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S.1 ADDITIONAL SIMULATION RESULTS

S.1.1 Simulation 3: Constant common factor function

In Section 2.5, we pointed out that when there are no scale-differences in

$i[(s1, t1), (s2, t2)]’s across different time points, the asymptotic powers of the quasi GPF

test and the L2-norm based test are comparable. It is then of interest how do GPFnv, GPFrp

and Fmax,rp perform against L2
br, L

2
rp and Tmax,rp when the common factor function is a

constant. In this simulation study, we aim to compare GPFnv, GPFrp and Fmax,rp against

L2
br, L

2
rp and Tmax,rp under the data generating model (50) with h(t) = 1. Tables S.1 and

S.2 present the empirical sizes and powers (in percent) of L2
br (L2

rp), T
2
max,rp, GPFnv, GPFrp

and Fmax,rp when the k functional samples follow Gaussian and non-Gaussian distributions,

respectively. Similar to Simulation 2, in Table S.1 we only present the results of L2
br while

in Table S.2 we only present the results of L2
rp.

First of all, it is seen that in terms of size control, both Fmax,rp and Tmax,rp have better

performance under various simulation configurations with most of their empirical sizes close
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Table S.1: Empirical sizes and powers (in percent) of the tests when zijr, r = 1, . . . , q; j =

1, . . . , ni; i = 1, . . . , k are i.i.d. N (0, 1) for Simulation 3.

ρ n1 = (20, 30, 30) n2 = (30, 40, 50) n3 = (80, 70, 100)

ω 0 1 2 3 6 0 1 1 .5 2 3 0 0 .5 1 1 .5 2

L2
br 4.55 10.91 54.61 90.22 99.99 4.63 15.89 45.56 77.89 99.01 4.68 7.94 37.32 87.38 99.42

Tmax,rp 5.58 19.07 60.55 87.40 99.41 5.26 28.94 58.94 83.18 98.64 5.15 18.93 66.57 96.22 99.81

0.1 GPFnv 6.56 11.87 51.53 86.03 99.17 5.95 14.74 41.08 72.00 97.85 5.57 7.85 32.99 81.63 98.80

GPFrp 5.52 9.93 49.44 85.66 99.56 5.27 13.38 39.53 70.68 97.88 5.17 7.46 32.22 81.03 98.73

Fmax,rp 5.35 13.95 51.75 85.33 99.53 5.22 20.25 47.17 75.49 98.06 4.95 13.98 54.35 92.32 99.63

ω 0 0 .5 1 1 .5 2 0 0 .4 0 .8 1 1 .2 0 0 .3 0 .4 0 .5 0 .7

L2
br 4.80 23.24 74.56 96.42 99.65 4.77 24.47 80.66 93.48 98.31 5.04 36.64 62.49 83.95 98.65

Tmax,rp 5.55 20.07 55.46 81.58 93.45 5.51 20.76 61.83 79.67 90.41 5.17 33.94 53.31 72.11 95.14

0.5 GPFnv 7.39 25.72 72.05 93.31 98.23 6.53 23.64 75.57 90.92 97.13 5.83 31.56 55.78 78.22 98.32

GPFrp 5.79 21.31 68.61 93.22 98.69 5.38 20.53 72.84 89.74 96.83 5.21 29.38 53.07 76.37 98.10

Fmax,rp 5.62 18.71 58.46 89.05 97.57 5.50 19.08 63.03 82.30 93.79 5.25 27.62 47.88 70.42 95.89

ω 0 0 .5 0 .8 1 1 .5 0 0 .4 0 .5 0 .7 1 0 0 .2 0 .3 0 .4 0 .5

L2
br 4.78 34.87 71.73 89.47 99.58 5.07 32.68 52.41 85.68 99.23 5.01 19.88 48.49 79.40 95.72

Tmax,rp 5.40 11.10 25.70 36.90 67.57 5.57 10.78 15.61 29.44 58.32 5.28 8.54 15.32 27.00 44.33

0.9 GPFnv 8.28 35.68 74.14 89.69 98.87 6.41 33.32 51.94 83.85 98.90 5.60 19.41 46.72 77.02 94.63

GPFrp 8.10 34.00 72.24 88.09 98.93 6.69 32.98 51.05 82.96 98.70 5.87 20.48 47.38 77.36 94.67

Fmax,rp 5.91 12.83 27.73 44.05 82.71 5.45 12.46 18.01 33.67 68.29 5.41 9.51 17.67 30.73 49.95

2



Table S.2: Empirical sizes and powers (in percent) of the tests when zijr, r = 1, . . . , q; j =

1, . . . , ni; i = 1, . . . , k are i.i.d. (3/5)1/2t5 for Simulation 3.

ρ n1 = (20, 30, 30) n2 = (30, 40, 50) n3 = (80, 70, 100)

ω 0 2 2 .6 3 .8 12 0 1 .5 2 .2 3 5 0 1 .2 1 .5 1 .8 2 .6

L2
rp 5.86 37.28 56.01 79.14 94.39 5.49 29.20 61.14 83.10 96.52 5.04 37.96 61.62 79.46 97.18

Tmax,rp 5.80 40.20 56.33 76.17 93.28 5.67 38.15 65.35 83.14 95.25 5.36 59.27 77.92 89.28 98.32

0.1 GPFnv 5.12 33.87 52.43 74.34 88.98 4.95 24.91 55.30 78.62 92.72 4.65 30.99 53.97 73.08 95.09

GPFrp 5.74 34.98 54.73 78.92 94.46 5.51 26.07 58.42 82.54 96.68 5.12 33.00 56.17 75.53 96.73

Fmax,rp 5.60 36.87 54.99 78.87 94.91 5.59 31.38 61.54 83.28 96.81 5.19 49.84 70.92 85.12 97.97

ω 0 0 .8 1 .1 1 .5 5 0 0 .6 0 .8 1 .1 1 .8 0 0 .4 0 .5 0 .7 1

L2
rp 6.01 36.76 57.16 75.09 94.35 5.50 34.03 52.64 74.87 93.82 5.10 37.43 56.20 83.18 96.71

Tmax,rp 5.56 25.61 41.03 57.05 90.74 5.12 25.73 38.07 57.67 85.27 5.12 35.18 48.96 74.36 93.22

