
SymPy: Improving Foundational
Open Source Symbolic Mathematics
for Science: Proposal for CZI EOSS
Cycle 4

This proposal was accepted for funding. See
 https://chanzuckerberg.com/eoss/proposals/sympy-improving-foundational-open-source-symboli
c-mathematics-for-science/

1. Did you previously apply for funding for this or a related
proposal under the CZI EOSS program?
No

2. Have you previously received funding for this proposal under
the CZI EOSS program?
No

3. Proposal Purpose
To improve the SymPy Python symbolic mathematics library in the key areas of
performance, code generation, and documentation.

4. Amount Requested
Year 1: 178737
Year 2: 173474
Total All Years: 352211

5. Proposal Summary
Symbolic mathematics is an essential pillar in scientific computing. For over a decade,
SymPy has been the symbolic mathematics pillar in Python scientific computing and also
plays strong roles in the Sage, Octave, Julia, and R communities. Github reports that
some 30 thousand repositories utilize SymPy and over 120 academic papers cite SymPy
per year. We aim to sustain and grow SymPy’s foundational role, including for many

https://chanzuckerberg.com/eoss/proposals/sympy-improving-foundational-open-source-symbolic-mathematics-for-science/
https://chanzuckerberg.com/eoss/proposals/sympy-improving-foundational-open-source-symbolic-mathematics-for-science/

biomedical applications, by reducing performance barriers, expanding the popular
numerical code generation features, and overhauling our documentation. We have
identified these three areas as the ones most likely to gain more users and developers.

SymPy will be adopted more broadly in science if its performance is drastically improved,
as it is a limiting factor for intensive use cases. The library is written in pure Python,
which makes it easier to maintain and extend, but this can limit its performance. Thus it
is essential that the core algorithms are written for efficiency with optimized data
structures. We will improve the performance of our core algorithms by an order of
magnitude, with strong focus on the polynomial and matrix submodules because these
submodules will provide wide reaching performance benefits across SymPy. The
performance improvements will be achieved in two ways: firstly, by using faster
algorithms and data structures, and secondly, by optionally interfacing with libraries such
as FLINT (via python-flint) and SymEngine that are written in C and C++ and are
designed to be as fast as possible. We will hire one (1) core SymPy developer (Oscar
Benjamin) part time to implement these improvements.

Numerical code generation is SymPy’s most widely used feature in scientific
applications. SymPy expressions can be automatically transformed into efficient
numerical codes in tens of programming languages and packages (C, Fortran, Julia,
Rust, Tensorflow, PyTorch, etc.). This makes advanced, performance critical numerical
calculations accessible to domain scientists. We will hire one (1) postdoc part time who
will improve the numerical stability of generated code and expand code generation to
more complex expressions. We will demonstrate the efficacy of the improvements on
one of SymPy’s biological applications: biomechanical simulation codes with PyDy.

The SymPy codebase is quite large, consisting of over 700k lines of Python code and
over 1000 public functions and methods. However, a large fraction of this functionality is
undocumented or under-documented leaving users without an entry point. SymPy has
strong API documentation but is missing high level user guides and tutorials. API
documentation helps users who already know what they are looking for, but user guides
are needed to assist newer users who are not yet expert enough in the library to know
where to look in the API. Such documentation requires expert knowledge of the library to
write effectively. This proposal is to hire one (1) core SymPy developer (Aaron Meurer)
part time to write high level documentation.

6. Work Plan
This plan describes three roadmap projects that will address a large number of SymPy’s
outstanding issues, make SymPy more accessible, and increase performance for
biomedical research codes. Each project was selected because it needs sustained,
focused development to establish a foundation for future incremental improvements.

Performance has a wide reaching role in SymPy’s roadmap that is critical for retaining
adoption over competitors. This project will focus on improving performance in linear
algebra, calculus, equation solvers, polynomials, and the core of SymPy, which contains
key routines affecting performance bottlenecks. A core developer (Oscar Benjamin) will
perform the work at 0.4 FTE over 2 years.

