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A Proofs

A.1 Proof of Proposition 1

Lemma 1 For nonsingular r × r matrix H and r-vector h, if h′H−1h 6= 1, then

(H− hh′)
−1
= H−1 +

1

1− h′H−1h
H−1hh′H−1 (A.1)

and so

h′ (H− hh′)
−1

=

(
1 +

h′H−1h

1− h′H−1h

)
h′H−1

=
1

1− h′H−1h
h′H−1. (A.2)

Proof. See Abadir and Magnus (2005, page 87).

From the definitions in Section 3, we have

plim

(
1

n
Z̃′1Z̃1

)
= Q11 − (Q11γ1 +Q′21γ2) (γ

′Qγ)
−1
(γ ′1Q11 + γ

′
2Q21)

plim

(
1

n
Z̃′2Z̃1

)
= Q21 − (Q21γ1 +Q22γ2) (γ

′Qγ)
−1
(γ ′1Q11 + γ

′
2Q21) .
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Hence

C21C
−1
11 = plim

(
1

n
Z̃′2Z̃1

)(
plim

(
1

n
Z̃′1Z̃1

))−1
= ((γ ′Qγ)Q21 − (Q21γ1 +Q22γ2) (γ

′
1Q11 + γ

′
2Q21)) (A.3)

((γ ′Qγ)Q11 − (Q11γ1 +Q′21γ2) (γ
′
1Q11 + γ

′
2Q21))

−1
.

Let η = (Q11γ1 +Q′21γ2). From (A.2), we get

η′ ((γ ′Qγ)Q11 − ηη′)−1 =
1

1− η′Q−111 η/γ ′Qγ
η′Q−111 /γ

′Qγ

=
1

γ ′Qγ − η′Q−111 η
η′Q−111 . (A.4)

Using (A.1),

(γ ′Qγ)Q21 ((γ
′Qγ)Q11 − ηη′)−1

= Q21Q
−1
11 + (γ

′Qγ)Q21
1

1− η′Q−111 η/γ ′Qγ
Q−111 ηη

′Q−111 / (γ
′Qγ)

2

= Q21Q
−1
11 +Q21Q

−1
11 η

1

γ ′Qγ − η′Q−111 η
η′Q−111 . (A.5)

Hence, combining (A.3), (A.4) and (A.5),

C21C
−1
11 = Q21Q

−1
11 +

(
Q21Q

−1
11 η − (Q21γ1 +Q22γ2)

) 1

γ ′Qγ − η′Q−111 η
η′Q−111 . (A.6)

As

γ ′Qγ = γ ′1Q11γ1 + 2γ
′
1Q
′
21γ2 + γ

′
2Q22γ2

η′Q−111 η = γ ′1Q11γ1 + 2γ
′
1Q
′
21γ2 + γ

′
2Q21Q

−1
11 Q′21γ2,

it follows that

γ ′Qγ − η′Q−111 η = γ ′2
(
Q22 −Q21Q

−1
11 Q′21

)
γ2. (A.7)

Further,

Q−111 η = γ1 +Q−111 Q′21γ2 (A.8)

Q21Q
−1
11 η − (Q21γ1 +Q22γ2) =

(
Q21Q

−1
11 Q′21 −Q22

)
γ2. (A.9)

Combining (A.6), (A.7), (A.8) and (A.9), the result follows that

C21C
−1
11 = Q21Q

−1
11 −

(
Q22 −Q21Q

−1
11 Q′21

)
γ2

γ ′1 + γ
′
2Q21Q

−1
11

γ ′2
(
Q22 −Q21Q

−1
11 Q′21

)
γ2
.
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A.2 Proof of Theorem 1

Under the stated assumptions,

plim
(
Γ̂
)
= γβ +α;

plim (γ̂) = γ.

Hence

plim (π̂j) =
γjβ + αj

γj
= β +

αj
γj
,

for j = 1, ..., L. As s < L/2, more than 50% of the αs are equal to zero and hence it

follows that more than 50% of the elements of plim (π̂) are equal to β. Using a continuity

theorem, it then follows that

plim
(
β̂m

)
= median {plim (π̂)} = β.