0.5 GPFnv 5.56 36.72 57.48 73.74 89.50 4.96 29.93 49.93 72.83 91.15 4.43 28.03 46.17 76.44 94.37

GPFrp 5.99 36.76 58.65 76.98 94.78 5.46 31.23 51.56 75.35 94.71 5.42 30.88 49.31 79.27 95.95

Fmax,rp 5.77 31.82 52.86 73.47 95.39 5.43 29.11 46.87 72.05 94.46 5.31 33.71 51.41 80.46 96.80

ω 0 0 .6 0 .8 1 .1 1 .8 0 0 .5 0 .6 0 .8 1 .2 0 0 .3 0 .4 0 .5 0 .7

L2
rp 8.35 32.16 48.88 70.14 88.63 6.83 31.92 44.39 69.33 90.26 5.87 29.85 55.11 76.08 95.60

Tmax,rp 5.61 10.75 17.01 28.28 55.71 5.58 10.61 13.63 24.07 50.29 5.33 11.25 18.85 29.31 56.02

0.9 GPFnv 5.06 27.49 46.93 71.08 88.07 3.98 25.64 38.26 67.51 90.23 3.03 20.16 43.41 67.13 92.66

GPFrp 8.53 33.89 53.78 75.82 92.58 7.03 33.23 46.60 73.97 93.73 5.84 29.39 54.85 76.71 96.56

Fmax,rp 6.35 14.37 22.04 39.75 78.76 5.96 14.10 18.52 32.32 68.21 5.56 13.38 22.57 33.82 66.74
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to the nominal size 5%. GPFnv and GPFrp perform well when the functional data are highly

correlated or when the sample sizes are large. On the other hand, L2
br performs quite well

under the Gaussian case, L2
rp performs well when the functional data are highly correlated

or the sample sizes are large but it is liberal when the functional data are less correlated

or when the sample sizes are too small. In terms of power, it seems GPFnv, GPFrp and

L2
br (L2

rp) have comparable powers but they have smaller (or higher) powers than Fmax,rp

and Tmax,rp when the functional data are highly (or less) correlated.

S.1.2 Simulation 4: Monotonically increasing common factor

function

In the two simulation studies in the main paper, the common factor function h(t) is mono-

tonically decreasing. In this simulation study, we aim to compare GPFnv, GPFrp and

Fmax,rp against L2
rp and Tmax,rp under the data generating model (50) with h(t) = (t+1/J),

which is a monotonically increasing function. Table S.3 presents the empirical sizes and

powers (in percent) of L2
rp, Tmax,rp, GPFnv, GPFrp and Fmax,rp when the k functional sam-

ples follow Gaussian distributions. From Table S.3, it is seen that similar to Simulation 2,

GPFnv, GPFrp and Fmax,rp are significantly more powerful than L2
rp and T 2

max,rp. Although

Fmax,rp is less powerful than GPFnv and GPFrp when ρ = 0.9 and n = n1,n2, it is gener-

ally more powerful than GPFnv and GPFrp in all the other cases. These conclusions are

consistent with those we drawn from Simulation 2 in the main paper.
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Table S.3: Empirical sizes and powers (in percent) of L2
rp, Tmax, GPFnv, GPFrp and Fmax,rp

when zijr, r = 1, . . . , q; j = 1, . . . , ni; i = 1, . . . , k are i.i.d. N (0, 1) for Simulation 4.

ρ n1 = (20, 30, 30) n2 = (30, 40, 50) n3 = (80, 70, 100)

ω 0 0 .035 0 .3 0 0 .026 0 .045 0 0 .0176 0 .024

L2
rp 5.22 5.47 6.20 5.03 4.94 5.58 4.82 5.02 5.34

Tmax 5.28 5.72 5.92 5.26 5.03 5.61 4.97 4.59 5.09

0.1 GPFnv 6.33 6.51 15.63 5.88 5.73 6.57 5.18 5.08 5.47

GPFrp 5.29 5.39 12.56 5.09 5.05 5.81 5.04 4.75 5.21

Fmax,rp 5.53 54.75 96.55 5.46 54.02 95.16 5.16 57.19 95.56

ω 0 0 .028 0 .6 0 0 .018 0 .14 0 0 .009 0 .015

L2
rp 6.08 6.01 87.28 5.56 5.69 10.60 5.10 5.36 5.83

Tmax 5.98 5.85 21.05 5.16 5.42 6.49 5.11 4.91 5.16

0.5 GPFnv 7.87 10.91 94.79 6.58 9.19 58.48 6.24 7.52 10.53

GPFrp 6.16 8.25 94.48 5.38 7.59 54.45 5.55 6.82 9.58

Fmax,rp 5.71 52.80 92.49 5.25 54.09 98.32 5.33 52.79 97.17

ω 0 0 .1 0 .35 0 0 .06 0 .25 0 0 .02 0 .028

L2
rp 6.62 8.85 30.90 5.96 7.17 21.96 5.32 5.90 6.43

Tmax 5.76 5.99 7.23 5.50 5.80 6.45 5.28 5.23 5.28

0.9 GPFnv 8.01 46.67 94.07 6.43 37.28 98.09 5.31 20.48 36.87

GPFrp 7.79 44.80 94.13 6.81 37.21 98.10 5.91 21.39 38.26

Fmax,rp 6.10 55.83 70.69 5.69 77.57 94.07 5.52 63.70 95.47
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S.1.3 Simulation 5: On the choice of basis functions

In Simulation 1, we used a BIC criterion to select the number of Fourier basis functions

for estimating the functional principal components in the implementation of FSHK1 and

FSHK2. It is of interest if the choice of the number of basis functions involved and

the choice of bases have a strong impact on the performance of these two tests. In this

simulation study, we consider using different number of basis functions L = 11, 21, 41, 81

and also consider using B-spline basis functions. To save computation, the number of

simulation repetitions is reduced to N = 1000. The results using different number of

Fourier basis functions to estimate the functional principal components in FSHK1 and

FSHK2 are presented in Table S.4 where the cases n = (30, 40) and some choices of ω are

omitted for space saving.

