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Abstract: Appendix A provides the proof of Proposition 1. Proof of Theorem 1 is given
in Appendix B. To prove Theorem 2, we need the uniform convergence rates of estimated
parameters. Appendix C provides this result. Theorem 2 and Theorem 3 are proved in
Appendix D and E, respectively. In Appendix F, we provide additional information on

the empirical analysis. Appendix G reports the Monte Carlo simulation results.

Notation For notational simplicity, we suppress the dependency of 7 such that e, » = €4,
bir =bi, \ir =X, v, = (b, X)), fi, = fi. Br =B, A\, = A\, F, = F, etc throughout

the proof. Also, we denote the true parameters as b o, Aio, V0, f10, Fo, Ao and By, etc.

A Proof of Proposition 1

The following lemma is used in the proof of Proposition 1.

Lemma 1 (Lemma 2.2.10 of Van der Vaart and Wellner (1996)) Let Xi,...,X,, be arbi-

trary random variables that satisfy the tail bound:

z

1 2
P(|X;| > z) <2exp <— X )

2 a+bz
for all z (and all i) and fized a,b > 0. Then,

E

max X;
1<i<n

<C (b x log(n+ 1) + \/a x log(n + 1))

for some positive constant C'.
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Lemma 2 (Lemma 2.2.11 of Van der Vaart and Wellner (1996)) Suppose that X,...,X,,
be independent random variables with zero mean such that E|X;|™ < m!M™ 2v;/2, for

every m > 2 (and all i) and some constants M and v;. Then:

2
P( 22)§26Xp<— —fM)’
v z

A.1 Proof of Proposition 1

n

> X

i=1

forv>vi+---u,.

We first show

N
sup NlT Z > Apr(yie — xibi — FiXN) — B [p-(yir — b — FLA)]} = 0p(1), (1)
fieFNiecbies i=1t=1
where E[-] is the expectation of y; conditioned on X, Fy, Ag and By. For any e > 0,
F, L, and B are covered by Ufe]-'Be(f>’ UxepBe(A) and Up_pBe(b), respectively. Here
B, (z) is a closed ball with center z and radius r > 0. Because of their compactness by
Assumptions A and B, there exist finite positive integers Cr, Cy, Cp, and {f,, ..., J_”CF} S
F. AM, . A, } € L, {by,...,bc, } € B such that

FC UgFlBe(}k)7 L C UkcﬁlBe(Xk% B C UgBlBe(Z)k>.

Define
J={x'b+fA: beB, feF, AXeLl}.

The set J is covered by USZ USE, U H(by, f.. Ay), where H(by, f.. A,) = {x'b+
f'A; b€ Be(br), f € Be(f.), A € Be(X)}. Suppose a'b + f'A € H(by, £, Xu). We

then have

le'b+ F'A— (b + FLA)|

< le'b — @bl + 1 F A = Fu X
< el < 1o = bel| + [1F = Full < IX =Xl + N Full <IN =Xl + 1F = Full X ([ Al
< eM+ée+eM+eM

0,



where M < oo is an upper bound (in terms of norm) for the elements in £, F and X (by

compactness assumption). Note that H(bg, f,, A,) C Bs(x'bs + f.A,). Thus,
J CUZE UL U Bs(a'by + f,A),

which implies that, for any § > 0, there exist finite integers C'g, Cr and C, such that 7 is
covered by the union of Cz x Cr x C) closed balls Bg(m’l_)l—l—f,l;\l), ..., Bs(x'bc,, +}/CFXCA>‘

For each x;, f,, A; and b;, we can identify f,, A, and by, such that f, € B.(f,),
Ai € B.(X\,) and b; € B,(by). Define h;; = x,b; + fi\; and

dit = dz‘t,k,u,v - w;tl_)k + f;xva

then |h;; — dy| < 0. Thus,

1 N T /
7 23 (ol = @l £\ = Bl b~ FN])
i=1t=1
1 N T
= \NT ; t; {o-(Yie — hit) — E [pr(yir — hzt)]}‘
1 N T
< | o h) — .
— NT ; ; {p‘r (yzt h'zt) Pr (yzt dzt)}‘
1 N T
eSS (Bl - h>]—E[pT<yﬁ—dn>1}'
z:l t=1
1 N T
720 3 o — ) — Elpn i — )
i=1t=1
- ]1+IQ+.[3.
Now,
1 N T
< o ho) — .
]1 — NT ;;|p‘r(yzt h'zt) p’r(yzt dzt)|
1 N T
< NT ZZ {s7(yit, 6) — Elsr(yit, 0) ZE Sy (Yit, O
i=1t=1 i=1t=1

where s.(y,0) = SUDP, pe 7 ja—pj<s [P~ (¥ — @) — pr(y — b)] The first term in the last line is
0p(1) by a law of large numbers. By choosing a small enough d, the second term can be
made arbitrarily small. Similarly, /5 can be made arbitrarily small by choosing a small
enough §.

Finally, we consider I5. Note that d;; = d;; k0, I3 is uniformly bounded by

SU.p NT Z Z {Pr Yit — zt k,u,v) - F [,07— (yzt - dit,k,u,v)]}|
i=1t=1
1
= max| o ;; {o-(yie — dj) — E[pr(yir — dj)]}|,




where

Note that there is an abuse of notation, but the idea should be clear. The maximum of
number of elements of S is C§CYCE when k, u,v vary.
Note that

sup |- (yie — h) — E [p-(yie — h)]|
heg

IN

sup
heR

= sup |pr(eit — h) — E'[pr (e — D)
< lex — Eleu)| + Ellei — Elea|] (2)

pr(x,bio + fé,())\i,o +ex—h)—E {pT(w;'tbi,O + fi,o)\i,o + e — h)”

where the first inequality is obvious because J C R. The second inequality can be
obtained as follows. For any X,z € R with X being a random variable, we have |p,(z —
h)—p (X —h)| <max{r,1—7}|z— X| < |z— X|. This leads |p.(z—h) — E[p, (X —h)]| <
Ellp-(z—h)—p, (X —h)|] < E[|X — z|], which is further bounded by |z — E[X]|+ E[| X —
E[X]|] (See Eq (13) in Bai (1998)). Thus, we have, for positive number K (> 1),

E |p-(yie — dj) = E [p-(yar — d;))|"
< B[l — Eleull + Ellew — Bl ||

"y (E s — Elea]| )K] ,

where the first inequality follows from (2). From Assumption C, El|e; — Eley]|¥] is
bounded by E[|e;; — Eley]|¥] < K!CX for some finite constant C.. Similarly, from As-
sumption C, (E |e;; — Eley]|) is bounded by (E |e; — Eley]|)® < CX. Thus, we obtain

S 2K_1 [E Eit — E[eit]

E [|PT(yit —d;) — E[p-(yis — dj)]ﬂ < FETIKICK 428710k < KICE2Cy /2 (3)

for all + and ¢. Here C} and C5 are positive constant. To obtain the last inequality, for
example, we can take C; = 2C. and Cy = (2C.)%. Define

Zit; = Pr(?/z‘t - dj) —F [Pr(yit - dj)] .

It then follows from Lemma 2 that, for all z > 0, all j,

P < z Z) < Zexp <_ (NT) jc/,*j n Clz> 4)

4

N T
D Zi,
i=1t=1




where we apply Lemma 2 with M = C} and v = NT'Cs.
Recall the cardinality of S is

S| < O x Ol x O\N = O(C2V+T) (5)

max

with Chax = max{Cpg, Cp,Cy} = O(1). From (4) and Lemma 1, we finally have

S ol — ) — E e — |

i=1t=1

< Cx N(Cllog(1+|8| ,/(NT)CQ{log(1+|5|)}1/2>
= [(2N + T)10g Conax + (NT)/2(2N + T)"/10g Croa

E lmox 7

< (C'x

NT [(
1

1
= 05+ 7).

where C' and C’ are some positive constant. Here the first inequality is obtained by

applying Lemma 1 with n = |S|, a = NTCs, b = C} in view of (4). The second inequality
is due to (5). Summarizing these results, we obtain (1).

Recall that the estimator {B’, F, A} is the minimizer of £.(B, F,A) = XN ST | o (yi—
x),b; — fiX\i). Then, for any given F', A and B, we have

U, (B,F,\)

_ Nng (B,F.A) - NlTa (Bo, Fo, Ao)

= [NlTe (B,F,\) — NlTE[ET (B,F,A)]] [NITE (Bo, Fy, Ao) — NlTE[ET (Bo, Fo, Mo)]
4 [NlTE[eT (B, F,\)] — NlTE[zT (Bo, F(),AO)]}

= S+ o+ Js

where E[(, (B, F,\)] is defined as E[(, (B, F,A)| = <= YN, S Elp- (yi—xubi — F1 M)

From (1), we have

sup |Ji] = 0,(1), and |Jo| = 0,(1).
f.erhiecbes

About J3, note that ;; = yit—a:;tbi,o—f;,[))\i,o, with conditional density gi,(-|zit, f0, Aio)-

By Taylor expansion, we obtain
E[p-(yie — @b — FIX)] = E | pr(yie — @iybio — FioNio)]
= B |pr(ea — {2ibi + Fii — ibio — FroXio})] — E - (e)]
- 2
= gt (@bi + Fililm, Fr0 Aio) x (2, (B — bio) + FiXi — FioAio)
— / / / 2
> gXx (wi,t(bi —bio) + fihi — ft,o)\w) ;
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where a,b; + f;S\Z is between 0 and j,(b; — b;o) + fiXi — fioXio. By assumption,
~ ~, ~ ~ ~ ~

)b, + f, A belongs to a compact set. This leads to 0 < g < g (x},b; + f;)\i\:vit, FroXip)

by Assumption C. Therefore, the last inequality was obtained. Then,

1 1
= — FAN)] - — o, A
J3 NTE [ET (B7 9 )] NTE [87 (BO7 0 0)]
1 I 2
= NT D G X (m;t(b% —bio) + fiXi — f:;o)\i,o) :
i=1t=1
Without loss of generality, we assume that b, = 0, i = 1,..., N (for notational

simplicity). Note that the centered objective function satisfies
U‘r (807 F07 AU) = 07

where we used that the function h(b;, f,, A;) = m§7tbi+f;)\i—f;’0/\i7o evaluated at b; = b, o,
Ji = fioand A; = A is zero. Note also that

U (B.F,A) < U. (Bo, Fo, Ao) = 0
by definition of {é N A} Therefore, we have
0> U, (B ,
g Al /7 PN / 2
> NT Z Z (wi,tbi + fihi — ft,o)‘i,o) + Op(l)-

Combined with % S, S0 (2] ,b; + fiXi — fioAi0)? = 0 for any b;, A; and f,, it must
be true that

N
: ZZ(wztb + Fihi = Froh zo) ]\,1TZHXJ’¢+F§%—F0N,O‘2—Op(l)- (6)
i=1t=1 =1
Define Mp = I — F(F'F)"'F’ and
e 1 X 2
U, (B,F,A)EN—Z:HM (Xibi — Foi) | (7)

then

0 (B.F8) = 7 32 [0+ 3= ok = 0,00,

by equation (6). This is because My is a projection matrix, ||MpZ|| < ||Z|| for any Z,
and also MFF = 0.