There are three primary foci:
1. Rewrite the internals of matrices and linear algebra routines and adapt relevant

APIs to leverage the new routines. Symbolic computation cannot use floating
point libraries, e.g. LAPACK, so algorithms need to be built from scratch. The
new matrix classes will implement efficient, sparse, division-free algorithms. A
preliminary implementation gives speedups ranging from 10x to over 1000x for
common bottlenecks. Although aimed at matrices, this work will also improve
many fundamental algorithms, extending performance gains widely across the
codebase.

2. Introduce safe limits in low-level functions that have unbounded computational
cost. This approach will be applied in many parts of the codebase, e.g. numerical
evaluation and construction of algebraic extensions, to eliminate extremely slow
cases and make SymPy’s performance more predictable.

3. Expand SymPy’s existing benchmarks repository and fully integrate the
benchmark execution into SymPy’s continuous integration (CI). Benchmarking
and targeted profiling will be used to identify and fix the worst performance issues
in the codebase; starting with uncovering bottlenecks in popular user APIs such
as integration and equation solving.

Code generation plays a central role in SymPy’s roadmap for supporting scientific codes.
The code generation roadmap prioritizes usability, generating high performance code,
and supporting many languages. This project will focus on improving usability and
performance. The 1 FTE postdoctoral researcher (to be hired) and 0.05 FTE Assistant
Professor (Jason Moore) will develop a performance critical musculoskeletal model for
benchmarking purposes. This model will be adopted from a bicycle vehicle model
(Moore 2012) and a human arm model in (Chadwick 2014 & 2008). This human-vehicle
model includes stiff dynamics, holonomic and nonholonomic constraints, thousands of
algebraic operations, and complex force definitions; all features that strain SymPy’s
ability to best competitors in advanced biomechanical simulations.

The researcher will then incrementally improve a number of SymPy’s submodules while
testing against the human-vehicle model. Documentation and benchmarking will
accompany each increment. They will improve the Autolev parsing module for importing
models. They will enable common subexpression elimination (CSE) in the code
generators; benefiting most output languages, as well as the very popular lambdify()
function. They will develop code printers for matrix operations that leverage assumptions
to print appropriate BLAS/LAPACK calls. They will create symbolic objects for muscle
forces in the mechanics package, along with associated optimized code printers. The

improvements will make SymPy very attractive for high performance musculoskeletal
simulations, such as those used in machine learning and optimal predictive control.
These changes will also broadly benefit many other general and biomedical domain
uses due to SymPy’s code generation’s ubiquitous use.

Improvements to SymPy’s documentation is also a central part of SymPy’s roadmap, as
it is key to both new and advanced users’ ability to effectively use the library. The
documentation project aims to vastly increase and improve documentation. The project
will focus on writing user guides and tutorials, which are currently lacking. The developer
will begin by adding much needed guides for solvers, integration, and assumptions.
Additionally, areas for improvement in the documentation will be identified from a
systematic review of questions asked on StackOverflow and our forums, a survey sent
out to active users, and by leveraging the developers’ years of Q&A experience. The
survey will collect feedback regarding the strengths and weaknesses in SymPy’s
documentation. It will be disseminated in our forums, on social media, and through
NumFocus’s newsletter. The data will be used to prioritize additional new guides to write.

During development of the guides, SymPy’s extensive API reference documentation will
be updated by applying our new style guide and adding missing API references. We will
work closely with technical writers hired to work on SymPy as part of Google Season of
Docs, as well as the larger SymPy community to address any documentation related
challenges that arise during the work period. A core developer (Aaron Meurer) will do the
documentation work 0.5 FTE over 2 years.

7. Milestones and Deliverables
Performance Milestones and Deliverables:

The key metric for the performance project will be measurable improvements in
benchmark timings across the codebase with focus on matrix and linear algebra
operations. With the CI-integrated benchmarking, speed gains will be reported with each
pull request. The other metric will be the percentage closed of the approximately 100
long-standing GitHub issues related to performance and operations that “hang”. The
summary of performance results will be shared online and at international conferences
for scientific Python.

This project will involve many continuous small fixes but the timeline for the main chunks
of work will be:

- September - December, 2021: Extend the benchmark suite and review open
performance related issues on GitHub.