It can be seen from Table S.4 that FSHK1 and FSHK2 have comparable performance

for different number of basis functions, and are again less powerful than GPFnv, GPFrp

and Fmax (see the results in Table 1 of the main paper). The results using B-spline basis

functions are presented in Table S.5, where the cases ρ = 0.5 and n = (30, 40) are omitted

for space saving. It is seen from Table S.5 that the tests FSHK1 and FSHK2 perform

comparably for different L, and similar conclusions can be drawn as those drawn from

Simulation 1 of the main paper.
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Table S.4: Empirical sizes and powers (in percentages) of FSHK1 and FSHK2 when

zijr, r = 1, . . . , q; j = 1, . . . , ni; i = 1, . . . , k are i.i.d. N (0, 1) using Fourier basis functions

for Simulation 5.

L ρ n1 = (20, 30) n3 = (80, 70) L n1 = (20, 30) n3 = (80, 70)

ω 0 8 14 0 3 .5 5 0 8 14 0 3 .5 5

0.1 FSHK1 6.7 9.2 55.8 5.8 4.8 5.1 7.7 9.3 58.4 5.5 5.9 4.6

FSHK2 5.2 7.7 51.6 5.4 5.6 6.1 6.2 7.5 56.3 5.4 5.9 5.3

ω 0 3 6 0 1 .4 2 0 3 6 0 1 .4 2

11 0.5 FSHK1 8.3 33.1 84.4 5.7 9.1 19.3 21 7.5 31.7 84.9 5.0 9.3 17.8

FSHK2 3.4 15.6 73.5 5.7 13.9 25.0 5.3 13.4 74.5 5.3 13.3 23.9

ω 0 2 .2 4 0 1 .1 1 .7 0 2 .2 4 0 1 .1 1 .7

0.9 FSHK1 9.5 15.2 36.4 4.2 4.5 6.4 9.0 16.9 34.0 4.0 6.1 6.7

FSHK2 4.6 4.9 12.4 5.0 5.3 8.3 5.5 4.8 13.0 4.6 5.8 7.7

ω 0 8 14 0 3 .5 5 0 8 14 0 3 .5 5

0.1 FSHK1 6.4 9.3 55.3 5.5 6.3 4.9 7.3 11.3 57.3 5.2 4.9 5.2

FSHK2 4.7 6.0 52.6 5.6 6.1 5.4 5.0 8.4 53.6 5.3 5.3 5.4

ω 0 3 6 0 1 .4 2 0 3 6 0 1 .4 2

41 0.5 FSHK1 9.6 31.0 85.4 5.0 11.2 20.8 81 6.7 31.3 85.0 5.1 10.8 20.0

FSHK2 4.8 16.4 73.6 4.9 14.6 26.0 4.8 13.9 71.5 5.0 14.2 26.8

ω 0 2 .2 4 0 1 .1 1 .7 0 2 .2 4 0 1 .1 1 .7

0.9 FSHK1 10.1 15.6 34.9 4.6 4.8 6.1 9.1 15.6 36.4 5.1 5.0 6.2

FSHK2 4.9 4.0 10.8 4.6 6.0 8.9 5.5 4.9 14.1 5.3 5.9 7.4
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Table S.5: Empirical sizes and powers (in percent) of FSHK1, FSHK2, GPFnv, GPFrp and

Fmax,rp when zijr, r = 1, . . . , q; j = 1, . . . , ni; i = 1, . . . , k are i.i.d. N (0, 1) using B-spline

basis functions for Simulation 5.

L ρ n1 = (20, 30) n3 = (80, 70) L n1 = (20, 30) n3 = (80, 70)

ω 0 8 14 0 3 .5 5 0 8 14 0 3 .5 5

FSHK1 5.6 7.4 52.5 4.7 4.4 5.3 7.8 8.3 57.9 5.3 5.8 5.4

FSHK2 4.6 6.2 50.3 4.6 4.9 5.6 5.9 5.6 56.8 5.3 5.5 6.1

0.1 GPFnv 6.2 53.8 91.0 5.0 24.6 64.5 6.2 48.9 90.9 5.0 25.1 66.1

GPFrp 5.2 50.8 92.2 5.1 24.0 63.2 4.8 44.6 91.8 4.9 24.7 65.4

11 Fmax,rp 4.9 76.0 91.6 5.4 83.1 99.7 21 5.0 73.6 91.4 5.3 85.1 99.9

ω 0 2 .2 4 0 1 .1 1 .7 0 2 .2 4 0 1 .1 1 .7

FSHK1 9.6 9.3 15.2 5.1 4.1 4.4 8.9 12.2 20.5 5.8 5.0 4.2

FSHK2 5.6 4.9 6.6 5.0 4.6 4.7 4 4.1 8.6 5.5 5.3 6.2

0.9 GPFnv 5.1 47.3 91.4 3.9 50.2 91.5 5 43.6 92.4 4.3 50.5 90.4

GPFrp 7.3 52.2 92.1 5.2 57.1 93.7 7 49.1 93.2 5.9 57.1 92.2

Fmax,rp 5.7 16.7 47.4 4.7 23.3 49.2 5.6 16.0 50.5 5.6 21.8 50.2

ω 0 8 14 0 3 .5 5 0 8 14 0 3 .5 5

FSHK1 6.9 8.6 61.7 5.3 4.8 5.2 6 6.5 58.5 4.4 5.4 5.0

FSHK2 5.9 6.3 60.2 5.5 5.1 5.1 4.8 4.1 56.6 4.9 5.6 5.4

0.1 GPFnv 6.3 50.6 92.7 5.4 27.5 64.0 6.3 52.5 90.5 5.3 27.7 61.6

GPFrp 5.0 47.7 93.7 5 26.8 64.2 5.1 47.9 91.4 5.1 26.8 61.3

41 Fmax,rp 4.9 72.9 90.9 5.2 82.7 99.7 81 5.2 74.1 89.3 5.3 85.6 99.7

ω 0 2 .2 4 0 1 .1 1 .7 0 2 .2 4 0 1 .1 1 .7

FSHK1 9.3 12.6 22.7 5.0 5.2 4.3 8.5 13.0 20.5 4.8 4.5 5.7

FSHK2 5.3 4.1 8.6 5.6 5.1 5.9 4.8 4.7 6.8 5.1 4.8 5.8

0.9 GPFnv 4.1 46.2 90.9 4.3 52.8 90.6 4.8 45.1 90.5 4.2 50.9 90.4

GPFrp 7.1 50.7 92.3 6.2 58.8 92.8 7.1 51.3 92.1 5.9 59.0 92.9

Fmax,rp 6.3 16.5 46.0 5.8 22.6 50.2 4.6 17.6 45.0 5.6 22.2 53.6
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S.1.4 Simulation 6: On the number of permutations

In the previous simulation studies, we used the number of permutations P = 1000 for

L2
rp, Tmax, GPFrp and Fmax. A larger number of P may be desired but is often limited by

the computational cost. To examine the effect of the number of permutations P and the

time used for the implementation, we repeat two simulation cases of Simulations 2 and 3,

respectively, with different numbers of permutations P = 200, 500, 1000, 2000 and present

the results in Tables S.6 and S.7, respectively.

