Supplementary Information

for

Non-covalent interactions in organic radicals: pancake-, σ-hole-, and H-bonding in F₂HbimDTDA

Michelle B. Mills,^{†,0} Harrison K. S. Young,^{†,0} Gabriele Wehrle,[†] Willem R. Verduyn,[†] Xibo Feng,[§] Paul D. Boyle,[‡] Pierre Dechambenoit,[¥] Erin R. Johnson,[§] and Kathryn E. Preuss^{*,†}

⁶M. B. Mills and H. K. S. Young contributed equally to this work.
[†]Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
[‡]Department of Chemistry, Western University, London, Ontario N6A 3K7, Canada
[¥] CNRS, CRPP, UPR 8641, F-33600 Pessac, France
¶ Univ. Bordeaux, CRPP, UPR 8641, F-33600 Pessac, France

[§]Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada

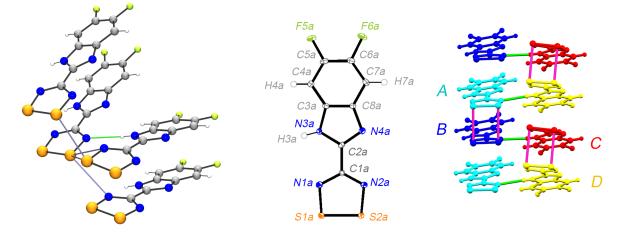
EXPERIMENTAL SECTION

Synthesis of Organic Starting Materials.

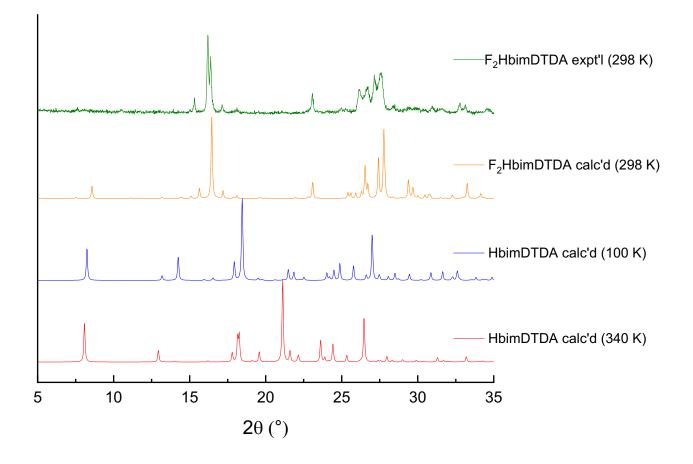
5,6-Difluoro-2-(trichloromethyl)benzimidazole. 4,5-Difluoro-1,2-diaminobenzene (5.0112 g, 35 mmol) was dissolved in glacial acetic acid (150 mL), forming a deep brown solution. Methyl 2,2,2-trichloroacetimidate (4.5 mL, 36 mmol) was added and the solution was stirred for two hours. Deionized water (400 mL) was added, resulting in an immediate terracotta-colored precipitate. The solid was collected by vacuum filtration and washed with water (1000 mL) until the filtrate was colorless. The solid was thoroughly dried to yield the brown-red product; crude yield 8.2381g (87%). ATR-IR (neat, cm⁻¹): 2988m, 2929m, 2847m, 2102, w, 1736w, 1637w, 1608m, 1524w, 1488s, 1468s, 1428s, 1369w, 1346w, 1318w, 1255m, 1199m, 1157m, 1135m, 1037m, 1019w, 905s, 860s, 834s, 778m, 746w, 682m, 639m, 505m, 477w, 438w. δ^1 H NMR (400 MHz, d₆-DMSO): 8.40 (1H, s), 7.73 (2H, m) ppm. δ^{13} C NMR (101 MHz, d₆-DMSO): 152.3, 88.2 ppm.

