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S.1 ADDITIONAL SIMULATION RESULTS

S.1.1 Simulation 3: Constant common factor function

In Section 2.5, we pointed out that when there are no scale-differences in
w;[(s1,t1), (S2,t2)]’s across different time points, the asymptotic powers of the quasi GPF

test and the L?-norm based test are comparable. It is then of interest how do GPF,,,,, GPF,,

2

and Fax,p perform against Lj ,

pr and Tinax,p When the common factor function is a
constant. In this simulation study, we aim to compare GPF,,, GPF,, and F},ax , against
L;,, L2, and Tiax,p under the data generating model (50) with h(t) = 1. Tables S.1 and
S.2 present the empirical sizes and powers (in percent) of Ly, (L2,)), T3, ,p» GPFpy, GPF,,
and Fiax rp Wwhen the £ functional samples follow Gaussian and non-Gaussian distributions,
respectively. Similar to Simulation 2, in Table S.1 we only present the results of L2 while
in Table 5.2 we only present the results of pr.

First of all, it is seen that in terms of size control, both Flax rp and Tinax -, have better

performance under various simulation configurations with most of their empirical sizes close



Table S.1: Empirical sizes and powers (in percent) of the tests when z;;,., r =1,..

1,...,n; 1=1,... k are i.i.d. N(0,

1) for Simulation 3.

Q)=

n, = (30, 40, 50)

n; = (80, 70, 100)

P n, = (20,30, 30)
w 0 1 2 8 6
L2 4.5510.91 54.61 90.22 99.99

Tonaxrp 5.58 19.07 60.55 87.40 99.41
0.1 GPF,, 6.56 11.87 51.53 86.03 99.17
GPF,, 5.52 9.93 49.44 85.66 99.56
Fonaxrp 5.35 13.95 51.75 85.33 99.53

0 1 1.5 2 3
4.63 15.89 45.56 77.89 99.01
5.26 28.94 58.94 83.18 98.64
5.95 14.74 41.08 72.00 97.85
5.27 13.38 39.53 70.68 97.88
5.22 20.25 47.17 75.49 98.06

o 05 1 1.5 2
4.68 7.94 37.32 87.38 99.42
5.15 18.93 66.57 96.22 99.81
5.57 7.85 32.99 81.63 98.80
5.17 7.46 32.22 81.03 98.73
4.95 13.98 54.35 92.32 99.63

w 0 05 1 1.5 2
L?  4.80 23.24 74.56 96.42 99.65
Tonaxrp 5.55 20.07 55.46 81.58 93.45

0.5 GPF,, 7.39 25.72 72.05 93.31 98.23
GPF,, 5.79 21.31 68.61 93.22 98.69
Funaxrp 5.62 18.71 58.46 89.05 97.57

0 04 08 1 1.2
4.77 24.47 80.66 93.48 98.31
5.51 20.76 61.83 79.67 90.41
6.53 23.64 75.57 90.92 97.13
5.38 20.53 72.84 89.74 96.83
5.50 19.08 63.03 82.30 93.79

0o 038 04 05 07
5.04 36.64 62.49 83.95 98.65
5.17 33.94 53.31 72.11 95.14
5.83 31.56 55.78 78.22 98.32
5.21 29.38 53.07 76.37 98.10
5.25 27.62 47.88 70.42 95.89

w 0o 05 08 1 1.5

L} 4.78 34.87 71.73 89.47 99.58
Thnax,rp 5.40 11.10 25.70 36.90 67.57
0.9 GPF,,, 8.28 35.68 74.14 89.69 98.87
GPF,, 8.10 34.00 72.24 88.09 98.93
Fraxrp 5.91 12.83 27.73 44.05 82.71

0 04 05 07 1
5.07 32.68 52.41 85.68 99.23
5.57 10.78 15.61 29.44 58.32
6.41 33.32 51.94 83.85 98.90
6.69 32.98 51.05 82.96 98.70
5.45 12.46 18.01 33.67 68.29

0 02 08 04 0.5
5.01 19.88 48.49 79.40 95.72
5.28 8.54 15.32 27.00 44.33
5.60 19.41 46.72 77.02 94.63
5.87 20.48 47.38 77.36 94.67
541 9.51 17.67 30.73 49.95




Table S.2: Empirical sizes and powers (in percent) of the tests when z;;,, r =1,...

1,...,n; i=1,... kareiid. (3/5)"?t; for Simulation 3.

4 J =

p n; = (20,30, 30)

n, = (30, 40, 50)

n; = (80, 70, 100)

0 2 206 38 12
pr 5.86 37.28 56.01 79.14 94.39
Trnax,rp 5.80 40.20 56.33 76.17 93.28
0.1 GPF,, 5.12 33.87 52.43 74.34 88.98
GPF,, 5.74 34.98 54.73 78.92 94.46
Fraxrp 5.60 36.87 54.99 78.87 94.91

w

0o 1.5 22 3 5
5.49 29.20 61.14 83.10 96.52
5.67 38.15 65.35 83.14 95.25
4.95 24.91 55.30 78.62 92.72
5.51 26.07 58.42 82.54 96.68
5.59 31.38 61.54 83.28 96.81