For the limiting distribution, let δ1 be the s-vector with elements

δj =
αj
γj
,

for j = 1, ..., s. Let δ =
(
δ′1 0′L−s

)′
. Partition π̂ accordingly as π̂ =

(
π̂′1 π̂′2

)′
.

Under the standard conditions, the limiting distribution of π̂ is given by

√
n (π̂ − (βιL + δ))

d−→ N (0,Σπ) .

As β̂m = median (π̂),

√
n
(
β̂m − β

)
=
√
n (median (π̂)− β)

= median
(√

n (π̂ − βιL)
)
.

As
√
n (π̂ − βιL) =

( √
n (π̂1 − (βιs + δ1)) +

√
nδ1√

n (π̂2 − βιL−s)

)
,

it follows that

√
n
(
β̂m − β

)
= median

(√
n (π̂ − βιL)

) d−→ q[l],L−s.
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B Additional Simulation Results

B.1 Equal Strength Instruments

Figures B1a and B1b illustrate the different behaviours of the Lasso and post-Lasso

estimators for the design as in Table 1. Figure B1a shows the bias and standard deviations

of the two estimators for different values of λ/n for n = 2000, again from 1000 replications.

It is clear that the Lasso estimator exhibits a positive bias for all values of λ, declining

from that of the naive 2SLS estimator to the minimum bias of 0.0664 at λ/n = 0.0060. In

contrast, the post-Lasso estimator is (much) less biased, obtaining its minimum bias of

0.0068 at the value of λ/n of 0.0965. Figure B1b displays the same information but now

as a function of the LARS steps, where additional variables enter the model (we have

omitted 3 replications where there were Lasso steps). At step 3, the correct 3 invalid

instruments have been selected 991 times out of the 997 replications, and the post-Lasso

estimator has a bias there of 0.0058, only fractionally larger than that of the oracle 2SLS

estimator. In contrast, the Lasso estimator for β still has a substantial upward bias at

step 3. Its bias decreases from 0.116 at step 3 to a minimum of 0.0650 at step 8. The bias

of the post-Lasso estimator increases again after step 3, reaching the same bias as the

Lasso estimator at the last step, as there λn = 0 and the Lasso and post-Lasso estimators

are equal.

As the results in Table 1 show, the difference in bias between the Lasso and post-Lasso

estimators is larger for the cvse procedure compared to the cv procedure, as the cvse

procedure selects a larger value for λn and hence shrinks the α coeffi cients more towards

0. This results in a larger bias in the estimator for β, as depicted in Figure B1a.

Table B1 presents results for the median and Adaptive Lasso estimators. The estima-

tion results for the adaptive Lasso are based on setting υ = 1. The resulting estimators

are denoted "ALasso". As L is even here, the median is defined as β̂m =
(
π̂[5] + π̂[6]

)
/2,

where π̂[j] is the j-th order statistic. The results show the oracle properties of the adap-

tive Lasso procedure, especially for the post-ALassocvse estimator, with its estimation

results very close to that of the oracle 2SLS estimator for n = 2000 and n = 10, 000.
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Figures B1a and B1b. Bias and standard deviations of Lasso and post-Lasso estimators as

functions of λ/n, and LARS steps. Same design as in Table 1, n = 2000. 3 replications out of

1000 omitted in Figure B1b due to Lasso steps.

The design in Tables 1 and B1 has L = 10, s = 3 and δ1 = δ2 = δ3 > 0. As the

median is defined as β̂m =
(
π̂[5] + π̂[6]

)
/2, it follows that

√
n
(
β̂m − β

)
= median

(√
n (π̂ − βι10)

) d−→ q[5,6],7

where q[5,6],7 is the average of the fifth and sixth order statistic of the limiting distribution

√
n


 π̂4

...
π̂10

− βι7
 d−→ N (0,Σ∗π) .

