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Abstract: Appendix A provides the proof of Proposition 1. Proof of Theorem 1 is given

in Appendix B. To prove Theorem 2, we need the uniform convergence rates of estimated

parameters. Appendix C provides this result. Theorem 2 and Theorem 3 are proved in

Appendix D and E, respectively. In Appendix F, we provide additional information on

the empirical analysis. Appendix G reports the Monte Carlo simulation results.

Notation For notational simplicity, we suppress the dependency of τ such that εit,τ = εit,

bi,τ = bi, λi,τ = λi, γi,τ = (b′i,τ ,λ
′
i,τ )

′, f t,τ = f t, Bτ = B, Λτ = Λ, Fτ = F , etc throughout

the proof. Also, we denote the true parameters as bi,0, λi,0, γi,0, f t,0, F0, Λ0 and B0, etc.

A Proof of Proposition 1

The following lemma is used in the proof of Proposition 1.

Lemma 1 (Lemma 2.2.10 of Van der Vaart and Wellner (1996)) Let X1,...,Xn be arbi-

trary random variables that satisfy the tail bound:

P (|Xi| > z) ≤ 2 exp

(
−1

2
× z2

a+ bz

)

for all z (and all i) and fixed a, b > 0. Then,

E

∣∣∣∣max
1≤i≤n

Xi

∣∣∣∣ ≤ C
(
b× log(n+ 1) +

√
a× log(n+ 1)

)
for some positive constant C.

1Melbourne Business School, Melbourne University, T.Ando@mbs.edu. 200 Leicester Street, Carlton,
Victoria 3053, Australia.

2Department of Economics, Columbia University, jb3064@columbia.edu. 1019 International Affairs
Building 420 West 118 Street New York, NY 10027 USA

1



Lemma 2 (Lemma 2.2.11 of Van der Vaart and Wellner (1996)) Suppose that X1,...,Xn

be independent random variables with zero mean such that E|Xi|m ≤ m!Mm−2vi/2, for

every m ≥ 2 (and all i) and some constants M and vi. Then:

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ z

)
≤ 2 exp

(
− z2

v +Mz

)
,

for v ≥ v1 + · · · vn.

A.1 Proof of Proposition 1

We first show

sup
f t∈F ,λi∈L,bi∈B

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{ρτ (yit − x′
itbi − f ′

tλi)− E [ρτ (yit − x′
itbi − f ′

tλi)]}
∣∣∣∣∣ = op(1), (1)

where E[·] is the expectation of yit conditioned on X, F0, Λ0 and B0. For any e > 0,

F , L, and B are covered by ∪f∈FBe(f), ∪λ∈LBe(λ) and ∪b∈BBe(b), respectively. Here

Br(z) is a closed ball with center z and radius r > 0. Because of their compactness by

Assumptions A and B, there exist finite positive integers CF , CΛ, CB, and {f̄ 1, ..., f̄CF
} ∈

F , {λ̄1, ..., λ̄CΛ
} ∈ L, {b̄1, ..., b̄CB

} ∈ B such that

F ⊂ ∪CF
k=1Be(f̄k), L ⊂ ∪CΛ

k=1Be(λ̄k), B ⊂ ∪CB
k=1Be(b̄k).

Define

J ≡ {x′b+ f ′λ : b ∈ B, f ∈ F , λ ∈ L}.

The set J is covered by ∪CB
k=1 ∪CF

u=1 ∪CΛ
v=1H(b̄k, f̄u, λ̄v), where H(b̄k, f̄u, λ̄v) = {x′b +

f ′λ; b ∈ Be(b̄k), f ∈ Be(f̄u), λ ∈ Be(λ̄v)}. Suppose x′b + f ′λ ∈ H(b̄k, f̄u, λ̄v). We

then have

|x′b+ f ′λ− (x′b̄k + f̄
′
uλ̄v)|

≤ ∥x′b− x′b̄k∥+ ∥f ′λ− f̄
′
uλ̄v∥

≤ ∥x∥ × ∥b− b̄k∥+ ∥f − f̄u∥ × ∥λ− λ̄v∥+ ∥f̄u∥ × ∥λ− λ̄v∥+ ∥f − f̄u∥ × ∥λ̄v∥

≤ eM + e2 + eM + eM

≡ δ,
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where M <∞ is an upper bound (in terms of norm) for the elements in L, F and X (by

compactness assumption). Note that H(b̄k, f̄u, λ̄v) ⊂ Bδ(x
′b̄s + f̄

′
uλ̄v). Thus,

J ⊂ ∪CB
k=1 ∪

CF
u=1 ∪CΛ

v=1Bδ(x
′b̄k + f̄

′
uλ̄v),

which implies that, for any δ > 0, there exist finite integers CB, CF and CΛ such that J is

covered by the union of CB×CF×CΛ closed balls Bδ(x
′b̄1+f̄

′
1λ̄1), ..., Bδ(x

′b̄CB
+f̄

′
CF

λ̄CΛ
).

For each xit, f t, λi and bi, we can identify f̄u, λ̄v and b̄k, such that f t ∈ Be(f̄u),

λi ∈ Be(λ̄v) and bi ∈ Be(b̄k). Define hit = x′
itbi + f ′

tλi and

dit := dit,k,u,v = x′
itb̄k + f̄

′
uλ̄v,

then |hit − dit| ≤ δ. Thus,∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{ρτ (yit − x′
itbi − f ′

tλi)− E [ρτ (yit − x′
itbi − f ′

tλi)]}
∣∣∣∣∣

=

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{ρτ (yit − hit)− E [ρτ (yit − hit)]}
∣∣∣∣∣

≤
∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{ρτ (yit − hit)− ρτ (yit − dit)}
∣∣∣∣∣

+

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{E[ρτ (yit − hit)]− E[ρτ (yit − dit)]}
∣∣∣∣∣

+

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{ρτ (yit − dit)− E[ρτ (yit − dit)]}
∣∣∣∣∣

= I1 + I2 + I3.

Now,

I1 ≤ 1

NT

N∑
i=1

T∑
t=1

|ρτ (yit − hit)− ρτ (yit − dit)|

≤ 1

NT

N∑
i=1

T∑
t=1

{sτ (yit, δ)− E[sτ (yit, δ)]}+
1

NT

N∑
i=1

T∑
t=1

E[sτ (yit, δ)],

where sτ (y, δ) = supa,b∈J ,|a−b|≤δ |ρτ (y − a) − ρτ (y − b)|. The first term in the last line is

op(1) by a law of large numbers. By choosing a small enough δ, the second term can be

made arbitrarily small. Similarly, I2 can be made arbitrarily small by choosing a small

enough δ.

Finally, we consider I3. Note that dit = dit,k,u,v, I3 is uniformly bounded by

sup
k,u,v

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{ρτ (yit − dit,k,u,v)− E [ρτ (yit − dit,k,u,v)]}
∣∣∣∣∣

= max
dj∈S

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{ρτ (yit − dj)− E [ρτ (yit − dj)]}
∣∣∣∣∣ ,
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where

S ≡
{
{dit,k,u,v}i=1,...,N,t=1,...,T : f̄u ∈ {f̄ 1, ..., f̄CF

}, λ̄v ∈ {λ̄1, ..., λ̄CΛ
}, b̄k ∈ {b̄1, ..., b̄CB

}
}

Note that there is an abuse of notation, but the idea should be clear. The maximum of

number of elements of S is CN
B C

N
Λ C

T
F when k, u, v vary.

Note that

sup
h∈J

|ρτ (yit − h)− E [ρτ (yit − h)]|

≤ sup
h∈R

∣∣∣ρτ (x′
itbi,0 + f ′

t,0λi,0 + εit − h)− E
[
ρτ (x

′
itbi,0 + f ′

t,0λi,0 + εit − h)
]∣∣∣

= sup
h∈R

|ρτ (εit − h)− E [ρτ (εit − h)]|

≤ |εit − E [εit] |+ E [|εit − E[εit]|] , (2)

where the first inequality is obvious because J ⊂ R. The second inequality can be

obtained as follows. For any X, z ∈ R with X being a random variable, we have |ρτ (z −
h)−ρτ (X−h)| ≤ max{τ, 1−τ}|z−X| ≤ |z−X|. This leads |ρτ (z−h)−E[ρτ (X−h)]| ≤
E[|ρτ (z−h)−ρτ (X−h)|] ≤ E[|X− z|], which is further bounded by |z−E[X]|+E[|X−
E[X]|] (See Eq (13) in Bai (1998)). Thus, we have, for positive number K(≥ 1),

E |ρτ (yit − dj)− E [ρτ (yit − dj)]|K

≤ E
[∣∣∣|εit − E[εit]|+ E [|εit − E[εit]|]

∣∣∣K]
≤ 2K−1

[
E
∣∣∣∣εit − E[εit]

∣∣∣∣K +
(
E |εit − E[εit]|

)K
]
,

where the first inequality follows from (2). From Assumption C, E[|εit − E[εit]|K ] is
bounded by E[|εit − E[εit]|K ] ≤ K!CK

ε for some finite constant Cε. Similarly, from As-

sumption C, (E |εit − E[εit]|)K is bounded by (E |εit − E[εit]|)K ≤ CK
ε . Thus, we obtain

E
[
|ρτ (yit − dj)− E [ρτ (yit − dj)]|K

]
≤ 2K−1K!CK

ε + 2K−1CK
ε ≤ K!CK−2

1 C2/2 (3)

for all i and t. Here C1 and C2 are positive constant. To obtain the last inequality, for

example, we can take C1 = 2Cε and C2 = (2Cε)
2. Define

Zit,j ≡ ρτ (yit − dj)− E [ρτ (yit − dj)] .

It then follows from Lemma 2 that, for all z ≥ 0, all j,

P

(∣∣∣∣∣
N∑
i=1

T∑
t=1

Zit,j

∣∣∣∣∣ ≥ z

)
≤ 2 exp

(
− z2/2

(NT )× C2 + C1z

)
(4)
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where we apply Lemma 2 with M = C1 and v = NTC2.

Recall the cardinality of S is

|S| ≤ CB
N × CF

T × CΛ
N = O(C2N+T

max ) (5)

with Cmax = max{CB, CF , CΛ} = O(1). From (4) and Lemma 1, we finally have

E

[
max
dj∈S

1

NT

∣∣∣∣∣
N∑
i=1

T∑
t=1

{ρτ (yit − dj)− E [ρτ (yit − dj)]}
∣∣∣∣∣
]

≤ C × 1

NT

(
C1 log(1 + |S|) +

√
(NT )C2{log(1 + |S|)}1/2

)
≤ C ′ × 1

NT

[
(2N + T ) logCmax + (NT )1/2(2N + T )1/2 logCmax

]
= O

(
1

N1/2
+

1

T 1/2

)
,

where C and C ′ are some positive constant. Here the first inequality is obtained by

applying Lemma 1 with n = |S|, a = NTC2, b = C1 in view of (4). The second inequality

is due to (5). Summarizing these results, we obtain (1).

Recall that the estimator {B̂, F̂ , Λ̂} is the minimizer of ℓτ (B,F,Λ) =
∑N

i=1

∑T
t=1 ρτ (yit−

x′
itbi − f ′

tλi). Then, for any given F , Λ and B, we have

Uτ (B,F,Λ)

≡ 1

NT
ℓτ (B,F,Λ)−

1

NT
ℓτ (B0, F0,Λ0)

=
[

1

NT
ℓτ (B,F,Λ)−

1

NT
E[ℓτ (B,F,Λ)]

]
+
[

1

NT
ℓτ (B0, F0,Λ0)−

1

NT
E[ℓτ (B0, F0,Λ0)]

]
+
[

1

NT
E[ℓτ (B,F,Λ)]−

1

NT
E[ℓτ (B0, F0,Λ0)]

]
= J1 + J2 + J3,

where E[ℓτ (B,F,Λ)] is defined as E[ℓτ (B,F,Λ)] ≡ 1
NT

∑N
i=1

∑T
t=1E[ρτ (yit−xitbi−f ′

tλi)].

From (1), we have

sup
f t∈F ,λi∈L,bi∈B

|J1| = op(1), and |J2| = op(1).

About J3, note that εit = yit−x′
itbi,0−f ′

t,0λi,0, with conditional density git(·|xit,f t,0,λi,0).

By Taylor expansion, we obtain

E [ρτ (yit − x′
itbi − f ′

tλi)]− E
[
ρτ (yit − x′

itbi,0 − f ′
t,0λi,0)

]
= E

[
ρτ (εit − {x′

itbi + f ′
tλi − x′

itbi,0 − f ′
t,0λi,0})

]
− E [ρτ (εit)]

= git
(
x′
itb̃i + f̃

′
tλ̃i

∣∣∣xit,f t,0,λi,0

)
×
(
x′
i,t(bi − bi,0) + f ′

tλi − f ′
t,0λi,0

)2
≥ ḡ ×

(
x′
i,t(bi − bi,0) + f ′

tλi − f ′
t,0λi,0

)2
,
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where x′
itb̃i + f̃

′
tλ̃i is between 0 and x′

i,t(bi − bi,0) + f ′
tλi − f ′

t,0λi,0. By assumption,

x′
itb̃i+ f̃

′
tλ̃i belongs to a compact set. This leads to 0 < ḡ ≤ git(x

′
itb̃i+ f̃

′
tλ̃i|xit,f t,0,λi,0)

by Assumption C. Therefore, the last inequality was obtained. Then,

J3 =
1

NT
E [ℓτ (B,F,Λ)]−

1

NT
E [ℓτ (B0, F0,Λ0)]

≥ 1

NT

N∑
i=1

T∑
t=1

ḡ ×
(
x′
i,t(bi − bi,0) + f ′

tλi − f ′
t,0λi,0

)2
.

