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1 Introduction

1.1

Purpose and history of dp3D

dp3D is a simulation code that uses the Discrete Element Method (DEM) pioneered by Cundall and Strack
in 1979 [1]. dp3D stands for "discrete powder 3D”. The code is mainly intended to model materials that are

used for engineering applications and which exhibit particulate features such as powders, or which behavior

will trigger some discrete features (fracture in particular).

The code was initiated in 2000, during a one year sabbatical leave at the University of Kyoto with late
Professor Shima. The very initial code development owns very much to the collaboration with Professor Shima.
dp3D is now written with Fortran90'. The code has evolved very much in the last years thanks to the input of

Prof.

David Jauffres, PhD students and post-docs working at SIMaP laboratory (Univ. Grenoble Alpes).

The main idea behind a DEM code is to model explicitly each particle via its interaction with its neighbors.
In DEM, interactions are treated as dynamic processes, where the equilibrium position of particles is sought

for at each time step. Interactions occur at contact points and are modeled as contact forces and moments.
Particles are modeled in dp3D as spheres and may indent each other (soft contact approach), hence generating

contact forces. The use of an explicit numerical scheme makes it possible to use non-linear contact laws and
history-dependent laws that are often necessary to describe engineering materials. Examples of applications

from dp3D simulations may be found at : dp3D animations~.

1.2

2

Main features of dp3D

Two types of entities are physically represented in the dp3D code:

Particles : spherical particles are defined in a coordinate file by their three coordinates and their radius.
Particles have a finite mass and their position is dictated at each time step by Newton’s second law

> F =mi).

Objects: objects may interact with particles. An object may be a plane, a cylinder or a sphere. Contrarily
to particles, the motion of objects is not dictated by Newton’s second law but is solely dictated by the
imposed strain conditions given by the user. In other word objects have an infinite mass.

The maximum number of particles is not limited per se in dp3D. Still, limits in available memory on the
machine and reasonable CPU time should be taken into account when choosing particle number. Typically,
less than 100 000 particles are most often reasonable and will lead to simulation time of the order of hours for
small strain. Problems with several millions of particles have been successfully attempted with dp3D (running

the parallel version) but they will test your patience (typically a week long calculation or more).

Apart from these particles and objects, the main ingredient of the code is the contact law that describes
the mechanical interaction between two particles or between a particle and an object. The contact law defines
the physical problem which is tackled in the simulation. The contact laws that are available in the code are:

Elasticity with adhesion and decohesion following the JKR model [2] or the DMT model [3] (subroutines
elast_DMT.f90 and elast_JKR.£90) ;

Plasticity with strain hardening [4] (subroutine load_unload_plast.f£90);
Elasticity, unloading and decohesion of a contact with a plastic history [5] (subroutine load_unload_plast.f£90);

Elasticity [6] and fracture of a bonded contact (subroutine load_elast.f90) with the possibility of taking
into account the interactions due to other contacts [7];

Viscoplasticity [4] (subroutine load_unload_viscoplast.f90);

Sintering with grain-boundary diffusion limited mechanism [8,9] (subroutine load_sinter.£90) or sur-
face diffusion associated with grain growth (subroutine coarsen_sinter.£90 [10];

1The code is protected by a copyright (IDDN.FR.001.150008.000.S.P.2008.000.31235)
?https://simap.grenoble-inp.fr/fr/equipes/animations-discrete-element-method


http://simap.grenoble-inp.fr/fr/equipes/dp3d-dem-for-materials-science
https://simap.grenoble-inp.fr/fr/equipes/animations-discrete-element-method

Several tangential contact laws are available. They may induce shear at the contact (intended for plastic
type laws) or follow a simplified Hertz-Mindlin type model (intended for elastic type laws) with a simple
Coulomb friction law. Viscous tangential contact law is also available when sintering is used. For bonded
contacts, resisting moments are transferred. All these laws are described in the subroutines tangent_*.£90
in the source code.

More details concerning the main contact laws used in dp3D may be found in the following references:

e Elasticity: [11] ;

o Plasticity: [12];

e Bonded contacts [13];

e Bonded contacts with interactions [7,13,14];
e Sintering : [10,15,16].

Once particles, objects, contacts laws (and the material properties which define them) are given, the dp3D
calculation starts. The problem is discretized in time steps. The typical outline of a time step in the code is
as follows:

e Displacement of boundaries to follow the macroscopic imposed conditions and/or displacement of the
objects (if any);

e Optional affine displacement of particles to follow the macroscopic imposed conditions (as if particles
followed exactly an homogeneous imposed strain);

e Contact detection from a potential contact list and calculation of the contact geometric parameters;

e Calculation of contact forces and moments from the indentation depth and/or relative velocity, relative
rotations;

e Calculation of the total force and total moment applied on each particle;
e Calculation of the accelerations due to applied force and moments for each particle;

e Calculation of the new position and rotation of particles from Newton’s second law with a velocity-Verlet
algorithm.

Note that during a time step, velocities and accelerations are assumed constant.

Boundary conditions may be imposed by objects or by periodic boundary conditions. Under periodic
boundary conditions (see Fig. 1), a particle that protrudes outside the periodic cell through a given face
interacts with the particles of the opposite face. Similarly, when the centre of a particle lies outside the
periodic cell, the particle is translated to the opposite face of the cell by a distance equal to the length between
the two opposite faces. Free surface conditions may also be used.

1.3 Typical calculation with dp3D

In order to run a dp3D calculation, two files are needed. The first one is the coordinate file. It describes the
particle coordinates and their radii, together with the objects that can be introduced in the simulation box.
A list of bonds between particles 7 and j in the form ij (i < j) may also be found at the end of this file. A
detailed description of the coordinate file format is given in section 4. The coordinate file is not necessarily in
the directory where dp3D is run. *

The second file needed to run dp3D describes the simulation conditions, it is named input_dp3D. This file
must be in the directory where dp3D is run. This file is discussed in the application examples (section 2) and

is detailed line by line in section 6.

LA coordinate file may be accompanied by a file_histc (see section 5.10) to communicate the contact history of a preceding
calculation.. It may also be accompanied by a file_clumps (see section 5.11) when the clumps option is used.
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Figure 1: a) Rigid walls condition. b) Periodic conditions. c¢) Particle ¢ that protrudes outside the periodic cell through
the left face interacts with particle j (and others) of the opposite face as if an image particle were created on the right
face.

To run the sequential version of dp3D, simply type: dp3D at the prompt. To run the parallel version, type:
dp3D -openMPn
where n is the number of threads !. For the time being 4 to 8 threads may be considered as an optimum (see
section 7 for a brief discussion on this topic).

A typical calculation procedure with dp3D is as follows:

1. Generation of a first coordinate file as a gas of particles with no initial contact. In this stage, you
may choose the size (and size distribution) of particles, some specific features (such as aggregates or
agglomerates of particles bonded together). This initial coordinate file is generated with the command
cdp3D -gas using a input_gas file to describe the initial packing (sections 2.1, 2.2 and 3.4).

2. Densification of the gas of particles to obtain a jammed or nearly jammed assembly. At this stage
interactions between particles are only elastic (section 2.2).

3. Compaction and/or sintering of the packing (sections 2.3, 2.16, 2.17, 2.19).

4. Testing of the packing to obtain its mechanical properties (elasticity, fracture, ...) (sections 2.9, 2.10,
2.11, 2.12).

At any stage during the calculation, it is possible to store the packing as a coordinate file and to reuse it
for a different purpose. Hence at the end of the densification of the gas of particles, it is possible to reuse the
coordinate file for various tasks.

1The command
nohup dp3D -openMP4 > screen &
is advised for long calculations that will continue running in the background after you log out.



1.4 Installation of dp3D

Untar the compressed file dp3D.tar, and choose the directories where you want to install the executables and
the dp3D_examples where application examples are available. Some visualization tools come with the dp3D
package (rasmol) to view the packings. You may prefer the more efficient tool ovito (http://www.ovito.org/),
[17]. In that case, you need to install ovito yourself. If a stack memory problem arises at run-time, you may
need to invoke ulimit -s unlimited to solve the issue.

If the package comes with source files, in the src directory, run the makedp3D shell file. First, it will ask if
you want to use the default directory /usr/local/dp3D/ as standard location for dp3D binaries. It will ask the
fortran compiler to use !, if you want to clean the object directory (recommended for a first time installation),
and if you want to compile a parallel version of the code (via openMP).

Once the compilation has run correctly, the binary file will be, by default in /usr/local/dp3D/ directory
or in the directory that you have provided manually. This directory contains also the dp3D tools.

Additionally, a dp3D_examples directory is available. It is a set of subdirectories with example problems.
They provide a good starting point for your simulations and are commented in detail in section 2. These
examples come with an initial coordinate file and a input_dp3D file to set simulation conditions.

If you intend to develop the source code of dp3D, you will need to obtain the test_before_commit directory
that stores benchmark tests. The source code is managed through the cvs tool. The command dp3D -v gives
the executable version of dp3D.