For the design in Table B1, Σ∗π = 25I7, as σ
2
ε = 1 and 1/γ

2
j = 25 for j = 4, ..., 10. From

a simple simulation, drawing repeatedly from the N (0, 25I7) distribution, we find that

E
[
q[5,6],7

]
= 2.78. Therefore E

[
q[5,6],7

]
/
√
n = 0.0278 for n = 10, 000, almost exactly

the result found for the bias of β̂m in Table B1. For this design, the asymptotic bias of

the median estimator is affected by the number of invalid instruments in the following

way. For n = 10, 000 we get for s = 4, 2, 1, 0 respectively E
[
q[5,6],6

]
/
√
n = 0.0477;

E
[
q[5,6],8

]
/
√
n = 0.0156; E

[
q[5,6],9

]
/
√
n = 0.0069; and E

[
q[5,6],10

]
/
√
n = 0.
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Table B1. Estimation results for Adaptive Lasso estimators for β; L = 10, s = 3, γ̃1 = γ̃2
av. # instr freq. all

selected as invalid invalid instr
β bias std dev rmse mad [min, max] selected
n = 500

β̂m 0.1197 0.1029 0.1578 0.1159
ALassocv 0.0952 0.0981 0.1366 0.0934 4.62 [2,9] 0.974
Post-ALassocv 0.0732 0.1182 0.1390 0.0894
ALassocvse 0.1984 0.0847 0.2157 0.1974 2.63 [0,6] 0.583
Post-ALassocvse 0.0703 0.1156 0.1353 0.0859
n = 2000

β̂m 0.0634 0.0502 0.0809 0.0648
ALassocv 0.0350 0.0496 0.0607 0.0403 4.17 [3,9] 1
Post-ALassocv 0.0281 0.0573 0.0638 0.0386
ALassocvse 0.0960 0.0434 0.1053 0.0977 3.03 [3,5] 1
Post-ALassocvse 0.0059 0.0433 0.0437 0.0287
n = 10, 000

β̂m 0.0277 0.0225 0.0357 0.0278 3 1
ALassocv 0.0111 0.0224 0.0250 0.0169 3.85 [3,9] 1
Post-ALassocv 0.0081 0.0250 0.0263 0.0169
ALassocvse 0.0382 0.0191 0.0428 0.0391 3.01 [3,4] 1
Post-ALassocvse 0.0008 0.0184 0.0184 0.0127
Notes: Results from 1000 MC replications; β = 0; ρ = 0.25; a = 0.2 ; γ̃2= 0.2

Having all elements of δ1 with the same sign is clearly the worst case scenario for the

asymptotic bias of the median estimator. The best case scenario is for even s, if half

the elements in δ1 are positive and half negative, as we then have that
√
n
(
β̂m − β

)
converges to the median of the limiting distribution of

√
n (π̂2 − β ιL−s), and therefore

has no asymptotic bias.

For the results in Table B1, for n = 2000, the means of the estimates α̂m,j for the

positive αj = 0.2, j = 1, .., 3, are approximately 0.187, whereas the means of the estimates

for the αj = 0, j = 4, ..., 10, are approximately 0.0186. For n = 10, 000, these are

approximately 0.194 and 0.0085. The ratios of the biases for n = 10, 000, relative to

those of n = 2000 are approximately 0.45 which is equal to
√
2000/

√
10, 000, confirming

that the bias in α̂m decreases at the
√
n rate.
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B.2 Information content

We distinguish two different measures of information in the IV Lasso selection problem.

First, as mentioned in Section 5, the information content for the estimation of β in the

oracle instrumental variables model is characterised by the concentration parameter µ2n,

Rothenberg (1984), which is here given by

µ2n =
γ ′2Z

′
2MZ1Z2γ2
σ2v

.

µ2n is approximately equal to n (L− s) γ̃22 = 140 for the n = 500 cases above, which is

equivalent to a first-stage population F-test value for the null H0 : γ2 = 0 of nγ̃
2
2 = 20.

This is a reasonably large value of the F-test, see Staiger and Stock (1997) and Stock

and Yogo (2005), which is reflected in the good properties of the oracle 2SLS estimator.

Clearly, though, the Lasso procedures do not perform well for the n = 500 case, especially

when γ̃1 = 3γ̃2.

The weak instrument asymptotics of Staiger and Stock (1997) is obtained by con-

sidering γ2 in a neighbourhood of 0, as γ2 = cγ2/
√
n, with cγ2 a vector of constants.