- January - August, 2022: Complete the implementation of the new matrix classes
and make use of them in other APIs.

- September 2022 - August 2023: Identify and fix/improve cases of unbounded
computation and other cases where significant optimisation is possible in
common operations.

Code Generation Milestones and Deliverables:

The key metrics for the code generation project will be usability (measured by reduction
in boilerplate code for typical problems) and performance improvements (measured by
benchmark computation speed gains from the benchmark suite and the new advanced
model). The following list provides a bimonthly set of milestones for the 1 year project
period:

- Months 1–2: Develop the benchmark model; Add improvements to the Autolev
parser.

- Months 3–4: Add CSE to code generators and lambdify().
- Months 5–6: Add matrix operation code printers.
- Months 7–8: Develop muscle force models in sympy.physics.mechanics.
- Months 9–10: Develop muscle force code printers.
- Months 11–12: Finalize documentation; write an academic paper on the results,

post an open access preprint, and submit to a journal.

Documentation Milestones and Deliverables:

The key metrics for the documentation project will be the number of new pages and
number of new guides added to the documentation. We will also analyze the number of
user questions for key topics on SymPy user forums and StackOverflow, which will be
identified at the beginning of the project. The goal is that the number of questions on
these topics decline as their documentation improves.

The timeline for this project will be:
- September 1 – 30, 2021: Develop and deploy a user survey, to find where

documentation is lacking. Anonymized results will be published publicly to the
SymPy community.

- September, 2021 – August, 2023: For each two-week period of the program, one
of the following tasks will be accomplished on the SymPy documentation:

● Write a new high-level page.
● Edit and improve an existing high-level page.
● Write missing reference documentation for a SymPy submodule.
● Copyedit a page for consistency.

Each of these tasks will be done as small incremental changes so that the results
can be published to the documentation site immediately.

The two core developers, postdoctoral researcher, and assistant professor will have
progress check in meetings every six months to validate the accompisments against the
milestones detailed above.

8. Existing Support
In 2019 and 2020, Google Summer of Code gave in-kind support for 14 students to work
on SymPy and paid SymPy a total of $11,700 through mentor stipends. In 2019, Google
Season of docs gave in-kind support for 1 technical writer and paid SymPy a total of
$1,500 as a mentor stipend. SymPy has received 2 small development grants from
NumFOCUS in 2019 and 2020, totalling $6,000 of support. The 2019 and 2020 grants
were to improve SymPy’s ODE module and to improve SymPy Live and SymPy Gamma,
respectively, and each took place in its respective year. Lastly, SymPy has received
about $1000 in small donations over the two year period.

9. Landscape Analysis
SymPy is the most widely used general purpose open source computer algebra system
(CAS). SymPy is over 16 years old and has over 800k downloads per month on PyPI. It
is a full featured CAS, with over 700k lines of Python code. The most popular CAS
competitors to SymPy are Mathematica and Maple, which are both proprietary. Among
the alternative open source CASes, one of the most popular is Sage, which is a
collection of various open source mathematics software packages, including SymPy
itself, into a single product. Outside of Sage, SymPy stands as the only mature CAS
usable from Python. The advantages of SymPy over Sage include the fact that it is
standalone, its liberal BSD license, and that it is designed to be used as a library. For
this reason, SymPy is typically preferred for usage by other libraries higher up in the
scientific software stack.

Mpmath is a library for arbitrary precision numerics, and is a core dependency of SymPy.
Mpmath is virtually the only Python library with such capabilities. Python-flint is a Python
wrapper to FLINT, a C library for polynomial manipulation with speeds comparable to the
best proprietary alternatives such as Mathematica. SymEngine is a C++ CAS designed
to be performant, with an aim to be usable as an alternative fast backend in SymPy.
SymPy Mechanics and PyDy provide flexible and feature rich competition to less
accessible toolboxes in Maple and Matlab as well as standalone dynamics software such
as MotionGenesis and SDFast.