Now, by (7)
UT(Ba g )

- 1%6’ 2N6XMFA+ N o Fo M FoX

- NT,LZI @ WiZI 07%,0 72 0 07,0

—1§:’A6 2%6’0+ fj’B

—szllll Ni:1im Nz:ln o
where

1 1
AiZTXZ{MﬁXu Bi = (XipXip) ® Ir, Cj = \/—Xo®(XM) ﬂ:ﬁVeC(MﬁFO)~

Completing the square,
0 (B, P 8) =of (3B ) 32 (b 47 Con) 4, (b4 47

where E; = B; — C!A;'C;. Because each of the two terms is non-negative, this implies
that

"7/( ZE) n = o0,(1), (8)
JIV; (b + A7 'Cm) A, (b + A7 Cim) = 0,(1). (9)

From Assumption D, the matrix N=* >N | E; is positive definite, and thus equation
(8) implies that ||n||> = 0,(1). This result implies that

[Mp = Mgy || = [ Pp = Proll = 0p(1), (10)

where Pr = F(F'F)7'F’. See Bai (2009, page 1265). That is, the space spanned by Fy
and the space spanned by the estimated factors F are asymptotically the same. We then

have

|Mp, F||/T? = ||(Mg, — Mp)F|/T"?
|(Pr, — Pp)F||/T"?
|Pr, — Pell x (|1 F1l/T"?)
- Op(l) X Op(l)v

where we used ||F||/T"/? = O,(1). This implies that

IN

|F — Fy(FyFo) ™ FoF|| /T2 = || F — RH|| /T2 = 0,(1),
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where H = (F/Fy)~'F}F is the rotation matrix. Because we omit this rotation matrix H
in Proposition 1, as explained in the main text, we obtain ||F' — Fy/v/T = 0,(1).
From ||n|]* = 0,(1), equation (9) implies that

1N . 1N, 1.
N; bi+N§:b (A; — Alob (pa+0,(1) N;bb

where 0 < p4 is the lower bound of the eigenvalues of A4, = %X{MFOXZ- 1 =1,...,N.

Because assumption (D2), ps > 0 exists. We also used the fact that ||4; — A;ol] = 0p(1),

which is proved in Ando and Bai (2015, Theorem 1). The average consistency of b; follows

from + >N, B;BZ = 0p(1) (recall we normalize b;y = 0)). The average consistency of 1,

and the average consistency of b; further imply the average consistency of A; (see Ando

and Bai (2015)). That is, N™' S, |4, — ¥,0ll* = 0p(1). This completes the proof of

Proposition 1.

B Proof of Theorem 1

Lemma 3 (Theorem 2 of Hoeffding (1963)). Let Xi,...,X,, be independent random vari-
ables and bounded by the interval [C;, D;]. Then, for all v > 0, we have

12 1. 9 2p2
Pl Xi—B =Y X|| 27 <exp| - .
<n§ 0 ] ) eXp( ;Llwz-—cz-)?)
!

We first prove the uniform consistency of b; and X;. Let 7, = (b}, X})". We now define

B.1 Proof of Theorem 1

the following loss

T
LNTZ PYZ; Z yzt i - f:&Az) )
and its centered version
Lyti(vi, F) = Lyri(vi, F) — Lnt,i(Yi0: Fo)
1 d / ! 1 4 / /
= T Z Pr (yit —x;b; — .ft)‘i) - T Z Pr (yit - wz’tbi,O - ft,OAi,O)
t=1 t=1
For each 6 > 0, we also define

Br(8) = {7:: i — violl <6}



and
Br(e) = {F :|[F — Ry /T"* < e},

where e > 0 is a small constant. We prove the uniform consistency of IA)Z and 5\Z in the
sense of maxi<i<y ||b; — bio|| = 0,(1) and maxy<;<y ||A; — Aig|| = 0,(1). By Proposition
1, it is enough to prove the uniform consistency under the condition that the common
factor F satisfies ||F' — Fp||/T'/? < e, for small e.

For each 7, ¢ B, r(0), define

Yi = sivi + (1= 8i)%50,

where v, o = (b, X ) and s; = 6 /{||7; — Violl} € (0,1). The convexity of the objective

function, given F', leads

si{Lnri(Vi, F) — Lnti(Yio, F) }

> Lyri(¥i, F) — Lnti(7i0, F)
= LNT,i('S’i? F) - LNT,z‘(’Yim Fo) + LNT,i(7i07 Fo) - LNT,z‘(’)’ioa F)
Z FE [ZNT,i<'~71'7F)} + {ENT,i('S’Z';F) - K [ZNTJ(’SQ?F)}} —Cx €, (11)

where E[Ln7i(v;, F)] = E[Lnri(v:i, F)] — E[Ln7i(7vi0, Fo)] and the expectation E[] is
taken with respect to the true conditional distribution of {y; : ¢ =1,..,N, t =1,..,T}
conditional on X, Fy, Ag and By. Here, we have used, for F' € By(e),

T
|Lnri(Vios Fo) — Lnvri(ioy )| S C X TN Ny = Froll SO x |F = Fol|/TYV* < C x e
t=1

with C' being a positive constant. By choosing a small e, this term is dominated by the
term E[Ly7i(q:, F) + {Ln1.i(3:, F) — E[Ln7:(3;, F)]}. Thus, this term is negligible in
our analysis below.

Let wy = {xit, f10: Ao} Under ||v; — 5,0l < 9, the identity of Knight (1998) leads

to
E[ENTJ;(’Y’U F)]

T
= ;Z E [Pr (yir — m;tbi - f;;)\z‘) - Pr (yit - w;tbi,(] - f;,())\i,o)]

M~ 1

1 m;t(bi*bi,O)Jﬂf;,O(Ai*Ai,O)Jr(ft*ft,o)’Ai
- = /0 {Galslwi) — 7} ds
=1
1 T _ ) ’ 2
= 7 > git(hit|wir) {m;t (bi = bio) + fio(Xi = Xip) + (ft - ft,O) )\z}
=1

9



T

2 1 & - o
Z (hitlwir) {af; (b = bio) + F1o (N = M)} + T ;git(hiﬁwit) {(ft ~ f10) Az}

t:

L2 4 /
t7 Z harlwie) {@ly (b; = bio) + Fio (A — Xio) } {(ft — Fro) Az‘} (12)

where h;; is between 0 and x),(b; —b;o) + fg,o()\i —Xio) T (fi — Fro)' A, Gie(-|wiz) is the
conditional cumulative distribution of € = y; — @l,b; o — f;70}\i70 conditional on w;;. For
F € By(e) with small e, the first term in (12) dominates the other two terms.

By assumptions, iLit belongs to a compact set, which leads to 0 < g < git(ﬁit|wit).
Together with Assumption (D2), there exists a constant ¢s > 0 such that

1 2
T Zg {fB;t (bz — bi,O) + f;;O ()‘@0 — )\1)} > Cs (13)
for all 1 < i < N, all [|v; — 7,0/l = 6. This means that, with large probability,
E[Ln7i(7v;, F)] > ¢5/2 for all [|y; — ;| = 6, and all F' € Br(e) with small e.
Note that 4, is on the boundary of B; r(d); i.e., ¥; € 0B;r(0) = {7, : [|7: —Yioll = 0}
This implies that with probability approaching to 1,
- _ c
E[Lnri(7:, F)] 2 55
for all 4, € 0B, r(9), all F' € Br(e), and all small e.
For any two events A and B, from P(A) < P(AB) + P(B¢), we have

(14)

P(max |4, = violl > 6) < P(max|[4; = violl > 8, F'€ Br(e)) + P(F ¢ Br(e))

By Proposition 1, the second term converges to zero. We focus on the first term. Consider

the event

max 19, = vill > 8, F € Br(e)}
14; — ’Yi,0|| >0, i, Fe BT(e)}
Lnri(5 F) < Lvri(ip, F), 30,4, € Bir(6), F € BT(B)}

Il

- LNT,i(7i>F) S LNT,i('Yz‘,Oa F)? E|Z, 3’71 ¢ Bi,T((s)v =i € BT(6>}
~ C(S
C { max su (v, F) — E\Ly7i(vi, )| = — ¢
{1<i<N%EBi,T<6>P reBre) (30 ) = ElLrst70 P 3 }

The first two equalities and the first inclusion (C) follow easily. We explain why the

second inclusion holds. From (11), we have
si{Lnra(vi F) = Lvri(Vios )} 2 ElLnrs (s, F)H{ Lt (35, F)=E[Lnri(3;, F)]} =Ce.