0 1.2 1.5 1.8 2.6
5.04 37.96 61.62 79.46 97.18
5.36 59.27 77.92 89.28 98.32
4.65 30.99 53.97 73.08 95.09
5.12 33.00 56.17 75.53 96.73
5.19 49.84 70.92 85.12 97.97

w o 08 1.1 1.5 5
sz 6.01 36.76 57.16 75.09 94.35
Tnax,rp 5.56 25.61 41.03 57.05 90.74
0.5 GPF,,, 5.56 36.72 57.48 73.74 89.50
GPF,, 5.99 36.76 58.65 76.98 94.78
Finax,rp 5.77 31.82 52.86 73.47 95.39

0o 06 08 1.1 1.8
5.50 34.03 52.64 74.87 93.82
5.12 25.73 38.07 57.67 85.27
4.96 29.93 49.93 72.83 91.15
5.46 31.23 51.56 75.35 94.71
5.43 29.11 46.87 72.05 94.46

0 04 05 07 1
5.10 37.43 56.20 83.18 96.71
5.12 35.18 48.96 74.36 93.22
4.43 28.03 46.17 76.44 94.37
5.42 30.88 49.31 79.27 95.95
5.31 33.71 51.41 80.46 96.80

0 06 08 1.1 1.8
L2, 8.35 32.16 48.88 70.14 88.63
Tonaxrp 5.61 10.75 17.01 28.28 55.71
0.9 GPF,, 5.06 27.49 46.93 71.08 88.07
GPF,, 8.53 33.8) 53.78 75.82 92.58
Fanaxrp 6.35 14.37 22.04 39.75 78.76

w

0o 05 06 08 1.2
6.83 31.92 44.39 69.33 90.26
5.58 10.61 13.63 24.07 50.29
3.98 25.64 38.26 67.51 90.23
7.03 33.23 46.60 73.97 93.73
5.96 14.10 18.52 32.32 68.21

0o 038 04 05 0.7
5.87 29.85 55.11 76.08 95.60
5.33 11.25 18.85 29.31 56.02
3.03 20.16 43.41 67.13 92.66
5.84 29.39 54.85 76.71 96.56
5.56 13.38 22.57 33.82 66.74




to the nominal size 5%. GPF,,, and GPF,, perform well when the functional data are highly
correlated or when the sample sizes are large. On the other hand, L7, performs quite well

under the Gaussian case, L2,

performs well when the functional data are highly correlated
or the sample sizes are large but it is liberal when the functional data are less correlated
or when the sample sizes are too small. In terms of power, it seems GPF,,, GPF,, and
Ly, (L?,) have comparable powers but they have smaller (or higher) powers than Fia,rp

and Tiaxp when the functional data are highly (or less) correlated.

S.1.2 Simulation 4: Monotonically increasing common factor

function

In the two simulation studies in the main paper, the common factor function h(t) is mono-
tonically decreasing. In this simulation study, we aim to compare GPF,,, GPF,, and
Frnax,rp against sz and Tiyax rp under the data generating model (50) with h(t) = (t+1/J),
which is a monotonically increasing function. Table S.3 presents the empirical sizes and
powers (in percent) of pr, Tax,rps GPF,, GPF,, and Fax -, when the k functional sam-

ples follow Gaussian distributions. From Table S.3, it is seen that similar to Simulation 2,

GPF,,, GPF,, and F} ., are significantly more powerful than L? and T? Although

rp max,rp*
Finaxrp i less powerful than GPF,, and GPF,, when p = 0.9 and n = n;, n,, it is gener-
ally more powerful than GPF,, and GPF,, in all the other cases. These conclusions are

consistent with those we drawn from Simulation 2 in the main paper.



Table S.3: Empirical sizes and powers (in percent)

when 25,7 =1,...

of L?

rp?

Twax, GPF,,,, GPF,, and Fax
;i=1,...,n;i=1,... k are i.i.d. N(0,1) for Simulation 4.

p n; = (20,30, 30) n, = (30,40, 50) n; = (80, 70, 100)
w 0 0035 03 | 0 002 0045 0  0.0176 0.0
L2, 522 547 620 | 503 494 558 | 482 502 5.34
Twex 528 572 592 | 526 503 561 | 497 459 5.09
01 GPF,, 6.33 651 1563 | 588 573 657 | 518 5.08 5.47
GPF,, 529 539 1256 | 509 505 581 | 504 475 5.21
Fuaxsp 553 5475 9655 | 546 54.02 9516 | 5.16 57.19  95.56
w 0 0.028 0.6 0 0.018 0.14 0 0.009 0.015
L2, 6.08 601 8728 | 556 569 10.60 | 510 536 5.83
Trax 598 585 2105 | 516 542 649 | 511 491 5.16
05 GPF,, 7.87 1091 9479 | 6.58 9.19 5848 | 6.24 752  10.53
GPF,, 6.16 825 9448 | 538 7.59 5445 | 555 6.82 9.58
Fuaxsp 571 5280 9249 | 525 54.09 9832 | 5.33 5279  97.17
w 0 0.1 0.35| 0 0.06 0.25 0 0.02 0.028
L2, 662 885 3090 | 596 7.7 21.96 | 532 590 6.43
Trax 576 599 723 | 550 580 645 | 528 523 5.28
0.9 GPF,, 801 46.67 9407 | 6.43 3728 98.09 | 5.31 2048  36.87
GPF,, 7.79 4480 9413 | 6.81 3721 9810 | 591 21.39  38.26
Fuaxsp 610 5583 7069 | 5.69 7757 9407 | 552 6370 9547




S.1.3 Simulation 5: On the choice of basis functions

In Simulation 1, we used a BIC criterion to select the number of Fourier basis functions
for estimating the functional principal components in the implementation of F'SH K, and
FSHK,. It is of interest if the choice of the number of basis functions involved and
the choice of bases have a strong impact on the performance of these two tests. In this
simulation study, we consider using different number of basis functions L = 11,21,41,81
and also consider using B-spline basis functions. To save computation, the number of
simulation repetitions is reduced to N = 1000. The results using different number of
Fourier basis functions to estimate the functional principal components in F'SHK; and
FSHK, are presented in Table S.4 where the cases n = (30,40) and some choices of w are
omitted for space saving.