From Tables S.6 and S.7, it is seen that L2
rp, Tmax, GPFrp and Fmax have comparable em-

pirical sizes and powers for different P . One possible explanation is the considered P ’s are

not large enough to observe a significant impact of the number of permutations. However,

increasing the number of permutations often means the time used increases substantially.
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Table S.6: Empirical sizes and powers (in percent) of the tests and the time used for different

number of permutations under the settings of Simulation 2 when ρ = 0.5, n = (30, 40, 50),

zijr, r = 1, . . . , q; j = 1, . . . , ni; i = 1, . . . , k are i.i.d. N (0, 1) for Simulation 6.

P = 200, Time=56.72 minutes P = 500, Time=2.19 hours

ω 0 0 .8 1 .2 1 .5 2 0 0 .8 1 .2 1 .5 2

L2
rp 5.57 5.14 5.51 5.53 5.20 5.25 5.04 5.58 5.27 5.36

Tmax,rp 5.45 5.32 5.37 5.44 5.03 5.28 5.15 5.52 5.17 5.26

GPFnv 6.43 29.17 57.40 76.47 94.07 6.91 30.27 57.27 76.04 94.06

GPFrp 5.20 25.11 52.21 72.53 93.03 5.55 26.35 52.92 73.11 93.31

Fmax,rp 5.45 33.21 63.83 81.66 95.56 5.77 33.97 63.88 82.14 95.62

P = 1000, Time=4.28 hours P = 2000, Time=8.44 hours

ω 0 0 .8 1 .2 1 .5 2 0 0 .8 1 .2 1 .5 2

L2
rp 5.47 5.53 5.43 5.19 5.35 5.02 5.33 5.37 5.02 5.14

Tmax,rp 5.42 5.45 5.33 5.11 5.31 5.11 5.39 5.43 4.83 4.94

GPFnv 6.73 30.55 56.85 76.49 94.20 6.28 29.16 57.18 76.74 94.84

GPFrp 5.47 26.68 52.52 73.44 93.55 5.31 25.63 52.83 74.07 94.33

Fmax,rp 5.75 34.93 63.80 82.42 95.89 5.38 33.79 64.37 83.08 96.39
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Table S.7: Empirical sizes and powers (in percent) of the tests and the time used for different

number of permutations under the settings of Simulation 3 when ρ = 0.9, n = (80, 70, 100),

zijr, r = 1, . . . , q; j = 1, . . . , ni; i = 1, . . . , k are i.i.d. (3/5)1/2t5 for Simulation 6.

P = 200, Time=2.14 hours P = 500, Time=4.62 hours

ω 0 0 .3 0 .4 0 .5 0 .7 0 0 .3 0 .4 0 .5 0 .7

L2
rp 6.38 29.76 54.26 75.65 95.15 5.66 3.02 5.48 76.3 95.18

Tmax,rp 5.52 10.92 18.88 28.97 54.87 5.63 11.70 18.72 28.53 55.52

GPFnv 3.16 19.84 42.27 66.28 92.57 2.85 20.02 43.13 66.83 92.38

GPFrp 6.54 28.94 53.70 76.37 96.31 5.66 29.50 54.37 77.33 96.38

Fmax,rp 5.48 13.15 21.65 34.18 66.32 5.05 14.51 22.32 34.39 66.90

P = 1000, Time=8.75 hours P = 2000, Time=17.03 hours

ω 0 0 .3 0 .4 0 .5 0 .7 0 0 .3 0 .4 0 .5 0 .7

L2
rp 5.47 29.73 54.45 76.48 95.45 5.98 30.01 54.16 76.70 95.37

Tmax,rp 5.50 11.92 18.97 28.81 56.69 5.64 11.77 19.07 29.79 57.16

GPFnv 3.08 19.63 42.43 67.27 92.50 3.14 19.80 42.30 66.56 92.51

GPFrp 5.42 29.20 53.97 77.33 96.44 5.89 29.21 53.62 77.25 96.35

Fmax,rp 5.34 13.36 22.20 35.00 67.22 5.44 13.79 22.29 35.43 66.44
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S.1.5 Simulation 7: On the exchangeability

At the end of Section 2.3, we mentioned that the performance of the random permutation

method relies on the exchangeability of the permuted data. It is of interest if the violation

of this exchangeability will have a strong impact on the performance of the random permu-

tation based approaches. In this simulation study, we use the same simulation settings as

in Simulation 1 of the main paper, but let the first group sample be i.i.d Gaussian and the

second group sample be i.i.d non-Gaussian via setting z1jr, r = 1, . . . , q; j = 1, . . . , n1
i.i.d.∼

N (0, 1) and z2jr, r = 1, . . . , q; j = 1, . . . , n2
i.i.d.∼ (3/5)1/2t5. In this way, the samples of

the two groups still have the same covariance function under the null hypothesis but have

different higher order moment functions. It is said that Assumption A3 in the main paper

is violated and the samples of the two groups are not exchangeable. Empirical sizes and

powers of the random permutation based tests L2
rp, Tmax, GPFrp, Fmax,rp, and the Welch–

Satterthwaite approximation based test GPFnv are presented in Table S.8. It is seen that

all the random permutation based tests are very liberal and their empirical sizes are gener-

ally larger than those presented in Simulations 1 and 2 of the main paper. GPFnv is liberal

when ρ = 0.1, 0.5 but becomes conservative when ρ = 0.9. It seems that L2
rp, Tmax,rp are

less liberal than GPFrp and Fmax,rp. This simulation shows that GPFnv, GPFrp and Fmax,rp

may not have a good size control when Assumption A3 is not satisfied.
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Table S.8: Empirical sizes and powers (in percent) of L2
rp, Tmax, GPFnv, GPFrp and Fmax,rp

when z1jr, r = 1, . . . , q; j = 1, . . . , n1 are i.i.d. N (0, 1) and z2jr, r = 1, . . . , q; j = 1, . . . , n2

are i.i.d. (3/5)1/2t5 for Simulation 7.