10



If Lnri(vi, F) < Ln1i(7v:0, F) for some i, some v, ¢ B;r(0) and some F' € Br(e),
this leads to 0 > E[Ln7i(¥;, F)] + {Lnrs(¥5 F) — E[Ly7i(3;, F)]} — Ce. From (14),
E[Ln1i(4;, F)] > ¢s5/2, note that 4, € B;7(0) C B;p(6). By choosing a small e, we
have

max sup |Lnti(vi, F) = E[Lnti(7:, F)]| > cs/3.
1SiSN 4 eB; 1(5), FEBr(e)

The second inclusion is obtained. We next show that this event has a probability con-

verging to zero. It suffices to show that for every ¢ > 0,

lim P { max sup Lyt i F — E[Lnrs L)) >ep =

N,T—00 {1gz’§N%€Bi7T(5)’ FEBT(e)‘ N1i(Yi F) [Lnri(y )]’ }

It further suffices to prove that
max P sup |Lnti(vi, F) = ElLnri(v,, F)l| > e p =o(N7Y).  (15)
1<i<N v,€Bir(8), FEBr(e)

Let h(v;, fo) = pryie — @i — Fihi) — pr(yie — @ybio — FioAio). Observe that
(WY 1) = h(Vis Fro)l < CUlaell + ([ £ 1ol 1y = Yill + CUIFe = Froll) and [2(vi, Fr0) —
h(7is fio)l < CUlil| + | £10l)llv: — A:ll for some universal constant C' > 0. Put Wy =
C(llzil| 4[| 1 0ll) and & = sup; , Wi Since B;p(d) is compact, there exist Cr balls with
centers 7, = (b, Ax), k = 1,...,Cr and radius £/(8k) such that the collection of these
balls covers B; 7(9). Note that Cr can be chosen such that Cr(e) = O(1/eP*") and € — 0.
For each v; € B;r(9), there is 4, such that |h(~;, f;) — h(Fx, fr0)| < Wie/(8k). These
investigations lead to

|Ln7i(v;, F) — E[Ly7i(vs, F)]|
N N X
< ‘LNT,i(%aFo) - E[LNT,Z‘(%,FO)” + f Z H.ft - ft,oH

3

< |Lnti(Aw. Fy) — E[Ln7: (7. F
< |Ln7i(Fg, Fo) [LnT,i(Ves 0)”+8/@ NT

C T
ZZ{Wn+E it |+TZ||ft—ft,o||,
t=1

t=11i=1

For F € Br(e), T~ S0, | = Froll* < e Thus, TS | f=Fooll < /SEL IS — Frol?/T <
Ve. So the last term is small for small e. We have

P{ sup ‘LNT’L '.)/zaF()) E[Z—’NT,Z'<71'7FU>]‘ > 6}
~,€B: 1(6),FEBT(e

CF (8

< Z {
{ SS (W + EWal}

tlzl

(i Fo) = ElLnrs(, F))| >

5)
} {' tXT;Hft Fuol

> b

11



where the second term is 0 because N='T~* ST SN LW, + E[Wy]} is smaller than 2x.
The last term is also zero by choosing e smaller than ¢/(3C'). Thus, we need to evaluate
the first term.

Because of the uniform boundedness of x;; and f,, we have |h(7;, f,) — E[h(7;, f)]] <
M, where M is a bounded constant. From the independence property of ¢;;, Lemma 3

leads to
. - €
P{‘LNT,i(’YkaFO> _E[LNTz('YIwFO)]‘ 3}

= {‘7{ XT: {pT <yit - w;tbk - fgoj‘k> —F [IOT (yit - w;ti)’“ o fio;‘k)”

t=1

—T2€2
< N
< oo (ieram)

which leads

>

Wl M

}

CF(&‘)
- - - - €
{’LNTz (Y, Fo) — E[LNT,z‘(’YkaFo)]’ > 3}

T2 2
(e) X exp (18275 ) M2>
= (5 P exp( TEQC)>

- ofrfeee v

_ N xO(eXp[ T€20/2+10g(N)D
_ e, (16)

IA
Q

where the third equality is obtained because log(e)/T" — 0. The last line is obtained
because log(N)/T*/? — 0. Thus, we have

1<i<N ~,E€B;r(5),FEBr(e

max P{ sup ‘LNT% ¥, F) — E[Z?NT,,;(%,F)]’ > 5} = O(N’l),

which completes the proof of the uniform consistency of 4, for ¢ =1,..., N.

Next, we prove that the estimated common factor is ft is uniformly consistent

max || f, = froll = 0. (17)

1<t<T

Let v = (4}, ..., Yy)- We define the following loss

1 N
Snre(, Fr) ENZ (yir — i_f;)‘i)7

12



and its centered version

gNT,t(%ft) = SNT,t(%ft)—SNT,t(’met,o)
N

1 Y 1
- N ; pr (Yir — xjb; — fp‘i) N ZPT (yit - $2tbz‘,0 - f:g,())\i,o) )

i=1
where vy = (Y19, -, Vo) - Fix any 6 > 0. For each f, such that ||f, — f, o > 9, define
Fi=sfi+ (1 —5)fo with s, =0/ f, — fioll € (0,1). Then, ||f, — f,|| = 0. Similar to
(13), for some ¢s > 0, we obtain the inclusion relation

{max |17, ~ £.0ll > 5}

{IF: = fioll >0, 3t}

C {Svre(¥. £1) < Svra(¥. Fro), 1 < I <T3F, st ||f, — Froll > 0

~ . ~ c

C qmax sup  |Svra(5. £~ ElSvre(vo. £ 2 5 ¢
S Fuoliso

where E[S’NTJ(')/, £l = E[Snr(v, fo)] — ElSnT+ (70, ft,O)] and the expectation E[-| is

taken with respect to the true conditional distribution of {y; : ¢ =1,..,N, t =1,...,T}

conditional on X, Fy and Ay. The second inclusion is obtained as follows. Because of the

convexity of the objective function (given 4), we have

se{Snra(3, 1) = Svre(¥. £10)}

> Snra(¥s £) = Snre (Y, Frp)
= SNT,t('AYy }t) - SNT,t('S’a ft,o)
= Svre(¥. Fo) = E [Svri(vo, £)]] + E [Svre(¥, £r0)]
- {SNT,t(’:/; ft,()) - E [SYNT,tﬁ’? ft,o)” +E {SNT,t(’Y()’ }t)] .
Similar to (14), for || f, — Fioll =6, the last term is greater than or equal to cs for some

cs > 0. By consistency of 4, the second and third terms in the last line are o,(1). Thus,

we have

se {Snre(¥, £1) = Svra(¥: Fro) }
> [SNT,t<'A77 }t) ) [SNT,t('Y(b }t)” +cs5 + op(1).

If SNT’t("A)’, ft) S SNT,t(FAYa ft,O) 1 S 3t S T and Elft s.t. Hft - .ft,OH > 57 then
0> [Sud 70— E [Suratonn 3] o+ (1),

13



Thus, under large N and T, with large probability, | Sy (%, f,)— E[Snri(Yo, Fo)]| > ¢5/2.
In particular, noting that ||f, — Fioll =6,

max sup \Snr(3, 1) — E[Snri (v, £)]| > ¢5/2
=SS S olss

This gives the second inclusion.

Therefore, it suffices to show that for every € > 0,

Nliirm P 1@1}% Sup
,I'—o00 <t<
I1f,~F.ol<o

Snra(¥, 1) — E[Snri(Vos ft)]’ >ep=0.

Because

Snra(¥: £1) = ElSnta(v0, £1)]
= {gNT,t('AYa fo— SNT,t(Vo, ft)} + {S’NT,t('YOa fo— E[SNT,t('Ym ft)]}

it further suffices to prove that

yim P omax - sup Svre(3: £.) = Svra(vo, £1)]| > e =0, (18)
I1fo=f L oll<s
and
Jim Poamax sup |Syri(ve, £1) = ElSvre(ve, £l Zep =0 (19)
If,~foll<s
Since

N . - 1 XN R 1 XN R
S £ = Sxratvo £0] < € x {5 X el = ol + 5 S FIA = Al |
i=1 i=1

and sup;, ||;|| < oo and sup, || f,|| < oo, consistency of 4 implies (18).

Finally, we prove (19). It is enough to show

e W
t
== I1f =T oll<s

For each 9 > 0, we define

Snre(Yo £2) = ElSnra(vo, F))| > € p = o(T 7). (20)

Bin(8) = {fi: |If.— Fuoll <5}

Observe that |h(v;, f,) — h(v;, £ < ClIAill x || f; — F|| for some universal constant
C > 0. Put K; = C||A|| and S = sup, K;. Since B, y(9) is compact subset, there exist

14



C; balls with centers f,, k = 1,...,C} and radius £/ such that the collection of these
balls covers By y(9). Note that C'f can be chosen such that C¢(¢) = O(1/¢") and € — 0.
For each f, € B; n(9), there is f, such that |h(vy;, f,) — h(v;, fi)| < Kie/(88). These

investigations lead to
|§NT7t('707 fi) — E[SNT,t(’YOa ol

~ - £
< [Snre(Yo: Fi) — E[Snrie(Yo: F)] H

Z{K K(\)]}

where C' is universal constant. Therefore, we have

P{ sup ‘SNTt (Yo, f1) — [SNT,t('Yo, ft)]’ > 5}

FeBr (6
Cr(e)

< kzz:l P{‘SNT,t(’Y()?FO) - E[gNT,t('YovFO)]‘ > ;} + P{’;é{f{z + E[K]}

24/8}7

where the second term can be made arbitrarily small under large N and 7. The second
term is zero because |+ YN {K; + E[K;]}| < 28. Because of the uniform boundedness of
xy and f;, we have |h(v,q, fi) — E[h(7;0, fi)]| < M where M is bounded constant. The
first term is

O, £ = ElSwrelvo ] = 5 )

el

_ X (exp[ Ne C/2+10g(T)})
o) (21)

where Lemma 3 is applied to obtain the second inequality. Because (logT)/v/N — 0, the
last line is obtained. This implies (20), or equivalently, (19). This completes the proof of

Theorem 1.
C Lemma 4
Lemma 4 Under Assumptions of Theorem 2, the following results hold.
log(NV)
a1 vl = 0, (M) (22)

15



1<t<T N1/2

mas |7, = Fooll = Oy (kw)) | (23)

These results give the rates for uniform consistency, they are used in the proof of
Theorem 2. We first present some preliminary results in order to prove Lemma 4. The

first result is Lemma 1 of Babu (1989), which is closely related to the Bernstein inequality.

Lemma 5 Let X; be a sequence of independent random wvariables with mean zero and

|X;| < d for somed > 0. Let V> SN, E[X?. Then for all0 < s <1 and 0 < a <
V/(sd),
d

To state the next lemma, we introduce some notations. We let {&,t > 1} be a

N

> X

=1

> a) < 2exp(—a’s(1 —s)/V).

stationary process taking values in a measurable space (S, Q). Here S is a Polish space
and Q is a Borel o-field. We denote H being a class of measurable functions on the
measurable space (S, Q). For a process Z(h) defined on (S, Q), we define ||Z(h)|| =
suppey |Z(h)|. The following lemma is a Bernstein type inequality for centered empirical
processes (Talagrand (1996), Bousquet (2002)). The following Talagrand type inequality
is due to Proposition B.2. of Kato et al. (2012).