1.5 Organization of this guide

In the present user’s guide, the different stages will be presented with examples (section 2). These examples
should help to set up your simulation problems. These examples are stored in the directory dp3D_examples,
which comes with the installation package. In some of these exemples, we suggest short Exercise. We also
introduce the main equations that are used in the contact laws in these exemples.

Section 3 presents other tools that come with dp3D and that are useful for preprocessing or postprocessing?.

Section 4 goes into more details to describe the structure of the coordinate file that is needed to run dp3D.

Section 5 gives an overview of the output files generated by dp3D during the calculation.

Section 6 lists the key words available in the input_dp3D file with a short explanation.

Finally, Section 7 discusses briefly the use of dp3D on linux, especially with parallel options.

1.6 Citing dp3D

When publishing results obtained with the help of dp3D, please cite the paper that uses the corresponding
contact law. Each example in the next section comes with a description of the contact law used with the
reference given. In doubt, you may contact: Christophe.Martin@grenoble-inp.fr.

Lonly ifort and gfortran have been tested so far.
2For example, it is possible to view (or modify) the packing with the viewing tools vdp3D and ovdp3D or to generate plots
from the files generated from the simulation using ddp3D or to modify the coordinate file using cdp3D.


http://www.ovito.org/

1.7 Summary of the main commands in dp3D environment

command example description illustration

dp3D -openMP4 dp3D calculation
cdp3D -info coordfile modifies or gives info on coordinate files
& RasMol Version 27.2.1 [olo =
File Display _Colours _Oplions _Settings _Export Help
vdp3D -z coordfile rasmol visualization of a coordinate file
ovdp3D -z coordfile ovito visualization of a coordinate file
X Gnuplot [E=REGE X
/home/chri s/sourcedp3D/dp3D_examples/closedie_compact
oo stress (xx) ——
kg
400
350
E 300
:;/ 250
g 200
150
100
50
o
0.6 0,85 0,7 0,76 0,8 0,85
Relative Density
ddp3D -dens -sig display graphically results from calculations |le-come =z




2 dp3D by example

In this section, we comment the simulation examples that are given in the directory dp3D_examples which
comes with the installation package. Each example comes with a input_dp3D file and with an initial coordinate
file. Each input_dp3D is reproduced in the guide, following the description of the example.

dp3D_examples is a good starting point for initiating a calculation. You may want to copy the input_dp3D
file that resembles the most your particular problem and make changes on this file as necessary. The important
features for each example are highlighted. The examples that are described below use initial coordinate files
with a small number of particles to ensure speedy calculation. You should consider using a larger number of
particles.

Along the presentation of these examples, output files generated by dp3D will be described shortly. Also,
we illustrate some of the most useful postprocessing tools that come with dp3D: ddp3D, cdp3D and vdp3D.

Note that the very initial stage for generating a gas of particles is not managed per se by dp3D but by
cdp3D -gas command which use is described in section 2.1.

10



2.1 Generating a gas of particles: cdp3D -gas
e directory : dp3D_examples/generate_gas_particles

The command cdp3D -gas, together with the file input_gas (see example below) allows the generation of
a gas of non-bonded particles or a gas of bonded particles (motifs) inside a simple box (parallelepipedic or
cylindrical). Following is a brief description of the input_gas file entries for creating a gas of particles while
section 3.4 will describe the creation of a gas of bonded clusters (motifs)?.

An example of a typical file needed to generate a gas of particles is shown on the next page. The file must
be named input_gas and must be in the directory where the command cdp3D -gas is run.

The input_gas file is organized very much like the input_dp3D file that will be used for dp3D calculations.
In this first exemple, we limit ourselves to the packing of particles (no motifs). The box size ratios can be
defined to obtain a rectangular simulation box. Note that you can create a z axis cylinder by stating cyl_z in
the boundary conditions. Several types of size distribution are available (+—, normal and log normal). The
deviation for the first two distributions is the standard deviation normalized by the mean particle size. For
the log normal distribution, use the mean size and the standard deviation. The particles themselves can be
stored in several classes with different sizes, size distributions, names and materials. The number of particles
for a given class is defined in the keyword number. In this exemple, there are three classes with different sizes.
The seed keyword allows different packings to be generated (but with the same macroscopic properties) by
starting with a different random location for particles.

It is important to understand the simple scheme used in the gas generation. The particles defined via
the input_dp3D file are randomly placed in the simulation box. If the particle has a contact with an already
existing particle then another set of random coordinates is tried until the particle can be placed in the box?.
It is clear that with such a scheme, large packing densities can not be attained (typically no more than 0.35
for a monomodal packing) and that placing first small particles and then large particles will be very difficult.

In the present exemple, the large particles are defined first (in class 1) and are located first in the simulation
box. The small ones easily find a location in between the large ones and this is why a somewhat large packing
density can be attained (0.40) .

INote also that before generating a new whole coordinate file (new microstructure), it is worth considering that there exists
a library of coordinate files that have been created by dp3D users in the dp3D_library directory (see section 3.2.)

2Except if the keyword relative_overlap has been set to a non-zero value. In that case, overlap are allowed between particles
(relative_overlap>0.), or particles have a minimum distance between them (relative_overlap<O0.).

Figure 2: The gas of particles generated with the input_gas file.

11



FEzxercise:

e Replace the final expected density packing_density=0.30 by packing_density=0.80. Why is
cdp3D -gas
unable to generate this packing ¢

o Replace the particle size of class 1 (1000 pm) by 200 and the particle size of class 3 (200 pm) by 1000.
What is the outcome on the cdp3D -gas command ? Why is the generation much slower?

e Replace the periodic boundary conditions from 1x1lylz to 0x0y0z. Can you see the difference on the
stmulation box limits (use vdp3D -i file_init and see Fig. 1 for an explanation of periodic conditions).

o Modify the simulation box size ratios to have a box which is 8 times larger in the z direction than in the
other. Use the command cdp3D -info file_init to check that you obtained the desired shape.

12



HUBHUHHHBHHRHBHAHBHBRHBHHRHBHRHB R R HBHHBH BB HBHHBHBRHBHA BB HBHHBHBRHBHHRHBHRH
# general conditions #
HUBHUHHHBHAHBHBHAHBHBRHBH BB AR H B AR HBRHB AR HBHHBHBRHB AR HBRHBHA BB HBHHRHBHRH
# coordinate file:

file_init

# packing density to reach:
# packing_density= relative_overlap=
packing_density=0.30

# boundary conditions:

# 1x1lylz 1x1y0z 1x0y0z 1x0ylz Ox1lylz Ox1yOz OxOylz 0x0yOz cyl_x cyl_y
#cyl z

1x1lylz

# simulation box size ratios:
# X=y=2z=
x=5.00

0
O

N <
[T
v o
oo

# size distribution:
# plus_minus normal lognormal
plus_minus

# options:
# none initial_file= attach=(mat_n-mat_nn)
none

HARBHHHAR BB H AR B R B HA BB HHHA BB B H AR B R B H AR BB HH AR RBH AR B R HHAR BB H AR B RBHARBRHHH

# classes #
HUBHUHHBHBRHBHAHBH BB HBHHRHBRHB R BB HBHHBH BB HBHHBHBRHBHA BB HBHHBH BB HBHHBHBHRH
# prop. of class (particle sizes in um) 1:

# number= mat= name= particle_size= deviation= Temp= motif= max_angle=
number=2000

mat=1

name=cu

particle_size=1000.00

deviation=0.05

# prop. of class (particle sizes in um) 2:

# number= mat= name= particle_size= deviation= Temp= motif= max_angle=
number=4000

mat=1

name=ar

particle_size=700.00

deviation=0.05

# prop. of class (particle sizes in um) 3:

# number= mat= name= particle_size= deviation= Temp= motif= max_angle=
number=30000

mat=2

name=zr

particle_size=200.00

deviation=0.05

HUBHHBRHH U BB HH B BB H BBV H BB BB H BBV H BB BB BB BBHHBBHH BB HHBBHHHBBHH B BB H SRS HHSH
# numerics #

HUHHUBBRHHHBRBH BB BB H B BB H BB BB HBBBH BB BHHBBBH BB BHH BB H B BB HHH BB HH BB A H SR BHHSH
# random seed:

# random_seed=

random_seed=-2

13



2.2 From a gas of particles to a packing of particles

e directory : gaz_to_pack; coordinate file: lognorm_400init

This example consists in densifying a gas of particles, which has been generated with cdp3D -gas (see
section 2.1). The initial coordinate packing (lognorm_400init) has no initial contact, it has a log normal
size distribution (figure 3a). Because of the log normal size distribution, the initial relative density is already
quite high (D; = 0.5). The evolution from a gas to a dense packing is a CPU time consuming process if truly
jammed packing is sought for.

To enforce dp3D calculation to look for fine equilibrium, you must impose the mode key word ’jamming’ .
In this mode, only elastic interactions between particle are considered. Boundary conditions are fully periodic
(set to 1x1ylz in the loading conditions). The densification is conducted at a given macroscopic pressure,
which is small as compared to the particle elastic modulus. This pressure is given by the command pressure
in the loading conditions (here set to 0.02MPa). Also, note that some adhesion (with the DMT model) and
friction (with a simplified Hertz-Mindlin model) has been given.