5,6-Difluorobenzimidazole-2-carbonitrile. 5,6-Difluoro-2-(trichloromethyl)benzimidazole (7.6891 g, 28 mmol) was added portion-wise to freshly condensed liquid ammonia (200 mL) in a 3-necked round bottom flask equipped with a dry ice condenser and argon inlet. The resulting dark brown mixture was allowed to stir while slowly warming overnight. After the ammonia had completely boiled off, the brown solid was stirred in pH 5 water (300 mL) for 2 hours. The dark brown solid was collected by vacuum filtration and stirred in pH 7 water (500 mL) for 15 minutes before the solid was collected again and then stirred into aqueous sodium carbonate. This mixture was washed with ether (200 mL), and the organic layer was discarded. The aqueous layer was acidified to pH 5 and the resulting light brown powder was collected via vacuum filtration and thoroughly dried; Yield 2.5490 g (50%). ATR-IR (neat, cm⁻¹): 3133w, 3080w, 3067w, 2970m, 2905m, 2816m, 2755m, 2672m, 2628m, 2244s, 1720w, 1640w, 1602m, 1526w, 1516w, 1489s, 1455s, 1443m, 1423s, 1379w, 1367m, 1345m, 1261s, 1202m, 1171w, 1159s, 1139m, 1112w, 1025m, 887m, 866s, 857s, 755m, 689m, 645m, 617w, 564w, 479w, 438w, 427w. δ^1 H NMR (400 MHz, d₆-DMSO): 7.87 (dd, 2H, J = 16 Hz, 2.4 Hz) ppm. δ^{13} C NMR (101 MHz, d₆-DMSO): 150.1, 147.7, 125.9, 112.0 ppm.

CRYSTALLOGRAPHIC DETAILS


Powder X-Ray Diffraction (PXRD). Data were collected at Guelph using a PANalytical Empyrean diffractometer in a reflection (Bragg-Brentano) geometry with Cu K_{α} radiation source, Ni K_{β} filter and PIXcel^{1D} linear detector. Two samples of F₂HbimDTDA were prepared, one of material sublimed at 145 °C and the other of material sublimed at 180 °C. The samples were loaded into a 1 mm diameter capillary (borosilicate glass, 10 μ m wall, purchased from Charles Supper) under argon gas and flame sealed. The sealed capillary was mounted on a goniometer head equipped with a brass holder and secured with modelling clay. The sample was then mounted onto a spinning capillary stage and adjusted so that 1 cm of the capillary length was within the window of detection. Powder diffractograms were recorded in the 3.5 - 40° 2 θ range while spinning the sample. Data collection was controlled with X'Pert Data Collector Software.¹

Data Collection and Processing of the Data Collected at 110 K. The crystals were grown by sublimation. The sample was mounted on a Mitegen polyimide micromount with a small amount of Paratone N oil. All X-ray measurements were made on a Bruker Kappa Axis Apex2 diffractometer at a temperature of 110 K. The unit cell dimensions were determined from a symmetry constrained fit of 9867 reflections with $6.14^{\circ} < 2\theta < 66.66^{\circ}$. The data collection strategy was a number of ω and φ scans which collected data up to 72.756° (2 θ). The frame integration was performed using SAINT.² The resulting raw data was scaled and absorption corrected using a multi-scan averaging of symmetry equivalent data using SADABS.³


Structure Solution and Refinement of the Data Collected at 110 K. The structure was solved by using a dual space methodology using the SHELXT program.⁴ All non-hydrogen atoms were obtained from the initial solution. The hydrogen atoms were introduced at idealized positions and were allowed to refine isotropically. There were 4 symmetry independent molecules in the asymmetric unit. The atom names had an A, B, C, or D appended to the naming and numbering scheme to differentiate the symmetry independent molecules. The structural model was fit to the data using full matrix least-squares based on F^2 . The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The structure was refined using the SHELXL program from the SHELX suite of crystallographic software. **Error! Bookmark not defined.** Graphic plots were produced using the Mercury program suite.⁵ Additional information and other relevant literature references can be found in the reference section of this website (http://xray.chem.uwo.ca).

Data Collection and Processing of the Data Collected at 120, 298, and 350 K. The sample was mounted on a Mitegen polyimide micromount with a small amount of Paratone N oil. All X-ray measurements were made on a Bruker APEX-II Quasar diffractometer at a temperature of 120(2) K. The unit cell dimensions were determined from a symmetry constrained fit of: 4340 reflections with $6.68^{\circ} < 2\theta < 50.0^{\circ}$ at 120 K; 1388 reflections with $6.66^{\circ} < 2\theta < 46.34^{\circ}$ at 298 K; 1544 reflections with $6.64^{\circ} < 2\theta < 40.66^{\circ}$ at 350 K. The data collection strategy was a number of ω and φ scans which collected data up to: 50.266° (2 θ) at 120 K; 46.634° (2 θ) at 298 K; 41.746° (2 θ) at 35 K. The frame integration was performed using SAINT.² The resulting raw data was scaled and absorption corrected using a multi-scan averaging of symmetry equivalent data using SADABS.³