Lemma 6 Let H be a pointwise measurable class of functions on the measurable space
(S, Q) uniformly bounded by some constant U. Suppose that, for any h(-) € H, (i)
E[h(&)] = 0, (it) supy,e[n(&)?] < 0®. For Z = || Z{_; h(&)|ln. we have
2
P (Z — B[22 V2s (To* + 20E[2))” + 83U> < exp(—s?),

for all s > 0.

C.1 Proof of Lemma 4

. Al
We define z;; = (x,, f:g)', Zit,0 = (5, f:s,o)/: zZi = (x}y, f1)', wir = { T, ft,07 )\i,O} and

1 L / / /
QNTJ‘('Yiy F) = T Z (7' — ey < )y (b; — bi,()) + fidi — ft,o)\i,o)) Zit,
t=1
@NT,i(’Y¢>F) = ElQnri(v:, F)]

1 T
= 7 > E KT — Gy (b — big) + fihi — FioAio
t=1

wit) zit] )

where the expectation of E[Qnr.(7;, F)] is taken with respect to the true conditional
distribution of {y; : i = 1,...,N, t = 1,...,T} conditional on X, Fy and Ag, Gy (-|xs)

16



is the conditional cumulative distribution function of ;. Because of the computational
property of the quantile regression estimator (Gutenbrunner and Jureckova (1992)), it
is known that maxi<;<n |Qn7:(¥; F)| is bounded by Op(T~'maxi<i<n, 1<i<r ||2i]|) +
Op(T ' maxi<i<7 || f,])) = Op(T~1). Here, we used max,<;<r || f,|| = Op(1). We thus have
Op(Tfl) = QNT,z'(’AYz‘a F)
= Qnri(Vio Fo) + Quri(Yis F)
+{Qn1i(¥i F) = Qura(3io F) = Quri(i, Fo) } - (24)

Expanding Q yr;(9;, F) at (7:.0, Fo), we obtain
@NT,Z’ (’A)/za F)

1 & 1 T
= _TZE[git(0|wit)zit,ozgt,0](7 ')’zo ZE it (0]wir) i oAzo](f ft70)
t=1 T

oy = viol) +op( Zuft ft,ou), (25)

where we used the result of Theorem 1 such that O,(||9; — v oll*) = op(17; — Yioll)-
It then follows from (24) and (25) that

(5, — ’Yi,o) +op(|l7; — 710”)
= Qnri(Vi0, Fo) + {QNTz(’Ym F) - QNTZ(% ) QNTz(’VzanO)}

1 & . .
|3 Bzl 10| 0, (1) + o0 (1.~ ol )20

where I; = T 321 Elga(0|wi) 2,02} o] and we used the result of Theorem 1 such that
Op(T iy 1F = Froll?) = 0p (T iy 1F2 = Frol)-
Next, we define
1N
Vnri(v, fe) = N > ( I(eir < xjy(bi — big) + Fihi — f:s,o)\i,o)) Ai,
i=1
and

N
Vnre(v, fo) = [ Z ( - iw(bi = bio) + Fixi — fioXio wit)) Az‘} ;

where Gy (-|wy) is the true cumulatlve distribution function of &;; conditioned on wj;.

Noting that Vxr (Yo, f10) = 0, the expansion of V(9. £,) at (g, f10) leads
VNT,t (:}/7 }t)

1 N 1 Y .
= N E :E[Qit(0|wit>)‘i,0)‘;,o](ft -ftO N - E : [9it (0]wiz ) ZOZ;t,O] (9: — 'Yz',o)
i=1 =

. 1M
oy (17, = Fuol) + 0 (5 219 vl ). @7



Viewing the factor loadings A; as regressors and f, as regression coefficient, the similar

argument that derived the equation (26) leads

}.t - ft,O + Op(”}.t - ft,o”)
= lI’tflVNT,t('YOa ft,()) - \Ij;l {VNT,t(’?m ft) - VNTt(’s’oj ft) - VNTt('YOa ft,O)}

L1 : 1
+V, ! <N ZE[git(olwit)Ai,Ozét,O](72‘ — Y0 ) +op ( Z 17i = 7’?0H> +0p (N) (28)

i=1
where U, = N1 SN Elgi (0wi) Ai oA o)-
Putting (28) into (26), we have

(¥ _’Yz',o)
= leQNT,i(Vi,O7 FO) - F;l {QNT,i(ﬁ/za A) QNT’L(PYZJ ) QNTI(PY’L 0> FO)}

J AN
7 2T ElouOlwi)zuo X1 ( > Bl Okos0Nouil 3, w)
t=1

1 T
+f Z L' Elgie(0lwit) ziro X, o] ¥, Vet (Yo, Fro)

+= ZF 'Elga(Olwi) zio X oW {Vivee(8, F1) = Vs (B Fo) = Vv (Yo, Fro) }

+op(]§)+0( )+ 014, — .l (29)

From now, we evaluate each of the terms in (29). First, the first term is

log(N
Q7,0 o)l = Oy (B 30

To have (30), it suffices to show that, for any u > 0,

max P <’QNT,2’(71’,07F0)‘ > bg(N)U) - (]17) ’

1<i<N T1/2

which can be obtained by applying Lemma 5 with a = 2log(N)T"/2.

The second term in (29) is bounded by o,(T~'/2). To evaluate the second term
U Y Qnri(3:, F) — Qnri(Yis F)— Qnt,i(Vi0, Fo)} in (29), we apply Lemma 6. Define
h(ule, v, f;) = I(u < 2'(b; — bip) + fioXio — fiXi) — I(u < 0). From the result of
Theorem 1, we define H = {h(u|z,v;, £)|I¥; — violl <5, If, — fioll <k} with k — 0.
It is obvious that E[h(u|xz,~,, f,) — Elh(ulz,~,;, f,)]] = 0 and that each element in # is
bounded by 2. Also, E[{h(u|z,~,, f;) — E[h(u|z,v;, f,)]}?] < C x k? for h € H. Put
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Zi = || Z?:l{h(git|wv Yis ft) - E[h(§1t|mv Yis ft)]HH Wlth git =<t in Lemma 6. By Lemma
6, for all s > 0 with probability at least 1 — exp(—s?), we have

1
1,1 ,/ 2+ 4F[Z 1
7 _T K% + (31)

Because of the independence property of the idiosyncratic errors over ¢ and ¢, we see that
T-'E[Z;] = o(T~*?). We now take s = y/2log N in (31). Then, it is seen that there
exist a positive integer T independent of ¢ such that the right side on (31) is smaller than
o(T~/?) for Ty < T. This implies that P(T~'Z; > T~/2) < N~2. Therefore, the second
term in (29) is bounded by o,(T~1/2).

Next, we show that the fourth term in (29) is 0,(7~'/?). The fourth term of (29)
satisfies

1T
vT T ;F;Uittlf;lVNT,t(%, Fro)| = UX;F WU (T = I(en < 0)) A = 0,(1),(32)
where J;; = E[git(0|wit)zit70)\;’0]. Because HF[ljl-t\I/ﬂH < 00, it is enough to show that
1 N T
NIT ;; (1 —1I(it <0)) A = 0p(1). (33)

The expected value of its second moment is

NETE i, ]i1 t,sizl T Iew <0) A /\, (1 —1I(gjs <0))
1 [N
- vt ZZ: I < 0) AX; (7 — I(eis < 0))
1 rN T
S DS CEEeY

which converges to zero. Here the first and second equality used the fact that the idiosyn-
cratic errors are independent over ¢ and t. Therefore, we obtain the claim (32).

We next show the fifth term in (29) is O,(T~/#). This rate will be improved later on.
Because of the consistency of {4, £} and the uniform boundedness of || I E[g: (0] wit) 2.0l
A; and A, it suffices to show that

P{ sup
YeB,(k),FEBr (k)

NT ZZ{hzt Cltlwlt>717ft) [ lt(Clt‘wlt>715ft }H T1/4} (34)

i=1t=1

converges to zero. Here Gy = e, h(ulz,v,, f;) = I(u < a'(b; — big) + fioXio — Fihi) —

I(u <0), By(k) = {7 ll7i = Yioll < K, i = 1,..,N}, and Bp(k) = {F; | f; — froll <
K, t=1,..,T} with & — 0.
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For some positive constant Cj, put W; = C; x (|| \i]] + [|Aioll), @ = sup; E[W;] and
e = 7i7z. There exist C,, balls with centers %, , k = 1,...,C,, and radius £/(8a) such that
the collection of these balls covers B, (k) = {7v; : [|7; — Violl < &}. Similarly, because
By, (e) is compact subset, there exist C'y, balls with centers ft’j J =1,...,Cf, and radius
e/(8a) such that the collection of these balls covers By, (e). We note that C,, and CY, can
be chosen such that C.,(¢) = O(1/e?*") and Cy,(¢) = O(1/e") with € — 0.