Since there is no way to know in advance the jammed packing density for a given size distribution. The
simulation termination condition is given here by the volumic strain rate at which we consider that particle
rearrangement becomes negligible. This condition is set by: epsvdot< 1.E~% (in sec™!).

Fig. 3a, which gives the evolution of the volumic strain rate, has been generated using the output file
tstress together with the ddp3D tool'. When the packing approaches the ”jamming threshold”, the volumic
strain rate decreases drastically. At this point, the packing cannot densify further solely by particle rearrange-
ment. An alternative for the condition to stop the simulation is to give a target relative density. This can
be defined by setting density> 0.6, for example, instead of epsvdot> 1.E~" in input_dp3D. In that case,
the packing may not be necessarily jammed. In most cases, such a packing is sufficiently dense to represent
realistically a green (before sintering) powder. If you set too large a value for the target relative density, (for
example larger than the RCP 0.635 value for a monomodal random packing), the calculation will not stop
automatically. Note that is a test with a set pressure (pressure=0.2E+05)’.

The packing generated at this stage may be used for further compaction or sintering simulations. You may
choose any of the output coordinate files _coordxxxx that are generated by dp3D for further compaction®.

1ddp3D -dens -epsvdot
2The controller is a simple Proportional controller by default. You may invoke the PID_controller keyword in the general
keywords for a complete Proportional Integrator Derivator controller.

the _coord file.

1.00E-03

T T T
Volumic strain rate (s-1) =———
1.00E-04 H 3 i 2

1.O0E-05 b b
1.00E-06 |
LLOOE-0F [ oees oo o

1.00E-08 |

Volumic strain rate (s-1)

TLO0E-09 E o |

1.00E-10 |

1.00E-11 Il Il Il Il | | | Il
048 05 052 054 056 058 06 062 064

Relative Density

(a) (b)

Figure 3: (a) Evolution of the macroscopic volumic strain-rate during densification. (b) Initial gas type coordinate file.
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Exercise: (it is wise to create a whole new directory for each modification)

e Replace the frict(1,1)=0. and the adhes(1,1)=0. by 0.3 for frict and 0.2 J.m~2 for adhesion.
Rerun the test. What difference does these changes make on the final density attained during jamming?
Use the command
ddp3D -dens -epsvdot
to plot the volumic strain rate evolution with density.

o Keeping friction and adhesion to zero, replace the simulation termination condition by density>=0.6.
Compare the average coordination number of the last coordinate file generated under these conditions with
the one generated with frict(1,1)=0.30 and adhes(1,1)=2. Use the command ddp3D -dens -z.

Contact laws used in this example:

In the jamming mode, only elastic interactions are used between particles (no plasticity). However, adhesion
or friction can be introduced. Lets consider first the simplest case with neither adhesion nor friction. The
normal force acting between two particles of radii Ry and Ry with elastic properties (Eq,v1) and (Ea,vs),
respectively, is given by the Hertzian law:

4
NHertz _ gE*R*l/Q(Sg/Q (1)

2
1

_l’_
Er Es Rs
adhesion is included the adhesive model must be defined in input_dp3D (adhesion model). It may be the
DMT or the JKR models [3,18,19], and a tensile term is added to Eq. (1):

-1 -1
where E* = (1_” 1_”5) and R* = (R% + i) and 6, is the normal indentation (Fig. 4). When

4
NIER = B RH262 — 2V2mw B a,
(2)
4 )
NDMT — gE*R*l/Qdi/Z . 27T'ZUR*,
with w the work of adhesion and a the contact radius, which for Hertzian contact writes:

a’> = R*a (3)

The tangential force model is of the Hertz-Mindlin type in the sticking mode while the norm of the tangential
force is limited during sliding by Coulomb friction (friction coeflicient p):

T = —8G"ad; if 8G*ad; < uNHertz
0 4
T = —ﬁuNHe”Z if 8G*ad; > /ANHertz, (4)
t

where G* is the effective shear modulus and §; the accumulated tangential displacement.

Figure 4: Contact between two indented particles.
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# simulation conditions #

# coordinate file:
lognorm_400init

# mode key word:
# jamming elasto_plasticity viscoplasticity sintering
Jamming

# general key words:

# none stress_ref large_dens no_rotation rot_elast_only
# constant_velocity gravity thermal

none

models
# elasto_plasticiy and jamming key words:
# none bonds no_elasticity linear_elasticity
none

# friction model:
# Hertz_Mindlin Coulomb shear
Hertz_Mindlin

# adhesion model:
# DMT JKR
DMT

# outputs #

# simulation termination:

# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=
# timestep>= fracture=

epsvdot<=0.1000E-09

# writing coordinate files:
# density= epsilon= pressure= aoR= time= timestep= none end
density=0.01

# writing output files:
# density= epsilon= pressure= aoR= time= timestep= none end
density=0.1000E-03

# writing contact history files:
# density= epsilon= pressure= aoR= time= timestep= none end
end

# loadings #

# periodic conditions:
# 1x1lylz 1x1y0z 1x0yOz 1xOylz Oxlylz Ox1lyOz OxOylz Ox0y0z
Ix1lylz

# loading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=
epsxdot=-0.1000E-03

epsydot=-0.1000E-03

epszdot=-0.1000E-03

pressure=0.2E+05

# materials (from 0,1,2, ... to 9) #

# elastic parameters (Pa for stress):

# E(0)= poisson(0)= E(1)= poisson(1l)= delta_c(0)= fact_mult(0)=
E(1)=0.2000E+11

poisson(1)=0.3000E+00

# plastic parameters (Pa for stress):

# sigy(0)= sigy(1)= sigy(2)= Mstrain= Nvisco=
sigy(1)=0.3000E+09

Mstrain=0.0000E+00

Nvisco=0.0000E+00

# friction parameters:
# frict(0,0)= frict(0,1)= frict(1,1)= frict(1,2)= frict(2,2)=
frict(1,1)=0.

# work of adhesion parameters (J.m-2):
# adhes(0,0)= adhes(0,1)= adhes(1,1)= adhes(1,2)= adhes(2,2)=
adhes(1,1)=0.

# density (g-mm-3):
# ro(0)= ro(1)= ro(2)=
ro(1)=0.7890E-02

# numerics #

# affine motion conditions:
# 1x1lylz 1x1y0z 1x0yOz 1x0ylz Oxlylz Ox1lyOz OxOylz Ox0y0z
Ix1lylz

# control of strain-rates for quasi-static conditions:
# none aoamean= break= epsilon= ferror= kin_energy= vmax= ctrl_fact=
none

# numerical parameters:

# safe_dt= upscale(1)= upscale(2)= damping= fixed_dt= random_seed=
# potential_contact=

safe_dt=0.5000E-01

upscale(1)=0.1000E+01

damping=0.5000E-01
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2.3 Close-die compaction of a homogeneous packing of plastic particles

e directory : closedie_compact; coordinate file: p400p6365ur

Starting from a coordinate file that has been generated following the procedure exemplified above (section
2.2), this example shows how to compact uniaxially this packing to 0.85 relative density. Note that here,
in contrast with the last example, the mode key word is set to ’elasto_plasticity’. This is to ensure that
plasticity is allowed in the simulation. The strain rate is defined by epszdot=-0.1000E-05 to mmimic close-
die compaction®. By default in dp3D, negative strain values relate to compression. The strain-rate must be set
to a sufficiently small value to ensure quasi-static conditions?. A larger value would result in a smaller CPU
time but may not result in quasi-static conditions.

The material is considered as elasto-plastic with the plastic regime defined by the following equation:

o =oet/™ (5)

where o7 is a material parameter, m is the hardening coefficient and o and ¢ are the stress and strain in the
uniaxial case. In this exemple, the material is considered perfectly plastic (M = 1/m = 0).

The evolution of the average number of contacts in the packing is shown in fig. 5a. The figure has been
generated using the the data stored in the output file zave (command ddp3D -dens -z), which gives the
evolution of the packing coordination number with density. The information on average data can be refined
by looking at the histogram. Fig. 5b shows an example of such a plot at 0.80 relative density for the size of
the contacts ®. The microstructure itself can be visualized by using the command vdp3D. Fig. 5c has been
generated using the vdp3D command *, it shows the coordination number for each particle at 0.84 relative
density.

Lonly one non-zero component in the z direction

2see discussions on quasi-static conditions in sections 2.9 and 2.12.
3ddp3D -histo -a _coord0030

4vdp3D -z _coord0040 or ovdp3D -z _coord0040

Histogram of Contact radius (normalized by 2equivalent radius)

Average coordination = . histold30 —

MNusber of occurence

[
0,62 0,64 066 083 07 072 074 07 078 08 0.8
Relative Tansitu

(a)

Figure 5: (a) Evolution of the average coordination number. (b) Contact size distribution (normalized by the particle
radius average) at 0.80 relative density. (c) Slab of the sample at 0.84 relative density displaying the coordination
number of each particle.
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FEzxercise:

o Plot the stress evolution versus density using ddp3D -dens -sig
Why is the o, larger than the others?

e Replace sigy(1)=0.4E+09 by a very large value sigy(1)=0.4E+33. What is the effect on macroscopic
stresses? Look for the status of contacts in the _tag files (plastic, hertzian, plast_unl).