10. Value to Biomedical Users
Much like NumPy, SciPy, and Matplotlib, SymPy is a foundational library at the bottom of
the scientific Python dependency stack, supporting a large number of users across many

scientific fields. Supporting SymPy has a multiplicative effect by improving downstream
domain science software tools in Python and other programming languages.

SymPy is used by several Python biological modelling packages, including Brian 2,
PySB, MASSpy, and AMICI, which is in turn used by packages such as PESTO. SymPy
finds its use in these packages as a tool for representing models symbolically, as well as
other tasks such as parsing and simplifying calculations. The SymPy paper (Meurer,
Aaron, et al. "SymPy: Symbolic computing in Python." PeerJ Computer Science 3
(2017): e103.) has been cited by nearly a hundred different papers relating to biology
and the life sciences.

SymPy supports code generation to the tools PyTorch and Tensorflow, among others.
These two tools are rapidly being adopted for machine learning efforts in the biological
sciences. Code generation plays an essential role in the widely used Brian 2 spiking
neural network simulator. Maybe more importantly, code generation is used in an ad hoc
manner to develop essential elements of algorithms in thousands of biological software
packages and one-off analyses. One specific example the performance and code
generation improvements will enhance is biomechanical musculoskeletal modeling
through the sympy.physics.mechanics sub-package and the downstream multibody
dynamics projects PyDy.

11. Diversity, Equity, and Inclusion Statement
SymPy’s leadership is committed to fostering a diverse, equitable, and inclusive
community. We adopted a Code of Conduct (Contributor Covenant) in 2016 to establish
a baseline for acceptable and desired behavior, based on our 10 years of experience in
community interactions and best practices among leading inclusive software projects.

Throughout SymPy’s 15 year history, the community has a record of attracting a wide
range of diverse contributors (i.e. geographical location, background). Our dedicated
participation in Google Summer of Code (GSoC) 14 times with around 80 participants
plays a significant role in introducing newcomers to open source software development
that may have not participated otherwise. Also, we use a large percentage of
organization funds to sponsor disadvantaged GSoC students to present at software
development conferences, which in the long-term can have a significant impact on their
careers.

The project has introductory contribution and development guides aimed at improving
the new contributor onboarding experience. It is our standard practice to give extra
attention and mentorship to first time contributors in code reviews. We highly value
bringing in new community members and try to minimize any overburdensome
gatekeeping that discourages new contributors.

Although SymPy excels at international diversity, we struggle with gender diversity, as
does much of the open source software world. We have recently brought in more gender
diverse contributors through Google Season of Docs. We will use TU Delft’s inclusive
hiring practices for the postdoctoral position to create an opportunity to onboard and
mentor another non-male contributor.

Number of Open Source Software Projects
How many software projects are involved in this proposal that will be supported by this
grant?

1

Open Source Software Project #1: Details
1. Software Project name (required)
SymPy
2. Homepage URL (required)
https://www.sympy.org/
3. Hosting platform (required)
GitHub
4. Main code repository (e.g. GitHub URL) (required)
https://github.com/sympy/sympy
5. DOI of major publication(s) describing software project (if applicable)
https://www.doi.org/10.7717/peerj-cs.103
6. Social media handles (if applicable)
@SymPy on Twitter
7. Do you or software project key personnel have commit rights to the code repositories
for this software project? (required)
Yes
8. Short description of software project (200 words maximum) (required)
SymPy is a Python library for symbolic mathematics. It is a full-featured computer algebra
system (CAS), keeping the code as simple as possible in order to be comprehensible and easily
extensible. SymPy is written entirely in Python.

Software Project Metrics: Quality (required):

1. What is the software project license?

Permissive license (e.g. BSD 3-Clause, MIT, Apache 2.0)

2. What is the main programming language?

Python

3. Does the software project have a code of conduct?

Yes
Link (optional; format https://example.com):
https://github.com/sympy/sympy/blob/master/CODE_OF_CONDUCT.md

4. Does the software project have end-user documentation?

Yes
Link (optional; format https://example.com):
https://docs.sympy.org/latest/index.html

5. Does the software project have an issue tracker?

Yes
Link (optional; format https://example.com):
https://github.com/sympy/sympy/issues