Because

S S Gl £ — Bl v, f»]}\

zltl

1 I e 1 X
ZZ{h (Gitlzie, 7iys £1,) — [h(cit|xit,vik,ftj>]}‘ o v AW+ B,
i=1t=1 =1
we have
1 L& 1
P su — h(Cit|Tit, ¥ | T, s,
{’YeBr(é), Fesr NT;;{ (Gl i, £1) = Bl Gl ft)”‘ T1/4}

K3
Cy(e)  Cyy(©) Cpale)  Cyr

e)
SRS SHD SRS R 1 = 3) S LT NS A R L )| B

zltl

where the second term is zero because |3 S {W; + E[Wi]}| < 2a and € = 7 from its
definition.
From the independence property of the idiosyncratic errors over ¢ and the consistency

of the estimated parameters,

T 2
{ Zh gzt’mzt777,7ft ! ZE Czt’mlt771’ft)]} ]
t=1

- T2ZE[ (Citlmie, vi, Fi) — [h(Qt’wm%,ft)]}ﬂ
= oT™h

Therefore,

2

N T T
> E {T_l > h(Gilwir, i, J_ctj) — 171> Eh(Gulzi, 7, ftj)]} <Cx N xo(T™)
=1 t=1

i=1
where C' is some positive constant. Take
T - T -
Zi =T WG|, Yir: t;) — T Elh(Git|a, Yirs £,
t=1 t=1
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in Lemma 5, we then have
pl L

NT

N
a { 1—1{

N2
<

= P ( X TN X o(T—1)>

which leads

M=

_ _ 1
Zh Czt‘wit77ik7ftj) - E[h(fit’wit,%kaftj)]}‘ > 2T1/4}
1t=

d 1 & N
Zh Czt|wlt;'7zkvftj ZE Czt|mzta7zk7ftj)]} = 2T1/4}
t:l

t=1

—_

A

N =

)OEIND DD DN D

C‘rl(s CWN Cfl(s) Crr(e) {‘ 1
k1=1 k=1 7J1= 1 JT= 1 N

N T _ 1
ZZ{h(Qt|$n,’7Zk, ftj) [ (Czt|mzt771k7 ft )H‘ = 2T1/4}

=1 t=1
< C,(e) x - x Cop(e) x Cp(e) x -+ x Chple) x exp (—C X NT1/2>
= 0 (E_N(p”) X e 1" x exp [—NTI/QD

_ O<eXp l_ — {1  N(p+r)logle) Trlog(e) }D

NT1/2 NT1/2
B 1/2 (p+7r)logle) TY?  rlog(e)
= O(expl—NT/{l— Ti2 N X TN
= o(1),

where the last line is obtained by using (p + r)log(e)/T"/? — 0, TY/2/N'=7" — 0 and
rlog(¢)/N7 — 0. This is because ¢ = T~Y/* and TY2/N'=7 — 0 (1/16 < v < 1/2).
Therefore, the fifth term in (29) is O,(T~1/%).

Putting these results into (29), we have

(7 —'Yz'o)

1 Y 1
— _TZF 1E glt(0|wzt)zn 0)\10 (Nz_: g_]t O’(—UJt Aj OZ]t0]<'7 'Y] 0)) +O (T1/4)

t=1

which leads the following expression

(3 = 70) = 3 K = 70) + 0,1/ T,

where ¥ = (7, ~--a'3’/N),a Yo = ('71,07 ---7'73\7,0),7 and

Ky Ky -+ Kin
K K21 K22 : K?N | (35)
Kyi Ky - Kyn
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where K;; = TS T, 0; lJ]’t7 Jy = E[git(0|wit)z,~t,0)\;’0]. Because (I — %K) is
positive definite matrix, we obtain maxi<;<y |[¥; — ¥i0ll = Op(1/T"*). By the same
argument, we also have max,<i<r || f, — Fooll = Op(1/N'4).

From max<;<n [|4; —7ioll = O,(1/T**), we can further improve the convergence rate
of the fifth term in (29). We next show that

NTZZ{hzt Gilzit, Yis Fo) = Elhi(Gul i, i, £r) }H T3/8} )

P{ sup
YEB,(T~1/4),FEBR(N—1/4) i=1t=1

converges to zero. Here (; = g4, v; = (b}, X)), h(u|z,~v,, f,) = I(u < 2'(b; — big) +
FroXio = Fixi) = I(u < 0), By(T*) = {7 [lvi — violl < T7V% i = 1,.., N}, and
Br(N) = {Fs |If,— ool < NV, t=1,...T}.

For some positive constant Cj, put M; = C; x (|| N + || Aioll), @ = sup; M; and
e = T738 There exist a positive constant C' and D,, = [C' x (T?3)P*7] balls with
centers 7;,, k = 1,..., D, and radius T-%/%/(3a) such that the collection of these balls
covers By, (k) = {v; : |7 — violl < T7Y*}. Here [a] denotes the maximum integer
that does not exceed a. Similarly, because By, (N~'/%) is compact subset, there exist
Dy, = [C x (T*¥/N'4)] balls with centers f, . (j = 1,...,Dy,) and radius 7-%%/(8a)
such that the collection of these balls covers By, (N~1/4).

Because

ZZ{h GitTit; vis Fi) — [h(Cit\wita%aft)]}|

1 i=1t=1 ) sws v
< NT;;{}L Citl®it, ¥iy» Fr)) — [h(Cz't|wz't7%k7ftj>]}‘ ‘ ™ ﬁ;;{M + E[M;]},
we have
1 XL 1
P{’yeBp(fSS)uFeBp(e) ﬁ;;{h Czt|wita'7iaft) [ (Clt|w2t7’yzv.ft>}}| Tg/g}

Dvl(E) D'YN )Df 1(e)

Dy,1(e) N T
< Z Z Z Z P{ ’]\;Tzz{h(gt@ita%k,}tj) Elh (Czt|5’3zta%kaft )]}| = 27}3/8}

ki1=1 kn=1 j1=1 Jjr=1 i=1t=1

)

where the second term is zero because + >N {M; + E[M;]} < 2a.

+P{ ‘N ;{Mi + B[M]}

From the independence property of the idiosyncratic errors over ¢ and the consistency

of the estimated parameters,

1< i
{ Zh €Zt|wzt77z,ft ZE g’bt|wlt777,’ft)]} ]
t=1
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1 T
) ZE [{h(Cz‘t|mz‘ta')’i» fo) = E[h(Gel @i, vi, ft)]}2:|
t=1

1 T4 N2
= O(= X —=7m5
(T N1/271/2 )’

where we used the result of Lemma 4 such that E[{h(Cit|Ti, v;, Fi)—E[R(Cit|it, ¥4, £1)]}2] =
(T% + NY/2) /(NY2T/2). Therefore,

N T T 2 1/2(1/2 1/2
_ _ _ _ = NY*(TY*+ N
3 BT S G s ) T BB Gl 7, £ < 0T ),
i=1 =1 t=1
where C'is some positive constant. Take Z; = T 31 h(Cael @i, 74, , J_‘tj)—T_1 Y1 E[h(Cul@i, ¥s, )_"t]_)]

in Lemma 5, we then have

1 |y - 1
{N Zzlgh Clt‘mlh’)/zk?ft]) [h(CZt|w2t77zk7ft])]}‘ > 2T3/8}
N 1 T N
= { Z{ Zh Czt|mlt772k>ft ;E Czt|mzta71k7ft )]} = 2T3/8}

N2 T3/2
< exp (‘C X T3/4 N1/2 T2 4 N1/2 )

where C' is some positive constant. This leads

( D YN )Df 1(6) DfT ) 1 N T _ _ 1
Z Z Z P{ |NZZ{h(ngth”?lk’ftj)_E[h(CZt|m7't”71k7ftg)]}| Z 27"3/8}
1=1 N=1 ji1=1 Jjr=1 i=1t=1
N3/273/4
S D’Yl(g)X'.'XD’YN(g)XDfl<€>X"'X‘DfT(8)XeXp <_CX]\71/2_|_1—71/2>
3/8°\ I N3/27T3/4
_ 23\ N+ (17 _ N
= O((T ) X N1/ X exp N2 TR
N3/2T3/4 N(N1/2 +T1/2) log(T2/3)
= Olexp | — | =5 -
N1/2 L T1/2 N3/2T3/4
T(N1/2 + T1/2) log(T3/8/N1/4)
o N3/27T3/4
_ 0 N3/2783/4 ) log(T)  log(T)  TY*log(T®/8/N'/%)
- exXp | — N2 L T1/2 ©T3/4 NU271/4 N
T3/4 10g<T3/8/N1/4)
o N3/2

= 1),

where the last line is obtained by using TY/2/N — 0. Thus, the fifth term in (29) is
bounded by O,(T~%8). By repeating the argument that derived max;<;<y |9 — ol =
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O,(1/T**), we obtain the claim maxi <<y ||[¥; =i ll = Op(T~*®). By using maxi<;j< ||4;—
Yioll = Op(T73®), we can further strengthen the result to maxi<i<n [|4; — Yio0ll =
O,(T~7/16). Similarly, we can prove that max, || f, — f,|| = O,(T~7/16).

We next further improve the rate for the fifth term in (29) to be o0,(7~/2) (this result
will also be useful when deriving the limiting distribution, as it is negligible). It suffices

to show that, for any n > 0,

NT Z ;{hlt Clt‘wlh ’717 ft) [hit<Cit‘wit7 ’77;7 ft)]

=1

> o 60

converges to zero. Here (;; and h(u|zi,~;, f,) are defined before, B, (T~7/16) and Br(N~7/19)

are defined in the proof of Lemma 4. By using the same argument, we have

P{ sup
YEB(T=7/16), FEBp(N~7/16)

1 7
P su h(Citlit, s, Git| it Y45
{'yeBF(TWlﬁ) PeBy(v-7/1) NTzZuZ:{ Gl oo o) = Bl Gl > ft)]}‘ Tm}
E’n(E) E’YN(E) Efl (e) EfT 1 N T B B n
<3S | S S e v ) - B G 2D 2 ]
k1=1 k‘N—l ]1 1 ]T 1 i=1t=1
and

2

1 ¢ 1 T84+ NS
{ Zh Czt|wzt777,7ft ZE Czt|wzt;'77,,ft)]} == O ( X ) .
t:l

T N7/8T7/8

Therefore,

N T T 2 1/8(7/8 7/8
- 7 _ S NYS(TY® 4 NT/#?)
ZE{T I;h(git|wit77ikaftj)_T IEE[h<<it|mita7ikaftj)]} < CX( T15/8 ) 5

=1

where C is some positive constant. Again, we take Z; as Z; = T~ ! Zthl h(Cit| 21, Yi,.» ft],) -
TS Blh(Cel@i, 74, ftj)] in Lemma 5, we then have

el

< exp <_Cn .