Contact laws used in this example:
In the elasto_plasticity mode, contacts may experience elasticity (Eq. (1)), plasticity and elastic
unloading. The plastic contact force is given by the model of Storakers et al. [4]:

X S T 2+ L 1 d45h
Nplast:21 m31 mTFU*C(m) + R*l 2m6n Zm (6)

-1
where ¢* = ((}1 + é) is the effective material parameter that defines the plastic behaviour of the contact

(see eq. (5)) and ¢ (m) is a function of the hardening parameter m (¢ (m)® = 1.43exp (m) [4]). Note that o
and o9 have the unit of stress but that they represent the yield stress of materials 1 and 2 only for m — oco.
In this simple case (perfectly plastic material), Eq. (6) reduces to:

NPlast — 6ro*c (m)? R*6, (7)
o; are sigy (i) in input_dp3D'. The contact radius in plasticity is governed by:
a’ =2c (m)2 R*6, (8)
The transition from elasticity to plasticity is simply governed in dp3D by stating that it occurs when:
Nplast < NHertz 9)

This criterion has the advantage of enforcing a continuous transition in force. However, this has the drawback
of overestimating the value of the indentation d,, at the elastic-plastic transition [18]. Also, the maximum stress
under the contact experiences a discontinuous jump (you may observe this behaviour by plotting the contact
stress of a tagged contact?). This is due to the use of Egs. (3) and (8) that introduce a discontinuous jump in
the size of the contact. dp3D is not able to reproduce accurately the complex stress state under contacts.

INote that for a composite, m must be the same for all materials (% is Mstrain in input_dp3D).
2ddp3D -tag -indent -sigN
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HEHHHHRBHHH AR R HH AR R RHHARBR A A AR H AR BRHHAR R AR AR R AR R R AR R R
# simulation conditions #
HE#HHHHRBHHHHRRHHAHRRHH AR BB H AR H AR R RH AR A R R R R R
# coordinate file:

p400p6365ur

# mode key word: o ) o .
# jamming elasto_plasticity viscoplasticity sintering
elasto_plasticity

# general key words:
# none stress_ref large_dens no_rotation rot_elast_only
none

HE#AHHRRHHHHRRHHAHRRHH AR R H AR R H AR R R H AR A R R AR RS R
# models #
HRARHRH R
# elasto_plasticiy and jamming key words:

# none bonds no_elasticity

none

# friction model:
# Hertz_Mindlin Coulomb shear
shear

# adhesion model:
# DMT JKR
JKR

######################################################################

# tput #
######################################################################
# simulation termination:

# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=

# timestep>= fracture=

density>=0.8500E+00

# writing coordinate files:
# density= epsilon= pressure= aoR= time= timestep=
density=0.5000E-02

# writing output files:
# density= epsilon= pressure= aoR= time= timestep=
density=0.1000E-02

# writing contact history files: . .
# gens1ty= epsilon= pressure= aoR= time= timestep= none end
en

HERARHHRAHRARRARRARRARAARAARARRARRARRARRARAARA IR RRARRARRARA A

# loadings #
HARHBHHBHHRAHRAA A RRA AR RH AR R AR AR A
# periodic conditions:

# 1x1lylz 1x1yOz 1x0y0z 1x0ylz Oxlylz 0Ox1ly0z 0xOylz O0xOyOz

Ix1lylz

# Toading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=
epsxdot=0.0000E+00

epsydot=0.0000E+00

epszdot=-0.1000E-05

######################################################################

# als #
######################################################################
# elastic parameters (Pa for stress):

# E(D= po1sson(1)_ E(2)= poisson(2)=

E(1)=0.1200E+12

poisson(1)=0.3400E+00

# plastic parameters (Pa for stress):
# sigy(1)= sigy(2)= Mstrain= Nvisco=
sigy(1)=0.4000E+09
Mstrain=0.0000E+00
Nvisco=0.0000E+00

# friction parameters:
# frict(l,1)= frict(1,2)= frict(2,2)= frict(object)=
frict(1,1)=0.1000E+00

# work of adhesion parameters (3.m-2):
# adhes(1, 1)_ adhes(1,2)= adhes(2,2)= adhes(object)=
adhes (1, 1) .0000E+00

# density (g.mm-3):
# ro(1)= ro(2)=
ro(1)=0.8706E-02

RHRHHRHBRH A RRHRRA AR AR R
# numerics #
HARHRHHRHHRHARHA BB RRA AR AR AR AR AR A
# affine motion conditions:

# 1x1lylz 1x1yOz 1x0y0z 1x0ylz Oxlylz OxlyO0z 0xOylz O0xOyOz

1x1lylz

# control of strain-rates for quasi-static conditions:
# none aoamean= break= epsilon= ferror= kin_energy= vmax= ctrl_fact=
none

# numerical parameters:

# safe_dt= upscale(1l)= upscale(2)= damping=
safe_dt=0.1000E-01

upscale(1)=0.1000E+01

damping=0.5000E-01
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2.4 Isostatic compaction of a composite packing

e directory : composite; coordinate file: p400p6365pct20_tag

In the preceding examples, all particles had the same material properties. It is possible in dp3D to define
up to 10 families of particles with different material properties (from 0 to 9). In this example, two materials (1,
and 2) are introduced. For contact laws, this means that 3 types of properties have to be defined (contacts 1-1,
1-2, and 2-2). The composite packing p400p6365pct20 has been generated using the homogeneous packing
p400p6365ur and the cdp3D -mixture tool (see section 3.3). Type 1 and type 2 particles are defined in the
coordinate file p400p6365pct20 with “cu” and "ni” labels to distinguish visually particles of material 1 ("cu”)
and particles of material 2 ("ni”) (see section 4 for a more detailed discussion on the labels of particles). Also,
since three different contacts are present, it is interesting to tag specific contacts and follow their behavior
during compaction. This is done by using the command vdp3D -tag p400p6365pct20, which generates the
file p400p6365pct20_tag used here (see section 3).

The two families of particles are described with different material properties in input_dp3D by the appro-
priate material data (highlighted data in input_dp3D, see next page). Note that the yield stress of material
2 is set to a very large value here to ensure that type 2 particles behave elastically all along the compaction.
The friction and adhesion parameters are set to different values in input_dp3D for the three types of contacts.
Also, note that for this example, the test is terminated by setting pressure>=200E+06, which means that the
simulation stops when the pressure is above 200 MPa. All strain rates are set to the same value: this is an
isostatic compaction test.

Figures 6a and b show the type of information given by tagging the three contacts '. Figure 6a demonstrates
the effect of having contacts that plastify (large contacts) and contacts that stay fully elastic (small contacts).
Figure 6b indicates also that the contact laws behave differently as a function of the indentation between the
two particles (Hertzian and ideal plastic), as it should.

It is a good practice to tag some contacts at the early stage of a simulation to ensure that the simulated
contacts behave as you expected.

Since the packing is a composite, it can be interesting to evaluate the contribution of each material to the
overall stress response. This can be done using the command:
ddp3D -dens -sigzz_mat_1 -sigzz_mat_2 -sigzz
which displays the macroscopic stress contribution on zz for materials 1, 2 and the total stress. Fig. 7 shows the
result of this command. Note that although material 2 plastic yield stress sigy(2) is larger than for material

1ddp3D -tag -dens -a and ddp3D -tag -indent -forceN

Ll 1 fi t the tact
Contact radius {normalized by 2 * equivalent radius) ormal rorce at the contac

0.6

_tagd0001s_00016E —
_tag000241_000247
_tagd00300_000378 ——

05}

0.4

0.3

force (N}

a/ (2*Rpeq)

02t

o1

0,62 0,64 066 0,68 07 0,72 074 076 078 0,8 0,82 0,84 0 0,08 0.1 0.15 0,2 0,25
Relative Density h#R

(a) (b)

Figure 6: (a) Evolution of contact size of three different contacts (plastic-plastic; plastic-elastic; elastic-elastic). (b)
Normal force evolution for the same three contacts as a function of the indentation.
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1, the overall contribution of material 1 is still larger as particles of material 1 are much more numerous. See
section 3.6 for details on stress calculation in dp3D.

200 T T T T T

T T T
stress (zz) mat 1 ~——
stress (zz) mat@

180 - stressAzz) b

160 T

140 -

120

100

Stress (MPa)

80 [~

60 -

0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84

Relative Density

Figure 7: Stress partition with materials for the zz component.