6. Does the software project have a community engagement / Q&A forum
(self-hosted, on Stack Exchange etc.)?

Yes
Link (optional; format https://example.com):
http://groups.google.com/group/sympy

7. Does the software project have contribution / coding guidelines?

Yes
Link (optional; format https://example.com):
https://github.com/sympy/sympy/wiki/Introduction-to-contributing

8. Are there examples or demo notebooks, scripts, and datasets?

Yes
Link (optional; format https://example.com):
https://github.com/sympy/sympy/tree/master/examples

9. Is there a corresponding package available in a package manager (PyPi, CRAN,
etc.)?

https://example.com
https://example.com
https://docs.sympy.org/latest/index.html
https://example.com
https://example.com
http://groups.google.com/group/sympy
https://example.com
https://example.com
https://github.com/sympy/sympy/tree/master/examples

Yes
Link (optional; format https://example.com):
https://pypi.org/project/sympy/

10. Does the software project support continuous integration for testing?

Yes
Comment (optional):
SymPy uses the GitHub Actions CI to test all pull requests and the master branch.

Software Project Metrics: Impact (optional):

1. Complete the following table. List the number and explanation for each, if needed:

Number Comment

Scholarly paper(s) (including
preprints) citing or mentioning
the software project

4030 Google Scholar returns 4030
results for “SymPy” (the
name “sympy” would not
reference anything other than
the SymPy library). 524
articles cite the paper
“SymPy: symbolic computing
in Python” (Meurer et al.)

Monthly users, if applicable
(based on one or more of the
following: monthly downloads
from websites, monthly
downloads from package
managers, monthly unique
requests for updates, etc.)

1500000 In April, 2021, there were
1,140,046 downloads from
PyPI, according to
https://pypistats.org/, plus
338616 downloads from
conda (conda-forge and
anaconda channels),
according to condastats.
Note: SymPy 1.8 was
apreleased on April 9, 2021.

Software projects that
depend on the project (if
applicable)

924 924 packages depend on
SymPy according to
https://github.com/sympy/sym
py/network/dependents.
Additionally, 30,498 GitHub
repositories depend on
SymPy.

Monthly visitors to project’s 1000000 The SymPy websites do not

https://example.com
https://pypi.org/project/sympy/
https://pypistats.org/

website, discussion forum
(e.g. Stack Overflow), or
similar

have direct analytics
installed, but the Google
Search Console estimates
1M impressions each for
sympy.org and
docs.sympy.org for April,
2021.

2. Size of the largest potential user base:

Number Comment

Estimate the potential
number of unique users who
could adopt this project in the
relevant field/discipline. Use
as guidance the number of
users of comparable projects,
the number of papers
published in the domain to
which the project is
applicable, number of labs
able to adopt the project, etc.

Multiple Choice

1-10
11-100
101-1,000
1,001-10,000
10,001-100,000
Over 100,000

Over 100,000

SymPy has over 1M monthly
downloads from package
managers and is a
dependency for over 900
upstream packages and 30k
GitHub repositories. Its
potential fields include any
scientific discipline, not just
biomedicine.

3. List of upstream, downstream, or related software projects that the team is
contributing to or receiving contributions from:

If one line you can use: mpmath, gmpy2, antlr, sphinx, numpydoc, symengine, pydy and over
900 other packages

The performance project may involve integrating SymEngine and python-flint, and may also
involve incidental improvements to SymPy’s dependency mpmath.

The code generation project involves work with the downstream project PyDy, a multibody
dynamics package that uses SymPy’s mechanics submodule.

The documentation project may involve upstreaming incidental improvements to various
documentation tooling packages, including Sphinx, MyST, and numpydoc.

