Basics of Optical Systems in
Real-Time PCR Instruments for
Virus Detection

Ronian Siew
September 26, 2021

XLIV OSI Symposium on Frontiers In
Optics and Photonics 2021

Organized by Indian Institute of Technology Delhi



Ronian Siew

Consultant, “Modern Classical” Optical System Design

+ B.A. Physics, B.S. & M.S. Optics, University of Rochester (Class ‘97)
* Associate Editor, SPIE Spotlight Series — Optical Design & Engineering
» Author of three books and some papers on optical system design

Perspectives
on Modern
Optics and
Monte Carlo

Imaging Simulation

o o e b=t and Analysis in
RONIAN SIEW > d Modern Optical
J Tolerancing

Ronlan Slew



https://doi.org/10.6084/m9.figshare.16681888

Typical SARS-CoV-2 PCR Detection Workflow
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1 e.g., Take a swab from 2 If the virus is present, Convert its RNA to DNA,
saliva, sputum... its RNA (single-stranded then use PCR to test if it is
DNA) is obtained here “cloneable”
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Real-Time PCR using Applied Biosystems™ TagMan® “Assay”
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Basic Components of a Real-Time PCR Optical System
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Fundamentals of Real-Time PCR Detection agmane assays)
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The Log-Linear Curve of Real-Time PCR
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Goals of Optical System Design for Real-Time PCR

Minimize the LOD (this is like a “noise equivalent
concentration”, which is the minimum concentration
of DNA needed to reach a fluorescent signal “at the
maximum noise level”)

1)

| . 1 LOD
F; + Noise = kC,(1+E)/ {1 +—+

3 \/_ C,(1+E)/
2 Maximizek\

This is a quantity that involves all of the
factors and variables associated with the

optical system (and sometimes, also involves
factors from the chemistry of the reaction)
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Where does kcome from? HINT: You have to “ride” a PHOTON
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Example: An imaging-based real-time PCR optical system

* Reflectors or lenses? |llumination a2 United States Patent (10) Patent No.: US 7,498,164 B2