It can be seen from Table S.4 that F'SH K; and F'SH K5 have comparable performance
for different number of basis functions, and are again less powerful than GPF,,, GPF,,
and Fyay (see the results in Table 1 of the main paper). The results using B-spline basis
functions are presented in Table S.5, where the cases p = 0.5 and n = (30, 40) are omitted
for space saving. It is seen from Table S.5 that the tests FSHK;, and FSHK, perform
comparably for different L, and similar conclusions can be drawn as those drawn from

Simulation 1 of the main paper.



Table S.4: Empirical sizes and powers (in percentages) of FSHK; and FSHK,; when
Zigey = 1,...,q;7 =1,...,n;;0=1,...,k are i.i.d. N(0,1) using Fourier basis functions

for Simulation 5.

L »p n; = (20,30) ny = (80,70) L  mn; =(20,30) n; = (80, 70)
w 0 8 14| 0 35 5 0 8 14| 0 85 5

01 FSHK, 6.7 92 558| 58 48 5.1 77 93 584| 55 59 46
FSHK, 52 77 516| 54 56 6.1 62 75 563| 54 59 53

w o 35 6| 0 14 2 o 3 6| 0 14 2

11 05 FSHK, 83 331 844 | 57 91 193 |21 75 317 849 50 93 17.8
FSHK, 34 156 735| 57 139 250 53 134 745| 53 133 239

w o 22 4| o0 11 17 o 22 4| o0 1.1 1.7

09 FSHK, 95 152 364 | 42 45 64 90 169 340| 40 61 67
FSHK, 46 49 124| 50 53 83 55 48 130| 46 58 7.7

w 0 8 14| 0 35 5 0 8 14| 0 85 5

01 FSHK; 64 93 553| 55 63 49 73 113 573| 52 49 52
FSHK, 47 60 526| 56 6.1 54 50 84 536| 53 53 54

w o 3 6| 0 14 2 0o 3 6| 0 1.4 2

41 05 FSHK, 9.6 310 854| 50 11.2 208 |81 6.7 313 850| 5.1 10.8 20.0
FSHK, 4.8 164 73.6| 49 146 26.0 48 139 715| 50 142 268

w o 22 4| o0 11 17 o 22 4| 0 11 1.7

09 FSHK; 101 156 349 | 46 48 6.1 91 156 364| 51 50 62
FSHK, 4.9 40 108| 46 6.0 89 55 49 141| 53 59 74




Table S.5: Empirical sizes and powers (in percent) of FSHK;, FSHK,, GPF,,, GPF,, and
Fraxrp When zi,r = 1,...,¢;7 = 1,...,n;;0 = 1,..., k are i.i.d. N(0,1) using B-spline

basis functions for Simulation 5.

L p n, = (20,30) n; = (80,70) L  my = (20,30) n; = (80, 70)
w 0o § 140 35 5 0o 8§ 140 35 5

FSHK, 5.6 7.4 52547 44 53 78 83 57.9|53 58 54
FSHK, 4.6 6.2 50.3|4.6 49 56 59 56 56.8|53 55 6.1

0.1 GPF,, 6.2 538 91.0|50 246 645 6.2 489 909 |50 251 66.1
GPF,, 52 50.8 922|51 240 632 48 446 91.8 |49 247 654

11 Fraxrp 49 760 916[54 831 997 |21 50 736 91.4|53 851 99.9
w 0o 22 4 |0 1.1 1.7 0o 22 4 |0 1.1 1.7

FSHK, 9.6 93 152|51 41 44 89 122 205|58 50 4.2
FSHK, 5.6 4.9 6.6|50 46 4.7 4 41 86|55 53 6.2

09 GPF,, 5.1 473 914|3.9 502 915 5 436 92443 505 90.4
GPF,, 7.3 522 921|52 571 93.7 7 491 932(59 571 922

Foaxrp 5.7 167 47447 233 492 56 16.0 50.5|5.6 21.8 50.2

w 0o 8§ 140 35 5 0o 8§ 140 35 5

FSHK, 6.9 8.6 61.7|53 48 52 6 65 58544 54 50
FSHK, 5.9 6.3 602|55 51 5.1 48 41 566|49 56 54

01 GPF,, 6.3 506 927|54 275 64.0 6.3 525 90.5|53 27.7 61.6
GPF,, 50 47.7 93.7| 5 268 64.2 51 47.9 914 |51 268 61.3

41 Foaxrp 49 729 909 |52 827 997 |81 52 741 893 |53 856 99.7
w 0o 22 4 |0 1.1 1.7 0 22 4 |0 11 1.7

FSHK, 9.3 12.6 227|50 52 43 85 13.0 205|48 45 5.7
FSHK, 53 41 86|56 51 59 48 47 68|51 48 58

09 GPF,, 4.1 462 909 |43 528 90.6 48 451 90.5|4.2 509 90.4
GPF,, 7.1 507 923|6.2 588 928 71 513 92159 59.0 92.9

Fuaxrp 6.3 165 46.0 |58 226 50.2 46 176 450 |56 222 536




S.1.4 Simulation 6: On the number of permutations

In the previous simulation studies, we used the number of permutations P = 1000 for
pr, Thax, GPF,, and Fiax. A larger number of P may be desired but is often limited by
the computational cost. To examine the effect of the number of permutations P and the
time used for the implementation, we repeat two simulation cases of Simulations 2 and 3,
respectively, with different numbers of permutations P = 200, 500, 1000, 2000 and present
the results in Tables S.6 and S.7, respectively.