4. Additional metrics from project code repositories and package managers:

SymPy is a core part of the scientific Python ecosystem, as the premier symbolic manipulation
library for Python. Furthermore, SymPy is wrapped in packages for Julia (SymPy.jl) and Octave
(Octave Symbolic), which are presently the most popular symbolic packages in those respective
open source language communities. Downstream use cases of SymPy span most, if not all, of

the Chan Zuckerberg Initiative mission’s fields of focus. SymPy is used in machine learning and
data analysis tools such as Google’s Tensorflow & Tensorflow Quantum, Apple’s coremltools,
University of Sheffield’s GPy, and TensorTrade. In neuroscience, SymPy powers projects like
Brian 2, NineML, and the Brain Modeling Toolkit with code generation. In cell biology, SymPy is
used in packages such as AMICI, cameo, cobrapy, and pysb. SymPy’s code generation is also
used in prominent genomics packages such as GetOrganelle, cobrame, Medusa and millstone.
The package devito uses SymPy code generation for imaging purposes and SymPy is used in
trimesh, primify, and tributary for visualization.

SymPy has 8.1k stars and 3.4k forks on GitHub. It was started in 2005 and has had over 1000
individual contributors. In the past year, there have been over 150 individual contributors, about
2/3 of whom were first time contributors to SymPy in that time. There were over 700 pull
requests merged into SymPy in the past year, which were merged by 19 different core
developers. The number of pull requests per year has been stable over the past several years.
(This data was computed from the git history.) Most, if not all, developers are volunteers. The
core developers span the globe and come from a large diverse set of organizations and
backgrounds. Most of them also contribute to related packages in the scientific Python
ecosystem. One reason SymPy has such a high rate of contribution is the extensive
documentation for new contributors:
https://github.com/sympy/sympy/wiki/Introduction-to-contributing.

The SymPy community governs itself via an opt-in consensus model with contentious decisions
or Code of Conduct issues settled by the project leaders.

Over 2000 issues and pull requests were opened in the SymPy issue tracker in the past year,
63% of which were opened by outside collaborators (people without push access to the SymPy
repository). 61% of the issues and pull requests opened in the past year have been closed or
merged. Of these, the median time to close/merge was 3 days.

SymPy’s public mailing list (http://groups.google.com/group/sympy) has over 3000 members
and has about 100 messages per month. In the past month, the “sympy” tag on StackOverflow
has had 83 questions, of which 55 have received an answer. These answers have come from
both SymPy’s developers as well as the user community.

SymPy’s public roadmap is published at https://www.sympy.org/en/roadmap.html. All three
projects proposed here (performance, code generation, and documentation) are major parts of
the SymPy roadmap.

References
Abadi, Martín, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, et al. 2016. “TensorFlow: A System for Large-Scale Machine
Learning.” In 12th USENIX Symposium on Operating Systems Design and

https://github.com/sympy/sympy/wiki/Introduction-to-contributing
http://groups.google.com/group/sympy
https://www.sympy.org/en/roadmap.html

Implementation (OSDI 16), 265–83. Savannah, GA: USENIX Association.
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi.

Apple/Coremltools. (2017) 2021. Python. Apple. https://github.com/apple/coremltools.
Broughton, Michael, Guillaume Verdon, Trevor McCourt, Antonio J. Martinez, Jae Hyeon

Yoo, Sergei V. Isakov, Philip Massey, et al. 2020. “TensorFlow Quantum: A Software
Framework for Quantum Machine Learning.” ArXiv:2003.02989 [Cond-Mat,
Physics:Quant-Ph], March. http://arxiv.org/abs/2003.02989.

Cardoso, João G. R., Kristian Jensen, Christian Lieven, Anne Sofie Lærke Hansen,
Svetlana Galkina, Moritz Beber, Emre Özdemir, Markus J. Herrgård, Henning
Redestig, and Nikolaus Sonnenschein. 2018. “Cameo: A Python Library for Computer
Aided Metabolic Engineering and Optimization of Cell Factories.” ACS Synthetic
Biology 7 (4): 1163–66. https://doi.org/10.1021/acssynbio.7b00423.

Chadwick, Edward K., Dimitra Blana, Antonie J. van den Bogert, and Robert F. Kirsch.
2009. “A Real-Time, 3-D Musculoskeletal Model for Dynamic Simulation of Arm
Movements.” IEEE Transactions on Biomedical Engineering 56 (4): 941–48.
https://doi.org/10.1109/TBME.2008.2005946.