Without loss of generality, we assume that bi,0 = 0, i = 1, ..., N (for notational

simplicity). Note that the centered objective function satisfies

Uτ (B0, F0,Λ0) = 0,

where we used that the function h(bi,f t,λi) ≡ x′
i,tbi+f ′

tλi−f ′
t,0λi,0 evaluated at bi = bi,0,

f t = f t,0 and λi = λi,0 is zero. Note also that

Uτ

(
B̂, F̂ , Λ̂

)
≤ Uτ (B0, F0,Λ0) = 0

by definition of {B̂, F̂ , Λ̂}. Therefore, we have

0 ≥ Uτ

(
B̂, F̂ , Λ̂

)
≥ ḡ

NT

N∑
i=1

T∑
t=1

(
x′
i,tb̂i + f̂

′
tλ̂i − f ′

t,0λi,0

)2
+ op(1).

Combined with ḡ
NT

∑N
i=1

∑T
t=1(x

′
i,tbi + f ′

tλi − f ′
t,0λi,0)

2 ≥ 0 for any bi, λi and f t, it must

be true that

1

NT

N∑
i=1

T∑
t=1

(
x′
i,tb̂i + f̂

′
tλ̂i − f ′

t,0λi,0

)2
=

1

NT

N∑
i=1

∥∥∥Xib̂i + F̂ λ̂i − F0λi,0

∥∥∥2 = op(1). (6)

Define MF = I − F (F ′F )−1F ′ and

Ũτ

(
B̂, F̂ , Λ̂

)
≡ 1

NT

N∑
i=1

∥∥∥MF̂

(
Xib̂i − F0λi,0

)∥∥∥2 (7)

then

Ũτ

(
B̂, F̂ , Λ̂

)
≤ 1

NT

N∑
i=1

∥∥∥Xib̂i + F̂ λ̂i − F0λi,0

∥∥∥2 = op(1),

by equation (6). This is because MF is a projection matrix, ∥MFZ∥ ≤ ∥Z∥ for any Z,

and also MF̂ F̂ = 0.
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Now, by (7)

Ũτ

(
B̂, F̂ , Λ̂

)
=

1

NT

N∑
i=1

b̂
′
iX

′
iMF̂Xib̂i −

2

NT

N∑
i=1

b̂
′
iX

′
iMF̂F0λi,0 +

1

NT

N∑
i=1

λ′
i,0F0

′MF̂F0λi,0

=
1

N

N∑
i=1

b̂
′
iAib̂i −

2

N

N∑
i=1

b̂
′
iCiη +

1

N

N∑
i=1

η′Biη,

where

Ai =
1

T
X ′

iMF̂Xi, Bi = (λi,0λ
′
i,0)⊗ IT , C ′

i =
1√
T
λ′

i,0 ⊗ (X ′
iMF̂ ), η =

1√
T
vec(MF̂F0).

Completing the square,

Ũτ

(
B̂, F̂ , Λ̂

)
= η′

(
1

N

N∑
i=1

Ei

)
η +

1

N

N∑
i=1

(
b̂i + A−1

i Ciη
)′
Ai

(
b̂i + A−1

i Ciη
)
,

where Ei = Bi − C ′
iA

−1
i Ci. Because each of the two terms is non-negative, this implies

that

η′
(
1

N

N∑
i=1

Ei

)
η = op(1), (8)

1

N

N∑
i=1

(
b̂i + A−1

i Ciη
)′
Ai

(
b̂i + A−1

i Ciη
)
= op(1). (9)

From Assumption D, the matrix N−1∑N
i=1Ei is positive definite, and thus equation

(8) implies that ∥η∥2 = op(1). This result implies that

∥MF̂ −MF0∥ = ∥PF̂ − PF0∥ = op(1), (10)

where PF = F (F ′F )−1F ′. See Bai (2009, page 1265). That is, the space spanned by F0

and the space spanned by the estimated factors F̂ are asymptotically the same. We then

have

∥MF0F̂∥/T 1/2 = ∥(MF0 −MF̂ )F̂∥/T
1/2

= ∥(PF0 − PF̂ )F̂∥/T
1/2

≤ ∥PF0 − PF̂∥ × (∥F̂∥/T 1/2)

= op(1)×Op(1),

where we used ∥F̂∥/T 1/2 = Op(1). This implies that

∥F̂ − F0(F
′
0F0)

−1F ′
0F̂∥/T 1/2 = ∥F̂ − F0H∥/T 1/2 = op(1),

7



where H = (F ′
0F0)

−1F ′
0F̂ is the rotation matrix. Because we omit this rotation matrix H

in Proposition 1, as explained in the main text, we obtain ∥F̂ − F0∥/
√
T = op(1).

From ∥η∥2 = op(1), equation (9) implies that

op(1) =
1

N

N∑
i=1

b̂
′
iAi,0b̂i +

1

N

N∑
i=1

b̂
′
i(Ai − Ai,0)b̂i ≥ (ρA + op(1))

1

N

N∑
i=1

b̂
′
ib̂i,

where 0 < ρA is the lower bound of the eigenvalues of Ai,0 = 1
T
X ′

iMF0Xi i = 1, ..., N .

Because assumption (D2), ρA > 0 exists. We also used the fact that ∥Ai −Ai,0∥ = op(1),

which is proved in Ando and Bai (2015, Theorem 1). The average consistency of b̂i follows

from 1
N

∑N
i=1 b̂

′
ib̂i = op(1) (recall we normalize bi,0 = 0)). The average consistency of f̂ t

and the average consistency of b̂i further imply the average consistency of λ̂i (see Ando

and Bai (2015)). That is, N−1∑N
i=1 ∥γ̂i − γi,0∥2 = op(1). This completes the proof of

Proposition 1.

B Proof of Theorem 1

Lemma 3 (Theorem 2 of Hoeffding (1963)). Let X1,...,Xn be independent random vari-

ables and bounded by the interval [Ci, Di]. Then, for all r > 0, we have

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − E

[
1

n

n∑
i=1

Xi

]∣∣∣∣∣ ≥ r

)
≤ exp

(
− 2n2r2∑n

i=1(Di − Ci)2

)
.

B.1 Proof of Theorem 1

We first prove the uniform consistency of b̂i and λ̂i. Let γi = (b′i,λ
′
i)
′. We now define

the following loss

LNT,i(γi, F ) ≡
1

T

T∑
t=1

ρτ (yit − x′
itbi − f ′

tλi) ,

and its centered version

L̃NT,i(γi, F ) ≡ LNT,i(γi, F )− LNT,i(γi,0, F0)

=
1

T

T∑
t=1

ρτ (yit − x′
itbi − f ′

tλi)−
1

T

T∑
t=1

ρτ
(
yit − x′

itbi,0 − f ′
t,0λi,0

)
For each δ > 0, we also define

Bi,T (δ) ≡
{
γi : ∥γi − γi,0∥ ≤ δ

}
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and

BT (e) ≡
{
F : ∥F − F0∥/T 1/2 ≤ e

}
,

where e > 0 is a small constant. We prove the uniform consistency of b̂i and λ̂i in the

sense of max1≤i≤N ∥b̂i − bi,0∥ = op(1) and max1≤i≤N ∥λ̂i − λi,0∥ = op(1). By Proposition

1, it is enough to prove the uniform consistency under the condition that the common

factor F satisfies ∥F − F0∥/T 1/2 < e, for small e.

For each γi /∈ Bi,T (δ), define

γ̃i = siγi + (1− si)γi,0,

where γi,0 = (b′i,0,λ
′
i,0)

′ and si = δ/{∥γi − γi,0∥} ∈ (0, 1). The convexity of the objective

function, given F , leads

si {LNT,i(γi, F )− LNT,i(γi0, F )}

≥ LNT,i(γ̃i, F )− LNT,i(γi0, F )

= LNT,i(γ̃i, F )− LNT,i(γi0, F0) + LNT,i(γi0, F0)− LNT,i(γi0, F )

≥ E
[
L̃NT,i(γ̃i, F )

]
+
{
L̃NT,i(γ̃i, F )− E

[
L̃NT,i(γ̃i, F )

]}
− C × e, (11)

where E[L̃NT,i(γi, F )] = E[LNT,i(γi, F )] − E[LNT,i(γi0, F0)] and the expectation E[·] is
taken with respect to the true conditional distribution of {yit : i = 1, ..., N, t = 1, ..., T}
conditional on X, F0, Λ0 and B0. Here, we have used, for F ∈ BT (e),

|LNT,i(γi0, F0)− LNT,i(γi0, F )| ≤ C × T−1
T∑
t=1

∥f t − f t,0∥ ≤ C × ∥F − F0∥/T 1/2 ≤ C × e

with C being a positive constant. By choosing a small e, this term is dominated by the

term E[L̃NT,i(γ̃i, F )] + {L̃NT,i(γ̃i, F )− E[L̃NT,i(γ̃i, F )]}. Thus, this term is negligible in

our analysis below.

Let ωit = {xit,f t,0,λi,0}. Under ∥γi − γi,0∥ ≤ δ, the identity of Knight (1998) leads

to

E[L̃NT,i(γi, F )]

=
1

T

T∑
t=1

E
[
ρτ (yit − x′

itbi − f ′
tλi)− ρτ

(
yit − x′

itbi,0 − f ′
t,0λi,0

)]

=
1

T

T∑
t=1

∫ x′
it(bi−bi,0)+f

′
t,0(λi−λi,0)+(f t−f t,0)

′λi

0
{Git(s|ωit)− τ} ds

=
1

T

T∑
t=1

git(h̃it|ωit)
{
x′
it (bi − bi,0) + f ′

t,0 (λi − λi,0) +
(
f t − f t,0

)′
λi

}2

9



=
1

T

T∑
t=1

git(h̃it|ωit)
{
x′
it (bi − bi,0) + f ′

t,0 (λi − λi,0)
}2

+
1

T

T∑
t=1

git(h̃it|ωit)
{(

f t − f t,0

)′
λi

}2

+
2

T

T∑
t=1

git(h̃it|ωit)
{
x′
it (bi − bi,0) + f ′

t,0 (λi − λi,0)
}{(

f t − f t,0

)′
λi

}
(12)

where h̃it is between 0 and x′
it(bi − bi,0) + f ′

t,0(λi −λi,0) + (f t − f t,0)
′λi, Git(·|ωit) is the

conditional cumulative distribution of εit = yit − x′
itbi,0 − f ′

t,0λi,0 conditional on ωit. For

F ∈ BT (e) with small e, the first term in (12) dominates the other two terms.

By assumptions, h̃it belongs to a compact set, which leads to 0 < ḡ ≤ git(h̃it|ωit).

Together with Assumption (D2), there exists a constant cδ > 0 such that

1

T

T∑
t=1

ḡ
{
x′
it (bi − bi,0) + f ′

t,0 (λi,0 − λi)
}2
> cδ (13)

for all 1 ≤ i ≤ N , all ∥γi − γi,0∥ = δ. This means that, with large probability,

E[L̃NT,i(γi, F )] ≥ cδ/2 for all ∥γi − γi,0∥ = δ, and all F ∈ BT (e) with small e.

Note that γ̃i is on the boundary of Bi,T (δ); i.e., γ̃i ∈ ∂Bi,T (δ) ≡ {γi : ∥γi−γi,0∥ = δ}.
This implies that with probability approaching to 1,

E[L̃NT,i(γ̃i, F )] ≥
cδ
2

(14)

for all γ̃i ∈ ∂Bi,T (δ), all F ∈ BT (e), and all small e.

For any two events A and B, from P (A) ≤ P (AB) + P (Bc), we have

P (max
i

∥γ̂i − γi,0∥ > δ) ≤ P
(
max

i
∥γ̂i − γi,0∥ > δ, F̂ ∈ BT (e)

)
+ P

(
F̂ ̸∈ BT (e)

)
By Proposition 1, the second term converges to zero. We focus on the first term. Consider

the event {
max

i
∥γ̂i − γi,0∥ > δ, F̂ ∈ BT (e)

}
=

{
∥γ̂i − γi,0∥ > δ, ∃i, F̂ ∈ BT (e)

}
=

{
LNT,i(γ̂i, F̂ ) ≤ LNT,i(γi,0, F̂ ), ∃i, γ̂i /∈ Bi,T (δ), F̂ ∈ BT (e)

}
⊂

{
LNT,i(γi, F ) ≤ LNT,i(γi,0, F ), ∃i, ∃γi /∈ Bi,T (δ),∃F ∈ BT (e)

}
⊂

 max
1≤i≤N

sup
γi∈Bi,T (δ), F∈BT (e)

∣∣∣L̃NT,i(γi, F )− E[L̃NT,i(γi, F )]
∣∣∣ ≥ cδ

3

 ,
The first two equalities and the first inclusion (⊂) follow easily. We explain why the

second inclusion holds. From (11), we have

si {LNT,i(γi, F )− LNT,i(γi0, F )} ≥ E[L̃NT,i(γ̃i, F )]+{L̃NT,i(γ̃i, F )−E[L̃NT,i(γ̃i, F )]}−Ce.