From Tables S.6 and S.7, it is seen that pr, Tvax, GPFE,, and I, have comparable em-
pirical sizes and powers for different P. One possible explanation is the considered P’s are
not large enough to observe a significant impact of the number of permutations. However,

increasing the number of permutations often means the time used increases substantially.



Table S.6: Empirical sizes and powers (in percent) of the tests and the time used for different
number of permutations under the settings of Simulation 2 when p = 0.5, n = (30, 40, 50),
zer =1, qj=1,... ngi=1,... kareiid. N(0,1) for Simulation 6.
P =200, Time=56.72 minutes P =500, Time=2.19 hours
w 0 0.8 1.2 1.5 2 0 0.8 1.2 1.5 2
pr 557 5.14 551 553 520|525 504 558 527 536
Tazrp 945 532 537 544 503]528 515 552 517 526
GPF,, 6.43 29.17 5740 76.47 94.07|6.91 30.27 57.27 76.04 94.06
GPF,, 5.20 25.11 5221 7253 93.03|5.55 26.35 52.92 73.11 93.31
Froaxrp 9545 3321 63.83 81.66 95.56 | 5.77 33.97 63.88 82.14 95.62
P = 1000, Time=4.28 hours P = 2000, Time=8.44 hours
w 0 0.8 1.2 1.5 2 0 0.8 1.2 1.5 2
L%p 547 553 543 519 535(5.02 533 537 502 514
Toazrp 942 545 533 511 531|511 539 543 483 494
GPF,, 6.73 30.55 56.85 76.49 94.20 | 6.28 29.16 57.18 76.74 94.84
GPF,, 5.47 26.68 5252 73.44 93.55|5.31 25.63 52.83 74.07 94.33

Froaxrp 975 3493 63.80 8242 95.89 |5.38 33.79 64.37 83.08 96.39

10



Table S.7: Empirical sizes and powers (in percent) of the tests and the time used for different
number of permutations under the settings of Simulation 3 when p = 0.9, n = (80, 70, 100),
Zigr =135 =1,...,n5i=1,... k are ii.d. (3/5)"2t; for Simulation 6.
P =200, Time=2.14 hours P =500, Time=4.62 hours
w 0 0.3 0.4 0.5 0.7 0 0.3 0.4 0.5 0.7
pr 6.38 29.76 54.26 75.65 95.15|5.66 3.02 548 76.3 95.18
Toazrp 95.52 1092 18.88 28.97 54.87 | 5.63 11.70 18.72 28.53 55.52
GPF,, 3.16 19.84 4227 66.28 92.57 | 2.85 20.02 43.13 66.83 92.38
GPF,, 6.54 2894 53.70 76.37 96.31 | 5.66 29.50 54.37 77.33 96.38
Froaxrp 9548 13.15 21.65 34.18 66.32 | 5.05 14.51 22.32 34.39 66.90
P = 1000, Time=8.75 hours P = 2000, Time=17.03 hours
w 0 0.3 0.4 0.5 0.7 0 0.3 0.4 0.5 0.7
pr 547 29.73 54.45 76.48 9545|598 30.01 54.16 76.70 95.37
Toazrp 950 11.92 1897 2881 56.69 | 5.64 11.77 19.07 29.79 57.16
GPF,, 3.08 19.63 4243 67.27 9250 | 3.14 19.80 42.30 66.56 92.51
GPF,, 5.42 2920 5397 77.33 96.44 | 5.89 29.21 53.62 77.25 96.35

Froaxryp 934 1336 2220 35.00 67.22 544 13.79 2229 3543 66.44

11



S.1.5 Simulation 7: On the exchangeability

At the end of Section 2.3, we mentioned that the performance of the random permutation
method relies on the exchangeability of the permuted data. It is of interest if the violation
of this exchangeability will have a strong impact on the performance of the random permu-
tation based approaches. In this simulation study, we use the same simulation settings as
in Simulation 1 of the main paper, but let the first group sample be i.i.d Gaussian and the
second group sample be i.i.d non-Gaussian via setting zy;,,7 = 1,...,¢;7 = 1,...,m bES-
N(0,1) and 29,7 = 1,...,¢;5 = 1,...,n9 s (3/5)"?t5. In this way, the samples of
the two groups still have the same covariance function under the null hypothesis but have
different higher order moment functions. It is said that Assumption A3 in the main paper
is violated and the samples of the two groups are not exchangeable. Empirical sizes and
powers of the random permutation based tests pr, Thaxs GPF,p, Fiaxrp, and the Welch—
Satterthwaite approximation based test GPF,,, are presented in Table S.8. It is seen that

all the random permutation based tests are very liberal and their empirical sizes are gener-

ally larger than those presented in Simulations 1 and 2 of the main paper. GPF,,, is liberal

2
p?

less liberal than GPF,, and Fjaxp. This simulation shows that GPF,,,,, GPF,, and Fiaxp

when p = 0.1,0.5 but becomes conservative when p = 0.9. It seems that L , Tiax - are

may not have a good size control when Assumption A3 is not satisfied.