Structure Solution and Refinement of the Data Collected at 120, 298, and 350 K. The structure was solved by using a dual space methodology using the SHELXT 2014/4 (Sheldrick, 2014) program.⁶ All non-hydrogen atoms were obtained from the initial solution. The hydrogen atoms were introduced at idealized positions and were allowed to ride on the parent atom. The structural model was fit to the data using full matrix least-squares based on F^2 . The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The structure was refined using the SHELXL-2016/6 (Sheldrick, 2016) program from the SHELX suite of crystallographic software.**Error! Bookmark not defined.**

Figure S1. Excerpts from the 110 K crystal structure of F₂HbimDTDA illustrating (left) the network of intermolecular contacts (slate blue) that support the hydrogen bonding interactions (green); (center) the atom labels; (right) the molecule labels

Figure S2. Powder X-Ray diffraction patterns of a bulk sample of F₂HbimDTDA (green), with calculated patterns of F₂HbimDTDA (orange) and both phases of HbimDTDA (blue and red). Calculated patterns are from the crystal structures at temperatures as indicated. Clearly, more than one phase of F₂HbimDTDA is present in the bulk sample, but there is no indication that either of the phases observed for HbimDTDA is present.

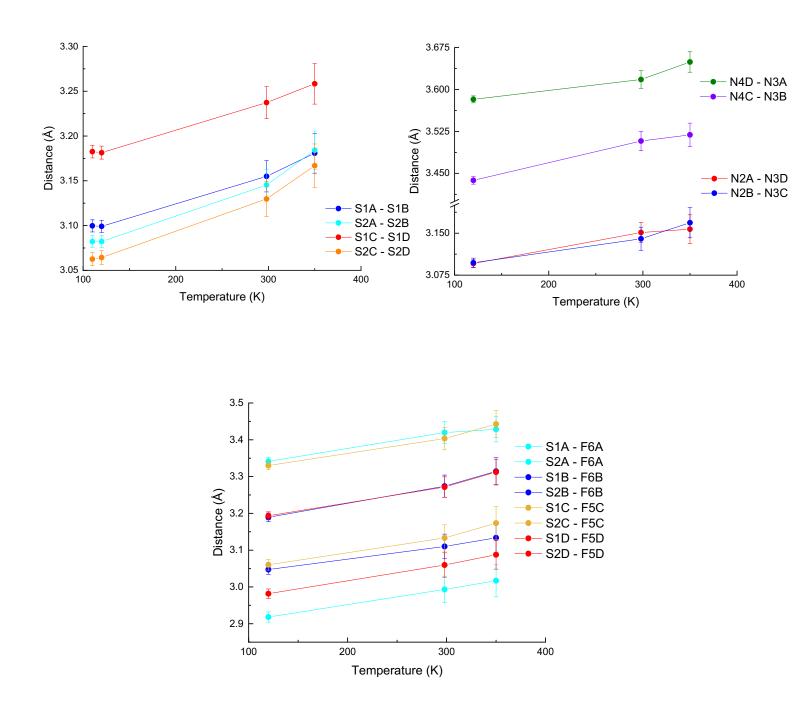
Formula	$C_8H_3F_2N_4S_2$							
Formula Weight (g/mol)	257.26							
Crystal Dimensions (<i>mm</i>)	0.322 × 0.112 × 0.036	$0.210 \times 0.030 \times 0.010$						
Crystal Color and Habit	red plate	orange needle						
Crystal System	monoclinic	monoclinic						
Space Group	Сс		Сс					
Temperature, K	110(2)	120(2)	298(2)	350(2)				
<i>a</i> , Å	6.9858(17)	6.9799(8)	7.0744(7)	7.1142(17)				
b, Å	23.433(6)	23.445(2)	23.4691(18)	23.512(5)				
c, Å	21.589(5)	21.580(2)	21.7493(16)	21.797(4)				
β,°	97.399(8)	97.545(5)	98.044(4)	98.388(10)				
V, Å ³	3504.5(15)	3500.7(6)	3575.5(5)	3607.4(13)				
Number of reflections to determine final unit cell	9867							
Min and Max 2θ for cell determination, °	6.14, 66.66	6.68, 50.0	6.66, 46.34	6.64, 40.66				
Z	16							
F(000)			2064					
ρ (<i>g/cm</i>)	1.950	1.953	1.912	1.895				
λ, Å, (MoKα)			0.71073					
$\mu,(cm^{-l})$	0.611	0.612 0.599 0.594						
Diffractometer Type	Bruker Kappa Axis Apex2	Bruker Kappa Axis Apex2 Bruker APEX-II Quasar						
Scan Type(s)	phi and omega scans	phi and omega scans						
Max 20 for data collection, °	72.756 50.266 46.634 41.740							
Measured fraction of data	0.999	0.993	0.998	0.998				
Number of reflections measured	76812	27173	16119	18048				
Unique reflections measured	13783 5700		4741	3638				
R _{merge}	0.0481 0.0637 0.1134			0.1112				
Number of reflections included in refinement	13783	5700	4741 3638					
Cut off Threshold Expression			I > 2sigma(I)					