Zzh Czt|mzt)7zk7ft ) [h(C’it|wit77ik"?tj)]}‘ = 271771/2}
i=1t=1

N2 T15/8
? . Nl/S(T7/8_|_N7/8)>

where C,, is some positive constant. This leads

Eq (e Eyy(€) Efa(e) Ef () — 1
Z Y Yy P{ ZZ{h Gelies Vi Fo,) — [h(Qt’wz‘tﬁwftj)]}‘ 2 2T1/2}
k=1 En=1 ji=1 jr=1 =i

< D, (e) x---x Dyy(e) x Dy, (g) x -+ x Dy, (€) x exp (‘Cn X

N15/877/8
N7/8 + T7/8>
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., 712 \T" N15/877/8
o {1y () [
N7/16 N7/8 4 T7/8

N7/8 4 T7/8 N15/877/8
B (TT) (N7/8 + T7/8) log(Tl/Q/NWlﬁ)
N15/877/8
N15/8T7/8 log(Tl/lﬁ) log(Tl/lﬁ) T1/8 10g(T1/2/N7/16)
O(exp l_ <N7/8 + T7/8> { T8 NS N
T log(T*/?/NT/16)
a N15/8

o(1),

where the last line is obtained by using vT/N'=7 — 0 for small value of v (1/16 < 7).
Thus, the fifth term in (29) is bounded by 0,(T~%/2). This completes the first claim of
Lemma 4 in (22).

Next, we put (26) into (28)

Fo—Fuo
‘I’AVNTt(%, Fro) = U { V(3o F) = Vivra (o ) = Vivra(vo, Fro) }

—|—N Z\IJ lE gzt(()]wzt) loth 0] [ ZE gzt Olwzt>z2t UAz O](f ft,0>‘|
=1 t=1

1M _
- Z U Elgi (Olwin) Ai ozl o)1 Qnri (Vi 00 FO)

N A
+]1[Z\I’ L E[gir (0[wr) ZUzztO] {QNTZ(77,7 F) - QNTz(’Yza F) - QNT,i(’Yi,mFo)}
i=1

+0, () + 0y (7:) +onlllF = Fral) (39)

By flipping the role of f, and -,, we can apply the same argument used to obtain (22).
Thus, we have maxi<;<r || £, — fioll = Op(log(T)/N'/?). This completes the proof of

Lemma 4.

D

Proof of Theorem 2

We first study the asymptotic distribution of 4,. Together with the analysis in the proof

of Lemma 4, we can obtain the following expression.

t 1

i — ’YZO—F QNTZ(7ZO>F0 _*ZF IJzt‘I’ ( ijt — Y50 ) +0p(1)-
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This part of analysis is similar to Song (2013) and Ando and Bai (2015). We have

VT~ 50) = 5K VTG —70) + VT + (1), (39)

where ¥ = (94, ~-~>'%v)/a Yo = ('71,07 ---77/1\7,0)/7 n=(ny,..,Ny) withn, = Fi_lQNT,i('Yi,Ov Fy),
and K is defined in (35). Solving (39) in terms of vT(4 — 4,), we have

VIG-) = (1= LK) (VIn+ o),

N
1 1, 1 .

Note that we can ignore the higher order terms related to vTN~“Kn as 0,(1) due to
the increasing order of N~¢. Similar technique is also employed in Song (2013) and Ando
and Bai (2015). Then, we have

\/T('AYZ - ')’i,o) = Fi_l (Tl/zQNT,i(7i,Oa FO)) +o0,(1).

We thus see that the asymptotic distribution of TV2(4, — 7:0) is normal with mean zero
and variance-covariance matrix ;.
By using the similar argument that employed to derive the asymptotic distribution of

T'2(4; = ~,4), we then have

NY2(F, = Fro) = U7 (N2 Vra(vo, £10)) + 0p(1),

which implies that the asymptotic distribution of N'2(f, — f,,) is normal with mean

zero and variance-covariance matrix ©,. This completes the proof of Theorem 2.

E Proof of Theorem 3

We prove Theorem 3 by investigating the following two cases. Case 1: ry < r and Case

2:r <rg.

Case 1: ro <r

First consider the case rq < r with ry being the true number of common factors. Because
the number of common factors used in the model, r, is different from the true number
of common factors, ry, we first define the true factor structure for the panel quantile
model with the dimension of interactive effects when r # ry. Recall that the true quantile

function Q(7|xi, f; ¢, Aio) With the true dimension of the interactive effects rq is given as
Q(|@is, 10, Nio) = Tiybio + FroNio,
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where the dependency of 7 is dropped from b; o, f;,, and A;g,. The true parameters

{By, Ao, Fo} are minimizer of the loss function;

vt (B, A F)
1 T
= F [NT ZPT (yir — b — fiNi) — pr (yz-t — b — f270)\i70)]
t=1i=1
1 r XN mit(bi*bi,O)Jr(.f;}\i*f;, Az‘,o)
= F WZZ/O i {Git(3|witaft,07)\i,0) —T} ds| ,
t=1i=1

which is zero at {B, A, F'} = {By, Ag, Fo}. The expectation is taken with respect to the
true conditional distribution of {y; : i =1,...,N, t = 1,...,T} conditional on X, Fy, By
and Ay.

Similar to Theorem 1 of Bai and Ng (2002), let H, be an rq X r matrix with rank(H,) =
min{r,ro} and H be the generalized inverse of H, such that H.Ht = I,. Then, for

ro < r, the interactive effects in the true quantile function can be re-expressed as
Q(7[®ie, Fr0, Mio) = iybio + (Hyf o) (H Xip).

It is clear that these transformed true parameters Fo(r) = (f10(7),..., fro(r)) and
Ao(r) = (Aro(r), -, Ano(r)) with f,o(r) = H.f,o and Xio(r) = H Ao together with
By, will let the loss {y7(B, A, F) be zero when r > ry. Therefore, we define Fy(r) and
Ao(r) as the true factor structures when r > 7.

Let 4,(r) = (bi(r), \i(r)) and f,(r) be the estimated model parameters under the
number of common factors being . Similar to the proofs of Theorem 1 and Theorem 2,
we obtain maxy<ien [9,(r) =i (r)| = Op(log(N)/v'T) and maxiisr | f1(r) = foo(r)]| =

O,(log(T)/v/N). Here ~, 0(r) = (b0, Xio(r)"). Note that b; ¢ is the true parameter under
the true model with the number of factors ry.

Using Knight’s identity p.(u — v) — p-(u) = —vib,(u) + [§ ([(u < s) — I(u < 0))ds
with ¢, (u) = 7 — I(u < 0), we express

V(r)
= 7 2 2 (= 2l (r) = Y A)
= ];T;;pf({yit — @big — F10(r) Nio(r)} — {2y (Bi(r) = bio) + £, (1) Xi(r) = F10(r) Xio(r)})
1

I
=
~
M=
M=

pr (Eit) + zz( —big) + F () A(r) = Foo(r) Xio(r)) v(ers)

1 t=1i=1
ZT: i\f: /(m;t(b’b r)7b7"70)+ft(T)IAi(r)fftyo(r)/Ai,o(T)
0

t=11i=1

t=11¢

.
I

‘ -

)([(57,1- <s)—1I(e;; <0))ds

=

T
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B NlT YD e (ea) + L(r) + Ly(r).

t=1i=1

First, we investigate I5(r). For a notational simplicity, we denote min{N,T'} as Cnr.

(NT) X Iz( )
Bi()=bi0)+(F, )= F, o ) N+ F, o) Ni ()= N0 (1))
Z / ? ? ' >(1(5T,Z- < 5) = I(r5 < 0))ds

t=1i=1

(log N)'/? L & /\/cm/log ) (1,0 )=b0)+(F )= F Lo A+ 5 o) st =N )

172
C/ i=1i=1"0

Git €it + ;
VCnr/log N
log N & l / Cnr/log(N) (w;t(i) bio)+(F )= F o) M)+ F o () (Xir)=i o) )

= oo >y

t=11i=1

Lit, ft,oa Az’,O) - Git(&t Lit, ft,07 )‘i,O)) ds

Git (0], Tios Aio)sds + Op(l)]

- By

Cnr

~ ~

)g@-xowwit,ft,o,xi,o)( (i) = bio) + (F(r) = Fro(r)Au(r)

= Op(N)tJr b (1),

WhefeW@USGdN S 2 (Bi(r) =bio) 17 = Op(T71), NTUEX (1 f0(r) (Mi(r)=Aso (1)) 1* =
Op(T71), SN o(r) = Fro(r)]? /T Op(N71), and 0 < gi(0lair, f;.9, Aip) < o0 for
t=1,..N,t=1,...,T.

Next, we evaluate the term I;(r). Noting that SN, ||}, (b:(r) — bio)||?/N = O,(1/T),
S I F () M) =Xio(1)IP/N = Op(1/T) and Sy [[(Fo(r)=Foo(r)|IP/T = O(1/N),

we have
(NT) x I(r) < C x O, (Ci{?) x ( W(er ) =0, (VNT/CV7).
t=11i=1
Thus, we obtain

V(r) = V(ro) = 0, (Cxt).
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Using the same argument of the proof of Corollary 1 in Bai and Ng (2002), for r > rg, this
implies that V(r)/V (ry) = 1 + O,(1/Cxr). Thus, log(V(r)/V(r¢)) = O,(CxT). Because
(r—ro)q(N,T) > q(N,T), which converges to zero slower rate than O,(1/Cnr), it follows
that

P(IC(r) — IC(rg) < 0) < P (0, (1/Cxr) + ¢(N,T) < 0) — 0.

This indicates that the probability that IC(r) selects the number of common factors
r > 1o is asymptotically 0.

Case 2: r <y

Because r < rg, an T' X r common factor F(r) can not span the true space spanned by
the true common factor Fy with dimension 7' x ry. Therefore, regardless of the values of
model parameters {B(r), A(r), F(r)} with r dimensional interactive effects, the following

loss function can never be zero:

1 T N
= ﬁE [Z ZPT (yie — ®,bi(r) — Fo(r) A1) — pr (yit — b — f270)\2-70)]
t=1i=1
1 I !, (bi(r) i) +(f () X))~ Ai0)
— WE ZZ/O {Gz‘t(3|$it, ft70, )\@0) — T} ds| .
t=1i=1

From the investigation of (13), for some positive constant C' > 0, not depending on N
and T,

~ ~ ~ ~

T N
Jim 523 [or (= @libir) = FurY M) = pr (v = @lbilro) = Fulro) Aatro))] > €,
where b;(r), f,(r) and A;(r) are parameter estimates under the dimension of interactive
effects r. Using the same argument of the proof of Corollary 1 in Bai and Ng (2002), we
therefore have V(r)/V (rg) > 1+ ¢y for some ¢y with large probability for all large N and

T. This implies that log(V (r)/V(ro)) > ¢, for some constant 0 < ¢, for large N and

T. Because ¢(N,T) — 0, we have IC(r) — IC(ro) > ¢y — (10 — r)q(N,T) > ¢ for some
constant 0 < ¢j, under large N and 7" with large probability. Thus

P(IC(r)—IC(r9) <0) — 0.