10



If LNT,i(γi, F ) ≤ LNT,i(γi,0, F ) for some i， some γi /∈ Bi,T (δ) and some F ∈ BT (e),

this leads to 0 ≥ E[L̃NT,i(γ̃i, F )] + {L̃NT,i(γ̃i, F ) − E[L̃NT,i(γ̃i, F )]} − Ce. From (14),

E[L̃NT,i(γ̃i, F )] ≥ cδ/2, note that γ̃i ∈ ∂Bi,T (δ) ⊂ Bi,T (δ). By choosing a small e, we

have

max
1≤i≤N

sup
γi∈Bi,T (δ), F∈BT (e)

|L̃NT,i(γi, F )− E[L̃NT,i(γi, F )]| ≥ cδ/3.

The second inclusion is obtained. We next show that this event has a probability con-

verging to zero. It suffices to show that for every ε > 0,

lim
N,T→∞

P

 max
1≤i≤N

sup
γi∈Bi,T (δ), F∈BT (e)

∣∣∣L̃NT,i(γi, F )− E[L̃NT,i(γi, F )]
∣∣∣ ≥ ε

 = 0.

It further suffices to prove that

max
1≤i≤N

P

 sup
γi∈Bi,T (δ), F∈BT (e)

∣∣∣L̃NT,i(γi, F )− E[L̃NT,i(γi, F )]
∣∣∣ ≥ ε

 = o(N−1). (15)

Let h(γi,f t) ≡ ρτ (yit − x′
itbi − f ′

tλi) − ρτ (yit − x′
itbi,0 − f ′

t,0λi,0). Observe that

|h(γi,f t)− h(γ̄i,f t,0)| ≤ C(∥xit∥ + ∥f t,0∥)∥γi − γ̄i∥ + C(∥f t − f t,0∥) and |h(γi,f t,0)−
h(γ̄i,f t,0)| ≤ C(∥xit∥ + ∥f t,0∥)∥γi − γ̄i∥ for some universal constant C > 0. Put Wit ≡
C(∥xit∥ + ∥f t,0∥) and κ ≡ supi,tWit. Since Bi,T (δ) is compact, there exist CΓ balls with

centers γ̄k = (b̄
′
k, λ̄k)

′, k = 1, ..., CΓ and radius ε/(8κ) such that the collection of these

balls covers Bi,T (δ). Note that CΓ can be chosen such that CΓ(ε) = O(1/εp+r) and ε→ 0.

For each γi ∈ Bi,T (δ), there is γ̄k such that |h(γi,f t) − h(γ̄k,f t,0)| ≤ Witε/(8κ). These

investigations lead to

|L̃NT,i(γi, F )− E[L̃NT,i(γi, F )]|

≤ |L̃NT,i(γi, F0)− E[L̃NT,i(γi, F0)]|+
C

T

T∑
t=1

∥f t − f t,0∥

≤ |L̃NT,i(γ̄k, F0)− E[L̃NT,i(γ̄k, F0)]|+
ε

8κ
× 1

NT

∣∣∣∣∣
T∑
t=1

N∑
i=1

{Wit + E[Wit]}
∣∣∣∣∣+ C

T

T∑
t=1

∥f t − f t,0∥,

For F ∈ BT (e), T
−1∑T

t=1 ∥f t−f t,0∥2 ≤ e. Thus, T−1∑T
t=1 ∥f t−f t,0∥ ≤

√∑T
t=1 ∥f t − f t,0∥2/T ≤

√
e. So the last term is small for small e. We have

P

 sup
γi∈Bi,T (δ),F∈BT (e)

∣∣∣L̃NT,i(γi, F0)− E[L̃NT,i(γi, F0)]
∣∣∣ ≥ ε


≤

CΓ(ε)∑
k=1

P
{∣∣∣L̃NT,i(γ̄k, F0)− E[L̃NT,i(γ̄k, F0)]

∣∣∣ ≥ ε

3

}

+P

{∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i=1

{Wit + E[Wit]}
∣∣∣∣∣ ≥ 8κ

3

}
+ P

{∣∣∣∣∣ 1T
T∑
t=1

∥f t − f t,0∥
∣∣∣∣∣ ≥ ε

3C

}
,
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where the second term is 0 because N−1T−1∑T
t=1

∑N
i=1{Wit +E[Wit]} is smaller than 2κ.

The last term is also zero by choosing e smaller than ε/(3C). Thus, we need to evaluate

the first term.

Because of the uniform boundedness of xit and f t, we have |h(γi,f t)−E[h(γi,f t)]| ≤
M , where M is a bounded constant. From the independence property of εit, Lemma 3

leads to

P
{∣∣∣L̃NT,i(γ̄k, F0)− E[L̃NT,i(γ̄k, F0)]

∣∣∣ ≥ ε

3

}

= P

{∣∣∣∣∣ 1T
T∑
t=1

{
ρτ
(
yit − x′

itb̄k − f ′
t,0λ̄k

)
− E

[
ρτ
(
yit − x′

itb̄k − f ′
t,0λ̄k

)]}∣∣∣∣∣ ≥ ε

3

}

≤ exp

(
−T 2ε2

18
∑T

t=1M
2

)
,

which leads

CΓ(ε)∑
k=1

P
{∣∣∣L̃NT,i(γ̄k, F0)− E[L̃NT,i(γ̄k, F0)]

∣∣∣ ≥ ε

3

}

≤ CΓ(ε)× exp

(
−T 2ε2

18
∑T

t=1M
2

)
= O

(
ε−p−r × exp(−Tε2C)

)
= O

(
exp

[
−T

{
(ε2C + (p+ r)

log(ε)

T

}])

=
1

N
×O

(
exp

[
−Tε2C/2 + log(N)

])
= o(N−1), (16)

where the third equality is obtained because log(ε)/T → 0. The last line is obtained

because log(N)/T 1/2 → 0. Thus, we have

max
1≤i≤N

P

 sup
γi∈Bi,T (δ),F∈BT (e)

∣∣∣L̃NT,i(γi, F )− E[L̃NT,i(γi, F )]
∣∣∣ ≥ ε

 = o(N−1),

which completes the proof of the uniform consistency of γ̂i for i = 1, ..., N .

Next, we prove that the estimated common factor is f̂ t is uniformly consistent

max
1≤t≤T

∥f̂ t − f t,0∥ → 0. (17)

Let γ = (γ ′
1, ...,γ

′
N)

′. We define the following loss

SNT,t(γ,f t) ≡
1

N

N∑
i=1

ρτ (yit − x′
itbi − f ′

tλi) ,

12



and its centered version

S̃NT,t(γ,f t) ≡ SNT,t(γ,f t)− SNT,t(γ0,f t,0)

=
1

N

N∑
i=1

ρτ (yit − x′
itbi − f ′

tλi)−
1

N

N∑
i=1

ρτ
(
yit − x′

itbi,0 − f ′
t,0λi,0

)
,

where γ0 = (γ ′
1,0, ...,γ

′
N,0)

′. Fix any δ > 0. For each f t such that ∥f t − f t,0∥ > δ, define

f̃ t = stf t + (1− st)f t,0 with st = δ/∥f t − f t,0∥ ∈ (0, 1). Then, ∥f̃ t − f t∥ = δ. Similar to

(13), for some cδ > 0, we obtain the inclusion relation{
max

t
∥f̂ t − f t,0∥ > δ

}
≡

{
∥f̂ t − f t,0∥ > δ, ∃t

}
⊂

{
SNT,t(γ̂,f t) ≤ SNT,t(γ̂,f t,0), 1 ≤ ∃t ≤ T, ∃f t s.t. ∥f t − f t,0∥ > δ

}
⊂

max
1≤t≤T

sup
∥f t−f t,0∥≤δ

∣∣∣S̃NT,t(γ̂,f t)− E[S̃NT,t(γ0,f t)]
∣∣∣ ≥ cδ

2

 ,
where E[S̃NT,t(γ,f t)] = E[SNT,t(γ,f t)] − E[SNT,t(γ0,f t,0)] and the expectation E[·] is
taken with respect to the true conditional distribution of {yit : i = 1, ..., N, t = 1, ..., T}
conditional on X, F0 and Λ0. The second inclusion is obtained as follows. Because of the

convexity of the objective function (given γ̂), we have

st
{
SNT,t(γ̂,f t)− SNT,t(γ̂,f t,0)

}
≥ SNT,t(γ̂, f̃ t)− SNT,t(γ̂,f t,0)

= S̃NT,t(γ̂, f̃ t)− S̃NT,t(γ̂,f t,0)

=
[
S̃NT,t(γ̂, f̃ t)− E

[
S̃NT,t(γ0, f̃ t)

]]
+ E

[
S̃NT,t(γ̂,f t,0)

]
−
{
S̃NT,t(γ̂,f t,0)− E

[
S̃NT,t(γ̂,f t,0)

]}
+ E

[
S̃NT,t(γ0, f̃ t)

]
.

Similar to (14), for ∥f̃ t − f t,0∥ = δ, the last term is greater than or equal to cδ for some

cδ > 0. By consistency of γ̂, the second and third terms in the last line are op(1). Thus,

we have

st
{
SNT,t(γ̂,f t)− SNT,t(γ̂,f t,0)

}
≥

[
S̃NT,t(γ̂, f̃ t)− E

[
S̃NT,t(γ0, f̃ t)

]]
+ cδ + op(1).

If SNT,t(γ̂,f t) ≤ SNT,t(γ̂,f t,0) 1 ≤ ∃t ≤ T and ∃f t s.t. ∥f t − f t,0∥ > δ, then

0 ≥
[
S̃NT,t(γ̂, f̃ t)− E

[
S̃NT,t(γ0, f̃ t)

]]
+ cδ + op(1).
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Thus, under largeN and T , with large probability, |S̃NT,t(γ̂, f̃ t)−E[S̃NT,t(γ0, f̃ t)]| ≥ cδ/2.

In particular, noting that ∥f̃ t − f t,0∥ = δ,

max
1≤t≤T

sup
∥f t−f t,0∥≤δ

|S̃NT,t(γ̂,f t)− E[S̃NT,t(γ0,f t)]| ≥ cδ/2

This gives the second inclusion.

Therefore, it suffices to show that for every ε > 0,

lim
N,T→∞

P

max
1≤t≤T

sup
∥f t−f t,0∥≤δ

∣∣∣S̃NT,t(γ̂,f t)− E[S̃NT,t(γ0,f t)]
∣∣∣ ≥ ε

 = 0.

Because

S̃NT,t(γ̂,f t)− E[S̃NT,t(γ0,f t)]

=
{
S̃NT,t(γ̂,f t)− S̃NT,t(γ0,f t)

}
+
{
S̃NT,t(γ0,f t)− E[S̃NT,t(γ0,f t)]

}
it further suffices to prove that

lim
N,T→∞

P

max
1≤t≤T

sup
∥f t−f t,0∥≤δ

∣∣∣S̃NT,t(γ̂,f t)− S̃NT,t(γ0,f t)]
∣∣∣ ≥ ε

 = 0, (18)

and

lim
N,T→∞

P

max
1≤t≤T

sup
∥f t−f t,0∥≤δ

∣∣∣S̃NT,t(γ0,f t)− E[S̃NT,t(γ0,f t)]
∣∣∣ ≥ ε

 = 0. (19)

Since

∣∣∣S̃NT,t(γ̂,f t)− S̃NT,t(γ0,f t)
∣∣∣ ≤ C ×

{
1

N

N∑
i=1

∥xit∥∥b̂i − bi,0∥+
1

N

N∑
i=1

∥f t∥∥λ̂i − λi,0∥
}
,

and supit ∥xit∥ <∞ and supt ∥f t∥ <∞, consistency of γ̂ implies (18).

Finally, we prove (19). It is enough to show

max
1≤t≤T

P

 sup
∥f t−f t,0∥≤δ

∣∣∣S̃NT,t(γ0,f t)− E[S̃NT,t(γ0,f t)]
∣∣∣ ≥ ε

 = o(T−1). (20)

For each δ > 0, we define

Bt,N(δ) ≡
{
f t : ∥f t − f t,0∥ ≤ δ

}
.

Observe that |h(γi,f t) − h(γi, f̄ t)| ≤ C∥λi∥ × ∥f̄ t − f t∥ for some universal constant

C > 0. Put Ki ≡ C∥λi∥ and β ≡ supiKi. Since Bt,N(δ) is compact subset, there exist
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Cf balls with centers f̄k, k = 1, ..., Cf and radius ε/β such that the collection of these

balls covers Bt,N(δ). Note that Cf can be chosen such that Cf (ε) = O(1/εr) and ε → 0.