Table S1. Summary of Crystallographic Data for F2HbimDTDA

Structure refined using	full matrix least-squares using F ²						
Weighting Scheme	w=1/[sigma ² (Fo ²)+(0.0514P) ²] where P=(Fo ² +2Fc ²)/3	$ w=1/[sigma^{2}(Fo^{2})+(0.0386P)^{2} \\ +1.2672P] where P=(Fo^{2}+2Fc^{2})/3 \\ where P=(Fo^{2}+2Fc^{2$		w=1/[sigma ² (Fo ²)+ (0.0140P) ²] where P=(Fo ² +2Fc ²)/3			
Number of parameters in least-squares	625	577					
R1	0.0445	0.0383	0.0494	0.0376			
wR ₂	0.0872	0.0766	0.0807	0.0621			
R1 (all data)	0.0625	0.0523	0.1021	0.0716			
wR2 (all data)	0.0943	0.0808	0.0938	0.0700			
GOF	0.997	1.039	0.983	0.965			
Maximum shift/error	0.001	0.000	0.000	0.000			
Min & Max peak heights on final ΔF Map (e ⁻ /Å)	-0.493, 0.656	-0.337, 0.353	-0.287, 0.278	-0.213, 0.208			
CCDC	2072282	2072283	2072284	2072285			

Where: $R_1 = \mathcal{L}(|F_o| - |F_c|) / \mathcal{L}F_o$; $wR_2 = [\mathcal{L}(w(F_o^2 - F_c^2)^2) / \mathcal{L}(wF_o^4)]^{\frac{1}{2}}$;

GOF = [$\mathcal{L}(w(F_o^2 - F_c^2)^2) / (No. of reflns. - No. of params.)$]


Table S2. Select characteristic DTDA measures of the intra- and inter-molecular distances from the crystal structure of F_2 HbimDTDA at 110 K. Molecules A – D are defined according to the labelling scheme in the CIF (see Fig. S1). Distances are reported in Å and angles in °.

Molecule A Molecule B		Molecule C	Molecule D				
Observed $S - S$ bond distance within each thiazyl ring $(S1 - S2)$							
2.091(1)	2.079(1)	2.089(1)	2.096(1)				
Calculated libration-corrected $S - S$ bond distance within each thiazyl ring $(S1 - S2)$							
2.0939	2.0815	2.0921	2.0990				
Intermolecular S – S distance within a pancake bond							
S1A – S1B 3.093(1)		S1C – S1D 3.176(1)					
S2A – S2B 3.076(1)		S2C – S2D 3.055(1)					
Dihedral angle between planes defined by the atoms of the benzimidazole and the DTDA rings							
6.96	9.73	15.03	11.51				

Intramolecular and Intermolecular Distance Corrections. Due to the multi-temperature nature of this study, it was important to account for systematic errors in the calculated distances due to libration and other molecular motions in the crystal. The rigid body motion tensors,⁷ T, L, and S, were calculated for each molecule in the asymmetric unit using PLATON⁸ and a libration correction was applied to the intramolecular distances. The intermolecular contacts were corrected by the method of Busing and Levy⁹ to give upper and lower limits to the contact distances as well as a distance assuming uncorrelated motion of the two atoms of interest. The corrections to the intermolecular contacts were performed using the DISTCOR program.¹⁰ The corrected distances are tabulated in Table S3 and plotted in Figure S3. It is worth noting that the changes in distances as a function of temperature observed in the distance correction models follow the trend established by the uncorrected distances.