This completes the proof of Theorem 3.
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F Additional information on the empirical analysis

In Section 6, we analyzed the stock returns of publicly traded firms and firms traded
in over-the-counter trading markets for over 6,000 international stocks from over 100
financial markets. The final samples for each period are summarized in Table 1.

To explore the effects of stock exchanges and industries on individual stock returns,
Section 6.2.3 applied a clustering approach to the estimated regression coefficients and
factor loadings {(l;/

in the sensitivity to the common factors. If the source of the sensitivity to the factors (both

i 5‘27)7 i=1,..., N} to create a set of groups based on the similarities
observables and unobservables) is solely attributable to stock exchanges, it is expected
that the two-way table of the assigned group membership from the clustering approach
against the stock exchanges will be diagonal. Note that the industry classifications and
listed stock exchanges are known. Therefore, it is easy to create a two-way table of the
assigned group membership against these classifications.

First, we investigate the effect of stock exchanges. There are 36 stock exchanges where
more than 40 stocks are listed, and we consider these 36 stock exchange markets. Setting
the number of clusters as 36, the clustering approach is applied to {(3270.05, 5\1-70.05); i =
1,..., N}, the estimated regression coefficients and factor loadings for the lower tail. The
left column in Figure 1 shows the distribution of the firms. An (i, j)-th element denotes
the percentage of firms listed on stock exchange ¢ such that they belong to the j-th group.
Thus, each row represents the distribution of the firms listed on the same stock exchange.
We can make the following observations. First, the degrees of similarity between Shanghai
and Shenzhen are stable over the periods in both the upper and lower tails. Second, the
New York Stock Exchange and NASDAQ tend to be very similar, while Non-NASDAQ
OTC represents its dissimilarity to these two markets. The same observations can be
seen from the right column of Figure 1, obtained from the upper tail’s factor loadings
{(13;70.95, 5\;,0'95); i =1,..., N}. Thus, investors should consider such market characteristics
although all three markets are located in the U.S.

A similar approach is applied to determine the effect of industry. To see the effect
of industry (5 industries), we also set the number of clusters at 5. Figure 2 shows the
distribution of the firms in each industry obtained from {(6;70_05,5\;0.05); i=1,...,N},
the estimated regression coefficients and factor loadings for the lower tail. The i-th row
represents the distribution of firms in industry 7. Specifically, let n; ; denote the number of
firms that belong to industry ¢ and to group j. Then, the (4, j)-th element d;; is calculated
as di; = n, ;/{35_1 nix}. Overall, there is one huge cluster that includes most of the firms

from each of the 5 industries. Thus, investors regard these 5 industries as similar rather
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than treating them as very different groups. The same observations can be seen from
Figure 2, obtained from the upper tail’s {(52’0.95, 5\;0.95); i =1,...,N}. There seems to be
other sources of variability in stock returns in addition to the industry effects.

In summary, the firm industry and the stock exchange on which a firm is listed are
important factors to be considered. However, we also note that these nominal factors are

insufficient to fully capture the underlying market structures.

G Simulation study

G.1 Performance of the frequentist estimator

To demonstrate the usefulness of the proposed estimation procedure, we conduct a Monte
Carlo simulation study. Because the data-generating process and the model parameters
are known, we can evaluate the performance of our approach. Here, we report the results
for the challenging case in which the variables z; , are correlated with the unobservable

factor structures fi\; ..

G.1.1 Data generating process

For the first data-generating process, we first generate the uniform independent random
variable u; ~ UJ[0,1] for i = 1,..., N and ¢t = 1,...,T. Then, we generate the data from

the following structure:
Yit = w;tbi,uit + f;,uit)\i,uit + Eit,uie L= 17 R N7 = 17 te 7T7

where ;s = (Ti1, ..., Titp)' 1S & vector of regressors, the dimension of the common factor
and the corresponding factor loading depends on the quantile u;, and €;,,, = G~ (uy).
Here, G(+) is a cumulative distribution function of normal or Student-¢ distribution. The

true quantile function of y;; at quantile point 7 is

Qi (Tl (1), Xi(7)) = G_1<T> + a3, bi(7) + £, (7) Ni(7).

The quantile restriction P(y; — Qy,, (T|wit) < 0) = 7 is satisfied.
We generate T x 5 common factor matrix ' = (fy) such that each element follows
the uniform distribution over [0, 2]. Using the generated u;;, we define the common factor

for the i-th unit at time ¢ as

(fﬂ7ft27 ft3), if Ut < 0.2
ftvuit =< (fua, feas fiss fra)' if 0.2 <wuy <0.8
(fer, fiz, fizs feas fis)' 3f 0.8 < uyy
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Note that the dimension of the common factor may vary over ¢ and ¢ because u; ~ U[0, 1]
fori =1,....,Nand t = 1,....,T. Given u;, the corresponding factor-loading vector is
specified as
(G + 0Ty, G + 0.1y, G + 0.1u,)! if u; < 0.2
Xy, = 3 (G + 0.1, Gio + 0.1z, Gz + 0.1, iy + 0.1u)’ if 0.2 <uy <08,
(Ci1 + 0.1ugy, Gio + 0.1ugy, G + 0. 1wy, Ga + 0.1y, Gs + 0.1uy)" if 0.8 < uy
where (;, is generated from the uniform distribution over [0,2] and then fixed over ¢.
However, the quantile random variable u;; adds some variations over ¢ because the factor
loading depends on the quantile points.

Setting p =8 for ¢ =1, ..., N, we generate the set of regressors as follows:

Tig = Vya + 0.02f2 +0.02C3,  wy3 = vz — 0.01f5 +0.02¢3,
Lits = Vit,5 — 001ft23 —+ 003@23, Lit,k = Uitk (k’ 7A 17 3, 5)

where v;, , is generated from the uniform distribution over [0,2]. The k-th element of true
parameter values of regression coefficients b, ,,, are set to be
b o = { 1 —|—2'/.N+O.1uit ;f k=246
: —1+4+4/N+0.1uy if k#2,4,6 °

Similar to the factor loadings, the quantile random variable u; adds some variations.
Finally, cumulative distribution function of €;;,,, is the normal distribution N (0, 1).

The second data-generating process modifies the first data-generating process. We let
the cumulative distribution function of €;,,, as the Student-¢ distribution with degrees

of freedom 8. Thus, the error terms have a fat-tail property.

G.1.2 Results

We simulate a large panel with N individuals and 7' time periods. We consider various
combinations of T and N. We base our estimate on the true number of factors and assess
the robustness of the proposed strategy to endogeneity. The dimension of the interactive
effects is set as its true dimension. For example, the dimension of the interactive effects
is set as r = 3 when we estimate the 7 = 5% quantile structure,

The estimation results are averaged over 100 simulated data sets and reported in Table
2 ~ Table 3. Tables show the mean squared error (MSE) between the true structure and

the estimates

1 N T R
1\/ISEl = X {ta Qit(T)}27
NT 2 2
MSE: = <=3 b — bl
2 — szZI 1,0, 3,7
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where lA)W and Qit(T) are the estimates of the true parameter vector b; o, and the true
7-th quantile function Q;(7), respectively. These measures are computed for the esti-
mators both with and without the factor structure. The panel quantile model without
the factor structure is estimated by minimizing the standard loss function ¢, (Y| X, B;) =

NS pr(yi — 2,b;.+). Table 2 ~ Table 3 indicate that our estimator with the factor
structure performs better than the standard approach. Similar results are also obtained

under the second data generating process.

G.2 Performance of the model selection criterion

We investigate the performance of the proposed model selection criterion to select the
dimension of the interactive effects. Using the two data generating processes in the pre-
vious section, we generate the dataset under the various combinations of N and 7. We
set the possible dimension of the interactive effects (i.e., the number of common factors)
to range from 0 to 8. Calculating the scores of IC(r) over all possible r, we can detect
the number of r.

Table 4 reports the histogram of the selected number of common factors 7 over 200
simulation runs. As shown in the tables, the proposed criterion is capable of selecting the
true number of factors. When the size of panel N and T increases, the procedure achieves

better performance in terms of identifying the true dimension of the interactive effects.

G.3 Estimation under a small panel

Although we developed the asymptotic theory for the frequentist estimator, it was devel-
oped under large N and T'. In this section, we compare the small sample properties of the
frequentist estimator and the proposed Bayesian approach. We use the first data generat-
ing process described in Section G.1. We set total number of Markov chain Monte Carlo
iterations to 3,000. If one aims to obtain the samples from the posterior distribution, the
first iterations are usually discarded to ensure adequate dissipation of initial conditions,
or burn-in. However, Geyer (2011) pointed out that Markov chain started anywhere near
the center of the posterior distribution needs no burn-in. Because our frequentist estima-
tor corresponds to the Bayesian maximum a posteriori estimator, our initial parameter
value is already a good starting point for MCMC. Thus, burn-in period is not considered.
We follow Gerlach et al. (2011) by examining trace plots from the MCMC sampler.
Figure 4 (a) shows the MCMC sampling path for the regression coefficient by 3, with
7 =0.05, N =T = 100. We see that the sampling behaviors of each of MCMC sample

are already stable from the beginning. Also, the generated posterior sample distributes
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around the true value of the regression coefficient. Figure 4 (b) compares of the asymptotic
distribution of the frequentist estimator (based on Theorem 2) and the posterior density
from Bayesian approach. From Theorem 2, we know that the asymptotic distribution
of the frequentist estimator is normal distribution. Dashed blue line is the constructed
asymptotic distribution from Theorem 2, Solid black line is the constructed posterior
density from MCMC output. We see that the constructed posterior density has the wider
tail than that from the asymptotic distribution. Thus, the Bayesian posterior credible
interval is wider than that of the constructed 95% percent confidence interval of the
frequentist estimator. This is commonly known because Bayesian approach takes account
parameter uncertainty.

Next, we compare the performance of the following estimators: the frequentist estima-
tor and the Bayesian estimators based on posterior mean, posterior mode and posterior
median. We set the length of time series and the number of units as T" = 100, 300, 900 and
N = 100, respectively. We note that the similar results are obtained under the different
data generating processes described in Section G.1 as well as the different quantile points
T.