12



Table S.8: Empirical sizes and powers (in percent) of L7,

Tmaxa GPFTwa GPFT‘p and Fmax,rp
when zy;,r=1,...,¢;5 = 1,...,ny are 1.i.d. N(0,1) and 25,7 =1,...,¢;5 =1,...,n9

are i.i.d. (3/5)'/%t5 for Simulation 7.

p n, = (20,30, 30) n, = (30,40, 50) ny = (80,70, 100)
w 0 s 11 15 8| 0 6 8§ 1 15| 0 5 6 7 10
I3, 659 693 620 663 1967| 690 638 637 669 7.22| 728 70l 7.30 755 7.07
Tawry 670 686 6SL 693 640 | 698 665 671 693 674| 7.24 716 760 777 705

01 GPF,, 745 2082 5340 7275 8440 | 7.46 2379 49.82 7855 88.41| 7.40 4338 G7.85 8630 98.30
GPF,, 670 2864 5500 77.68 9152 | 7.08 2426 5225 8371 95.11 | 7.57 46.02 7115 89.42 99.93
Fuerp 721 4974 60.72 67.44 7128 | 7.20 6333 78.95 8483 8620 | 7.52 96.24 97.78 98.26 98.51
w o s 4 8§ 15 0 2 35 4 7| 0 14 19 25 38
I3, 553 571 572 617 2179| 625 581 540 575 644| 620 607 600 602 611
Tuwrp 575 574 590 577 537| 608 587 562 584 585| 603 617 605 588 591

05 GPF,, 747 3314 4912 7951 8592 | 649 2081 5170 7143 9143 | 6.85 4339 69.92 S7.84 08.08
GPF,, 6.95 3151 4931 8681 93.00| 652 30.07 5348 76.18 O7.58 | 7.55 4601 73.07 9114 99.69
Fuerp 693 3803 49.64 65.74 7079 | 6.75 4349 6355 7852 ST.60 | 6.47 63.79 86.90 96.63 98.95
w o 2 35 4 8| 0 16 22 3 0.9 14 1.7 3
[, 532 547 518 527 535| 539 576 560 549 519 561 546 567 559 525
Tuwrp 530 539 550 525 521 | 548 544 549 520 510| 555 554 565 560 5.6

09 GPF, 332 2086 4415 67.03 8531 | 2.65 2346 4384 TL15 0185 2.88 2249 57.60 77.66 98.55
GPF,, 657 2052 52.93 7444 9275 594 36.60 58.73 8288 OT.78 | 6.71 3590 72.83 8845 99.93

Froaxrp 677 1430 21.67 33.78 61.60 | 6.22 17.24 2530 41.01 79.56 | 6.14 16.50 32.13 45.75 93.85

v
S

13



S.2 Graphical illustration of the simulated function

data

Scaled Model: Group 1

o

Scaled Model: Group 2

|
200 |

100

0 —
-100

-200 ’

0 02 04 06 08 1

Sparse Model: Group 2

Figure S.1: The simulated functional data (different samples/curves are in different colors).

At the end of Simulation 2 of the main paper, we mentioned that Tiax,p and Fiiaxrp

performed differently in Simulation 2 and in the paper by Guo et al. (2018) because the

simulated models under consideration are different. The simulated model used in the main



paper may be referred to as the scaled model while the simulated model used in Guo
et al. (2018) may be referred to as the sparse model. In this section, we give a graphical
illustration of the simulated data generated from these two different models. The simulated
functional data generated using the scaled model in Simulations 1 and 2 of the main paper
and those generated using the sparse model of Guo et al. (2018) are presented in Figure S.1.
For space saving, only two groups of functional data with w =4, p = 0.5 and ny = ny = 20
under the Gaussian case (when z,, 7 = 1,...,¢; j = 1,...,n; @ = 1,... k are i.i.d.

N(0,1)) are plotted.

S.3 Further studies on the medfly mortality data

S.3.1 Real-data based simulation: power comparison

In this simulation study, we used the medfly mortality data set given in Section 4 of the
main paper to compare the powers of GPF,,,, GPF,,, Fuax.rps Lis sz and Tiyax,rp- To this
end, we randomly resampled the survival functions with replacement from each of the four
groups to form a bootstrap dataset, and applied all the tests to check if the four groups of
the bootstrap dataset have the same covariance function. Note that conditionally on the
original data, the four conditional covariance functions of the bootstrap dataset are the four
sample covariance functions respectively presented in Figure 1 of the main paper, which
are clearly different. We repeat the above bootstrap process 10,000 times to calculate the
empirical powers of the tests based on a given nominal size « € [0,0.1]. The empirical
powers vs « are plotted in Figure S.2. It is seen the supremum based tests such as Tiax rp
and Flhax -, are more powerful than other tests, and the pointwise quasi F-statistic based

tests GPF,,,, GPF,, and Fax,, are generally more powerful than those L?-norm based

15



tests Ly, and L7?,. It is also seen that Finayrp is the most powerful test among all the tests
under consideration. These conclusions are consistent with those we observed from Table 5

of the main paper.

empirical power

nominal size
- Lgr — Tmax,mp =r=r GPFpp —— diagonal
........ erp == GPF,, e Frmax, o

Figure S.2: Empirical powers of the tests for the medfly mortality data.