	120 K		298 K			350 K						
	Ucorr	Lower	Upper	Independent	Ucorr	Lower	Upper	Independent	Ucorr	Lower	Upper	Independent
Pancake Bonding Distances												
S1A S1B	3.092(2)	3.0923	3.1059	3.0991	3.137(5)	3.1376	3.1725	3.155	3.159(6)	3.1585	3.203	3.1808
S2A S2B	3.075(2)	3.0752	3.0891	3.0822	3.128(5)	3.1281	3.1625	3.1453	3.163(6)	3.1625	3.2056	3.1841
S1C S1D	3.175(2)	3.1742	3.1887	3.1814	3.219(5)	3.2194	3.2552	3.2373	3.236(6)	3.2356	3.2809	3.2583
S2C S2D	3.056(2)	3.0566	3.072	3.0643	3.110(5)	3.1101	3.1494	3.1297	3.142(6)	3.1426	3.1911	3.1669
Hydrogen Bon	ding Distand	ces; N _{DTDA}	.H-N Angle	s are provided al	ongside unco	rrected valu	es					
	3.089(6);				3.134(10);				3.131(14);			
N2A N3D	171.66	3.0884	3.1034	3.0959	170.80	3.1333	3.1694	3.1513	171.16	3.1315	3.1829	3.1572
N2B N3C	3.088(6); 177.42	3.0889	3.1054	3.0971	3.119(10); 176.48	3.1194	3.1608	3.1401	3.143(14); 177.25	3.1418	3.1958	3.1688
	Non-Hydrogen Bonding Distances; NimidazoleH-N Angles are provided alongside uncorrected values 5.1401 177.25 5.1418 5.1958 5.1088											
j 8	3.431(6);			8	3.491(10);				3.497(14);			
N4C N3B	147.74	3.4307	3.4443	3.4375	148.07	3.4905	3.5252	3.5079	147.71	3.4979	3.5399	3.5189
N4D N3A	3.576(6); 139.39	3.5762	3.5886	3.5824	3.602(10); 140.30	3.6021	3.6337	3.6179	3.630(14); 141.13	3.631	3.6675	3.6492
σ-Hole Bondin	g Distances											
S1A F6A	3.330(4)	3.3305	3.3521	3.3413	3.389(7)	3.3899	3.4496	3.4197	3.393(8)	3.394	3.4629	3.4284
S2A F6A	2.904(4)	2.9044	2.932	2.9182	2.954(6)	2.957	3.0294	2.9932	2.971(8)	2.9731	3.0609	3.017
S1B F6B	3.177(4)	3.1776	3.2009	3.1893	3.244(8)	3.2439	3.3041	3.274	3.277(8)	3.2772	3.3513	3.3142
S2B F6B	3.034(4)	3.0345	3.0603	3.0474	3.076(8)	3.0766	3.1435	3.1101	3.091(8)	3.0923	3.175	3.1336
S1C F5C	3.046(4)	3.0459	3.0745	3.0602	3.097(8)	3.0973	3.169	3.1332	3.128(8)	3.1281	3.2185	3.1733
S2C F5C	3.318(4)	3.3186	3.3417	3.3301	3.374(8)	3.3739	3.4326	3.4033	3.406(8)	3.4057	3.4797	3.4427
S1D F5D	2.969(3)	2.9688	2.9946	2.9817	3.026(6)	3.0266	3.0927	3.0597	3.048(8)	3.0485	3.1267	3.0876
S2D F5D	3.182(4)	3.1825	3.2043	3.1934	3.243(6)	3.2436	3.2994	3.2715	3.277(8)	3.2783	3.3463	3.3123

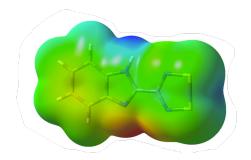
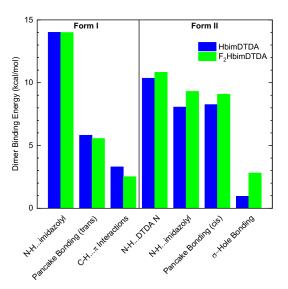
Table S3. Uncorrected values for select contact distances (Å) and angles (°) in F₂HbimDTDA at variable temperatures as output by the Mercury software;⁵ Corrected contact distances (Å) in F₂HbimDTDA at variable temperatures as output by the DISTCOR program using three models for the correlation of motion between atoms;¹⁰ labelling convention shown in Figure S1

Figure S3. Plots of the change in contact distances in F_2 HbimDTDA at variable temperature as determined by the DISTCOR program;¹⁰ the independent model corrected value is represented as a data point and the upper and lower limit models define the height of the error bars.