ρ n1 = (20, 30, 30) n2 = (30, 40, 50) n3 = (80, 70, 100)

ω 0 8 11 15 28 0 6 8 11 15 0 5 6 7 10

L2
rp 6.59 6.93 6.20 6.63 19.67 6.90 6.38 6.37 6.69 7.22 7.28 7.01 7.30 7.55 7.07

Tmax,rp 6.70 6.86 6.81 6.93 6.40 6.98 6.65 6.71 6.93 6.74 7.24 7.16 7.60 7.77 7.05

0.1 GPFnv 7.45 29.82 53.40 72.75 84.40 7.46 23.79 49.82 78.55 88.41 7.40 43.38 67.85 86.30 98.30

GPFrp 6.70 28.64 55.00 77.68 91.52 7.08 24.26 52.25 83.71 95.11 7.57 46.02 71.15 89.42 99.93

Fmax,rp 7.21 49.74 60.72 67.44 71.28 7.20 63.33 78.95 84.83 86.20 7.52 96.24 97.78 98.26 98.51

ω 0 3 4 8 15 0 2 3 4 7 0 1 .4 1 .9 2 .5 3 .8

L2
rp 5.53 5.71 5.72 6.17 21.79 6.25 5.81 5.40 5.75 6.44 6.20 6.07 6.00 6.02 6.11

Tmax,rp 5.75 5.74 5.90 5.77 5.37 6.08 5.87 5.62 5.84 5.85 6.03 6.17 6.05 5.88 5.91

0.5 GPFnv 7.47 33.14 49.12 79.51 85.92 6.49 29.81 51.70 71.43 91.43 6.85 43.39 69.92 87.84 98.08

GPFrp 6.95 31.51 49.34 86.81 93.00 6.52 30.07 53.48 76.18 97.58 7.55 46.01 73.07 91.14 99.69

Fmax,rp 6.93 38.03 49.64 65.74 70.79 6.75 43.49 63.55 78.52 87.60 6.47 63.79 86.90 96.63 98.95

ω 0 2 3 4 8 0 1 .6 2 .2 3 5 0 0 .9 1 .4 1 .7 3

L2
rp 5.32 5.47 5.18 5.27 5.35 5.39 5.76 5.60 5.49 5.19 5.61 5.46 5.67 5.59 5.25

Tmax,rp 5.30 5.39 5.50 5.25 5.21 5.48 5.44 5.49 5.29 5.10 5.55 5.54 5.65 5.69 5.16

0.9 GPFnv 3.32 20.86 44.15 67.03 85.31 2.65 23.46 43.84 71.15 91.85 2.88 22.49 57.60 77.66 98.55

GPFrp 6.57 29.52 52.93 74.44 92.75 5.94 36.69 58.73 82.88 97.78 6.71 35.90 72.83 88.45 99.93

Fmax,rp 6.77 14.30 21.67 33.78 61.60 6.22 17.24 25.30 41.01 79.56 6.14 16.50 32.13 45.75 93.85
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S.2 Graphical illustration of the simulated function

data
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Figure S.1: The simulated functional data (different samples/curves are in different colors).

At the end of Simulation 2 of the main paper, we mentioned that Tmax,rp and Fmax,rp

performed differently in Simulation 2 and in the paper by Guo et al. (2018) because the

simulated models under consideration are different. The simulated model used in the main

14



paper may be referred to as the scaled model while the simulated model used in Guo

et al. (2018) may be referred to as the sparse model. In this section, we give a graphical

illustration of the simulated data generated from these two different models. The simulated

functional data generated using the scaled model in Simulations 1 and 2 of the main paper

and those generated using the sparse model of Guo et al. (2018) are presented in Figure S.1.

For space saving, only two groups of functional data with ω = 4, ρ = 0.5 and n1 = n2 = 20

under the Gaussian case (when zijr, r = 1, . . . , q; j = 1, . . . , ni; i = 1, . . . , k are i.i.d.

N (0, 1)) are plotted.

S.3 Further studies on the medfly mortality data

S.3.1 Real-data based simulation: power comparison

In this simulation study, we used the medfly mortality data set given in Section 4 of the

main paper to compare the powers of GPFnv, GPFrp, Fmax,rp, L
2
br, L

2
rp and Tmax,rp. To this

end, we randomly resampled the survival functions with replacement from each of the four

groups to form a bootstrap dataset, and applied all the tests to check if the four groups of

the bootstrap dataset have the same covariance function. Note that conditionally on the

original data, the four conditional covariance functions of the bootstrap dataset are the four

sample covariance functions respectively presented in Figure 1 of the main paper, which

are clearly different. We repeat the above bootstrap process 10, 000 times to calculate the

empirical powers of the tests based on a given nominal size α ∈ [0, 0.1]. The empirical

powers vs α are plotted in Figure S.2. It is seen the supremum based tests such as Tmax,rp

and Fmax,rp are more powerful than other tests, and the pointwise quasi F -statistic based

tests GPFnv,GPFrp and Fmax,rp are generally more powerful than those L2-norm based

15



tests L2
br and L2

rp. It is also seen that Fmax,rp is the most powerful test among all the tests

under consideration. These conclusions are consistent with those we observed from Table 5

of the main paper.

����� ����� ����� ����� ���	� �����

������������
���

���

���

���

��


���
��

��
��


��
��
��

��

L2
br

L2
rp

Tmax, rp

GPFnv

GPFrp
Fmax, rp

��������

Figure S.2: Empirical powers of the tests for the medfly mortality data.

S.3.2 Real-data based simulation: size control comparison

Similarly, to study the size controls of these tests, we can bootstrap from the pooled samples

of the four groups and generate a bootstrap dataset containing four groups. The empirical

sizes vs α are plotted in Figure S.3. It is seen that the size controls of these tests are

generally comparable, except L2
br is rather conservative. It is also seen that Tmax,rp has best

16



overall size control. GPFnv is a little liberal, possibly because the group sample sizes are

small. L2
br did not work well, probably due to the serious violation of data Gaussianity.