The information content µ2n does then not increase with the sample size and converges

to µ2c = c′γ2Q̃22cγ2/σ
2
v as n → ∞. The oracle 2SLS estimator is in that case not consis-

tent and converges to a random variable with expected value different from β, with the

difference larger for smaller values of µ2c .

Second, a measure of information for the Lasso selection is the (squared) Signal to

Noise Ratio (SNR), see e.g. Bühlmann and Van de Geer (2011, p. 25), defined as

η2 =
α′Cα

σ2ε
=
α′1C11α1

σ2ε
,

where, as before, C = plim
(
1
n
Z̃′Z̃

)
and C11 = plim

(
1
n
Z̃′1Z̃1

)
. From the proof of Propo-

sition 1 we obtain

α′1C11α1 = α′1Q11α1 −
(γ ′1Q11α1 + γ ′2Q21α1)

2

γ ′1Q11γ1 + 2 γ
′
2Q21γ1 + γ

′
2Q22γ2

. (B.1)

It follows from (B.1) that if we multiply α1 by a factor m, η2 gets multiplied by m2

whereas multiplying γ by a factor m does not affect the value of η2.
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For the Monte Carlo design in Section 5, with σ2ε = 1, it follows that

η2 = sa2 − (saγ̃1)
2

sγ̃21 + (L− s) γ̃22

=
(L− s) a2(
γ̃1
γ̃2

)2
+ L−s

s

,

and so the SNR is here directly influenced by the relative value |γ̃1/γ̃2|, with an increase in
this value decreasing the value of η2. For the unequal strength design above, η2 = 0.0247,

and for the equal strength design it is η2 = 0.0840. As Zou (2006) indicated, the smaller

value of the SNR in the unequal design explains the poorer performance of the adaptive

Lasso estimators for a given sample size, as depicted in Figures 1b and 1c.

In order to illustrate the performance of the adaptive Lasso estimator in relation to

the value of η2, Table B2 shows the rejection frequencies at the 10% level of the robust

Wald tests Wβ,r based on the oracle and post-ALassoah estimators, for the n = 500

unequal strength case as in Section 5.1, but increasing α by a multiplicative factor

m =
√
1,
√
3, ...,

√
9, and hence increasing η2 by a multiplicative factor m2. At m2 = 9,

the post-ALassoah estimator again behaves like the oracle estimator. Increasing the value

of a, whilst keeping γ constant, increases of course the bias of the naive 2SLS estimator

as is clear from (23). The value for nη2, which is akin to a population Wald statistic for

testing H0 : α1 = 0, ranges from 12.35 for m = 1 to 111.15 for m = 3.

Increasing γ̃1 and γ̃2 by the same multiplicative factor whilst keeping a constant does

not alter η2, and does not lead to an improvement of the performance of the Wald test

Wβ,r when keeping the sample size constant, as confirmed by the results in Table B2.

The bias of the naive 2SLS estimator decreases here with increasing values of m.

Table B2. Rejection frequencies of Wβ,r at 10% level, varying α or γ
m2

α×m 1 3 5 7 9
post-ALassoah 0.9300 0.3130 0.1350 0.1100 0.1070
Oracle 0.1020 0.1030 0.1020 0.1010 0.1040
η2 0.0247 0.0741 0.1235 0.1729 0.2223
γ ×m
post-ALassoah 0.9300 0.9270 0.9340 0.9360 0.9360
Oracle 0.1020 0.0960 0.0980 0.1010 0.0980
η2 0.0247 0.0247 0.0247 0.0247 0.0247
Notes: n = 500, same design as in Table 2 when m = 1, 1000 MC replications
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Multiplying both γ andα by a factorm increases both µ2n and η
2 by a factorm2. Table

B3 displays estimation results for the unequal strength design for n = 500, multiplying a,

γ̃1 and γ̃2 by m =
√
20. The estimation results are very similar to those for n = 10, 000

as reported in Tables 2 and 3, and so the information increase due to multiplying the

parameters by m is here very similar to multiplying the sample size by a factor m2.