S.3.2 Real-data based simulation: size control comparison

Similarly, to study the size controls of these tests, we can bootstrap from the pooled samples
of the four groups and generate a bootstrap dataset containing four groups. The empirical
sizes vs « are plotted in Figure S.3. It is seen that the size controls of these tests are

generally comparable, except L7, is rather conservative. It is also seen that Tyax - has best
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overall size control. GPF,, is a little liberal, possibly because the group sample sizes are

small. L7 did not work well, probably due to the serious violation of data Gaussianity.

0.12

0.10

o
o
@

empirical size
o
3

0.04

0.02

0.00

nominal size
---- L, — Tmax,mp serr GPFy —— diagonal
........ L2 == GPF,, — Fmax, p

Figure S.3: Empirical sizes of the tests for the medfly mortality data.

S.3.3 Raw survival and sample mean survival functions

The usual life span of a medfly is short, only around 3—4 weeks (Carey et al. 2008). The
raw and sample mean survival curves over the whole range are presented in Figures S.4 and
S.5, respectively. It is seen that after the first 31 days, all the group sample mean survival
functions are smaller than 0.05, and after the first 40 days, the values of the group sample

mean survival functions are so small that they can be ignored.
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Figure S.4: The survival functions of the four medfly groups.
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Figure S.5: The sample mean survival functions of the four medfly groups.
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S4 A note on the Welch—Satterthwaite XQ-
approximation

Zhang et al. (2017) provide a theoretical justification why the Welch-Satterthwaite x2-
approximation is preferred to the widely-used normal approximation. For the normal

approximation, we mean to approximate the distribution of Ty using a normal distri-

: x 10 tr(e?
bution. Let d* = % and M = W, where v&¢[(s1,t1), (s9,t2)] =

S (51, 11), (w, )] [(1, ), (S0, t)]dudw, € =2,3,4, . ... Then the skewness and kur-

1/2 and 12M respectively. It is easy to verify that d~' <

tosis of Ty can be expressed as (8/d*)
(d*)~' < M. Tt can be shown (see, e.g., Lemma 2 of Zhang et al. 2017) that the density error
bound of the Welch-Satterthwaite x2-approximation is O(M) 4 O(d~') +O[(d*)~/? — d'/?]
which is much smaller than the density error bound of the associated normal approxima-
tion O[(d*)~'/?] as given in Theorem 1 (a) of Zhang (2005). In addition, that the Welch—
Satterthwaite y2-approximation approach enjoys both computational efficiency and good
accuracy has been verified by a number of numerical applications and simulation studies

conducted in the literature, including Satterthwaite (1946), Welch (1947), Guo et al. (2016)
and recently by Zhang et al. (2017) in high-dimensional settings.

S.5 Another case when the quasi GPF test is more
powerful than the L?>-norm based test

Now we present another case when the quasi GPF test is more powerful than the L2-

norm based test. Under (42) and (45) in the main paper, we further assume that for each
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1=1,2,...,k, we have

L, (s1,t1) = (s2,ta),

]., S1,89) = tg,tl,
@;[(s1,11), (52, 12)] = ( )= h) (S.1)

2, s1 =11 =53 =1y,

0, otherwise,
\

Assumption (S.1) describes the case when @?[(s1,t1), (s2,t2)]’s are dominated by the values
on their diagonal surfaces. It is the case when the underlying processes v{, (t), i = 1,2,...,k
are Gaussian white noises (see a proof later). Then under Assumptions Al and A2, the
local alternative (26) and the conditions (36), (45) and (S.1), by some tedious algebra, we

have

o _ (=172 p 2 s ~244 ’ 4 p— A dT 2
oy = b ay (d"Wd) {[ﬂ[h( V(1)) ddt} , 0t =(b—a)'(d" Wd)*,

and

Var(Sg) = LUdeWd / [h(s)h(t)] 2dsdt, Var(S) =2d"Wd / [h(s)h(t)]*dsdt.

(b—a) - -
It follows that
205, _ op < 24 254: g . 24,
Var(so) ¢ W4 /TJM (o) dsdt, s = (b= )@ W)/ | [h(s)h(1)]*dsdt.

Thus, 04 /Var(Ss) > 6*/Var(S) is equivalent to

/ [h(s)h(t)]_stdt/ [h(s)h(t)]*dsdt > (b—a)*,
7’2 ’7’2
which is always true by the Cauchy—Schwarz inequality provided that A(t) is not a constant

function.
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On the Condition (S.1). We show that (S.1) holds when vf;(t), j = 1,2,...,n; i =
1,2,...,k, are i.i.d. from a Gaussian white noise process, e.g., for any given ¢, v;(t) ~
N(0,1) and for s # t, v;(s) and v);(t) are independent. Since vj;(t)’s are Gaussian, we

ij
have (Zhang 2013, (10.13)),
@} [(s1,11), (52, 82)] = 77 (51, 82)%7 (B, t2) + 77 (51, t2)77 (52, 1), (52)
where 7?(s,t) = 1{s = t}. There are only three cases where @?[(s1, 1), (s2,12)] # 0:

1. When (s1,t1) = (s2,t2) but (s1,$2) # (t2,t1), the first term of the right-hand side of

(S.2) is nonzero while the second term is zero, i.e.,
@} [(s1,t1), (s2,t2)] = @} [(s1, 1), (s1,11)] = L.