FExercise:

o Increase all the strain rates by a factor of 10 (epsxdot, epsydot,epszdot. Is the simulation faster in
terms of CPU time ? What is the effect on macroscopic stresses? Is this effect due to the behaviour of
materials themselves (are there some rate effects introduced in the contact laws (Eqs. (1), (6)) or is it
linked to inertia?)

e Replace density=0.5000E-02 in the # writing coordinate files: by density=0.5000E-01. How
many _coord files are written now ?

o Replace density=0.1000E-04 in the # writing output files: by none. What is the effect on the
output files ¢ (see the log file for example)
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# simulation conditions #

# coordinate file: e e e T
p400p6365pct20_tag

# mode key word: . . . .
# jamming elasto_plasticity viscoplasticity sintering
elasto_plasticity

# general key words:
# none stress_ref large_dens no_rotation rot_elast_only
none

models #

# elasto_plasticiy and jamming key words:
# none bonds no_elasticity
none

# friction model:
# Hertz_Mindlin Coulomb shear
Hertz_Mindlin

# adhesion model:
# DMT JKR
JKR

outputs

# simulation termination:

# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=
# timestep>= fracture=

pressure>=200.E+06

# writing coordinate files:
# density= epsilon= pressure= aoR= time= timestep=
density=0.5000E-02

# writing output files:
# density= epsilon= pressure= aoR= time= timestep=
density=0.1000E-04

# writing contact history files:
# gensity= epsilon= pressure= aoR= time= timestep= none end
en

TN L AN
# periodic conditions:

i %x%ylz 1x1y0z 1x0y0z 1xO0ylz Oxlylz Ox1lyOz O0xOylz 0x0yOz

xlylz

# loading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=
epsxdot=-0.1000E-05

epsydot=-0.1000E-05

epszdot=-0.1000E-05

# elastic parameters (Pa for stress):
# E(1)= poisson(1l)= E(2)= poisson(2)=
E(1)=0.2000E+12

E(2)=0.2000E+12

poisson(1)=0.2200E+00
poisson(2)=0.2200E+00

# plastic parameters (Pa for stress):
# sigy(1)= sigy(2)= Mstrain= Nvisco=
sigy(1)=0.2000E+09
sigy(2)=0.2000E+12
Mstrain=0.0000E+00
Nvisco=0.0000E+00

# friction parameters:

# frict(1,1)= fr1ct(l 2)= frict(2,2)= frict(object)=
frict(l, 1) 0.1000E+00

frict(l,2)=0.1000E+00

frict(2,2)=0.05000E+00

# work of adhesion parameters (J.m-2):

# adhes(1,1)= adhes(1,2)= adhes(2,2)= adhes(object)=
adhes (1,13=0.0000E+00

adhes(1,2)=0.0000E+00

adhes(2,2)=2.0000E+01

# density (g.mm-3):
# ro(1)= ro(2)=
ro(1)=0.8920E-02
ro(2)=0.1000E-01

# numerics #
A 5%%{ﬁé'hbtioﬁ'ééha%%ions;'""' A R A
# 1x1lylz 1x1y0Oz 1x0y0z 1x0ylz Oxlylz Ox1lyOz OxOylz 0x0y0z

1x1lylz

# control of strain-rates for quasi-static conditions:
# none aoamean= break= epsilon= ferror= kin_energy= vmax= ctrl_fact=
none

# numerical parameters:

# safe_dt= upscale(1)= upscale(2)= damping=
safe_dt=0.1000E-01

upscale(1)=0.1000E+01

upscale(2)=0.1000E+01

damping=0.5000E-01
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2.5 Unloading a compact

e directory : unl_rel; coordinate file: p400p85cd and p400p85cd_unl; contact file: p400p85cd_histc
and p400p85cd_unl_histc

At the end of the compaction stage, the macroscopic stress acting on a packing, which has been densified to
a given density, is non-zero. It is possible to unload the packing to obtain the state of the compact under nearly
zero compressive stress for example. dp3D allows taking into account the local unloading of each contact that
has been submitted to elastic (JKR model [2] or DMT [3]) or plastic [5] strains. Some contacts may experience
decohesion during the unloading.

In this example, we use the last coordinate file that has been generated in section 2.3 (renamed to p400p85cd
from the last coordinate file of closedie_compact directory test) in the present input_dp3D and unload it to
1. MPa by setting pressure<=1.E+06 as the simulation termination condition.

When using a coordinate file with a stress history, it is advisable to also use the contact history file which
has been generated by the preceding simulation. It is not absolutely necessary to copy this file for the present
calculation but if so, this will ensure that you start the unloading with the exact same contact history as the one
calculated in the preceding example. Here, not using the _histc file would result in uncorrect results. Thus, you
want to use this file and you need to rename it to p400p85cd_histc (or more generally coordname_histc if the
coordinate file name is coordname) and store it in the same directory as p400p85cd so that dp3D understands
that it has to use it. When the strain history of contacts is negligible for the overall packing behavior (typically
elastic behavior), it is not important to save it for the next calculation. Also sintering and viscoplastic
modes make no use, for the time being, of the _histc file.

Fig. 8a ! shows how the stress components decreases during the unloading stage down to a 1 MPa pressure.
Note that there exist more involved methods for unloading the compact that can be called with equal_stress=.
This allows unloading the compact while ensuring that the stress state converges to isostatic. Fig. 8b ? shows
the local density of each particle. This is calculated by using a Voronoi tessellation (voro++ cell library [20]).

1ddpSD -dens -sig
2ydp3D -dens _coord0003 or ovdp3D -dens _coord0003

i)

stress [xx)
stress (ya)
stress (zz)

500

A.9461E+0@

400

300

Stress (MPa)

200

160

0 . . . !
0,82 0,820 0,83 0,835 0,84 0,845 0,85 0,85
Relative Density

(a)

Figure 8: (a) Evolution of the stress components during unloading. (b) Local density map of the sample after unloading.
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FEzxercise:

e Rename the p400p85cd_histc file to p400p85cd_not2beseen. What are the initial stresses at 0.85
relative density when unloading the p400p85cd compact without its contact history file p400p85cd_histc?
Do they correspond to the final stresses at the end of compaction (see section 2.53)%

e Set equal_stress in loadings to equal_stress=3. What is the effect on the unloading?

Contact laws used in this example:
Once plastified, contacts that unload follow an elastic unloading model (with or without adhesion) [5,21]
that leads to the following expression for the normal force:

2
Nuntoad — 9p002  arcsin () e i () ~oVarwErat (10)

ap
where the second term accounts for adhesion. Unloading contacts may snap (fracture) if the contact radius is

lower than the critical value: 13
a 9(mr—2 .
(). -5
ao snap

where ag is the maximum contact radius attained during plasticity (see Eq. (8)) and:

7r wk*
= — 12
X (27r - 4) 90*2ag (12)

If x > 0.1, the unloading cannot be considered purely elastic and the above model may not be valid. If

(i) > 1 (typically if the work of adhesion w is too large), dp3D stops as it is not possible to treat this
snap

ao
problem satisfactorily.

24



HUHHHHAHHRR ARG R HHAAAAAR ARG HH AR AR ARG R H AR R R R
# simulation conditions #
HERBHHHHH AR AR BB B AR AR AR BB A AR BB R AR R R RS
# coordinate file:

p400p85cd

# mode key word: o . o . .
# jamming elasto_plasticity viscoplasticity sintering
elasto_plasticity

# general key words:
# none stress_ref large_dens no_rotation rot_elast_only
none

##############################ﬁ#######################################
# models #
##HHH AR AR R R HH AR AR AR R H AR AR R R R A
# elasto_plasticiy and jamming key words:

# none bonds no_elasticity

none

# friction model:
# Hertz_Mindlin Coulomb shear
shear

# adhesion model:
# DMT JKR
JKR

######################################################################
# #

utput
######################################################################
# simulation termination:
# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=
# timestep>= fracture=
pressure<=1.E+06

# writing coordinate files:
# density= epsilon= pressure= aoR= time= timestep=
epsilon=0.5000E-02

# writing output files: ) .
# density= epsilon= pressure= aoR= time= timestep=
epsilon=0.1000E-02

# writing contact history files: . .
# density= epsilon= pressure= aoR= time= timestep= none end
end

G g

# Tloadings #
H#HHAHHAHHHR R R H AR AR R H AR AR AR R HAAAAAAA AR R R R S A
# periodic conditions:

# 1x1lylz 1x1lyOz 1x0y0Oz 1x0ylz Oxlylz Ox1lyOz 0xOylz 0x0yOz

1x1lylz

# loading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=
epsxdot=0.1000E-05

epsydot=0.1000E-05

epszdot=0.1000E-05

B G G S S g

# materials #
HERBHHHHHHHH A AR B R BB HHH AR AR AR R R R H AR AR BB R HHF AR AR R R
# elastic parameters (Pa for stress):

# E(1)= poisson(1l)= E(2)= poisson(2)=

E(1)=0.1200E+12

poisson(1)=0.3400E+00

# plastic parameters (Pa for stress):
# sigy(1)= sigy(2)= Mstrain= Nvisco=
sigy(1)=0.4000E+09
Mstrain=0.0000E+00
Nvisco=0.0000E+00