Table B3. Estimation results for β; n = 500, γ̃1 = 3γ̃2, a = γ̃2 = 0.8944

av. # instr freq. all s
selected as invalid invalid instr

β bias std dev rmse mad [min, max] selected
2SLS 0.2650 0.0106 0.2652 0.2651 0 0
2SLS or -0.0002 0.0191 0.0191 0.0128 3 1
β̂m 0.0272 0.0229 0.0356 0.0267
Post-ALassocvse 0.0003 0.0194 0.0194 0.0132 3.02 [3,5] 1
Post-ALassoah 0.0000 0.0192 0.0192 0.0130 3.02 [3,5] 1
Notes: Results from 1000 MC replications; L = 10, s = 3, β = 0, ρ = 0.25

The values of η2 or nη2 do not convey the same information about the performance

of the adaptive Lasso estimators as µ2n does for the oracle 2SLS estimator. We first

illustrate this with an example where the coeffi cients in α1 take different values. In this

case, the performance of the Lasso estimator is driven by how well it does in selecting

the variable with the smallest value |αj|, j = 1, ..., s. If we for example change α1 to

α1 =
(
0.1 0.2 0.2063

)′
, we get the same value of η2 = 0.0247 in the unequal strength

design, but as Figure B2 shows, a much larger sample size is needed for the inference

based on the post-ALassocvse and post-ALassoah estimators to be similar to that of the

oracle estimator, due to the presence of the smaller coeffi cient α1 = 0.1.

For the oracle properties of the adaptive Lasso estimator, we need that |α1|min �
O
(
n−1/2

)
. Similar to µ2n, the population Wald statistic nη

2 does not increase with the

sample size if α1 = cα1/
√
n. Although the naive 2SLS estimator is then consistent in

this finite s setting, provided γ2 � O
(
n−1/2

)
, the adaptive Lasso estimator will not have

oracle properties in this case, and the properties of the Wald test Wβ,r do not improve

with an increasing sample size, as the information does not increase and β̂
(n)

ad has an

asymptotic bias. For example, setting α1 = anιs in the equal strength instruments

design, with an = 0.2 ∗
√
500/
√
n, gives rejection frequencies of the robust Wald test

based on the post-ALassoah estimator at the 10% level of 35%, 33% and 34% for n = 500,
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n = 2000 and n = 10, 000 respectively. For the unequal strength instruments example

above, setting α1 =
(
an 0.2 0.2063

)
with an = 0.1 ∗

√
500/
√
n, we get rejection

frequencies of the post-ALassoah based Wald test of 56%, 53% and 54% respectively at

n = 2000, n = 10, 000 and n = 30, 000. In both examples, the adaptive Lasso procedure

does not select the full set of invalid instruments as invalid in large samples. This leads

to an asymptotic bias, as the random variable
√
n
(
β̂
(n)

ad − β
)
then does not have a mean

of zero when n → ∞, as an = O
(
n−1/2

)
. Of course, in the finite dimension, fixed

parameters case we consider here, we have the limiting distribution of the adaptive Lasso

estimator as in (21), but, as shown in Figure B2, the presence of small coeffi cients in α1

may affect the behaviour of the estimator in any given application.

Figure B2. Rejection frequencies of robust Wald tests for H0: β = 0 at 10% level as a

function of sample size, in steps of 500. Unequal strength instruments design, Post-ALasso,

α1=
(
0.1 0.2 0.2063

)
. Based on 1000 MC replications for each sample size.

The Sargan test based on the naive 2SLS estimator is related to the SNR, as it is a

score test for H0 : αC = 0 in the model

y = dβ + ZCαC + ε,

where ZC is any (L− 1) subset of instruments from Z. The SNR η2 is not affected

when γ is multiplied by a factor m and therefore is not affected by weak instruments,

where the value of γ is such that the concentration parameter µ2n is small. However, it
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is well known that weak instruments decrease the power of the Sargan/Hansen test, see

Staiger and Stock (1997) and Kitamura (2006), which would then affect the behaviour

of the post-ALassoah estimator, as the decrease in power will result in less instruments

selected as invalid. This is illustrated in Table B4, which presents results for the unequal

instrument, large a design as in Table B2, for n = 500, a = 0.6, γ̃1 = 0.6, γ̃2 = 0.2,

and γ multiplied by a factor 1/m for m2 = 1, 3, ..., 9. We present results here for the

median bias, as the variability of the estimators increases substantially for larger values

of m. For increasing value of m, the number of selected invalid instruments decreases for

the ALassoah estimator, whilst that of the ALassocvse actually increases, and the median

bias of the ALassoah estimator increases relative to that of the ALassocvse estimator.