* Source spectrum? Design Oldham et al. (45) Date of Patent: Mar. 3, 2009

* Etendue/Uniformity?

~~~~~ - (54) INSTRUMENT FOR MONITORING NUCLEIC (58) Field of Classification Search .............. 435/808,
~a ACID SEQUENCE AMPLIFICATION 435/288.7, 809, 303.1, 288.4; 37842, 45;
\ REACTION 422/82,08; 250/483.1, 459.1, 461.2, 461.1;
2 / 356/73
! P 7 (75} Tnventors: Mark F. Oldham, Los Gatos, CA (LIS); See application file for complete search history.
so -'-his is ;-/13 - Eugene F. Young, Marietta, GA {LIS) 56 References Clted
() clerences @
H H /F;OCESSOR (T3} Assignee:  Applied Biosystems, LLC, Carlshad, s DATEWNT T TRAERITS
op'hcs in % = 3 cRs) LS. PATENT DOCUMENTS
real life... _ L= TR~
/| { 15 \
Cco | .
.. +— Lens Design
T s . .
SO ot « What's the most suitable lens design form?
! * Does lens relative illumination play a role?
I' * What ray angles are incident on the filters? (the %T bandpass of thin-film
/ filters shifts towards shorter wavelengths at high incident angles)

/
/

) ~ Optical System Design

* Have we accounted for all factors in k? — “What” does the photon “feel”?

* Is this the most suitable optical architecture to meet system requirements?
* Talk to everyone: engineers, software developers, biologists, managers, marketing...
* Perform Monte Carlo simulation for system tolerancing analysis

* Explore and identify new technologies that may be applied to solve problems
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Digital PCR: absolute quantification of DNA

Nucleic Acid Reverse Transcription
Take Very . . .
ilredarinlas Isolation + Sample + PCR + Count Individual
- P Partitioning DNA Molecules

RNA isolation,
then insert

sample into ~
20k microarray
partitions

»

1 e.g., Take a swab from 2 If the virus is present, Count bright partitions
saliva (or, for liquid its RNA (single-stranded (each has ~ single to a few
biopsies, from blood) DNA) is obtained here DNA molecules inside!)

Probability of having x e H /1
counts of DNA per partition » P (x)

B P0)~e*~(N-B)/N
N—B

Solve for » U= — ln( ) + uncertainty

N = Total number of partitions
B = Number of bright partitions

W =Mean number of DNA
molecules per partition
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From the recent Thermo Fisher newsroom (Sep 20, 2021)

ThermoFisher
SCIENTIFIC

Thermo Fisher Scientific Adds Digital PCR to Genetic Analysis Capabilities
Applied Biosystems QuantStudio Absolute Q Digital PCR System*, the first integrated digital PCR solution, is ideal for oncology, cell and gene therapy development and other research applications

dPCR has quickly become the standard for nucleic acid quantification in oncology, cell and gene as United States
therapy development and other research applications because its absolute quantification enables a2 Patent Application Publication 0, Pub. No.: US 2021/0140885 A1
higher accuracy and precision. Thermo Fisher recently acquired Combinati and its cutting-edge dPCR Siew et al. (43) Pub. Date: May 13,2021
technology to rapidly develop and commercialize it alongside an expanding portfolio of assays. . . ) ) )
(54) OPTICAL SYSTEM, AND METHOD OF Publication Classification
TLLUMINATING A SAMPLE PLANE (51) Int. ClL
- - GOIN 21/64 (2006.01)
(71) .‘\pphc:mls.‘.\.d\'anccd lm‘nrumcnt Pte. Ltd., (52) US. CL
f“_‘g“"‘"" “_S(:’);,," ‘"“,""“‘("' T CPC ... GOIN 21/6428 (2013.01). GOIN 21/6452
Bcorporated, Falo Al, CA. (US) (2013.01); GOIN 2201/062 (2013.01): GOIN
2 > < : 2021/6439 (2013.01); GOIN 2021/6478
(72) Inventors: Ronian .\icw_'. \uncuuvcr‘(( A): Sheau (2013.01). GOIN 21/6456 (2013.01)
Yeng Wei. Singapore (SG): Ju-Sung
Hung, Palo Alto, CA (US) 57) ABSTRACT
FIG. 8A R“‘“%
(73) Assignees: Advanced Instrument Pte. Ltd.. s )2 an
Singapore (SG): Combinati n morilsi'“;' lud-
Incorporated. Palo Alto, CA (US) 272 ou‘::i::tx:;“ oplic
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Some Novel PCR Detection-Related Developments

Uses light to heat and

J. H. Son, B. Cho, S. Hong, S. H. Lee, O. Hoxha, A. J. Haack, and L. P. Lee, “Ultrafast photonic PCR,” [ ool for PRI

Light Sci. Appl. 4, €280 (2015) Real-time DNA
detection without

* V.J. Gadkar, D. M. Goldfarb, S. Gantt, and P. A. G. Tilley, “Real-time Detection and Monitoring of @ thermal cycling|

Loop Mediated Amplification (LAMP) Reaction Using Self-quenching and De-quenching Fluorogenic

Probes,” Scientific Reports 8, 5548 (2018)

Eliminates background
‘ autofluorescence!
® J. Nurmi, H. Lilja, and A. Ylikoski, “Time-resolved fluorometry in end-point and real-time PCR

quantification of nucleic acids,” Luminescence 15(6), 381-388 (2000) Essentially converts bio-
‘ samples into lasers!

* X.Fanand S-H Yun, “The potential of optofluidic biolasers,” Nature Methods 11, 141-147 (2014) Uses ultra-violet
absorption by DNA!
®* P. Mohammadyousef, M. Paliouras, M. Trifiro, and A. G. Kirk, "A Novel Portable Fluorophore-free

Photonic gPCR for Point-of-Care Applications," in Biophotonics Congress: Biomedical Optics 2020

(Translational, Microscopy, OCT, OTS, BRAIN), OSA Technical Digest (Optical Society of America,

2020), paper TTh4B.6

T —
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Questions?

PS: | didn’t talk about “multiplexing”
(so, you can ask me about it here ©)
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