2. When (s1, $2) = (t2,t1) but (s1,t1) # (s2,t2), the first term of the right-hand side of

(S.2) is zero but the second term is nonzero, i.e.,
@, [(s1,t1), (52, 12)] = @} [(51,11), (t1, 51)] = 1.
3. When (s1,t1) = (S2,12) and (s1, s2) = (t2,t1), both the terms are nonzero, i.e.,

@ [(s1,t1), (s2,t2)] = @} [(s1,81), (s1,81)] =1+ 1 =2.

APPENDIX: Technical Proofs

Lemma 1. Under Assumptions A1-A3 and the null hypothesis (2), as n — oo, we have
& [(s1,t1), (52,12)] —= @ [(s1,t1), (59, t2)] and SSE(s,t)/(n — k) = w|(s,t), (s,t)] uni-

formly where w [(s1,t1), (S2,t2)] is given in (14).
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Proof. First of all, we show Assumption A2 implies
2
pi = supi(t,t) < oo, and E|jvy1||* = E [/ vfl(t)dt] <oo, 1=1,2,... k. (A.3)
teT T
Assumption A2 implies sup, o E[v, (s)vfi(t)] = C; < 0o, where C; is some finite number,

1=1,2,..., k. By Cauchy—Schwarz inequality,

(L, 1) = Elvi (Hva (8)] < \/E[Ufl(t)vfl(t)] x B(12)

and

E [ /T vfl(t)dtr = { /T 2 v?l(s)vfl(t)dsdt}

:/ E[v} (s)v (t)]dsdt < / Cidsdt = Ci(b — a)? < oo,
T2 T2

thus (A.3) is shown.

By (A.3), we have v;;(t) = O,(1) and as n — oo, U;(t) = 0,(1) uniformly for t € 7, j =
1,2,...,n; @ =1,2,... k. This is because we have E[v;;(t)] = 0, Var[v;;(t)] = 7i(t,t) <
pi < oo, t € T and E[v;(t)] = 0, Var[v;(t)] = vi(t,t)/ni < pi/ni — 0, t € T as n — 0.
As n — 00, we have 04;(51)0;;(t1)035(52)035(t2) = [vij(s1) — Vi(s1)][vi; (t1) — 03(¢1)][vi;(s2) —
Ui(s2)][vij(t2) — vi(te)] = wvij(s1)vi(t1)vij(s2)vij(t2) + 0p(1) uniformly for s,t € T; j =
1,2,...,n; i =1,2,... k. Under the null hypothesis (2) and by Theorems 10.4 and 10.6
in Zhang (2013), it is easy to show that 4;(s,t) —= yi(s,t) = v(s,t), i = 1,2,...,k and

A(s,t) = (s, t) uniformly. Therefore, as n — oo, we have

gt YT D (s1)0i (1) 0 (52) 035 (t2) — A(s1, 1) 7 (52, 1)
— E[’Uﬂ(sl)’l}il(t1>1)i1(82)1)i1(tg)] — ’7(81, tl)’7(827 tg), 7= ]_, 2, ey k’,
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uniformly. By (15), we have

@ [(s1,t1), (82, t2)]
= T YT DT (1) B (01) i (52) i () — A(s1,81)A (2, 2)
= ' XLm {ni_l D it [0ij(s1) 03 (1) 035 (52) 35 (2)] — Y(s1, t1) (82, tz)}

— w|(s,t), (s,1)],
uniformly for all s,¢ € 7. Similarly, we can get SSE(s,t)/(n — k) - @|(s, 1), (s,t)]. O

Proof of Theorem 1. Recall that F,(s,t) = % For any s,t € T, SSB(s, )

can be expressed as
SSB(s,t) = zn(s,t) [T} — bybl /(n — k)|za(s, 1), (A.1)
where z,(s,t) = [z1(s,t), 22(s,1), ..., zx(s,t)]T, with

zi(s,t) = /ni— 1[F(s,t) —y(s,t)], i =1,2,... )k,
bn = (\/nl—1,\/n2—1,...,\/nk—1)T.

Since bl b, /(n—k) = 1, it is easy to verify that I, —b,b’ /(n — k) is an idempotent matrix

with rank k£ — 1. In addition, as n — oo, we have
I.—b,b /(n— k) = W =TI, — bb",with b= (\/71,\/72,-- -, VTr) (A.2)

where 75,4 = 1,2,...,k are given in Assumption Al. Note that I, — bb’ in (A.2) is also

an idempotent matrix of rank k£ — 1, which has the following singular value decomposition:

Ik,1 0

I,-bb' =U
o 0

U’ (A.3)

where the columns of U are the eigenvectors of I, — bb” .
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Under the given conditions and by Theorem 10.4 of Zhang (2013), we
have z,(s,t) N z(s,t) ~ GPg(0,wl)) uniformly for all s,t € 7T where
wl(s1,t1), (s2,t2)] is given in (14). In addition, by Lemma 1, we have
SSE(s,t)/(n — k) - w|(s,t),(s,t)] uniformly. Then by (A.2) and Slutsky’s the-
orem, we have Fyo(s,t) - (k — 1)7'z(s,t)T[I, — bb")z(s,t)/w|(s,1), (s,t)]. Now
by the singular value decomposition (A.3) of I, — bb’, we have F,(s,t) —=
(k — D7'w(s,t)Tw(s,t) where w(s,t) = (I1_1,0)0U"2(s,t)/\/@[(s,0),(s,t)] =
[wi(s,t),wa(s,t),...,wp_1(s,t)]T  and  w(s,t) ~ GPy_1(0,v5I—1)  with
Yol(s1,t1), (s2,22)] = @[(s1,t1), (82, t2)]//@[(51, 1), (81, t1)]@[(82, t2), (52, 2)]. Tt fol-
lows that F,(s,t) == (k—1)"' 3¢ w?(s,t). Since T, = (b — a) 2 [ 2 Fu(s, t)dsdt and