����� ����� ����� ����� ���	� �����

������������
����

����

����

����

���


����

����
��

��
��

��
��
��
�

L2
br

L2
rp

Tmax, rp

GPFnv

GPFrp
Fmax, rp

��������

Figure S.3: Empirical sizes of the tests for the medfly mortality data.

S.3.3 Raw survival and sample mean survival functions

The usual life span of a medfly is short, only around 3–4 weeks (Carey et al. 2008). The

raw and sample mean survival curves over the whole range are presented in Figures S.4 and

S.5, respectively. It is seen that after the first 31 days, all the group sample mean survival

functions are smaller than 0.05, and after the first 40 days, the values of the group sample

mean survival functions are so small that they can be ignored.
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Figure S.4: The survival functions of the four medfly groups.
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Figure S.5: The sample mean survival functions of the four medfly groups.

19



S.4 A note on the Welch–Satterthwaite χ2-

approximation

Zhang et al. (2017) provide a theoretical justification why the Welch–Satterthwaite χ2-

approximation is preferred to the widely-used normal approximation. For the normal

approximation, we mean to approximate the distribution of T0 using a normal distri-

bution. Let d∗ = (k−1)tr2
(γ⊗3

w )

tr3
(γ⊗2

w )
and M = tr(γ⊗4

w )

(k−1)tr2
(γ⊗2

w )
, where γ⊗`w [(s1, t1), (s2, t2)] =∫

T 2 γ
⊗(`−1)
w [(s1, t1), (u, v)]γw[(u, v), (s2, t2)]dudv, ` = 2, 3, 4, . . .. Then the skewness and kur-

tosis of T0 can be expressed as (8/d∗)1/2 and 12M respectively. It is easy to verify that d−1 ≤

(d∗)−1 ≤M . It can be shown (see, e.g., Lemma 2 of Zhang et al. 2017) that the density error

bound of the Welch–Satterthwaite χ2-approximation is O(M)+O(d−1)+O[(d∗)−1/2−d1/2]

which is much smaller than the density error bound of the associated normal approxima-

tion O[(d∗)−1/2] as given in Theorem 1 (a) of Zhang (2005). In addition, that the Welch–

Satterthwaite χ2-approximation approach enjoys both computational efficiency and good

accuracy has been verified by a number of numerical applications and simulation studies

conducted in the literature, including Satterthwaite (1946), Welch (1947), Guo et al. (2016)

and recently by Zhang et al. (2017) in high-dimensional settings.

S.5 Another case when the quasi GPF test is more

powerful than the L2-norm based test

Now we present another case when the quasi GPF test is more powerful than the L2-

norm based test. Under (42) and (45) in the main paper, we further assume that for each
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i = 1, 2, . . . , k, we have

$0
i [(s1, t1), (s2, t2)] =



1, (s1, t1) = (s2, t2),

1, (s1, s2) = (t2, t1),

2, s1 = t1 = s2 = t2,

0, otherwise,

(S.1)

Assumption (S.1) describes the case when $0
i [(s1, t1), (s2, t2)]’s are dominated by the values

on their diagonal surfaces. It is the case when the underlying processes v0
i1(t), i = 1, 2, . . . , k

are Gaussian white noises (see a proof later). Then under Assumptions A1 and A2, the

local alternative (26) and the conditions (36), (45) and (S.1), by some tedious algebra, we

have

δ4
$̄ =

(k − 1)−2

(b− a)4
(dTWd)2

{∫
T 2

[h(s)h(t)]−2dsdt

}2

, δ4 = (b− a)4(dTWd)2,

and

Var(S$̄) =
2(k − 1)−2

(b− a)4
dTWd

∫
T 2

[h(s)h(t)]−2dsdt, Var(S̃) = 2dTWd

∫
T 2

[h(s)h(t)]2dsdt.

It follows that

2δ4
$̄

Var(S$̄)
= dTWd

∫
T 2

[h(s)h(t)]−2dsdt,
2δ4

Var(S̃)
= (b− a)4(dTWd)/

∫
T 2

[h(s)h(t)]2dsdt.

Thus, δ4
$̄/Var(S$̄) > δ4/Var(S̃) is equivalent to∫

T 2

[h(s)h(t)]−2dsdt

∫
T 2

[h(s)h(t)]2dsdt > (b− a)4,

which is always true by the Cauchy–Schwarz inequality provided that h(t) is not a constant

function.
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On the Condition (S.1). We show that (S.1) holds when v0
ij(t), j = 1, 2, . . . , ni, i =

1, 2, . . . , k, are i.i.d. from a Gaussian white noise process, e.g., for any given t, v0
ij(t) ∼

N (0, 1) and for s 6= t, v0
ij(s) and v0

ij(t) are independent. Since v0
ij(t)’s are Gaussian, we

have (Zhang 2013, (10.13)),

$0
i [(s1, t1), (s2, t2)] = γ0

i (s1, s2)γ0
i (t1, t2) + γ0

i (s1, t2)γ0
i (s2, t1), (S.2)

where γ0
i (s, t) = 1{s = t}. There are only three cases where $0

i [(s1, t1), (s2, t2)] 6= 0:

1. When (s1, t1) = (s2, t2) but (s1, s2) 6= (t2, t1), the first term of the right-hand side of

(S.2) is nonzero while the second term is zero, i.e.,

$0
i [(s1, t1), (s2, t2)] = $0

i [(s1, t1), (s1, t1)] = 1.

2. When (s1, s2) = (t2, t1) but (s1, t1) 6= (s2, t2), the first term of the right-hand side of

(S.2) is zero but the second term is nonzero, i.e.,

$0
i [(s1, t1), (s2, t2)] = $0

i [(s1, t1), (t1, s1)] = 1.

3. When (s1, t1) = (s2, t2) and (s1, s2) = (t2, t1), both the terms are nonzero, i.e.,

$0
i [(s1, t1), (s2, t2)] = $0

i [(s1, s1), (s1, s1)] = 1 + 1 = 2.