For each f t ∈ Bt,N(δ), there is f̄k such that |h(γi,f t) − h(γi, f̄k)| ≤ Kiε/(8β). These

investigations lead to

|S̃NT,t(γ0,f t)− E[S̃NT,t(γ0,f t)]|

≤ |S̃NT,t(γ0, f̄k)− E[S̃NT,t(γ0, f̄k)]|+
ε

8β

∣∣∣∣∣ 1N
N∑
i=1

{K(λi) + E[K(λi)]}
∣∣∣∣∣ ,

where C is universal constant. Therefore, we have

P

{
sup

F∈BT (e)

∣∣∣S̃NT,t(γ0,f t)− E[S̃NT,t(γ0,f t)]
∣∣∣ ≥ ε

}

≤
CΓ(ε)∑
k=1

P
{∣∣∣S̃NT,t(γ0, F0)− E[S̃NT,t(γ0, F0)]

∣∣∣ ≥ ε

2

}
+ P

{∣∣∣∣∣ 1N
N∑
i=1

{Ki + E[Ki]}
∣∣∣∣∣ ≥ 4β

}
,

where the second term can be made arbitrarily small under large N and T . The second

term is zero because | 1
N

∑N
i=1{Ki +E[Ki]}| < 2β. Because of the uniform boundedness of

xit and f t, we have |h(γi,0,f t)−E[h(γi,0,f t)]| ≤M where M is bounded constant. The

first term is

Cf (ε)∑
k=1

P
{∣∣∣S̃NT,t(γ0, f̄ t)− E[S̃NT,t(γ0, f̄ t)]

∣∣∣ ≥ ε

2

}

≤ Cf (ε)× exp

(
−N2ε2

18
∑N

i=1M
2

)
= O

(
ε−r × exp(−Nε2C)

)
= O

(
exp

[
−N

{
ε2C + r

log(ε)

N

}])

=
1

T
×O

(
exp

[
−Nε2C/2 + log(T )

])
= o(T−1) (21)

where Lemma 3 is applied to obtain the second inequality. Because (log T )/
√
N → 0, the

last line is obtained. This implies (20), or equivalently, (19). This completes the proof of

Theorem 1.

C Lemma 4

Lemma 4 Under Assumptions of Theorem 2, the following results hold.

max
1≤i≤N

∥γ̂i − γi,0∥ = Op

(
log(N)

T 1/2

)
, (22)
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max
1≤t≤T

∥f̂ t − f t,0∥ = Op

(
log(T )

N1/2

)
. (23)

These results give the rates for uniform consistency, they are used in the proof of

Theorem 2. We first present some preliminary results in order to prove Lemma 4. The

first result is Lemma 1 of Babu (1989), which is closely related to the Bernstein inequality.

Lemma 5 Let Xi be a sequence of independent random variables with mean zero and

|Xi| < d for some d > 0. Let V ≥ ∑N
i=1E[X

2
i ]. Then for all 0 < s < 1 and 0 ≤ a ≤

V/(sd),

P

(∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ a

)
≤ 2 exp(−a2s(1− s)/V ).

To state the next lemma, we introduce some notations. We let {ξt, t ≥ 1} be a

stationary process taking values in a measurable space (S,Q). Here S is a Polish space

and Q is a Borel σ-field. We denote H being a class of measurable functions on the

measurable space (S,Q). For a process Z(h) defined on (S,Q), we define ∥Z(h)∥H ≡
suph∈H |Z(h)|. The following lemma is a Bernstein type inequality for centered empirical

processes (Talagrand (1996), Bousquet (2002)). The following Talagrand type inequality

is due to Proposition B.2. of Kato et al. (2012).

Lemma 6 Let H be a pointwise measurable class of functions on the measurable space

(S,Q) uniformly bounded by some constant U . Suppose that, for any h(·) ∈ H, (i)

E[h(ξt)] = 0, (ii) suph∈H[h(ξt)
2] ≤ σ2. For Z = ∥∑T

t=1 h(ξt)∥H, we have

P

(
Z − E[Z] ≥

√
2s
(
Tσ2 + 2UE[Z]

)1/2
+
s2U

3

)
≤ exp(−s2),

for all s > 0.

C.1 Proof of Lemma 4

We define zit = (x′
it,f

′
t)

′, zit,0 = (x′
it,f

′
t,0)

′, ẑit = (x′
it, f̂

′
t)

′, ωit = {xit,f t,0,λi,0} and

QNT,i(γi, F ) ≡ 1

T

T∑
t=1

(
τ − I(εit ≤ x′

it(bi − bi,0) + f ′
tλi − f ′

t,0λi,0)
)
zit,

QNT,i(γi, F ) ≡ E[QNT,i(γi, F )]

=
1

T

T∑
t=1

E
[(
τ −Git(x

′
it(bi − bi,0) + f ′

tλi − f ′
t,0λi,0

∣∣∣ωit

)
zit

]
,

where the expectation of E[QNT,i(γi, F )] is taken with respect to the true conditional

distribution of {yit : i = 1, ..., N, t = 1, ..., T} conditional on X, F0 and Λ0, Git(·|xit)
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is the conditional cumulative distribution function of εit. Because of the computational

property of the quantile regression estimator (Gutenbrunner and Jureckova (1992)), it

is known that max1≤i≤N |QNT,i(γ̂i, F̂ )| is bounded by Op(T
−1max1≤i≤N, 1≤t≤T ∥xit∥) +

Op(T
−1max1≤t≤T ∥f̂ t∥) = Op(T

−1). Here, we used max1≤t≤T ∥f̂ t∥ = Op(1). We thus have

Op(T
−1) = QNT,i(γ̂i, F̂ )

= QNT,i(γi,0, F0) +QNT,i(γ̂i, F̂ )

+
{
QNT,i(γ̂i, F̂ )−QNT,i(γ̂i, F̂ )−QNT,i(γi,0, F0)

}
. (24)

Expanding QNT,i(γ̂i, F̂ ) at (γi,0, F0), we obtain

QNT,i(γ̂i, F̂ )

= − 1

T

T∑
t=1

E[git(0|ωit)zit,0z
′
it,0](γ̂i − γi,0)−

1

T

T∑
t=1

E[git(0|ωit)zit,0λ
′
i,0](f̂ t − f t,0)

+op(∥γ̂i − γi,0∥) + op

(
1

T

T∑
t=1

∥f̂ t − f t,0∥
)
, (25)

where we used the result of Theorem 1 such that Op(∥γ̂i − γi,0∥2) = op(∥γ̂i − γi,0∥).
It then follows from (24) and (25) that

Γi(γ̂i − γi,0) + op(∥γ̂i − γi,0∥)

= QNT,i(γi,0, F0) +
{
QNT,i(γ̂i, F̂ )−QNT,i(γ̂i, F̂ )−QNT,i(γi,0, F0)

}
−
[
1

T

T∑
t=1

E[git(0|ωit)zit,0λ
′
i,0](f̂ t − f t,0)

]
+Op

(
1

T

)
+ op

(
1

T

T∑
t=1

∥f̂ t − f t,0∥
)
,(26)

where Γi = T−1∑T
t=1E[git(0|ωit)zit,0z

′
it,0] and we used the result of Theorem 1 such that

Op(T
−1∑T

t=1 ∥f̂ t − f t,0∥2) = op(T
−1∑T

t=1 ∥f̂ t − f t,0∥).
Next, we define

VNT,t(γ,f t) ≡ 1

N

N∑
i=1

(
τ − I(εit ≤ x′

it(bi − bi,0) + f ′
tλi − f ′

t,0λi,0)
)
λi,

and

V NT,t(γ,f t) ≡ E

[
1

N

N∑
i=1

(
τ −Git(x

′
it(bi − bi,0) + f ′

tλi − f ′
t,0λi,0

∣∣∣ωit)
)
λi

]
,

where Git(·|ωit) is the true cumulative distribution function of εit conditioned on ωit.

Noting that V NT,t(γ0,f t,0) = 0, the expansion of V NT,t(γ̂, f̂ t) at (γ0,f t,0) leads

V NT,t(γ̂, f̂ t)

= − 1

N

N∑
i=1

E[git(0|ωit)λi,0λ
′
i,0](f̂ t − f t,0)−

1

N

N∑
i=1

E[git(0|ωit)λi,0z
′
it,0](γ̂i − γi,0)

+op
(
∥f̂ t − f t,0∥

)
+ op

(
1

N

N∑
i=1

∥γ̂i − γi,0∥
)
. (27)
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Viewing the factor loadings λi as regressors and f t as regression coefficient, the similar

argument that derived the equation (26) leads

f̂ t − f t,0 + op(∥f̂ t − f t,0∥)

= Ψ−1
t VNT,t(γ0,f t,0)−Ψ−1

t

{
VNT,t(γ̂0, f̂ t)− V NT,t(γ̂0, f̂ t)− VNT,t(γ0,f t,0)

}
+Ψ−1

t

(
1

N

N∑
i=1

E[git(0|ωit)λi,0z
′
it,0](γ̂i − γi,0)

)
+ op

(
1

N

N∑
i=1

∥γ̂i − γi,0∥
)
+Op

(
1

N

)
,(28)

where Ψt = N−1∑N
i=1E[git(0|ωit)λi,0λ

′
i,0].

Putting (28) into (26), we have

(γ̂i − γi,0)

= Γ−1
i QNT,i(γi,0, F0)− Γ−1

i

{
QNT,i(γ̂i, F̂ )−QNT,i(γ̂i, F̂ )−QNT,i(γi,0, F0)

}
− 1

T

T∑
t=1

Γ−1
i E[git(0|ωit)zit,0λ

′
i,0]Ψ

−1
t

 1

N

N∑
j=1

E[gjt(0|ωjt)λj,0z
′
jt,0](γ̂j − γj,0)


+
1

T

T∑
t=1

Γ−1
i E[git(0|ωit)zit,0λ

′
i,0]Ψ

−1
t VNT,t(γ0,f t,0)

+
1

T

T∑
t=1

Γ−1
i E[git(0|ωit)zit,0λ

′
i,0]Ψ

−1
t

{
VNT,t(γ̂, f̂ t)− V NT,t(γ̂, f̂ t)− VNT,t(γ0,f t,0)

}
+Op

(
1

N

)
+Op

(
1

T

)
+ op(∥γ̂i − γi,0∥), (29)

From now, we evaluate each of the terms in (29). First, the first term is

max
i

|QNT,i(γi,0, F0)| = Op

(
log(N)

T 1/2

)
. (30)

To have (30), it suffices to show that, for any u > 0,

max
1≤i≤N

P

(∣∣∣QNT,i(γi,0, F0)
∣∣∣ > log(N)

T 1/2
u

)
= o

(
1

N

)
,

which can be obtained by applying Lemma 5 with a = 2 log(N)T 1/2.

The second term in (29) is bounded by op(T
−1/2). To evaluate the second term

Γ−1
i {QNT,i(γ̂i, F̂ ) − QNT,i(γ̂i, F̂ ) − QNT,i(γi,0, F0)} in (29), we apply Lemma 6. Define

h(u|x,γi,f t) = I(u ≤ x′(bi − bi,0) + f ′
t,0λi,0 − f ′

tλi) − I(u ≤ 0). From the result of

Theorem 1, we define H = {h(u|x,γi,f t)|∥γ̂i − γi,0∥ < κ, ∥f̂ t − f t,0∥ < κ} with κ→ 0.

It is obvious that E[h(u|x,γi,f t)− E[h(u|x,γi,f t)]] = 0 and that each element in H is

bounded by 2. Also, E[{h(u|x,γi,f t) − E[h(u|x,γi,f t)]}2] ≤ C × κ2 for h ∈ H. Put

18



Zi = ∥∑T
t=1{h(ξit|x,γi,f t)− E[h(ξit|x,γi,f t)]∥H with ξit = εit in Lemma 6. By Lemma

6, for all s > 0 with probability at least 1− exp(−s2), we have

1

T
Zi ≤

1

T
E[Zi] +

s
√
2

T

√
Tκ2 + 4E[Zi] +

2s2

3T
. (31)

Because of the independence property of the idiosyncratic errors over i and t, we see that

T−1E[Zi] = o(T−1/2). We now take s =
√
2 logN in (31). Then, it is seen that there

exist a positive integer T0 independent of i such that the right side on (31) is smaller than

o(T−1/2) for T0 < T . This implies that P (T−1Zi > T−1/2) ≤ N−2. Therefore, the second

term in (29) is bounded by op(T
−1/2).

Next, we show that the fourth term in (29) is op(T
−1/2). The fourth term of (29)

satisfies

√
T

[
1

T

T∑
t=1

Γ−1
i JitΨ

−1
t VNT,t(γ0,f t,0)

]
=

1

N
√
T

N∑
i=1

T∑
t=1

Γ−1
i JitΨ

−1
t (τ − I(εit ≤ 0))λi = op(1),(32)

where Jit = E[git(0|ωit)zit,0λ
′
i,0]. Because ∥Γ−1

i JitΨ
−1
t ∥ <∞, it is enough to show that

1

N
√
T

N∑
i=1

T∑
t=1

(τ − I(εit ≤ 0))λi = op(1). (33)

The expected value of its second moment is

1

N2T
E

 N∑
i,j=1

T∑
t,s=1

(τ − I(εit ≤ 0))λiλ
′
j (τ − I(εjs ≤ 0))


=

1

N2T
E

 N∑
i=1

T∑
t,s=1

(τ − I(εit ≤ 0))λiλ
′
i (τ − I(εis ≤ 0))


=

1

N2T
E

[
N∑
i=1

T∑
t=1

(τ − I(εit ≤ 0))2 λiλ
′
i

]
,

which converges to zero. Here the first and second equality used the fact that the idiosyn-

cratic errors are independent over i and t. Therefore, we obtain the claim (32).

We next show the fifth term in (29) is Op(T
−1/4). This rate will be improved later on.