DIFFERENTIAL SCANNING CALORIMETRY (DSC)

Measurements were conducted using a DSC Q2000 apparatus from TA Instruments using hermetically sealed aluminum Tzero pans, also from TA Instruments. Temperature and enthalpy calibrations were confirmed using an indium reference sample. A polycrystalline sample (1.96 mg) and a reference pan were prepared under argon atmosphere. Scans were performed at a range of heating/cooling rates (20, 10, 5, 2, 1, and 0.5 K/min) on the same sample following an initial scan at heating/cooling rate of 20 K. For each rate, temperature was increased first from 193 K to 323 K, then decreased back to 193 K. A 5-minute isotherm was used to verify thermal equilibration at the beginning and end of each sweep. No events were observed in any of the thermograms collected using these parameters.

COMPUTATIONAL ANALYSIS

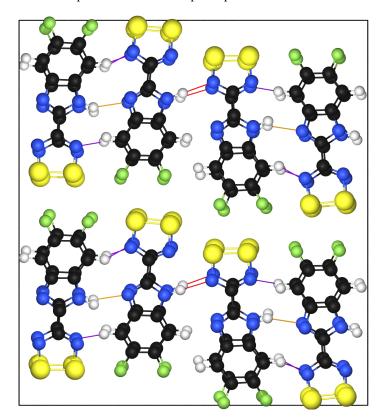

Figure S4. Electrostatic surface potential (ESP) map for HbimDTDA depicting the positive potential "o-hole" between sulfur atoms

Table S4. Binding energies, in kcal/mol, for selected molecular dimers of HbimDTDA and F_2 HbimDTDA excised from the
optimized molecular crystals. For Form II, there are two non-equivalent sets of dimers withing the unit cell; results are
shown for the lower-energy dimer of each interaction motif. Results were obtained from gas-phase B3LYP-XDM/pc-2-spd
calculations.

Parameter	HbimDTDA	F ₂ HbimDTDA					
Form I							
H-bonding (N-Himidazolyl)	-14.01	-14.00					
Pancake Bonding	-5.82	-5.56					
С-Хπ	-3.30	-2.52					
Form II							
H-bonding (Form II) (N-HDTDA N)	-10.36	-10.83					
H-bonding (Form I) (N-Himidazolyl)	-8.06	-9.31					
Pancake Bonding	-8.26	-9.09					
σ-Hole Bonding	-0.96	-2.81					

Figure S5. Bar graph displaying the binding energies, in kcal/mol, for the molecular dimers of HbimDTDA and F₂HbimDTDA excised from the optimized molecular crystals. For Form II, there are two non-equivalent sets of dimers withing the unit cell; results are shown for the lower-energy dimer of each interaction motif. Results were obtained from gas-phase B3LYP-XDM/pc-2-spd calculations.

Figure S6. Excerpt from the crystal structure of F₂HbimDTDA illustrating the network of intermolecular contacts (purple and orange lines) between nearest *non*-hydrogen bonded neighbors along [001]. Hydrogen bonds are shown as red lines. Note also the proximity of electropositive sulfur atoms to electronegative fluorine atoms.

REFERENCES

- 1) X'pert Data Collector Software, version 5.3, PANalytical, 2014.
- 2) Bruker-AXS, SAINT version 2013.8, 2013, Bruker-AXS, Madison, WI 53711, USA.
- 3) Bruker-AXS, SADABS version 2012.1, 2012, Bruker-AXS, Madison, WI 53711, USA.
- 4) Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.
- 5) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edington, P. R.; McCabe, P.; Pidcock, E.; Rodriguez-
- Monge, L.; Taylor, R.; van de Streek, J. and Wood, P. A. J. Appl. Cryst., 2008, 41, 466-470.
- 6) Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
- 7) Schomaker, V. and Trueblood, K. N. Acta Cryst. 1968, B24, 63-76.
- 8) Spek, A. L. J. Appl. Cryst. 2003, 36, 7-13.
- 9) Busing, W. R. and Levy, H. A. Acta Cryst. 1964, 17, 142-146.

10) DISTCOR, A Distance Correction Program written by Peter S. White, University of New Brunswick, Fredericton, **1986**, modified by Paul D. Boyle, University of New Brunswick, Fredericton **1992**, **1994**; University of Western Ontario, **2021**.