Chadwick, E.K., D. Blana, R.F. Kirsch, and A.J. van den Bogert. 2014. “Real-Time
Simulation of Three-Dimensional Shoulder Girdle and Arm Dynamics.” IEEE
Transactions on Biomedical Engineering Early Access Online.
https://doi.org/10.1109/TBME.2014.2309727.

Dai, Kael, Sergey L. Gratiy, Yazan N. Billeh, Richard Xu, Binghuang Cai, Nicholas Cain,
Atle E. Rimehaug, et al. 2020. “Brain Modeling ToolKit: An Open Source Software
Suite for Multiscale Modeling of Brain Circuits.” PLOS Computational Biology 16 (11):
e1008386. https://doi.org/10.1371/journal.pcbi.1008386.

Dawson-Haggerty, Michael. (2013) 2021. Mikedh/Trimesh. Python.
https://github.com/mikedh/trimesh.

Ebrahim, Ali, Joshua A. Lerman, Bernhard O. Palsson, and Daniel R. Hyduke. 2013.
“COBRApy: COnstraints-Based Reconstruction and Analysis for Python.” BMC
Systems Biology 7 (1): 74. https://doi.org/10.1186/1752-0509-7-74.

Fröhlich, Fabian, Daniel Weindl, Yannik Schälte, Dilan Pathirana, Łukasz Paszkowski,
Glenn Terje Lines, Paul Stapor, and Jan Hasenauer. 2020. “AMICI: High-Performance
Sensitivity Analysis for Large Ordinary Differential Equation Models.” ArXiv:2012.09122
[q-Bio], December. http://arxiv.org/abs/2012.09122.

Goodman, Daniel B., Gleb Kuznetsov, Marc J. Lajoie, Brian W. Ahern, Michael G.
Napolitano, Kevin Y. Chen, Changping Chen, and George M. Church. 2017. “Millstone:
Software for Multiplex Microbial Genome Analysis and Engineering.” Genome Biology
18 (1): 101. https://doi.org/10.1186/s13059-017-1223-1.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://github.com/apple/coremltools
http://arxiv.org/abs/2003.02989
https://doi.org/10.1021/acssynbio.7b00423
https://doi.org/10.1109/TBME.2008.2005946
https://doi.org/10.1109/TBME.2008.2005946
https://doi.org/10.1109/TBME.2014.2309727
https://doi.org/10.1109/TBME.2014.2309727
https://doi.org/10.1371/journal.pcbi.1008386
https://github.com/mikedh/trimesh
https://github.com/mikedh/trimesh
https://doi.org/10.1186/1752-0509-7-74
http://arxiv.org/abs/2012.09122
https://doi.org/10.1186/s13059-017-1223-1

GPy. 2012. “GPy: A Gaussian Process Framework in Python.”
http://github.com/SheffieldML/GPy.

Haiman, Zachary B., Daniel C. Zielinski, Yuko Koike, James T. Yurkovich, and Bernhard O.
Palsson. 2021. “MASSpy: Building, Simulating, and Visualizing Dynamic Biological
Models in Python Using Mass Action Kinetics.” PLOS Computational Biology 17 (1):
e1008208. https://doi.org/10.1371/journal.pcbi.1008208.

Jin, Jian-Jun, Wen-Bin Yu, Jun-Bo Yang, Yu Song, Ting-Shuang Yi, and De-Zhu Li. 2018.
“GetOrganelle: A Simple and Fast Pipeline for de Novo Assembly of a Complete
Circular Chloroplast Genome Using Genome Skimming Data.” BioRxiv, March,
256479. https://doi.org/10.1101/256479.

Lange, Michael, Navjot Kukreja, Mathias Louboutin, Fabio Luporini, Felippe Vieira,
Vincenzo Pandolfo, Paulius Velesko, Paulius Kazakas, and Gerard Gorman. 2016.
“Devito: Towards a Generic Finite Difference DSL Using Symbolic Python.” In 2016 6th
Workshop on Python for High-Performance and Scientific Computing (PyHPC), 67–75.
https://doi.org/10.1109/PyHPC.2016.013.

levi.borodenko@gmail.com. (2019) 2021. LeviBorodenko/Primify. Python.
https://github.com/LeviBorodenko/primify.