Because of the consistency of {γ̂, F̂} and the uniform boundedness of ∥Γ−1
i E[git(0|ωit)zit,0∥,

λi and λi,0, it suffices to show that

P

{
sup

γ∈Bγ(κ),F∈BF (κ)

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

{hit(ζit|xit,γi,f t)− E[hit(ζit|xit,γi,f t)]}
∥∥∥∥∥ ≥ 1

T 1/4

}
(34)

converges to zero. Here ζit = εit, h(u|x,γi,f t) = I(u ≤ x′(bi − bi,0) + f ′
t,0λi,0 − f ′

tλi)−
I(u ≤ 0), Bγ(κ) ≡ {γ; ∥γi − γi,0∥ ≤ κ, i = 1, ..., N}, and BF (κ) ≡ {F ; ∥f t − f t,0∥ ≤
κ, t = 1, ..., T} with κ→ 0.
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For some positive constant Cl, put Wi ≡ Cl × (∥λi∥ + ∥λi,0∥), α ≡ supiE[Wi] and

ε = 1
T 1/4 . There exist Cγi balls with centers γ̄ik

, k = 1, ..., Cγi and radius ε/(8α) such that

the collection of these balls covers Bγi(κ) ≡ {γi : ∥γi − γi,0∥ ≤ κ}. Similarly, because

Bft(e) is compact subset, there exist Cft balls with centers f̄ t,j j = 1, ..., Cfj and radius

ε/(8α) such that the collection of these balls covers Bft(e). We note that Cγi and Cft can

be chosen such that Cγi(ε) = O(1/εp+r) and Cft(ε) = O(1/εr) with ε→ 0.

Because∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit,γi,f t)− E[h(ζit|xit,γi,f t)]}
∣∣∣∣∣

≤
∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit, γ̄ik
, f̄ tj

)− E[h(ζit|xit, γ̄ik
, f̄ tj

)]}
∣∣∣∣∣+

∣∣∣∣∣ ε8α · 1

N

N∑
i=1

{Wi + E[Wi]}
∣∣∣∣∣ ,

we have

P

{
sup

γ∈BΓ(δ), F∈BF (e)

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit,γi,f t)− E[h(ζit|xit,γi,f t)]}
∣∣∣∣∣ ≥ 1

T 1/4

}

≤
Cγ1 (ε)∑
k1=1

· · ·
CγN

(ε)∑
kN=1

Cf,1(ε)∑
j1=1

· · ·
Cf,T (ε)∑
jT=1

P

{ ∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit, γ̄ik
, f̄ tj

)− E[h(ζit|xit, γ̄ik
, f̄ tj

)]}
∣∣∣∣∣ ≥ 1

2T 1/4

}

+P

{ ∣∣∣∣∣ ε8α 1

N

N∑
i=1

{Wi + E[Wi]}
∣∣∣∣∣ ≥ 1

2T 1/4

}
,

where the second term is zero because | 1
N

∑N
i=1{Wi +E[Wi]}| < 2α and ε = 1

T 1/4 from its

definition.

From the independence property of the idiosyncratic errors over t and the consistency

of the estimated parameters,

E

{ 1

T

T∑
t=1

h(ζit|xit,γi,f t)−
1

T

T∑
t=1

E[h(ζit|xit,γi,f t)]

}2


=
1

T 2

T∑
t=1

E
[
{h(ζit|xit,γi,f t)− E[h(ζit|xit,γi,f t)]}2

]
= o(T−1)

Therefore,

N∑
i=1

E

{
T−1

T∑
t=1

h(ζit|xit, γ̄ik
, f̄ tj

)− T−1
T∑
t=1

E[h(ζit|xit, γ̄ik
, f̄ tj

)]

}2

≤ C ×N × o(T−1)

where C is some positive constant. Take

Zi = T−1
T∑
t=1

h(ζit|xit, γ̄ik
, f̄ tj

)− T−1
T∑
t=1

E[h(ζit|xit, γ̄ik
, f̄ tj

)]
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in Lemma 5, we then have

P

{
1

NT

∣∣∣∣∣
N∑
i=1

T∑
t=1

h(ζit|xit, γ̄ik
, f̄ tj

)− E[h(ζit|xit, γ̄ik
, f̄ tj

)]}
∣∣∣∣∣ ≥ 1

2T 1/4

}

= P

{ ∣∣∣∣∣
N∑
i=1

{
1

T

T∑
t=1

h(ζit|xit, γ̄ik
, f̄ tj

)− 1

T

T∑
t=1

E[h(ζit|xit, γ̄ik
, f̄ tj

)]

}∣∣∣∣∣ ≥ N

2T 1/4

}

≤ exp

(
−C × N2

T 1/2 ×N × o(T−1)

)

which leads

Cγ1 (ε)∑
k1=1

· · ·
CγN

(ε)∑
kN=1

Cf,1(ε)∑
j1=1

· · ·
Cf,T (ε)∑
jT=1

P

{ ∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit, γ̄ik
, f̄ tj

)− E[h(ζit|xit, γ̄ik
, f̄ tj

)]}
∣∣∣∣∣ ≥ 1

2T 1/4

}

≤ Cγ1(ε)× · · · × CγN (ε)× Cf1(ε)× · · · × CfT (ε)× exp
(
−C ×NT 1/2

)
= O

(
ε−N(p+r) × ε−Tr × exp

[
−NT 1/2

])
= O

(
exp

[
−NT 1/2

{
1− N(p+ r) log(ε)

NT 1/2
− Tr log(ε)

NT 1/2

}])

= O

(
exp

[
−NT 1/2

{
1− (p+ r) log(ε)

T 1/2
− T 1/2

N1−γ
× r log(ε)

Nγ

}])
= o(1),

where the last line is obtained by using (p + r) log(ε)/T 1/2 → 0, T 1/2/N1−γ → 0 and

r log(ε)/Nγ → 0. This is because ε = T−1/4 and T 1/2/N1−γ → 0 (1/16 < γ < 1/2).

Therefore, the fifth term in (29) is Op(T
−1/4).

Putting these results into (29), we have

(γ̂i − γi,0)

= − 1

T

T∑
t=1

Γ−1
i E[git(0|ωit)zit,0λ

′
i,0]Ψ

−1
t

 1

N

N∑
j=1

E[gjt(0|ωjt)λj,0z
′
jt,0](γ̂j − γj,0)

+Op

(
1

T 1/4

)
,

which leads the following expression

(γ̂ − γ0) =
1

N
K(γ̂ − γ0) +Op(1/T

1/4),

where γ̂ = (γ̂1, ..., γ̂
′
N)

′, γ0 = (γ1,0, ...,γ
′
N,0)

′, and

K =


K11 K12 · · · K1N

K21 K22 · · · K2N
...

...
. . .

...
KN1 KN2 · · · KNN

 , (35)
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where Kij = T−1∑T
t=1 Γ

−1
i JitΨ

−1
t J ′

jt, Jit = E[git(0|ωit)zit,0λ
′
i,0]. Because (I − 1

N
K) is

positive definite matrix, we obtain max1≤i≤N ∥γ̂i − γi,0∥ = Op(1/T
1/4). By the same

argument, we also have max1≤t≤T ∥f̂ t − f t,0∥ = Op(1/N
1/4).

From max1≤i≤N ∥γ̂i−γi,0∥ = Op(1/T
1/4), we can further improve the convergence rate

of the fifth term in (29). We next show that

P

{
sup

γ∈Bγ(T−1/4),F∈BF (N−1/4)

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

{hit(ζit|xit,γi,f t)− E[hit(ζit|xit,γi,f t)]}
∥∥∥∥∥ ≥ 1

T 3/8

}
(36)

converges to zero. Here ζit = εit, γi = (b′i,λ
′
i)
′, h(u|x,γi,f t) = I(u ≤ x′(bi − bi,0) +

f ′
t,0λi,0 − f ′

tλi) − I(u ≤ 0), Bγ(T
−1/4) ≡ {γ; ∥γi − γi,0∥ ≤ T−1/4, i = 1, ..., N}, and

BF (N
−1/4) ≡ {F ; ∥f t − f t,0∥ ≤ N−1/4, t = 1, ..., T}.

For some positive constant Cl, put Mi ≡ Cl × (∥λi∥ + ∥λi,0∥), α ≡ supiMi and

ε = T−3/8. There exist a positive constant C and Dγi = [C × (T 2/3)p+r] balls with

centers γ̄ik
, k = 1, ..., Dγi and radius T−3/8/(3α) such that the collection of these balls

covers Bγi(κ) ≡ {γi : ∥γi − γi,0∥ ≤ T−1/4}. Here [a] denotes the maximum integer

that does not exceed a. Similarly, because Bft(N
−1/4) is compact subset, there exist

Dft = [C × (T 3/8/N1/4)r] balls with centers f̄ t,j (j = 1, ..., Dft) and radius T−3/8/(8α)

such that the collection of these balls covers Bft(N
−1/4).

Because∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit,γi,f t)− E[h(ζit|xit,γi,f t)]}
∣∣∣∣∣

≤
∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit, γ̄ik
, f̄ tj

)− E[h(ζit|xit, γ̄ik
, f̄ tj

)]}
∣∣∣∣∣+

∣∣∣∣∣T−3/8

8α
· 1

NT

N∑
i=1

T∑
t=1

{Mi + E[Mi]}
∣∣∣∣∣ ,

we have

P

{
sup

γ∈BΓ(δ), F∈BF (e)

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit,γi,f t)− E[h(ζit|xit,γi,f t)]}
∣∣∣∣∣ ≥ 1

T 3/8

}

≤
Dγ1 (ε)∑
k1=1

· · ·
DγN

(ε)∑
kN=1

Df,1(ε)∑
j1=1

· · ·
Df,T (ε)∑
jT=1

P

{ ∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit, γ̄ik
, f̄ tj

)− E[h(ζit|xit, γ̄ik
, f̄ tj

)]}
∣∣∣∣∣ ≥ 1

2T 3/8

}

+P

{ ∣∣∣∣∣ 1N
N∑
i=1

{Mi + E[Mi]}
∣∣∣∣∣ ≥ 4α

}
,

where the second term is zero because 1
N

∑N
i=1{Mi + E[Mi]} < 2α.

From the independence property of the idiosyncratic errors over t and the consistency

of the estimated parameters,

E

{ 1

T

T∑
t=1

h(ζit|xit,γi,f t)−
1

T

T∑
t=1

E[h(ζit|xit,γi,f t)]

}2

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=
1

T 2

T∑
t=1

E
[
{h(ζit|xit,γi,f t)− E[h(ζit|xit,γi,f t)]}2

]

= O

(
1

T
× T 1/2 +N1/2

N1/2T 1/2

)
,

where we used the result of Lemma 4 such that E[{h(ζit|xit,γi,f t)−E[h(ζit|xit,γi,f t)]}2] =
(T 1/2 +N1/2)/(N1/2T 1/2). Therefore,

N∑
i=1

E

{
T−1

T∑
t=1

h(ζit|xit, γ̄ik
, f̄ tj

)− T−1
T∑
t=1

E[h(ζit|xit, γ̄ik
, f̄ tj

)]

}2

≤ C×
(
N1/2(T 1/2 +N1/2)

T 3/2

)
,

where C is some positive constant. Take Zi = T−1∑T
t=1 h(ζit|xit, γ̄ik

, f̄ tj
)−T−1∑T

t=1E[h(ζit|xit, γ̄ik
, f̄ tj

)]

in Lemma 5, we then have

P

{
1

NT

∣∣∣∣∣
N∑
i=1

T∑
t=1

h(ζit|xit, γ̄ik
, f̄ tj

)− E[h(ζit|xit, γ̄ik
, f̄ tj

)]}
∣∣∣∣∣ ≥ 1

2T 3/8

}

= P

{ ∣∣∣∣∣
N∑
i=1

{
1

T

T∑
t=1

h(ζit|xit, γ̄ik
, f̄ tj

)− 1

T

T∑
t=1

E[h(ζit|xit, γ̄ik
, f̄ tj

)]

}∣∣∣∣∣ ≥ N

2T 3/8

}

≤ exp

(
−C × N2

T 3/4
× T 3/2

N1/2(T 1/2 +N1/2)

)
,

where C is some positive constant. This leads

Dγ1 (ε)∑
k1=1

· · ·
DγN

(ε)∑
kN=1

Df,1(ε)∑
j1=1

· · ·
Df,T (ε)∑
jT=1

P

{ ∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit, γ̄ik
, f̄ tj

)− E[h(ζit|xit, γ̄ik
, f̄ tj

)]}
∣∣∣∣∣ ≥ 1

2T 3/8

}

≤ Dγ1(ε)× · · · ×DγN (ε)×Df1(ε)× · · · ×DfT (ε)× exp

(
−C × N3/2T 3/4

N1/2 + T 1/2

)

= O

(T 2/3
)N(p+r)

×
(
T 3/8

N1/4

)Tr

× exp

[
− N3/2T 3/4

N1/2 + T 1/2

]
= O

(
exp

[
−
(
− N3/2T 3/4

N1/2 + T 1/2

){
1− N(N1/2 + T 1/2) log(T 2/3)

N3/2T 3/4

− T (N1/2 + T 1/2) log(T 3/8/N1/4)

N3/2T 3/4

}])

= O

(
exp

[
−
(
− N3/2T 3/4

N1/2 + T 1/2

){
1− log(T )

T 3/4
− log(T )

N1/2T 1/4
− T 1/4 log(T 3/8/N1/4)

N

− T 3/4 log(T 3/8/N1/4)

N3/2

}])
= o(1),

where the last line is obtained by using T 1/2/N → 0. Thus, the fifth term in (29) is

bounded by Op(T
−3/8). By repeating the argument that derived max1≤i≤N ∥γ̂ − γ0∥ =
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Op(1/T
1/4), we obtain the claim max1≤i≤N ∥γ̂i−γi,0∥ = Op(T

−3/8). By using max1≤i≤N ∥γ̂i−
γi,0∥ = Op(T

−3/8), we can further strengthen the result to max1≤i≤N ∥γ̂i − γi,0∥ =

Op(T
−7/16). Similarly, we can prove that maxt ∥f̂ t − f t∥ = Op(T

−7/16).