Increasing the p-value for the Hansen test decreases the bias of the ALassoah estimator.

For example, for m = 3, setting the p-value to 0.2 instead of 0.016 increases the average

number of selected instruments as invalid to 3.13 and reduces the median bias of the

estimator to 0.1022. The post-ALassoah estimator is, however, a much noisier estimator

here with a standard deviation of 0.66 compared to 0.35 for the post-ALassocvse estimator

and 0.21 for the oracle 2SLS estimator.

Table B4. Median bias for 2SLS estimators of β; L = 10, s = 3
m2

γ × (1/m) 1 3 5 7 9
2SLS 0.7883 1.3311 1.6778 1.9464 2.1570
2SLS or 0.0087 0.0344 0.0504 0.0666 0.0740
post-ALassocvse 0.0138 0.0410 0.0632 0.0899 0.0992
# Inv Inst 3.07 3.10 3.17 3.26 3.31
post-ALassoah 0.0103 0.0348 0.0556 0.0920 0.1257
# Inv Inst 3.01 3.01 2.88 2.61 2.37
µ2n 678.51 225.66 136.40 96.86 75.14
Notes: n = 500, a = 0.6, γ̃1= 3γ̃2 , γ̃2= 0.2/m, 1000 MC replications

For another example where the same value of η2 does not imply the same finite sample

behaviour even when all the coeffi cients in α1 are the same, we consider a design with

correlated instruments. Figures B3a-B3c below show the rejection frequencies of the

robust Wald test Wβ,r as in Figures 1a-1c for equal and unequal strength instruments,

but where the instruments are correlated and distributed as follows

Zi. ∼ N (0,Σ) ,
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with the elements of Σ given by

Σr,k = ω|r−k|

and ω = 0.5.

Figures B3a, B3b and B3c. Rejection frequencies of robust Wald tests for H0: β = 0 at 10%

level as a function of sample size, in steps of 500. Correlated instruments, equal strength

instruments design, Post-Lasso in Figure B3a, Post-ALasso in Figure 3Bb. Unequal strength

instruments design, Post-ALasso in Figure 3Bc. Based on 1000 MC replications for each

sample size.

As in the designs of Figures 1a-1c, α1 = aιs, γ1 = γ̃1ιs, γ2 = γ̃2ιL−s, L = 10, s = 3

and for the unequal strength design γ̃1 = 3γ̃2. We set the parameters a and γ̃2 such

that µ2 = plim (µ2n/n) and η
2 are equal to those of the designs for Figures 1a-1c. This

results in γ̃2 = 0.1321 for both designs, a = 0.1552 in the equal instruments design, and
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a = 0.1448 in the unequal instruments design. As the figures show, a larger sample size n

is needed here for a performance of the Wald testWβ,r similar to that of the uncorrelated

instruments designs.

Assumption 4 states that the instruments are relevant in the sense that γj 6= 0, for
j = 1, ..., L. If this assumption is relaxed and some of the γj are equal to 0, then the

instruments are potentially invalid for two reasons as the relevance and/or exclusion

condition may fail. If γj = 0, then |πj| =
∣∣(βγj + αj

)
/γj
∣∣ is either ∞ for instruments

with αj 6= 0, or ill defined as β + 0/0. The median and adaptive Lasso estimators still
have the properties as stated in Section 4 if we make the assumption that more than

50% of the instruments are valid and relevant. Another remedy to a relevance problem

would be to do an initial selection of the instruments by for example a Lasso selection

in the model d = Zγ + v, with the identification condition then that less than 50% of

the selected (i.e. suffi ciently strong) instruments are invalid. This is the approach taken

by Guo et al. (2018), who then proceed to select the invalid instruments by a pairwise

comparison of the π̂j.
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