APPENDIX: Technical Proofs

Lemma 1. Under Assumptions A1–A3 and the null hypothesis (2), as n → ∞, we have

$̂ [(s1, t1), (s2, t2)]
p−→ $ [(s1, t1), (s2, t2)] and SSE(s, t)/(n − k)

p−→ $[(s, t), (s, t)] uni-

formly where $ [(s1, t1), (s2, t2)] is given in (14).
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Proof. First of all, we show Assumption A2 implies

ρi = sup
t∈T

γi(t, t) <∞, and E‖vi1‖4 = E

[∫
T
v2
i1(t)dt

]2

<∞, i = 1, 2, . . . , k. (A.3)

Assumption A2 implies sups,t∈T E[v2
i1(s)v2

i1(t)] = Ci <∞, where Ci is some finite number,

i = 1, 2, . . . , k. By Cauchy–Schwarz inequality,

γi(t, t) = E[vi1(t)vi1(t)] ≤
√

E[v2
i1(t)v2

i1(t)]× E(12)

≤
√

sup
s,t∈T

E[v2
i1(s)v2

i1(t)] ≤
√
Ci,

and

E

[∫
T
v2
i1(t)dt

]2

= E

[∫
T 2

v2
i1(s)v2

i1(t)dsdt

]
=

∫
T 2

E[v2
i1(s)v2

i1(t)]dsdt ≤
∫
T 2

Cidsdt = Ci(b− a)2 <∞,

thus (A.3) is shown.

By (A.3), we have vij(t) = Op(1) and as n→∞, v̄i(t) = op(1) uniformly for t ∈ T , j =

1, 2, . . . , ni; i = 1, 2, . . . , k. This is because we have E[vij(t)] = 0, Var[vij(t)] = γi(t, t) ≤

ρi < ∞, t ∈ T and E[v̄i(t)] = 0, Var[v̄i(t)] = γi(t, t)/ni ≤ ρi/ni → 0, t ∈ T as n → ∞.

As n → ∞, we have v̂ij(s1)v̂ij(t1)v̂ij(s2)v̂ij(t2) = [vij(s1) − v̄i(s1)][vij(t1) − v̄i(t1)][vij(s2) −

v̄i(s2)][vij(t2) − v̄i(t2)] = vij(s1)vij(t1)vij(s2)vij(t2) + op(1) uniformly for s, t ∈ T ; j =

1, 2, . . . , ni; i = 1, 2, . . . , k. Under the null hypothesis (2) and by Theorems 10.4 and 10.6

in Zhang (2013), it is easy to show that γ̂i(s, t)
p−→ γi(s, t) = γ(s, t), i = 1, 2, . . . , k and

γ̂(s, t)
p−→ γ(s, t) uniformly. Therefore, as n→∞, we have

n−1
i

∑ni

j=1 v̂ij(s1)v̂ij(t1)v̂ij(s2)v̂ij(t2)− γ̂(s1, t1)γ̂(s2, t2)

→ E[vi1(s1)vi1(t1)vi1(s2)vi1(t2)]− γ(s1, t1)γ(s2, t2), i = 1, 2, . . . , k,
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uniformly. By (15), we have

$̂ [(s1, t1), (s2, t2)]

= n−1
∑k

i=1

∑ni

j=1 v̂ij(s1)v̂ij(t1)v̂ij(s2)v̂ij(t2)− γ̂(s1, t1)γ̂(s2, t2)

= n−1
∑k

i=1 ni

{
n−1
i

∑ni

j=1[v̂ij(s1)v̂ij(t1)v̂ij(s2)v̂ij(t2)]− γ̂(s1, t1)γ̂(s2, t2)
}

→ $[(s, t), (s, t)],

uniformly for all s, t ∈ T . Similarly, we can get SSE(s, t)/(n− k)
p−→ $[(s, t), (s, t)].

Proof of Theorem 1. Recall that Fn(s, t) = SSB(s,t)/(k−1)

SSE(s,t)/(n−k)
. For any s, t ∈ T , SSB(s, t)

can be expressed as

SSB(s, t) = zn(s, t)T [Ik − bnb
T
n/(n− k)]zn(s, t), (A.1)

where zn(s, t) = [z1(s, t), z2(s, t), . . . , zk(s, t)]
T , with

zi(s, t) =
√
ni − 1[γ̂i(s, t)− γ(s, t)], i = 1, 2, . . . , k,

bn = (
√
n1 − 1,

√
n2 − 1, . . . ,

√
nk − 1)T .

Since bTnbn/(n−k) = 1, it is easy to verify that Ik−bnb
T
n/(n−k) is an idempotent matrix

with rank k − 1. In addition, as n→∞, we have

Ik − bnb
T
n/(n− k)→W = Ik − bbT ,with b = (

√
τ1,
√
τ2, . . . ,

√
τk)

T , (A.2)

where τi, i = 1, 2, . . . , k are given in Assumption A1. Note that Ik − bbT in (A.2) is also

an idempotent matrix of rank k− 1, which has the following singular value decomposition:

Ik − bbT = U

 Ik−1 0

0T 0

UT , (A.3)

where the columns of U are the eigenvectors of Ik − bbT .
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Under the given conditions and by Theorem 10.4 of Zhang (2013), we

have zn(s, t)
d−→ z(s, t) ∼ GPk(0, $Ik) uniformly for all s, t ∈ T where

$[(s1, t1), (s2, t2)] is given in (14). In addition, by Lemma 1, we have

SSE(s, t)/(n − k)
p−→ $[(s, t), (s, t)] uniformly. Then by (A.2) and Slutsky’s the-

orem, we have Fn(s, t)
p−→ (k − 1)−1z(s, t)T [Ik − bbT ]z(s, t)/$[(s, t), (s, t)]. Now

by the singular value decomposition (A.3) of Ik − bbT , we have Fn(s, t)
p−→

(k − 1)−1ω(s, t)Tω(s, t) where ω(s, t) = (Ik−1,0)UTz(s, t)/
√
$[(s, t), (s, t)] =

[ω1(s, t), ω2(s, t), . . . , ωk−1(s, t)]T and ω(s, t) ∼ GPk−1(0, γ$Ik−1) with

γ$[(s1, t1), (s2, t2)] = $[(s1, t1), (s2, t2)]/
√
$[(s1, t1), (s1, t1)]$[(s2, t2), (s2, t2)]. It fol-

lows that Fn(s, t)
p−→ (k − 1)−1

∑k−1
i=1 ω

2
i (s, t). Since Tn = (b − a)−2

∫
T 2 Fn(s, t)dsdt and

Fmax = sups,t∈T Fn(s, t), the second expression of (18) is shown by the continuous mapping

theorem for random elements taking values in a Hilbert space (Billingsley 1999, p.20;

Cuevas et al. 2004) and along the same lines as the proof of Theorem 4.10 of Chapter 4 in

Zhang (2013) (p.90). The expression (19) can be obtained similarly following the proof of

Theorem 1 of Guo et al. (2018).