We next further improve the rate for the fifth term in (29) to be op(T
−1/2) (this result

will also be useful when deriving the limiting distribution, as it is negligible). It suffices

to show that, for any η > 0,

P

{
sup

γ∈Bγ(T−7/16),F∈BF (N−7/16)

∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

{hit(ζit|xit,γi,f t)− E[hit(ζit|xit,γi,f t)]}
∥∥∥∥∥ ≥ η

T 1/2

}
(37)

converges to zero. Here ζit and h(u|xit,γi,f t) are defined before, Bγ(T
−7/16) andBF (N

−7/16)

are defined in the proof of Lemma 4. By using the same argument, we have

P

{
sup

γ∈BΓ(T−7/16), F∈BF (N−7/16)

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit,γi,f t)− E[h(ζit|xit,γi,f t)]}
∣∣∣∣∣ ≥ η

T 1/2

}

≤
Eγ1 (ε)∑
k1=1

· · ·
EγN

(ε)∑
kN=1

Ef,1(ε)∑
j1=1

· · ·
Ef,T (ε)∑
jT=1

P

{ ∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit, γ̄ik
, f̄ tj

)− E[h(ζit|xit, γ̄ik
, f̄ tj

)]}
∣∣∣∣∣ ≥ η

2T 1/2

}

and

E

{ 1

T

T∑
t=1

h(ζit|xit,γi,f t)−
1

T

T∑
t=1

E[h(ζit|xit,γi,f t)]

}2
 = O

(
1

T
× T 7/8 +N7/8

N7/8T 7/8

)
.

Therefore,

N∑
i=1

E

{
T−1

T∑
t=1

h(ζit|xit, γ̄ik
, f̄ tj

)− T−1
T∑
t=1

E[h(ζit|xit, γ̄ik
, f̄ tj

)]

}2

≤ C×
(
N1/8(T 7/8 +N7/8)

T 15/8

)
,

where C is some positive constant. Again, we take Zi as Zi = T−1∑T
t=1 h(ζit|xit, γ̄ik

, f̄ tj
)−

T−1∑T
t=1E[h(ζit|xit, γ̄ik

, f̄ tj
)] in Lemma 5, we then have

P

{
1

NT

∣∣∣∣∣
N∑
i=1

T∑
t=1

h(ζit|xit, γ̄ik
, f̄ tj

)− E[h(ζit|xit, γ̄ik
, f̄ tj

)]}
∣∣∣∣∣ ≥ η

2T 1/2

}

≤ exp

(
−Cη ·

N2

T
· T 15/8

N1/8(T 7/8 +N7/8)

)
,

where Cη is some positive constant. This leads

Eγ1 (ε)∑
k1=1

· · ·
EγN

(ε)∑
kN=1

Ef,1(ε)∑
j1=1

· · ·
Ef,T (ε)∑
jT=1

P

{ ∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

{h(ζit|xit, γ̄ik
, f̄ tj

)− E[h(ζit|xit, γ̄ik
, f̄ tj

)]}
∣∣∣∣∣ ≥ 1

2T 1/2

}

≤ Dγ1(ε)× · · · ×DγN (ε)×Df1(ε)× · · · ×DfT (ε)× exp

(
−Cη ×

N15/8T 7/8

N7/8 + T 7/8

)
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= O

(T 1/16
)N(p+r)

×
(
T 1/2

N7/16

)Tr

× exp

[
− N15/8T 7/8

N7/8 + T 7/8

]
= O

(
exp

[
−
(
N15/8T 7/8

N7/8 + T 7/8

){
1− {N(p+ r)}(N7/8 + T 7/8) log(T 1/16)

N15/8T 7/8

− (Tr)(N7/8 + T 7/8) log(T 1/2/N7/16)

N15/8T 7/8

}])

= O

(
exp

[
−
(
N15/8T 7/8

N7/8 + T 7/8

){
1− log(T 1/16)

T 7/8
− log(T 1/16)

N7/8
− T 1/8 log(T 1/2/N7/16)

N

− T log(T 1/2/N7/16)

N15/8

}])
= o(1),

where the last line is obtained by using
√
T/N1−γ → 0 for small value of γ (1/16 < γ).

Thus, the fifth term in (29) is bounded by op(T
−1/2). This completes the first claim of

Lemma 4 in (22).

Next, we put (26) into (28)

f̂ t − f t,0

= Ψ−1
t VNT,t(γ0,f t,0)−Ψ−1

t

{
VNT,t(γ̂0, f̂ t)− V NT,t(γ̂0, f̂ t)− VNT,t(γ0,f t,0)

}
+

1

N

N∑
i=1

Ψ−1
t E[git(0|ωit)λi,0z

′
it,0]Γ

−1
i

[
1

T

T∑
t=1

E[git(0|ωit)zit,0λ
′
i,0](f̂ t − f t,0)

]

− 1

N

N∑
i=1

Ψ−1
t E[git(0|ωit)λi,0z

′
it,0]Γ

−1
i QNT,i(γi,0, F0)

+
1

N

N∑
i=1

Ψ−1
t E[git(0|ωit)λi,0z

′
it,0]Γ

−1
i

{
QNT,i(γ̂i, F̂ )−QNT,i(γ̂i, F̂ )−QNT,i(γi,0, F0)

}
+Op

(
1

N

)
+Op

(
1

T

)
+ op(∥f̂ t − f t,0∥). (38)

By flipping the role of f t and γi, we can apply the same argument used to obtain (22).

Thus, we have max1≤t≤T ∥f̂ t − f t,0∥ = Op(log(T )/N
1/2). This completes the proof of

Lemma 4.

D Proof of Theorem 2

We first study the asymptotic distribution of γ̂i. Together with the analysis in the proof

of Lemma 4, we can obtain the following expression.

γ̂i − γi,0 = Γ−1
i QNT,i(γi,0, F0)−

1

T

T∑
t=1

Γ−1
i JitΨ

−1
t

 1

N

N∑
j=1

Jjt(γ̂j − γj,0)

+ op(1).
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This part of analysis is similar to Song (2013) and Ando and Bai (2015). We have

√
T (γ̂ − γ0) =

1

N
K

√
T (γ̂ − γ0) +

√
Tη + op(1), (39)

where γ̂ = (γ̂1, ..., γ̂
′
N)

′, γ0 = (γ1,0, ...,γ
′
N,0)

′, η = (η′
1, ...,η

′
N)

′ with ηi = Γ−1
i QNT,i(γi,0, F0),

and K is defined in (35). Solving (39) in terms of
√
T (γ̂ − γ0), we have

√
T (γ̂ − γ0) =

(
I − 1

N
K
)−1 (√

Tη + op(1)
)
,

=
(
I +

1

N
K +

1

N2
K2 +

1

N3
K3 + · · ·

) (√
Tη + op(1)

)
.

Note that we can ignore the higher order terms related to
√
TN−αKη as op(1) due to

the increasing order of N−α. Similar technique is also employed in Song (2013) and Ando

and Bai (2015). Then, we have

√
T (γ̂i − γi,0) = Γ−1

i

(
T 1/2QNT,i(γi,0, F0)

)
+ op (1) .

We thus see that the asymptotic distribution of T 1/2(γ̂i − γi,0) is normal with mean zero

and variance-covariance matrix Σi.

By using the similar argument that employed to derive the asymptotic distribution of

T 1/2(γ̂i − γi,0), we then have

N1/2(f̂ t − f t,0) = Ψ−1
t

(
N1/2VNT,t(γ0,f t,0)

)
+ op(1),

which implies that the asymptotic distribution of N1/2(f̂ t − f t,0) is normal with mean

zero and variance-covariance matrix Θt. This completes the proof of Theorem 2.

E Proof of Theorem 3

We prove Theorem 3 by investigating the following two cases. Case 1: r0 < r and Case

2: r < r0.

Case 1: r0 < r

First consider the case r0 < r with r0 being the true number of common factors. Because

the number of common factors used in the model, r, is different from the true number

of common factors, r0, we first define the true factor structure for the panel quantile

model with the dimension of interactive effects when r ≠ r0. Recall that the true quantile

function Q(τ |xit,f t,0,λi,0) with the true dimension of the interactive effects r0 is given as

Q(τ |xit,f t,0,λi,0) = x′
itbi,0 + f ′

t,0λi,0,
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where the dependency of τ is dropped from bi,0,τ , f t,0,τ and λi,0,τ . The true parameters

{B0,Λ0, F0} are minimizer of the loss function;

ℓ̄NT (B,Λ, F )

≡ E

[
1

NT

T∑
t=1

N∑
i=1

ρτ (yit − x′
itbi − f ′

tλi)− ρτ
(
yit − x′

itbi,0 − f ′
t,0λi,0

)]

= E

 1

NT

T∑
t=1

N∑
i=1

∫ x′
it(bi−bi,0)+(f ′

tλi−f
′
t,0λi,0)

0

{
Git(s|xit,f t,0,λi,0)− τ

}
ds

 ,
which is zero at {B,Λ, F} = {B0,Λ0, F0}. The expectation is taken with respect to the

true conditional distribution of {yit : i = 1, ..., N, t = 1, ..., T} conditional on X, F0, B0

and Λ0.

Similar to Theorem 1 of Bai and Ng (2002), let Hr be an r0×r matrix with rank(Hr) =

min{r, r0} and H+
r be the generalized inverse of Hr such that HrH

+
r = Ir0 . Then, for

r0 < r, the interactive effects in the true quantile function can be re-expressed as

Q(τ |xit,f t,0,λi,0) = x′
itbi,0 + (H ′

rf t,0)
′(H+

r λi,0).

It is clear that these transformed true parameters F0(r) = (f 1,0(r), ...,fT,0(r))
′ and

Λ0(r) = (λ1,0(r), ...,λN,0(r))
′ with f t,0(r) ≡ Hrf t,0 and λi,0(r) ≡ H+

r λi,0 together with

B0, will let the loss ℓ̄NT (B,Λ, F ) be zero when r > r0. Therefore, we define F0(r) and

Λ0(r) as the true factor structures when r > r0.

Let γ̂i(r) = (b̂i(r), λ̂i(r)) and f̂ t(r) be the estimated model parameters under the

number of common factors being r. Similar to the proofs of Theorem 1 and Theorem 2,

we obtain max1≤i≤N ∥γ̂i(r)−γi,0(r)∥ = Op(log(N)/
√
T ) and max1≤t≤T ∥f̂ t(r)−f t,0(r)∥ =

Op(log(T )/
√
N). Here γi,0(r) = (b′i,0,λi,0(r)

′)′. Note that bi,0 is the true parameter under

the true model with the number of factors r0.

Using Knight’s identity ρτ (u − ν) − ρτ (u) = −νψτ (u) +
∫ ν
0 (I(u ≤ s) − I(u ≤ 0))ds

with ψτ (u) = τ − I(u ≤ 0), we express

V (r)

≡ 1

NT

T∑
t=1

N∑
i=1

ρτ
(
yit − x′

itb̂i(r)− f̂ t(r)
′λ̂i(r)

)

=
1

NT

T∑
t=1

N∑
i=1

ρτ
(
{yit − x′

itbi,0 − f t,0(r)
′λi,0(r)} − {x′

it(b̂i(r)− bi,0) + f̂ t(r)
′λ̂i(r)− f t,0(r)

′λi,0(r)}
)

=
1

NT

T∑
t=1

N∑
i=1

ρτ (εit) +
T∑
t=1

N∑
i=1

(
x′
it(b̂i(r)− bi,0) + f̂ t(r)

′λ̂i(r)− f t,0(r)
′λi,0(r)

)
ψ(ετ,i)

+
1

NT

T∑
t=1

N∑
i=1

∫ (x′
it(

ˆbi(r)−bi,0)+
ˆf t(r)

′ ˆλi(r)−f t,0(r)
′λi,0(r)

)
0

(I(ετ,i ≤ s)− I(ετ,i ≤ 0))ds
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=
1

NT

T∑
t=1

N∑
i=1

ρτ (εit) + I1(r) + I2(r).

First, we investigate I2(r). For a notational simplicity, we denote min{N, T} as CNT .

