. (2015). Specifically, we set 3 = diag(A1,--- , An/4) to be a block-diagonal correlation
matrix, and each diagonal block A; for j = 1,--- ,N/4 is a 4 x 4 positive definite matrix
whose correlation matrix has equi-off-diagonal entry p;, generated from the Uniform|[0,0.5]. The
simulation results are summarized in Table S2 and they are similar to those in Table 1 of the
manuscript. Hence, our HDA test is robust to different error specifications.

C.4 Simulation Results for Different GARCH Coefficients

The simulation setting is similar to Example 1 except that {f;} is generated differently. Specif-
ically, we assume that {f;} follows an AR(1)-GARCH(1,1) process, where

fi —0.42 = 0.06(fi1 — 0.42) + h,/*¢,,
(; follows a standard normal distribution, and h; is generated from the process
he = 0.39 + 0.38hy—1 + 0.06h_1(7 1.
Note that the summation of the GARCH coefficients is smaller than 0.5. The results are sum-

marized in Table S3 and they are similar to those in Table 1 of the manuscript.
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Table S3: The empirical sizes of the HDA test for testing conditional alphas with a nominal
level of 5%, where Normal, Exponential and Mixture refer to the distribution from which the
error term E; is generated.

N T | Normal Exponential Mixture

200 100 0.054 0.062 0.061
200 0.052 0.048 0.042
500 0.038 0.051 0.049
500 100 0.033 0.049 0.040
200 0.057 0.052 0.048
500 0.046 0.044 0.034
1000 100 0.069 0.064 0.051
200 0.034 0.043 0.042
500 0.044 0.039 0.060

Table S4: The empirical sizes of the HDA test, where Normal, Exponential and Mixture refer
to the distribution from which the error term E; is generated.

N T | Normal Exponential Mixture

200 100 0.056 0.067 0.055
200 0.064 0.054 0.068
500 0.051 0.057 0.052
500 100 0.054 0.049 0.048
200 0.044 0.052 0.057
500 0.050 0.059 0.062
1000 100 0.061 0.053 0.054
200 0.045 0.040 0.047
500 0.061 0.050 0.063

D Testing Market Efficiency with Different Window Length

For the purpose of robustness check, we present the results with window of length h = 60 as
suggested by Pesaran and Yamagata (2012) for the US and Chinese stock market data in Figure
S1. They exhibit a similar pattern to that of Figures 2 and 3 in the manuscript: FF is more
efficient than CAPM, and the US stock market is more efficient than the Chinese stock market,
both in terms of mean-variance efficiency.

To further assess the effect of window length on the estimation, we also consider a relative
long window of length h = 200 for US stock market data and present the results in Figure
S2. They exhibit a similar pattern to that of Figures 3 in the manuscript that the FF is more
efficient than CAPM. Nevertheless, the p-values obtained for h = 200 tend to be smaller than
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those for A = 100.
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Figure S1: The dynamic movement of market efficiency in the US and Chinese stock market
based on the p-values by testing the conditional CAPM and the conditional Fama-French three-

factors model with window length h = 60.
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Figure S2: The dynamic movement of market efficiency in the US stock market based on the
p-values by testing the conditional CAPM and the conditional Fama-French three-factors model
with window length h = 200.
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