Figure 5 shows the boxplots of the average mean squared error between the true
parameter vectors b, and its estimates IA)W over i; MSE = Nipzi]il |bior — l’A)”||2
These results are obtained based on 200 repetitions at 7 = 0.05. Note that similar results
are obtained under the different quantile points 7 = 0.5 and 7 = 0.95, and thus these
results are omitted.

We can make the following observations. First, MSE decreases as T" increases. Second,
the Bayesian estimator performs well in the sense that the median of MSEs are smaller
than the frequantist estimator when the length of time series T is small. Although the
computational time of our proposed Bayesian estimator is slower than the frequentist
estimator, it provides better MSE than the others even when the panel size is small.
Third, under 7' = 900, the performance of Bayesian estimators (the posterior mean, mode,
median) and frequestist estimators became very similar. Because prior is dominated by
the pseudo likelihood L(Y'| X, F;, A, B;), this property can be observed in the estimation
results. Thus, Bayesian estimators (the posterior mean, mode, median) and frequestist
estimators are asymptotically equivalent as long as the prior information is dominated by
the pseudo likelihood L(Y|X, F;, A., B;).
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Table 1: Distributions of the number of listed financial firms. Period 1 (January 1, 2007,
to April 31, 2009); Period 2 (September 1, 2009, to December 31, 2012); Period 3 (January
1, 2013, to March 31, 2015).

Period 1 Period 2 Period 3

Amman 68 68 67
Australian 99 98 98
Bangkok 86 85 85
Berlin 140 144 146
Borsa Istanbul 46 46 47
BSE Ltd 285 286 277
Copenhagen Stock Exchange 34 34 34
Dhaka 69 68 69
Euronext.liffe Paris 83 83 81
Frankfurt 531 536 529
Hong Kong 203 202 199
Indonesia 76 73 75
Johannesburg 40 39 40
Karachi 56 56 56
Korea Stock Exchange 53 52 53
Kuala Lumpur 99 99 99
Kuwait City 74 72 74
London 144 146 149
Milan 44 44 44
NASDAQ 374 375 370
National India 103 101 103
New York Stock Exchange (NYSE) 186 187 183
Non NASDAQ OTC 1370 1364 1289
OTC Bulletin Board 49 51 52
Philippine Stock Exchange 82 82 81
Santiago 42 40 41
Shanghai 73 73 73
Shenzen 25 55 54
Singapore 49 49 A7
SIX Swiss 68 68 68
Stockholm 45 44 44
Stuttgart 63 61 63
Taiwan 61 61 60
Tel Aviv 107 105 106
Thailand 58 59 60
Tokyo Stock Exchange 177 175 177
Toronto 81 80 7
TSX Ventures 64 60 56
XETRA 83 83 82
Others 781 785 780
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Table 2: First data-generating process. Comparison of the proposed estimator with factor
structure f A, and the standard estimator without factor structure f; X;,. The

mean squared errors are defined as MSE; = <= 320, S0 {Qu (1) — Qi(7)}2, MSE, =
Nip SN Ibios — bi.||?, where b; . and Qit(7'> are the estimates of the true parameter

vector b; o, and the true 7-th quantile function Q;(7), respectively. Averages over 200
simulation data sets are reported. The second lines are corresponding to the standard
deviation of the mean squared errors.

With factor structure Without factor structure

T T N MSE1 MSE2 MSE1 MSE2
0.05 300 300 0.7140 0.2397 0.9571 0.3046
0.0524 0.0137 0.0308 0.0123

300 900 0.7004 0.2389 0.9558 0.3028
0.0451 0.0088 0.0278 0.0075

900 300 0.5649 0.0822 0.8701 0.1085
0.0374 0.0039 0.0338 0.0045

900 900 0.5063 0.0820 0.8689 0.1089
0.0130 0.0024 0.0200 0.0027

0.5 300 300 0.3382 0.1279 0.6602 0.1589
0.0116 0.0053 0.0174 0.0063

300 900 0.3178 0.1305 0.6567 0.1586
0.0117 0.0056 0.0139 0.0049

900 300 0.3054 0.0745 0.6258 0.0828
0.0090 0.0049 0.0083 0.0053

900 900 0.2697 0.0766 0.6203 0.0822
0.0049 0.0022 0.0120 0.0023

0.95 300 300 0.7438 0.2779 1.1611 0.4097
0.0240 0.0140 0.0483 0.0185

300 900 0.6892 0.2651 1.1526 0.4063
0.0220 0.0075 0.0375 0.0105

900 300 0.6171 0.0904 1.0466 0.1447
0.0227 0.0041 0.0395 0.0061

900 900 0.5506 0.0890 1.0272 0.1437
0.0169 0.0032 0.0266 0.0037
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Table 3: Second data-generating process. Comparison of the proposed estimator with
factor structure f; A, and the standard estimator without factor structure £ _A; ;. The
mean squared errors are defined as MSE; = <= 320, S0 {Qu(7) — Qi(7)}2, MSE, =
Nip SN Ibios — bi.||?, where b; . and Qit(7'> are the estimates of the true parameter
vector b; o, and the true 7-th quantile function Q;(7), respectively. Averages over 200

simulation data sets are reported. The second lines are corresponding to the standard
deviation of the mean squared errors.

With factor structure Without factor structure

T T N MSE1 MSE2 MSE1 MSE2
0.05 300 300 0.9283 0.3532 1.1423 0.4061
0.0400 0.0140 0.0423 0.0144

300 900 0.8691 0.3517 1.1262 0.4029
0.0408 0.0121 0.0225 0.0106

900 300 0.6723 0.1209 0.9908 0.1445
0.0330 0.0042 0.0349 0.0061

900 900 0.6012 0.1217 0.9994 0.1461
0.0139 0.0028 0.0190 0.0036

0.5 300 300 0.3429 0.1338 0.6480 0.1665
0.0110 0.0087 0.0191 0.0077

300 900 0.3283 0.1375 0.6708 0.1681
0.0091 0.0060 0.0162 0.0052

900 300 0.3062 0.0735 0.6238 0.0822
0.0146 0.0041 0.0149 0.0043

900 900 0.2703 0.0761 0.6253 0.0838
0.0041 0.0038 0.0118 0.0032

0.95 300 300 0.9736 0.4000 1.3840 0.5130
0.0403 0.0172 0.0555 0.0208

300 900 0.8970 0.3878 1.3884 0.5138
0.0237 0.0081 0.0425 0.0114

900 300 0.7750 0.1309 1.2211 0.1831
0.0283 0.0053 0.0439 0.0078

900 900 0.6833 0.1300 1.2190 0.1810
0.0217 0.0041 0.0349 0.0055
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Table 4: The histogram of the selected number of common factors 7 over 100 simulation
runs. The results are for 7 = 5% and 7 = 95% quantile points. The true number of
common factors are ro, =3 at 7 = 5% and ro, = 5 at 7 = 95%.

First data generating process

r 0 1 2 3 4 5 6 7 8

T T N
0.05 (ro,=3) 300 300 0 0 28 41 31 0 0 O O
300 900 0 O O 46 54 0 O 0 O
900 300 0 O O 9 10 O O O O
900 900 O O O 96 4 0O 0 0 0
0.95 (ro,=5) 300 300 0 0 O O 2 98 0 0 O
300 900 0 O O O O 100 O O O
900 300 0 O O O O 100 O O O
900 900 0 O O O O 100 O O O

Second data generating process
7 o 1 2 3 4 5 6 7 8

T T N

0.05 (ro=3) 300 300 0 10 22 38 30 0O O O O
300 900 0 O 14 35 51 0 0 0 O
900 300 0 O 8 8 10 O O 0 O
900 900 O O O 95 5 0O 0 0 0

0.95 (ro,=5) 300 300 0 O O 16 29 55 0 0 O
300 900 0 O O O O 100 O O O
900 300 0 O O O O 100 O O O
900 900 O O O O O 100 O O O
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Figure 1: Distribution of firms in each of the stock exchanges (See Section 6.2.3). An
(4,7)-th element denotes the percentage of firms in industry ¢ such that they belong to
the j-th group. Period 1 (January 1, 2007, to April 31, 2009); Period 2 (September 1,
2009, to December 31, 2012); Period 3 (January 1, 2013, to March 31, 2015), Period 4
(January 1, 2007, to March 31, 2015).
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Figure 2: Lower quantile 7 = 0.05. Distribution of firms in each of the sectors. An
(4,7)-th element denotes the percentage of firms in industry ¢ such that they belong to

the j-th group. Period 1 (January 1, 2007, to April 31, 2009); Period 2 (September 1,
2009, to December 31, 2012); Period 3 (January 1, 2013, to March 31, 2015), Period 4
(January 1, 2007, to March 31, 2015).
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Figure 3: Upper quantile 7 = 0.95. Distribution of firms in each of the sectors. An

(4,7)-th element denotes the percentage of firms in industry ¢ such that they belong to
the j-th group. Period 1 (January 1, 2007, to April 31, 2009); Period 2 (September 1,
2009, to December 31, 2012); Period 3 (January 1, 2013, to March 31, 2015), Period 4
(January 1, 2007, to March 31, 2015).
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(b): Constructed distribution (from Theorem 2) for the frequestist
estimator and posterior distribution

Figure 4: Summary of MCMC posterior sampling results with respect to the regression
coefficient of by 3, at 7 = 0.05. A set of 3,000 samples were generated by the proposed
data-augmentation algorithm. (a) Black line: trace plot of MCMC sample. Red line: true
value of the regression coefficient. (b) Comparison of the constructed distribution (from
Theorem 2) for the frequestist estimator and posterior distribution from MCMC for the
regression coefficient. Solid black line: the constructed posterior density from MCMC
output, Dashed blue line: the constructed asymptotic distribution from Theorem 2, Solid
vertical line: true value of the regression coefficient.
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Figure 5: Boxplot of the average mean squared errors: MSE = Nip SN bior — IA)Z-JHZ,

between the true parameter vector b, , and its estimate lA)” (a) Frequentist estimator
denotes our proposed estimator given in Section 3.1 (b) ~ (d) Bayesian estimators based
on the proposed data-augmentation strategy in Section 3.2. (e) Without factor structure
is based on the standard quantile regression that ignores the factor structures.
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