(NT )× I2(r)

=
T∑
t=1

N∑
i=1

∫ (x′
it(

ˆbi(r)−bi,0)+(
ˆf t(r)−f t,0(r))

′ ˆλi(r)+f t,0(r)
′(
ˆλi(r)−λi,0(r))

)
0

(I(ετ,i ≤ s)− I(ετ,i ≤ 0))ds

=
(logN)1/2

C
1/2
NT

T∑
t=1

N∑
i=1

∫ √
CNT / log(N)

(
x′

it(
ˆbi(r)−bi,0)+(

ˆf t(r)−f t,0(r))
′ ˆλi(r)+f t,0(r)

′(
ˆλi(r)−λi,0(r))

)
0Git

εit + s√
CNT/ logN

∣∣∣xit,f t,0,λi,0

−Git(εit
∣∣∣xit,f t,0,λi,0)

 ds
=

logN

CNT

T∑
t=1

N∑
i=1

[ ∫ √
CNT / log(N)

(
x′

it(
ˆbi(r)−bi,0)+(

ˆf t(r)−f t,0(r))
′ ˆλi(r)+f t,0(r)

′(
ˆλi(r)−λi,0(r))

)
0

git(0|xit,f t,0,λi,0)sds+ op(1)

]

=
logN

CNT

T∑
t=1

N∑
i=1

[(
CNT

2 logN

)
git(0|xit,f t,0,λi,0)

(
x′
it(b̂i(r)− bi,0) + (f̂ t(r)− f t,0(r))

′λ̂i(r)

+f t,0(r)
′(λ̂i(r)− λi,0(r))

)2

+ op(1)

]

= C ×
T∑
t=1

N∑
i=1

(
x′
it(b̂i(r)− bi,0)

)2
+ C ×

T∑
t=1

N∑
i=1

(
(f̂ t(r)− f t,0(r))

′λ̂i(r)
)2

+C ×
T∑
t=1

N∑
i=1

(
f t,0(r)

′(λ̂i(r)− λi,0(r))
)2

= Op (N) +Op (T ) ,

where we usedN−1∑N
i=1 ∥x′

it(b̂i(r)−bi,0)∥2 = Op(T
−1), N−1∑N

i=1 ∥f t,0(r)
′(λ̂i(r)−λi,0(r))∥2 =

Op(T
−1),

∑T
i=1 ∥(f̂ t(r) − f t,0(r))∥2/T = Op(N

−1), and 0 < git(0|xit,f t,0,λi,0) < ∞ for

i = 1, ..., N , t = 1, ..., T .

Next, we evaluate the term I1(r). Noting that
∑N

i=1 ∥x′
it(b̂i(r)− bi,0)∥2/N = Op(1/T ),∑N

i=1 ∥f t,0(r)
′(λ̂i(r)−λi,0(r))∥2/N = Op(1/T ) and

∑T
t=1 ∥(f̂ t(r)−f t,0(r))∥2/T = Op(1/N),

we have

(NT )× I1(r) ≤ C ×Op

(
C

−1/2
NT

)
×
(

T∑
t=1

N∑
i=1

ψ(ετ,i)

)
= Op

(√
NT/C

1/2
NT

)
.

Thus, we obtain

V (r)− V (r0) = Op

(
C−1

NT

)
.
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Using the same argument of the proof of Corollary 1 in Bai and Ng (2002), for r > r0, this

implies that V (r)/V (r0) = 1 + Op(1/CNT ). Thus, log(V (r)/V (r0)) = Op(C
−1
NT ). Because

(r−r0)q(N, T ) ≥ q(N, T ), which converges to zero slower rate than Op(1/CNT ), it follows

that

P (IC(r)− IC(r0) < 0) ≤ P (Op (1/CNT ) + q(N, T ) < 0) → 0.

This indicates that the probability that IC(r) selects the number of common factors

r > r0 is asymptotically 0.

Case 2: r < r0

Because r < r0, an T × r common factor F (r) can not span the true space spanned by

the true common factor F0 with dimension T × r0. Therefore, regardless of the values of

model parameters {B(r),Λ(r), F (r)} with r dimensional interactive effects, the following

loss function can never be zero:

ℓ̄NT (B(r),Λ(r), F (r))

≡ 1

NT
E

[
T∑
t=1

N∑
i=1

ρτ (yit − x′
itbi(r)− f t(r)

′λi(r))− ρτ
(
yit − x′

itbi,0 − f ′
t,0λi,0

)]

=
1

NT
E

 T∑
t=1

N∑
i=1

∫ x′
it(bi(r)−bi,0)+(f t(r)

′λi(r)−f
′
t,0λi,0)

0

{
Git(s|xit,f t,0,λi,0)− τ

}
ds

 .
From the investigation of (13), for some positive constant C > 0, not depending on N

and T ,

lim
N,T→∞

1

NT

T∑
t=1

N∑
i=1

[
ρτ
(
yit − x′

itb̂i(r)− f̂ t(r)
′λ̂i(r)

)
− ρτ

(
yit − x′

itb̂i(r0)− f̂ t(r0)
′λ̂i(r0)

)]
> C,

where b̂i(r), f̂ t(r) and λ̂i(r) are parameter estimates under the dimension of interactive

effects r. Using the same argument of the proof of Corollary 1 in Bai and Ng (2002), we

therefore have V (r)/V (r0) > 1 + c0 for some c0 with large probability for all large N and

T . This implies that log(V (r)/V (r0)) ≥ c′0 for some constant 0 < c′0, for large N and

T . Because q(N, T ) → 0, we have IC(r) − IC(r0) > c0 − (r0 − r)q(N, T ) ≥ c′′0 for some

constant 0 < c′′0, under large N and T with large probability. Thus

P (IC(r)− IC(r0) < 0) → 0.

This completes the proof of Theorem 3.
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F Additional information on the empirical analysis

In Section 6, we analyzed the stock returns of publicly traded firms and firms traded

in over-the-counter trading markets for over 6,000 international stocks from over 100

financial markets. The final samples for each period are summarized in Table 1.

To explore the effects of stock exchanges and industries on individual stock returns,

Section 6.2.3 applied a clustering approach to the estimated regression coefficients and

factor loadings {(b̂
′
i,τ , λ̂

′
i,τ ); i = 1, ..., N} to create a set of groups based on the similarities

in the sensitivity to the common factors. If the source of the sensitivity to the factors (both

observables and unobservables) is solely attributable to stock exchanges, it is expected

that the two-way table of the assigned group membership from the clustering approach

against the stock exchanges will be diagonal. Note that the industry classifications and

listed stock exchanges are known. Therefore, it is easy to create a two-way table of the

assigned group membership against these classifications.

First, we investigate the effect of stock exchanges. There are 36 stock exchanges where

more than 40 stocks are listed, and we consider these 36 stock exchange markets. Setting

the number of clusters as 36, the clustering approach is applied to {(b̂
′
i,0.05, λ̂

′
i,0.05); i =

1, ..., N}, the estimated regression coefficients and factor loadings for the lower tail. The

left column in Figure 1 shows the distribution of the firms. An (i, j)-th element denotes

the percentage of firms listed on stock exchange i such that they belong to the j-th group.

Thus, each row represents the distribution of the firms listed on the same stock exchange.

We can make the following observations. First, the degrees of similarity between Shanghai

and Shenzhen are stable over the periods in both the upper and lower tails. Second, the

New York Stock Exchange and NASDAQ tend to be very similar, while Non-NASDAQ

OTC represents its dissimilarity to these two markets. The same observations can be

seen from the right column of Figure 1, obtained from the upper tail’s factor loadings

{(b̂
′
i,0.95, λ̂

′
i,0.95); i = 1, ..., N}. Thus, investors should consider such market characteristics

although all three markets are located in the U.S.

A similar approach is applied to determine the effect of industry. To see the effect

of industry (5 industries), we also set the number of clusters at 5. Figure 2 shows the

distribution of the firms in each industry obtained from {(b̂
′
i,0.05, λ̂

′
i,0.05); i = 1, ..., N},

the estimated regression coefficients and factor loadings for the lower tail. The i-th row

represents the distribution of firms in industry i. Specifically, let ni,j denote the number of

firms that belong to industry i and to group j. Then, the (i, j)-th element dij is calculated

as dij = ni,j/{
∑5

k=1 ni,k}. Overall, there is one huge cluster that includes most of the firms

from each of the 5 industries. Thus, investors regard these 5 industries as similar rather

30



than treating them as very different groups. The same observations can be seen from

Figure 2, obtained from the upper tail’s {(b̂
′
i,0.95, λ̂

′
i,0.95); i = 1, ..., N}. There seems to be

other sources of variability in stock returns in addition to the industry effects.

In summary, the firm industry and the stock exchange on which a firm is listed are

important factors to be considered. However, we also note that these nominal factors are

insufficient to fully capture the underlying market structures.

G Simulation study

G.1 Performance of the frequentist estimator

To demonstrate the usefulness of the proposed estimation procedure, we conduct a Monte

Carlo simulation study. Because the data-generating process and the model parameters

are known, we can evaluate the performance of our approach. Here, we report the results

for the challenging case in which the variables xit,τ are correlated with the unobservable

factor structures f ′
tλi,τ .

G.1.1 Data generating process

For the first data-generating process, we first generate the uniform independent random

variable uit ∼ U [0, 1] for i = 1, ..., N and t = 1, ..., T . Then, we generate the data from

the following structure:

yit = x′
itbi,uit

+ f ′
t,uit

λi,uit
+ εit,uit

, i = 1, . . . , N, t = 1, . . . , T,

where xit = (xit,1, ..., xit,p)
′ is a vector of regressors, the dimension of the common factor

and the corresponding factor loading depends on the quantile uit, and εit,uit
= G−1(uit).

Here, G(·) is a cumulative distribution function of normal or Student-t distribution. The

true quantile function of yit at quantile point τ is

Qyit (τ |xitf t(τ),λi(τ)) = G−1(τ) + x′
itbi(τ) + f t(τ)

′λi(τ).

The quantile restriction P (yit −Qyit (τ |ωit) ≤ 0) = τ is satisfied.

We generate T × 5 common factor matrix F = (ftk) such that each element follows

the uniform distribution over [0, 2]. Using the generated uit, we define the common factor

for the i-th unit at time t as

f t,uit
=


(ft1, ft2, ft3)

′ if uit ≤ 0.2
(ft1, ft2, ft3, ft4)

′ if 0.2 < uit ≤ 0.8
(ft1, ft2, ft3, ft4, ft5)

′ if 0.8 < uit

.
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Note that the dimension of the common factor may vary over i and t because uit ∼ U [0, 1]

for i = 1, ..., N and t = 1, ..., T . Given uit, the corresponding factor-loading vector is

specified as

λi,uit
=


(ζi1 + 0.1uit, ζi2 + 0.1uit, ζi3 + 0.1uit)

′ if uit ≤ 0.2
(ζi1 + 0.1uit, ζi2 + 0.1uit, ζi3 + 0.1uit, ζi4 + 0.1uit)

′ if 0.2 < uit ≤ 0.8
(ζi1 + 0.1uit, ζi2 + 0.1uit, ζi3 + 0.1uit, ζi4 + 0.1uit, ζi5 + 0.1uit)

′ if 0.8 < uit

,

where ζik is generated from the uniform distribution over [0, 2] and then fixed over t.

However, the quantile random variable uit adds some variations over t because the factor

loading depends on the quantile points.

Setting p = 8 for i = 1, ..., N , we generate the set of regressors as follows:

xit,1 = vit,1 + 0.02f 2
t1 + 0.02ζ2i1, xit,3 = vit,3 − 0.01f 2

t2 + 0.02ζ2i2,

xit,5 = vit,5 − 0.01f 2
t3 + 0.03ζ2i3, xit,k = vit,k (k ̸= 1, 3, 5).

where vit,k is generated from the uniform distribution over [0, 2]. The k-th element of true

parameter values of regression coefficients bi,0,uit
are set to be

bik,0,uit
=

{
1 + i/N + 0.1uit if k = 2, 4, 6
−1 + i/N + 0.1uit if k ̸= 2, 4, 6

,

Similar to the factor loadings, the quantile random variable uit adds some variations.

Finally, cumulative distribution function of εit,uit
is the normal distribution N(0, 1).

The second data-generating process modifies the first data-generating process. We let

the cumulative distribution function of εit,uit
as the Student-t distribution with degrees

of freedom 8. Thus, the error terms have a fat-tail property.

G.1.2 Results

We simulate a large panel with N individuals and T time periods. We consider various

combinations of T and N . We base our estimate on the true number of factors and assess

the robustness of the proposed strategy to endogeneity. The dimension of the interactive

effects is set as its true dimension. For example, the dimension of the interactive effects

is set as r = 3 when we estimate the τ = 5% quantile structure,

The estimation results are averaged over 100 simulated data sets and reported in Table

2 ∼ Table 3. Tables show the mean squared error (MSE) between the true structure and

the estimates

MSE1 =
1

NT

N∑
i=1

T∑
t=1

{Qit(τ)− Q̂it(τ)}2,

MSE2 =
1

Np

N∑
i=1

∥bi,0,τ − b̂i,τ∥2,
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where b̂i,τ and Q̂it(τ) are the estimates of the true parameter vector bi,0,τ and the true

τ -th quantile function Qit(τ), respectively. These measures are computed for the esti-

mators both with and without the factor structure. The panel quantile model without

the factor structure is estimated by minimizing the standard loss function ℓτ (Y |X,Bτ ) =∑N
i=1

∑T
t=1 ρτ (yit −x′

itbi,τ ). Table 2 ∼ Table 3 indicate that our estimator with the factor

structure performs better than the standard approach. Similar results are also obtained

under the second data generating process.

G.2 Performance of the model selection criterion

We investigate the performance of the proposed model selection criterion to select the

dimension of the interactive effects. Using the two data generating processes in the pre-

vious section, we generate the dataset under the various combinations of N and T . We

set the possible dimension of the interactive effects (i.e., the number of common factors)

to range from 0 to 8. Calculating the scores of IC(r) over all possible r, we can detect

the number of r.

Table 4 reports the histogram of the selected number of common factors r̂ over 200

simulation runs. As shown in the tables, the proposed criterion is capable of selecting the

true number of factors. When the size of panel N and T increases, the procedure achieves

better performance in terms of identifying the true dimension of the interactive effects.