Lloyd, Colton J., Ali Ebrahim, Laurence Yang, Zachary A. King, Edward Catoiu, Edward J.
O’Brien, Joanne K. Liu, and Bernhard O. Palsson. 2018. “COBRAme: A Computational
Framework for Genome-Scale Models of Metabolism and Gene Expression.” PLOS
Computational Biology 14 (7): e1006302. https://doi.org/10.1371/journal.pcbi.1006302.

Lopez, Carlos F, Jeremy L Muhlich, John A Bachman, and Peter K Sorger. 2013.
“Programming Biological Models in Python Using PySB.” Molecular Systems Biology 9
(1): 646. https://doi.org/10.1038/msb.2013.1.

Medlock, Gregory L., Thomas J. Moutinho, and Jason A. Papin. 2020. “Medusa: Software
to Build and Analyze Ensembles of Genome-Scale Metabolic Network
Reconstructions.” PLOS Computational Biology 16 (4): e1007847.
https://doi.org/10.1371/journal.pcbi.1007847.

Meurer, Aaron, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertík, Sergey B. Kirpichev,
Matthew Rocklin, AMiT Kumar, et al. 2017. “SymPy: Symbolic Computing in Python.”
PeerJ Computer Science 3 (January): e103. https://doi.org/10.7717/peerj-cs.103.

Moore, Jason K. 2012. “Human Control of a Bicycle.” Doctor of Philosophy, Davis, CA:
University of California. http://moorepants.github.io/dissertation.

Paine, Tim. (2018) 2021. Timkpaine/Tributary. Python.
https://github.com/timkpaine/tributary.

Raikov, Ivan, Robert Cannon, Robert Clewley, Hugo Cornelis, Andrew Davison, Erik De
Schutter, Mikael Djurfeldt, et al. 2011. “NineML: The Network Interchange for Ne

http://github.com/SheffieldML/GPy
http://github.com/SheffieldML/GPy
https://doi.org/10.1371/journal.pcbi.1008208
https://doi.org/10.1101/256479
https://doi.org/10.1109/PyHPC.2016.013
https://doi.org/10.1109/PyHPC.2016.013
https://github.com/LeviBorodenko/primify
https://github.com/LeviBorodenko/primify
https://doi.org/10.1371/journal.pcbi.1006302
https://doi.org/10.1038/msb.2013.1
https://doi.org/10.1371/journal.pcbi.1007847
https://doi.org/10.1371/journal.pcbi.1007847
https://doi.org/10.7717/peerj-cs.103
http://moorepants.github.io/dissertation
https://github.com/timkpaine/tributary
https://github.com/timkpaine/tributary

Uroscience Modeling Language.” BMC Neuroscience 12 (1): P330.
https://doi.org/10.1186/1471-2202-12-S1-P330.

Stapor, Paul, Daniel Weindl, Benjamin Ballnus, Sabine Hug, Carolin Loos, Anna Fiedler,
Sabrina Krause, Sabrina Hroß, Fabian Fröhlich, and Jan Hasenauer. 2018. “PESTO:
Parameter EStimation TOolbox.” Bioinformatics 34 (4): 705–7.
https://doi.org/10.1093/bioinformatics/btx676.

Stimberg, Marcel, Romain Brette, and Dan FM Goodman. 2019. “Brian 2, an Intuitive and
Efficient Neural Simulator.” Edited by Frances K Skinner. ELife 8 (August): e47314.
https://doi.org/10.7554/eLife.47314.

Tensortrade-Org/Tensortrade. (2019) 2021. Python. tensortrade-org.
https://github.com/tensortrade-org/tensortrade.

https://doi.org/10.1186/1471-2202-12-S1-P330
https://doi.org/10.1186/1471-2202-12-S1-P330
https://doi.org/10.1093/bioinformatics/btx676
https://doi.org/10.1093/bioinformatics/btx676
https://doi.org/10.7554/eLife.47314
https://doi.org/10.7554/eLife.47314
https://github.com/tensortrade-org/tensortrade
https://github.com/tensortrade-org/tensortrade