# friction parameters:
# frict(l,1)= frict(1,2)= frict(2,2)= frict(object)=
frict(1,1)=0.1000E+00

# work of adhesion parameters (J.m-2):
# adhes(1,1)= adhes(1,2)= adhes(2,2)= adhes(object)=
adhes(1,1)=0.0000E+00

# density (g.mm-3):
# ro(1)= ro(2)=
ro(1)=0.8706E-02

######################################################################
# numeric #
######################################################################
# affine motion conditions:

# 1x1lylz 1x1lyOz 1x0y0Oz 1xOylz Oxlylz Ox1lyOz OxOylz OxO0yOz

Ix1ylz

# control of strain-rates for quasi-static conditions:
# none aoamean= break= epsilon= ferror= kin_energy= vmax= ctrl_fact=
none

# numerical parameters:

# safe_dt= upscale(1l)= upscale(2)= damping=
safe_dt=0.1000E-01

upscale(1)=0.1000E+01

damping=0.5000E-01
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2.6 Use of cylinder objects together with periodic boundary conditions

e directory : cylinder; coordinate file: cyl_p51

In the preceding examples, boundary conditions were fully periodic (1x1ylz in loadings). This means
that until this example, no rigid object was used. It is possible to introduce objects in dp3D. Objects can be:
plane, cylinder or sphere!. Here we use two concentric cylinders which walls will interact with the particles.
The command cdp3D -cut_cyl has been used to create a hollow cylinder by removing particles. Together
with the two walls, the boundary conditions are completed by periodic boundary conditions in the z direction
as declared in input_dp3D (0xOylz, see highlighted). The material of the walls is given by type 0 material.
As highlighted in the input_dp3D file, the yield stress of the wall is set deliberately to a large value.

[barticles: 400 objects: 2 bonded contacts: 0 mean radius: _ 0.100000012138E-02

0. 846599242285E-02 0. 5468992422650-02 -0 9710932155108-02 0.8463992422855-02 0,846999242265E-02 0.9719932155108-02
cut -0 39E- 963 03
6

733720887308E-02 0.158331341239E-02 -0.7882564186 02 0 979476871E~
1 cu -0.6802602. 37E- -0.117598840021E-02 0.713358026952E-03 0.979030477261E-03
1 cu 0.742740359951E-! 0.869784479627E-04 0.583579314347E-02 0.104216860347E-02
1 cu 0.399951995384E-! -0.420456248884E-02 0.386905132323E-02 0.969973925604E-03
1 cu 0.220817359483E-! -0.479111722846E-02 0.316971545448E-02 0.104054897444E-02
1 cu -0.1932812 0.723948918431E-02 -0.544106001577E-02 0.976973416482E-03
1 cu 0.5609539 4 0.443337803007E-02 0.920096909057E-02 0.101640327436E-02
1 cu 0.692625626780E-! 0.212054535549E-02 0.263842611128E-02 0.972508040059E-03
1 cu -0.175307292944E~ -0.723881985613E-02 -0.949918051006E-02 0.102194050879E-02
5
list of objects: cylinder 1 radius
PPt 4%
0 cylin 0.000000000000E+00 0.000000000000E+00 0.100000000000E+01 0.846999242285E-02 : "
C¥c¥l 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00 cvlmder 2 radius
*h AERAR
0 cylin 0.000000000000E+00 0.000000000000E+00 0.100000000000E+01 0.423499621059E-02 +
C eyl 0.000000000000E+00 0.000000000000E+00 0,000000000000E+00
*h FERER SETSOT ’ .
bonded contacts (i,3): 0 cylinder 1 axis

The objects themselves are declared in the initial coordinate file cyl_p51 (see above the portion of the
file cyl_p51). The number of objects (2) is declared on the first line of cyl_p51. Two lines are needed to
describe the cylinders. The first line with the label cylin is followed by the unit axis vector and the radius
of the cylinder. The second set needed to define the cylinder is given after the label C_cyl which defines the
coordinates of a point on the axis of the cylinder.

The microstructure resulting from file cyl_p51 is shown in fig. 9a. Fig. 9b shows the normal contact force
network on a slab at mid height of the cylinder?. After the uniaxial compaction simulated in this example, we
rename the last generated coordinate file to cylp85. This file will be used for the next example.

ldenoted as plane, cylin, and spher, respectively in the coord file
2ydp3D -Nnetwork applied on the last coordinate file

mean conpressive foros (red, microhy: -0,89E+03; mean tensile force {blus, mioroN):  0,00E+00

u (nean radii of particles

x (nean radii of particles)

(b)

Figure 9: (a) Packing with two concentric cylinders objects and periodic B.C. on z axis. (b) Normal contact force
network on the slab at mid height ( vdp3D -Nnetwork on the last coordinate file).
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FEzxercise:

o Fdit the cyl_p51 file and add the following line under the two cylin lines that define the cylinders:
irate 0.000000000E+00 0.000000000E+00 0.000000000E+00 -0.100000000E-05

What is the effect on the cylinder radii in the simulation ¢ Check the difference in the initial and final
radius of the cylinder.

o Remowve the inner cylinder by careful edition of the cyl_p51 file. FEnsure that you define the correct
number of objects.
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simulation conditions

HHHHHHEEHHE R R R R
# #

# coordinate file:
cyl _p51

# mode key word:
# jamming elasto_plasticity viscoplasticity sintering
elasto_plasticity

# general key words:

# none stress_ref large_dens no_rotation rot_elast_only
# constant_velocity gravity

none

R R R R R R R R e
# models #
# e HHiH
# elasto_plasticiy and jamming key words:

# none bonds no_elasticity linear_elasticity

none

# friction model:
# Hertz_Mindlin Coulomb shear
Hertz_Mindlin

# adhesion model:
# DMT JKR
JKR

# outputs #
HHHHHHHEHEHE R R ERHE R R
# simulation termination:

# densitys>= epsilon>= pressures>= pressure<= epsvdot<= aoR>= times>=

# timestep>= fracture=

density>=0.8500E+00

# writing coordinate files:
# density= epsilon= pressure= aoR= time= timestep= none end
density=0.1000E-01

# writing output files:
# density= epsilon= pressure= aoR= time= timestep= none end
density=0.1000E-02

# writing contact history files:
# density= epsilon= pressure= aoR= time= timestep= none end
end

# loadings #
BB R R R R B R R
# periodic conditions:

# 1xlylz 1x1y0z 1x0yO0z 1xOylz Oxlylz 0x1lyOz 0x0ylz 0x0yOz

0x0ylz

# loading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=
epsxdot=0.000E+00

epsydot=0.000E+00

epszdot=-0.1000E-05

materials (from 0,1,2, ... to 9)

# elastic parameters (Pa for stress):

# E(0)= poisson(0)= E(1)= poisson(l)= E(2)= poisson(2)=
E(1)=0.2000E+12

E(0)=0.2000E+12

poisson(1)=0.3000E+00

poisson(0)=0.3000E+00

# plastic parameters (Pa for stress):

# sigy (0)= sigy(1l)= sigy(2)= Mstrain= Nvisco=
sigy (1)=0.3000E+10

sigy (0)=0.3000E+12

Mstrain=0.0000E+00

Nvisco=0.0000E+00

# friction parameters:
# frict(0,0)= frict(0,1)= frict(1l,1)= frict(l,2)= frict(2,2)=
frict(1,1)=0.2000E+00
frict(0,1)=0.6000E+00

# work of adhesion parameters (J.m-2):

# adhes(0,0)= adhes(0,1)= adhes(1,1)= adhes(1,2)= adhes(2,2)=
adhes(1,1)=0.000E+00

adhes(0,1)=0.0000E+00

# density (g.mm-3):
# ro(0)= ro(l)= ro(2)=
ro(1)=0.7890E-02

# numerics #

FHHEHEHEE R R R R R R R i
affine motion conditions:

# 1xlylz 1x1y0z 1x0yOz 1x0Oylz Oxlylz 0x1lyOz 0x0Oylz 0x0yOz

1x1lylz

# control of strain-rates for quasi-static conditions:
# none acamean= break= epsilon= ferror= kin energy= vmax= ctrl_ fact=
none

# numerical parameters:

# safe_dt= upscale(1)= upscale(2)= damping= fixed dt= random seed=
# potential contact=

safe_dt=0.1000E-01

upscale(1)=0.1000E+01

damping=0.5000E-01
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2.7 Plastic compaction in a cylinder up to large relative density

e directory : large_dens; coordinate file: p51p4kpartpb

The compaction applications in the preceding examples were stopped at intermediate relative densities
(typically 0.85). In reality, many compaction processes go for for much higher densities. A priori, DEM is not
well suited for these high densities as contact impingement, contact interactions will invalidate the simplifying
assumption of pair interactions (i.e. a contact constitutive law (normal and tangential force laws) does not
depend on neighboring contacts). Here, we use the keyword large_dens to invoke an elasto-plastic model
with hardening that depends on the local relative density around the particles. The model is derived from [22]
and the PhD thesis of Achraf Kallel, and addresses specifically high density compaction. The value given in
large_dens=1. means that the material becomes incompressible when the dp3D calculated relative density
approaches 1. It may be set to other values if needed (see (18)). It applies to particles which plastic behavior
is defined by a simple constitutive equation of the type:

o =o;et/™ (13)

with o and € the uniaxial stress and strain, and o; and 1/m the hardening parameters for the material of
particle 7 (denominated sigy and Mstrain in input_dp3D).