Proof of Theorem 2. By Lemma 1, we have $̂[(s1, t1), (s2, t2)]
p−→ $[(s1, t1), (s2, t2)].

It follows that γ̂$[(s1, t1), (s2, t2)]
p−→ γ$[(s1, t1), (s2, t2)] and then tr(γ̂⊗2

$ )
p−→ tr(γ⊗2

$ )

follow immediately from the continuous mapping theorem for random elements taking

values in a Hilbert space. Therefore, as n → ∞, we have d̂
p−→ d. It then follows that

Ĉα
p−→ C̃α.

Proof of Theorem 3. Notice that for any s, t ∈ T , SSB(s, t) = zn(s, t)T [Ik−bnb
T
n/(n−

k)]zn(s, t), where zn(s, t) = [z1(s, t), z2(s, t), . . . , zk(s, t)]
T with zi(s, t) =

√
ni − 1[γ̂i(s, t)−

γi(s, t)] +
√
ni − 1[γi(s, t) − γ(s, t)], i = 1, 2 . . . , k. Applying Theorem 10.4 of Zhang

(2013), we have
√
ni − 1[γ̂i(s, t) − γi(s, t)]

d−→ GP(0, $i), i = 1, 2, . . . , k. By the alterna-
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tive hypothesis (26), we also have
√
ni − 1[γi(s, t)− γ(s, t)] = di(s, t), where the functions

di(s, t), i = 1, 2, . . . , k ∈ L2(T 2) and T 2 = [a, b]⊗[a, b]. It follows that zn(s, t)
d−→ z1(s, t)+

d(s, t) ∼ GPk[d, diag($1, $2, . . . , $k)], where z1(s, t) ∼ GPk[0, diag($1, $2, . . . , $k)] and

d(s, t) = [d1(s, t), d2(s, t), . . . , dk(s, t)]
T .

Similar to the proof of Lemma 1 and under the local alternative hypothesis (26), as

n → ∞, we have SSE(s, t)/(n − k)
p−→ $̄[(s, t), (s, t)] =

∑k
i=1 τi$i[(s, t), (s, t)] uniformly

for all s, t ∈ T . Since T is a finite interval and Fn(s, t) is equicontinuous over T , by

Slusky’s theorem and Theorem 2.1 of Newey (1991), we can show that as n→∞, we have

Fmax
d−→ F1 with

F1 = (k − 1)−1 sups,t∈T
{

[z1(s, t) + d(s, t)]TW [z1(s, t) + d(s, t)]/$̄[(s, t), (s, t)]
}

= (k − 1)−1 sups,t∈T
{

[z1(s, t)TWz1(s, t) + 2z1(s, t)TWd(s, t) + d(s, t)TWd(s, t)]

× $̄−1[(s, t), (s, t)]} ,

where the idempotent matrix W is defined in (A.2). By the continuous mapping theorem

for random elements taking values in a Hilbert space again, we can easily get Tn
d−→ T1

with

T1
d
=

(k − 1)−1

(b− a)2

∫
T 2

[z1(s, t)TWz1(s, t) + 2z1(s, t)TWd(s, t) + δ2(s, t)]/$̄[(s, t), (s, t)]dsdt.

Proof of Theorem 4. By Theorem 3, we have T1
d
= T0$̄ + 2S$̄ + δ2

$̄, where

T0$̄ = (k−1)−1

(b−a)2

∫
T 2 z1(s, t)TWz1(s, t)/$̄[(s, t), (s, t)]dsdt,

S$̄ = (k−1)−1

(b−a)2

∫
T 2 z1(s, t)TWd(s, t)/$̄[(s, t), (s, t)]dsdt,

δ2
$̄ = (k−1)−1

(b−a)2

∫
T 2 d(s, t)TWd(s, t)/$̄[(s, t), (s, t)]dsdt.

Let

γ$̄i[(s1, t1), (s2, t2)] = $i[(s1, t1), (s2, t2)]/
√
$̄[(s1, t1), (s1, t1)]$̄[(s2, t2), (s2, t2)], i = 1, 2, . . . , k.
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Since tr(
∑k

i=1 τiγ$̄i) = (b− a)2, we have tr(γ$̄i) <∞, i = 1, 2, . . . , k. In addition, since W

is an idempotent matrix, its eigenvalues are either 0 or 1. It follows that

|T0$̄| ≤
(k − 1)−1

(b− a)2

∫
T 2

z1(s, t)Tz1(s, t)/$̄[(s, t), (s, t)]dsdt
d
=

(k − 1)−1

(b− a)2

k∑
i=1

∞∑
r=1

λirAir,

(A.4)

where Air
i.i.d.∼ χ2

1 and for each i = 1, 2, . . . , k, λir’s are the eigenvalues of γ$̄i[(s1, t1), (s2, t2)].

It follows that T0$̄ is a proper random variable with finite mean and variance. By the

Cauchy–Schwarz inequality, we have |S$̄| ≤ T
1/2
0$̄ δ$̄. Then T1 = Op(δ$̄) + δ2

$̄. It follows

that as δ$̄ → ∞, we have Pr(T1 ≥ Cα) → 1. Under the given conditions and Theorem 3,

Pr(Tn ≥ Cα)→ Pr(T1 ≥ Cα)→ 1.

Proof of Theorem 5. By (30), we first have Pr(Fmax ≥ C∗2α) ≥ Pr(Tn ≥ C∗2α). It follows

that as δ$̄ → ∞, we can show that Pr(Tn ≥ C∗2α) → 1, following the proof of Theorem 4.

The assertion Pr(Fmax ≥ C∗2α)→ 1 also follows immediately.
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