Fiax = sup, se7 Fn(s, 1), the second expression of (18) is shown by the continuous mapping
theorem for random elements taking values in a Hilbert space (Billingsley 1999, p.20;
Cuevas et al. 2004) and along the same lines as the proof of Theorem 4.10 of Chapter 4 in
Zhang (2013) (p.90). The expression (19) can be obtained similarly following the proof of
Theorem 1 of Guo et al. (2018). O

Proof of Theorem 2. By Lemma 1, we have @[(s1,t1), (s2,t2)] —= w@[(s1,t1), (s, t2)]-
It follows that A[(s1,%1), (52,t2)] —= Ye[(51,t1), (52,t2)] and then tr(52?) 25 tr(422)
follow immediately from the continuous mapping theorem for random elements taking
values in a Hilbert space. Therefore, as n — oo, we have d 25 d. Tt then follows that
Co 2 Co. O
Proof of Theorem 3. Notice that for any s,t € T, SSB(s,t) = z,(s,t)" [T — bub’ /(n —
k)] zn(s,t), where z,(s,t) = [21(s,1), 20(8, 1), ..., z(s,8)]T with 2z(s,t) = /n; — 1[Ji(s,t) —

Yi(s, )] + Vi — 1[vi(s,t) — v(s,t)], i = 1,2...,k. Applying Theorem 10.4 of Zhang
(2013), we have /n; — 1[¥;(s,t) — 7i(s, t)] N GP(0,w;), i = 1,2,..., k. By the alterna-
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tive hypothesis (26), we also have /n; — 1[vi(s,t) — (s, t)] = d;(s,t), where the functions
di(s,), i=1,2,... k€ L2(T?) and T2 = [, b]®]a, b]. It follows that z,(s, ) —= 2z, (s, t)+
d(s,t) ~ GP[d, diag(wwy, @y, . . ., wy)], where z(s,t) ~ GP[0, diag(w,, ws, . . ., wy)] and
d(s,t) = [di(s,t),dy(s,1), ..., dp(s,t)]T.

Similar to the proof of Lemma 1 and under the local alternative hypothesis (26), as
n — oo, we have SSE(s,t)/(n — k) - @[(s,1), (s,1)] = Sor, miwi[(s, 1), (s, )] uniformly
for all s,t € T. Since T is a finite interval and F,(s,t) is equicontinuous over 7T, by
Slusky’s theorem and Theorem 2.1 of Newey (1991), we can show that as n — oo, we have

F... —% F, with

Fi = (k=1 sup,,er {[21(s,t) + d(s,0)]"Wz1(s, 1) + d(s, )] /@[(s, 1), (s,1)] }
= (k—1)"tsup, e {[21(s, )T W2y (s, 1) + 221 (s,6) "W d(s,t) + d(s, t)"Wdl(s, t)]
x @ (1), (s,0)]},

where the idempotent matrix W is defined in (A.2). By the continuous mapping theorem
for random elements taking values in a Hilbert space again, we can easily get T}, N Ty
with
E—1)-1
7 4 <(b—))2 / (21 (5, 1) W z1 (5, 1) + 221 (s, ) "W d(s, 1) + 62(s, 1)) /[(5, £), (s, £)]dslt.
—a T2

O
Proof of Theorem 4. By Theorem 3, we have T} 2 Tow + 2S5 + 62, where

Toe = S [ z(s, )" Wai(s, 1) /&((s, 1), (5, 1)l dsdt,
Sy = <k 1 fﬂzl (s, )TWd(s,t)/@|(s,1), (s, 1)]dsdt,
52 = (k 1 ng s, ) TWd(s,t)/@|(s, 1), (s, t)]dsdt.

w

Let

’Yﬁi[(slvtl)7 (SQth)] = wi[(slvtl)a (S2>t2)]/\/@[(517t1)7 (Slvtl)]@[(‘s%t?)» (52’ t2)]7 1 =1, 27 s
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Since tr(Zle TiV=i) = (b—a)?, we have tr(ys;) < 0o,i =1,2,..., k. In addition, since W

is an idempotent matrix, its eigenvalues are either 0 or 1. It follows that

_ _ k 00
Ty < =D / w1(5.0) 21 (5,0)/B((5.1). (5. )]st £ =D SO A As,
— (b—a)? Jp (b—a)? i=1 r=1
(A4)
where A;, Hid- X7 and for each i = 1,2, ..., k, \;,’s are the eigenvalues of vx;[(s1,11), (s2,12)].

It follows that Tys is a proper random variable with finite mean and variance. By the
Cauchy—Schwarz inequality, we have |Sz| < Tﬂé?é@. Then 77 = O,(0s) + 62. It follows
that as 5 — oo, we have Pr(7y > C,) — 1. Under the given conditions and Theorem 3,
Pr(T, > C,) = Pr(Th > C,) — 1. O

Proof of Theorem 5. By (30), we first have Pr(Fi.x > C5,) > Pr(T,, > C5,). It follows
that as 05 — 00, we can show that Pr(7,, > C;,) — 1, following the proof of Theorem 4.

The assertion Pr(Fi.x > C5,) — 1 also follows immediately. O
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