An example of the use of such a model is given for a packing of 4000 particles in a cylinder and with planes
acting as pistons in the axial direction. Note the use of the key word large_dens that calls for a calculation of
the local density around each particle using the Voro++ program [20], and thus making this type of calculation
more CPU intensive than the standard one.

Fig. 10 shows the result of the compaction simulation with and without the large_dens keyword. Note
that stresses are calculated on the objects simply by adding the total contact forces on the planes (for the axial
stress) divided by the surface. The keyword stress_ref is also invoked in the input_dp3D file. Together with
the keyword stress_ref in the coordinate file pdkpartp5 when defining objects (see section 4.3) it ensures
that reference stresses (those that are used for example to set a stop condition on the simulation) are calculated
from these objects (not from the total volume with the Love’s in Eq. (63)).

The coordinate file pdkpartpb is necessarily accompanied by the file pdkpartp5_voronoi_dens. This is
because the model with large_dens needs the initial Voronoi density around each particle. This file contains
this information and can be generated by the command:
vdp3D -dens p4kpartpb
or
ovdp3D -dens p4kpartpb
The same file should be copied if an unloading is planned as explained in the exercise below.

E00

sigz no large_dens, ——
sigr large_deng
sigz large_de

gokbk ... A TR, — - DU N, N S T L

a0k o e e P R i e e e

ok - I— e T IR S

Stress (HPa)

200

100 : Z EER R A

p i i i F i
0.5 0,55 0.6 0,65 0.7 0,75 0.8 0,85 0.9 0,95 1

Relative Denzity

Figure 10: Axial and radial stress evolution of a packing in a cylinder without or with the large_dens keyword.
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FEzxercise:

o copy the last coordinate file from the compaction into an unloading directory and rename it cload. Copy
the p4kpartp5_voronoi_dens file as cload_voronoi_dens in this directory. Copy the input_dp3D file
and edit this file to impose a tensile strain rate (epszdot=0.1000E-04). Set a stop condition for the
stmulation at sigzz>=-50.E+06. Run the simulation to check that indeed you have imposed an elastic
unloading and that it stopped at the correct 50 MPa compressive axial stress.

o Similarly, using the last coordinate file from the unloading, set up a simulation to reload up to 0.95
relative density. Check if indeed an elastic unloading-reloading sequence is simulated.

Contact laws used in this example:
For two particles ¢ and j, upon plastic loading or reloading, the normal repulsive force writes in incremental
formulation at time t + dt:
NPlest (¢ 4 dt) = NPst () — 28;;d6, (14)

where the stiffness S;; is assumed to be a sum of two independent terms (the factor 2 in Eq.(14) stems from
the fact that [22] consider a different definition of d,,):

Sij =20"R"* (51 + S2) (15)

where o* is the equivalent stress parameter for particles 7 and j:

3=

1 —
of=2m (ai_m + O'j_m)

(16)

Note that the hardening parameter must be the same for the two particles even though the parameter o; may
be material dependent. The S; and S, stiffnesses are written:

1= o (mex (51 (m) 52 )+ () exp (3122 a7

[max (0, p;,j — POi,j)]Q
dy — pij

SQ = (g (m) (18)
where oy, ag, 81, 71 are functions of m and d; is a constant (see [22] for their values). Eq. (18) introduces
an important aspect of this model: the local density p; ; and its initial value (before plastic indentation) po; ;.
The S, stiffness tends to infinity when p; ; =+ d, thus providing a simple mean to verify the incompressibility
condition. Note that the local density p; ; is given by using tessellations obtained with the Voro++ package [20],
which is called periodically by dp3D. Also, note that if the keyword large_dens has been given a value different
from unity (d; # 1), it means that the material becomes incompressible when approaching d;.

Eq.(14) applies when the contact is loading plastically. Noting ¢; the maximum indentation attained by a
contact, Fig. 11 shows the sketch of Npj.s: up to indentation §; when it unloads'. When the contact unloads
(unloading branch defined by § < 1), we consider that the elastic solution of a bond (see Eq.(25)) applies and
can be added to the force of the maximum plastic indentation Ny:

ap

E
unl __ el
N _N1+1—V2fN(R*’

l/) abéunl (19)
where ay, is the radius of the bond and §,,,; is the indentation difference with the maximum plastic indentation
01 (Ouni = 01 — 9). The elastic unloading thus depends on the elastic parameters of the particles and on the
size ap of this bond.

Note that to ensure that the elastic unloading is always stiffer than the plastic loading, S;; is capped by
the unloading stiffness:

. E a
S;; = min <Sij, mfN <R—i, 1/) ab> (20)

INote that in Fig. 11 forces are positive when repulsive whereas in dp3D or in Eq.(14) the standard convention of positive
tensile force applies.
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Figure 11: Sketch of the normal force evolution with indentation history. Note how the unloading stiffness increases
as the bond size a; (or plastic indentation d,) increases. Here forces are shown positive when repulsive.

With this scheme, it is assumed that a sufficiently strong bond has formed upon plastic deformation between
particles. This bond may sustain tensile force as sketched in Fig. 11. The value for fracture is given by Npaz:

Npar = UNﬂ'af (21)

where o is the tensile strength (sig_N in input_dp3D). Note that for the time being no shear strength is
introduced in this model. Bonds only fracture in tension. The value of the plastic contact radius is given by:

a? = 2¢(m)® R*6, (22)

where c(m)2 is a hardening parameter that depends on m. When the tensile force N reaches N,,q; the
bond breaks and does transmit any force. If the contact resumes, it will only transmit repulsive force when
dunt = 01 — 6 < bsnap. The value of dspqp is simply given by:

Ny

oI (5 v) a

(23)

6snap =

Once this value is reached, the contact reloads elastically following the N*™ branch in Fig.11 until the inden-
tation increases above §; and the contact re-plastifies.
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# simulation conditions #

# coordinate file:
p4kpartp5

# mode key word:
# jamming elasto_plasticity viscoplasticity sintering
elasto_plasticity

# general key words:

# none stress_ref large_dens no_rotation rot_elast_only
# constant_velocity gravity thermal

large_dens=1.

no_rotation

stress ref

# models #

# elasto_plasticiy and jamming key words:
# none bonds no_elasticity linear_elasticity
none

# friction model:
# Hertz_Mindlin Coulomb shear
Hertz_Mindlin

# adhesion model:
# DMT JKR
JKR

# outputs #

# simulation termination:

# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=
# timestep>= fracture=

density>=0.95

# writing coordinate files:

# density= epsilon= pressure= sigxx= sigyy= sigzz=
# aoR= time= timestep= none end

density=0.1

# writing output files:

# density= epsilon= pressure= sigxx= sigyy= sigzz=
# aoR= time= timestep= none end

sigzz=1.E+06

# writing contact history files:

# density= epsilon= pressure= sigxx= sigyy= sigzz=
# aoR= time= timestep= none end

end

# loadings #

# periodic conditions:
# 1xlylz 1x1yOz 1x0yOz 1xOylz Oxlylz Ox1lyOz OxOylz OxOyOz
0x0y0z

# loading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=
epsxdot:
epsydo
epszdot

# materials (from 0,1,2, ... to 9) #

# elastic parameters (Pa for stress):

# E(0)= poisson(0)= E(1)= poisson(1)= delta_c(0)= fact_mult(0)=
E(1)=100.E+09

E(0)=200.000E+09

poisson(1)=0.3400E+00

poisson(0)=0.3400E+00

# plastic parameters (Pa for stress):
# sigy(0)= S|gy(1)— sigy(2)= Mstrain= Nvisco=
sigy(1)=100.E+0

=20.5E

Nvisco= 0 0000E+00

# friction parameters:

# frict(0, 0) frict(0,1)= frict(l,1)= frict(1,2)= frict(2,2)=
frict(l,1)
frict(2,2
frict(1,2
frict(0,1)= 3

# work of adhesion parameters (J.m-2
# adhes(0, 0) adhes(0,1)= adhes(1, 1) adhes(l 2)= adhes(2,2)=
adhes(1,1)=0.0000E+00

# bond strength in tension (Pa):
# sig_N(0,0)= sig_N(0,1)= sig_N(1,1)= sig_N(1,2)= sig_N(2,2)=
sig_N(1,1) +09

sig_N(0,1)=0.

# bond_strength _in shear (Pa):

# S|g T(0,0)= sig_T(0,1)= sig_T(1,1)= sig_T(1,2)= sig_T(2,2)=
g_T(1,1)=0.

5|g T(0,1)=0.