G.3 Estimation under a small panel

Although we developed the asymptotic theory for the frequentist estimator, it was devel-

oped under large N and T . In this section, we compare the small sample properties of the

frequentist estimator and the proposed Bayesian approach. We use the first data generat-

ing process described in Section G.1. We set total number of Markov chain Monte Carlo

iterations to 3,000. If one aims to obtain the samples from the posterior distribution, the

first iterations are usually discarded to ensure adequate dissipation of initial conditions,

or burn-in. However, Geyer (2011) pointed out that Markov chain started anywhere near

the center of the posterior distribution needs no burn-in. Because our frequentist estima-

tor corresponds to the Bayesian maximum a posteriori estimator, our initial parameter

value is already a good starting point for MCMC. Thus, burn-in period is not considered.

We follow Gerlach et al. (2011) by examining trace plots from the MCMC sampler.

Figure 4 (a) shows the MCMC sampling path for the regression coefficient b20,3,τ with

τ = 0.05, N = T = 100. We see that the sampling behaviors of each of MCMC sample

are already stable from the beginning. Also, the generated posterior sample distributes
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around the true value of the regression coefficient. Figure 4 (b) compares of the asymptotic

distribution of the frequentist estimator (based on Theorem 2) and the posterior density

from Bayesian approach. From Theorem 2, we know that the asymptotic distribution

of the frequentist estimator is normal distribution. Dashed blue line is the constructed

asymptotic distribution from Theorem 2, Solid black line is the constructed posterior

density from MCMC output. We see that the constructed posterior density has the wider

tail than that from the asymptotic distribution. Thus, the Bayesian posterior credible

interval is wider than that of the constructed 95% percent confidence interval of the

frequentist estimator. This is commonly known because Bayesian approach takes account

parameter uncertainty.

Next, we compare the performance of the following estimators: the frequentist estima-

tor and the Bayesian estimators based on posterior mean, posterior mode and posterior

median. We set the length of time series and the number of units as T = 100, 300, 900 and

N = 100, respectively. We note that the similar results are obtained under the different

data generating processes described in Section G.1 as well as the different quantile points

τ .

Figure 5 shows the boxplots of the average mean squared error between the true

parameter vectors bi,0,τ and its estimates b̂i,τ over i; MSE = 1
Np

∑N
i=1 ∥bi,0,τ − b̂i,τ∥2.

These results are obtained based on 200 repetitions at τ = 0.05. Note that similar results

are obtained under the different quantile points τ = 0.5 and τ = 0.95, and thus these

results are omitted.

We can make the following observations. First, MSE decreases as T increases. Second,

the Bayesian estimator performs well in the sense that the median of MSEs are smaller

than the frequantist estimator when the length of time series T is small. Although the

computational time of our proposed Bayesian estimator is slower than the frequentist

estimator, it provides better MSE than the others even when the panel size is small.

Third, under T = 900, the performance of Bayesian estimators (the posterior mean, mode,

median) and frequestist estimators became very similar. Because prior is dominated by

the pseudo likelihood L(Y |X,Fτ ,Λτ , Bτ ), this property can be observed in the estimation

results. Thus, Bayesian estimators (the posterior mean, mode, median) and frequestist

estimators are asymptotically equivalent as long as the prior information is dominated by

the pseudo likelihood L(Y |X,Fτ ,Λτ , Bτ ).
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Table 1: Distributions of the number of listed financial firms. Period 1 (January 1, 2007,
to April 31, 2009); Period 2 (September 1, 2009, to December 31, 2012); Period 3 (January
1, 2013, to March 31, 2015).

Period 1 Period 2 Period 3
Amman 68 68 67
Australian 99 98 98
Bangkok 86 85 85
Berlin 140 144 146
Borsa Istanbul 46 46 47
BSE Ltd 285 286 277
Copenhagen Stock Exchange 34 34 34
Dhaka 69 68 69
Euronext.liffe Paris 83 83 81
Frankfurt 531 536 529
Hong Kong 203 202 199
Indonesia 76 73 75
Johannesburg 40 39 40
Karachi 56 56 56
Korea Stock Exchange 53 52 53
Kuala Lumpur 99 99 99
Kuwait City 74 72 74
London 144 146 149
Milan 44 44 44
NASDAQ 374 375 370
National India 103 101 103
New York Stock Exchange (NYSE) 186 187 183
Non NASDAQ OTC 1370 1364 1289
OTC Bulletin Board 49 51 52
Philippine Stock Exchange 82 82 81
Santiago 42 40 41
Shanghai 73 73 73
Shenzen 55 55 54
Singapore 49 49 47
SIX Swiss 68 68 68
Stockholm 45 44 44
Stuttgart 63 61 63
Taiwan 61 61 60
Tel Aviv 107 105 106
Thailand 58 59 60
Tokyo Stock Exchange 177 175 177
Toronto 81 80 77
TSX Ventures 64 60 56
XETRA 83 83 82
Others 781 785 780
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Table 2: First data-generating process. Comparison of the proposed estimator with factor
structure f ′

t,τλi,τ , and the standard estimator without factor structure f ′
t,τλi,τ . The

mean squared errors are defined as MSE1 = 1
NT

∑N
i=1

∑T
t=1{Qit(τ) − Q̂it(τ)}2, MSE2 =

1
Np

∑N
i=1 ∥bi,0,τ − b̂i,τ∥2, where b̂i,τ and Q̂it(τ) are the estimates of the true parameter

vector bi,0,τ and the true τ -th quantile function Qit(τ), respectively. Averages over 200
simulation data sets are reported. The second lines are corresponding to the standard
deviation of the mean squared errors.

With factor structure Without factor structure
τ T N MSE1 MSE2 MSE1 MSE2

0.05 300 300 0.7140 0.2397 0.9571 0.3046
0.0524 0.0137 0.0308 0.0123

300 900 0.7004 0.2389 0.9558 0.3028
0.0451 0.0088 0.0278 0.0075

900 300 0.5649 0.0822 0.8701 0.1085
0.0374 0.0039 0.0338 0.0045

900 900 0.5063 0.0820 0.8689 0.1089
0.0130 0.0024 0.0200 0.0027

0.5 300 300 0.3382 0.1279 0.6602 0.1589
0.0116 0.0053 0.0174 0.0063

300 900 0.3178 0.1305 0.6567 0.1586
0.0117 0.0056 0.0139 0.0049

900 300 0.3054 0.0745 0.6258 0.0828
0.0090 0.0049 0.0083 0.0053

900 900 0.2697 0.0766 0.6203 0.0822
0.0049 0.0022 0.0120 0.0023

0.95 300 300 0.7438 0.2779 1.1611 0.4097
0.0240 0.0140 0.0483 0.0185

300 900 0.6892 0.2651 1.1526 0.4063
0.0220 0.0075 0.0375 0.0105

900 300 0.6171 0.0904 1.0466 0.1447
0.0227 0.0041 0.0395 0.0061

900 900 0.5506 0.0890 1.0272 0.1437
0.0169 0.0032 0.0266 0.0037
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Table 3: Second data-generating process. Comparison of the proposed estimator with
factor structure f ′

t,τλi,τ , and the standard estimator without factor structure f ′
t,τλi,τ . The

mean squared errors are defined as MSE1 = 1
NT

∑N
i=1

∑T
t=1{Qit(τ) − Q̂it(τ)}2, MSE2 =

1
Np

∑N
i=1 ∥bi,0,τ − b̂i,τ∥2, where b̂i,τ and Q̂it(τ) are the estimates of the true parameter

vector bi,0,τ and the true τ -th quantile function Qit(τ), respectively. Averages over 200
simulation data sets are reported. The second lines are corresponding to the standard
deviation of the mean squared errors.

With factor structure Without factor structure
τ T N MSE1 MSE2 MSE1 MSE2

0.05 300 300 0.9283 0.3532 1.1423 0.4061
0.0400 0.0140 0.0423 0.0144

300 900 0.8691 0.3517 1.1262 0.4029
0.0408 0.0121 0.0225 0.0106

900 300 0.6723 0.1209 0.9908 0.1445
0.0330 0.0042 0.0349 0.0061

900 900 0.6012 0.1217 0.9994 0.1461
0.0139 0.0028 0.0190 0.0036

0.5 300 300 0.3429 0.1338 0.6480 0.1665
0.0110 0.0087 0.0191 0.0077

300 900 0.3283 0.1375 0.6708 0.1681
0.0091 0.0060 0.0162 0.0052

900 300 0.3062 0.0735 0.6238 0.0822
0.0146 0.0041 0.0149 0.0043

900 900 0.2703 0.0761 0.6253 0.0838
0.0041 0.0038 0.0118 0.0032

0.95 300 300 0.9736 0.4000 1.3840 0.5130
0.0403 0.0172 0.0555 0.0208

300 900 0.8970 0.3878 1.3884 0.5138
0.0237 0.0081 0.0425 0.0114

900 300 0.7750 0.1309 1.2211 0.1831
0.0283 0.0053 0.0439 0.0078

900 900 0.6833 0.1300 1.2190 0.1810
0.0217 0.0041 0.0349 0.0055
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Table 4: The histogram of the selected number of common factors r̂ over 100 simulation
runs. The results are for τ = 5% and τ = 95% quantile points. The true number of
common factors are r0,τ = 3 at τ = 5% and r0,τ = 5 at τ = 95%.

First data generating process
r̂ 0 1 2 3 4 5 6 7 8

τ T N
0.05 (r0,τ = 3) 300 300 0 0 28 41 31 0 0 0 0

300 900 0 0 0 46 54 0 0 0 0
900 300 0 0 0 90 10 0 0 0 0
900 900 0 0 0 96 4 0 0 0 0

0.95 (r0,τ = 5) 300 300 0 0 0 0 2 98 0 0 0
300 900 0 0 0 0 0 100 0 0 0
900 300 0 0 0 0 0 100 0 0 0
900 900 0 0 0 0 0 100 0 0 0

Second data generating process
r̂ 0 1 2 3 4 5 6 7 8

τ T N
0.05 (r0,τ = 3) 300 300 0 10 22 38 30 0 0 0 0

300 900 0 0 14 35 51 0 0 0 0
900 300 0 0 8 82 10 0 0 0 0
900 900 0 0 0 95 5 0 0 0 0

0.95 (r0,τ = 5) 300 300 0 0 0 16 29 55 0 0 0
300 900 0 0 0 0 0 100 0 0 0
900 300 0 0 0 0 0 100 0 0 0
900 900 0 0 0 0 0 100 0 0 0
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Figure 1: Distribution of firms in each of the stock exchanges (See Section 6.2.3). An
(i, j)-th element denotes the percentage of firms in industry i such that they belong to
the j-th group. Period 1 (January 1, 2007, to April 31, 2009); Period 2 (September 1,
2009, to December 31, 2012); Period 3 (January 1, 2013, to March 31, 2015), Period 4
(January 1, 2007, to March 31, 2015).
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Figure 2: Lower quantile τ = 0.05. Distribution of firms in each of the sectors. An
(i, j)-th element denotes the percentage of firms in industry i such that they belong to
the j-th group. Period 1 (January 1, 2007, to April 31, 2009); Period 2 (September 1,
2009, to December 31, 2012); Period 3 (January 1, 2013, to March 31, 2015), Period 4
(January 1, 2007, to March 31, 2015).
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Figure 3: Upper quantile τ = 0.95. Distribution of firms in each of the sectors. An
(i, j)-th element denotes the percentage of firms in industry i such that they belong to
the j-th group. Period 1 (January 1, 2007, to April 31, 2009); Period 2 (September 1,
2009, to December 31, 2012); Period 3 (January 1, 2013, to March 31, 2015), Period 4
(January 1, 2007, to March 31, 2015).
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(b): Constructed distribution (from Theorem 2) for the frequestist
estimator and posterior distribution

Figure 4: Summary of MCMC posterior sampling results with respect to the regression
coefficient of b20,3,τ at τ = 0.05. A set of 3,000 samples were generated by the proposed
data-augmentation algorithm. (a) Black line: trace plot of MCMC sample. Red line: true
value of the regression coefficient. (b) Comparison of the constructed distribution (from
Theorem 2) for the frequestist estimator and posterior distribution from MCMC for the
regression coefficient. Solid black line: the constructed posterior density from MCMC
output, Dashed blue line: the constructed asymptotic distribution from Theorem 2, Solid
vertical line: true value of the regression coefficient.

43



(a)
 Frequentist
 estimator

(b)
 Posterior 

 mode

(c)
 Posterior 

 mean

(d)
 Posterior 
 median

0.
0

0.
5

1.
0

1.
5

(a): T = 100

(a)
 Frequentist
 estimator

(b)
 Posterior 

 mode

(c)
 Posterior 

 mean

(d)
 Posterior 
 median

0.
0

0.
5

1.
0

1.
5

(b): T = 300

(a)
 Frequentist
 estimator

(b)
 Posterior 

 mode

(c)
 Posterior 

 mean

(d)
 Posterior 
 median

0.
0

0.
5

1.
0

1.
5

(c): T = 900

Figure 5: Boxplot of the average mean squared errors: MSE = 1
Np

∑N
i=1 ∥bi,0,τ − b̂i,τ∥2,

between the true parameter vector bi,0,τ and its estimate b̂i,τ . (a) Frequentist estimator
denotes our proposed estimator given in Section 3.1 (b) ∼ (d) Bayesian estimators based
on the proposed data-augmentation strategy in Section 3.2. (e) Without factor structure
is based on the standard quantile regression that ignores the factor structures.
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