# density (g.mm-3):
# ro(0)= ro(1)= ro(2)=
ro(1)=0.8706E-02

# numerics #

# affine motion conditions:

# 1xlylz 1x1yOz 1x0yOz 1xOylz Oxlylz OxlyOz OxOylz OxOyOz
1x1lylz

#0x0y0z

# control of strain-rates for quasi-static conditions:
# none aoamean= break= epsilon= ferror= kin_energy= vmax= ctrl_fact=
none

# numerical parameters:

# safe_dt= upscale(1)= upscale(2)= damping= fixed_dt= random_seed=
# potential_contact=

fixed dt=0.05
upscale(1)=0.1000E+01
damping=0.5000E-01
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2.8 Generating bonds to form clusters

e directory : gen_bonds; coordinate file: cylp85

In the example on the hollow cylinder compaction (section 2.6), we have created large contacts by plastically
deforming the particles. These contacts cannot hold much tensile stress since their tensile strength is only due
to plastic deformation and adhesion. Suppose that the compact formed at the preceding stage is sintered
without any further densification. This stage will create strong bonds that are able to sustain both tensile and
compressive stresses (see [13,23] for details on the bonds model). Some anisotropy characterizes the packing
(due to the uniaxial strain rates involved) but that is not detrimental for the purpose of this example.

The present example shows how to create bonds by transforming all existing contacts between particles
in the packing into sintered contacts (bonds). Additionally you may, during this stage, create bonds between
particles and objects to model the sintering of particles on a substrate. This will not be attempted in this
example.

We will use the bonded packing generated in this example to carry out a crushing test in the next example
(section 2.9). Hence, the first step consists in modifying the boundary conditions in order to obtain suitable
boundary conditions for crushing the ’sintered’ body in between two planes which normals are in the z direction.
This is done by first removing the objects (the two cylinders) !. Then planes are inserted ?. Simply ask cdp3D
-bc to keep the periodic boundary conditions only in the z direction. c¢dp3D -bc will introduce two planes
that are tangent to the packing on the x direction and two planes that are away from the packing in the y
direction. cdp3D -bc will create a new coordinate packing cylp85_rm_bc.

The last step consists in generating bonds 2.

Before running cdp3D -bonds, the packing cylp85_rm_bc had 400 isolated particles* and has no isolated
particles when completing the bonding process. The bonded packing name is cylp85_rm_bc_bonds. The end
of the new coordinate file contains a list of the bonds.

Lcdp3D -rmobj cylp85, which creates the cylp85_rm file
2cdp.?:D -bc cylp85_rm

3cdp3D -bonds cylp85_rm_bc

4In the sense that none of these particles were bonded
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2.9 Crushing of a cluster in between two planes

e directory : crushing; coordinate file: cylp85_rm_bc_bonds_size_tag

In this example, the bonded packing created in the last section is crushed in between two planes. The
size of all particles is first reduced to 1um '. Five particles have been 'tagged’ to follow their contacts during
the test 2. The tagged coordinate file is cylp85_rm_bc_bonds_tag. The tagged particles are colored in deep
pink when viewed with vdp3D (fig. 12). The parameters that define the contacts between tagged particles are
stored and can be followed after the calculation as illustrated at the end of this section. Note that the only
motion imposed is the motion of the two planes with z normal vectors. This motion is imposed like for the
periodic conditions in the preceding example by setting the epsxdot=-0.1000E-06 value. Other methods to
impose object motion are described in section 4.

To invoke the bonding model, the bonds keyword is set in the models section of the input_dp3D file.
Several bonding models are available in dp3D to simulate sintered elastic bonds between particles. The latest
and most useful is the one given by the bond key words large_bonds_full and psi=0.. It uses the model
described in [14] without interaction (psi=0.). This last option tells dp3D not to consider interactions between
contacts. large_bonds_full with psi=0. model reproduces well the uniaxial response of bonded clusters but
underestimates the Poisson’s ratio. A more elaborated model for solid bonds, large_bonds_full without
psi=0., allows a better estimate of the Poisson’s ratio (see section 2.10) but is much more CPU intensive (by
a factor 2 approximately).

The keyword beam is used to ensure that the maximum stress calculation on the bond uses the beam model
which takes into account the flexure moment on the bond (the second term in Eq. (6) of [24]). If this keyword
is absent, the stress on the bond is calculated without the moment term (and thus the bond will break less
easily).

The test is stopped when any of the three principal strains attains 0.05 (epsilon>=0.5000E-01) in ab-
solute value as stated in the input_dp3D file. However, the fracture=0.05 key word has also been set in
the simulation termination keywords to indicate that the test may stop when macroscopic fracture is de-
tected. Fracture is considered to happen when the stress has decreased below 0.05 times the maximum stress
encountered during the test.

The yield properties of particles have been deliberately set to very large values to model elastic particles
(typically ceramic type). The properties of objects are given by material 0 here and a large friction coefficient
is set between the particles of the cylinder and the planes to ensure that the cylinder does not roll 2.

A new parameter is introduced in this example which deals with fracture: the strength of bonds. Bonds
can fracture in normal or tangential mode. Here we set explicitly these two values in the input_dp3D file:
sig_N(1,1)=0.2000E+10 and sig_T(1,1)=0.2000E+10. When the normal (or tangential) bond stress is larger
than the strength; the bond is broken (see [25] for more details on the fracture criterion). Another method to
model fracture, using fracture energy, will be introduced in section 2.11. Note also that the Rankine criterion
can be used (see [26] and 6) by setting the Rankine keyword in the input_dp3D file.

Finally, this examples introduces a method to ensure a quasi-static test. In dp3D, tests are considered
quasi-static (inertia terms should play a negligible role), which allows a renormalization of masses and thus a
large gain in CPU time. Quasi-static conditions can be ensured by setting a very low strain rate to the test.
However this may not be sufficient when the test involves fracture of bonds that may trigger large kinetic
energy release in the system. A normalized kinetic energy is defined as:

~ E.

Ee = nmax (NR) (24)
where E. is the kinetic energy of the packing (taking into account translation and rotation), max (NR) is the
maximum of the product of contact force and particle radius in the packing, and n is the number of particles
in the packing. Our experience is that E, = 1.E~% —1.E~97 is a good range of values for ensuring quasi-static

1cdpSD -resize cylp85_rm_bc_bonds
2ydp3D -tag cylp85_rm_bc_bonds_size
3frict(0,1)=0.9
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conditions (in that case, results do not depend anymore on the strain-rate for a rate independent constitutive
law). When using kin_energy=0.1000E-07 criterion, the strain-rate is recalculated starting from the one
given by the user (epsxdot=-0.1000E-06). The value ctrl_fact=100. tells dp3D that the strain-rate cannot
be multiplied or divided by more than 100. ' Other criteria for ensuring a quasi-static simulation may be

used: the fracture of a bond which size is larger than a given value (aoamean=, typically 0.5), a given strain

(epsilon=), the maximum value of particle velocity in adimensionalized units (vmax=, typically between 50
and 200), or when a bond is approaching fracture (break=, typically 0.0001).

Figure 12: Evolution of the cylinder during the crush tests with the initial packing showing the tagged particles
(command vdp3D -class _coordxxxx for the last two images).
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Figure 13: (a) Maximum stress at the periphery of bonds for tagged particles (b) x component of the total force on
the four objects used in the test.

Note that the relative density is calculated here simply as the ratio of particle volume to the rectangu-
lar volume given by the most protruding particle in the simulation box. Consequently, the relative density
calculated in this example is not meaningful®?. Only macroscopic forces exerted on the objects are correct in
this example. Fig. 12 shows the packing evolution during crushing ®. A cluster is defined by the class of
equivalence of bonds (if particle 4 is bonded to particles j and k, then ¢, j and k form a cluster and are shown
with the same color).

The contact of the tagged particles may be followed *. For example, the maximum stress acting on the
bond periphery is shown in fig.13a for the two contacts between the two pairs of particles that have been
tagged. fig.13b shows the x component of the total force on the four objects used in the test®. Only object 1
and 2 (the two planes with normals in the x direction) actually experience any contact with the particles.

LA larger value of kin_energy can be used for CPU intensive simulations, but the user must realize that in that case quasi-static
conditions are not fully ensured and that stresses might be over-evaluated.

2The macroscopic stress calculation is not meaningful either since it uses the simulation box volume as well

3vdp3D -class _coordxxxx which sets all particles that pertain to the same cluster to a given color

4ddp3D -tag -epsx -sigN_b (see section 3.5)

5ddp3D -epsx -forcex
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FEzxercise:

e Fdit the input_dp3D file to remowve all control on strain rates by removing the kin_energy and ctrl_fact
key words and by setting instead the key word none. Increase the imposed strain-rate to:
epsxdot=-1.E-04.

What is the effect on the cylinder fracture process in the simulation ?

Contact laws used in this example:

In this example, particles are bonded together by elastic bonds. These bonds impose normal and tangential
forces that are spring-like. This means that starting from an initial indentation ¢, o, the normal force is
symmetrically tensile or compressive depending on the relative indentation u, = d,, — 9y o:

L (125) o =

Nbond —

where fy (4 ,v) is a function that depends on the radius of the bond a; and on the Poisson’s ratio [13].
Typically, the correcting functions fy, that characterizes the departure from the small-bond approximation is
equal to 1.6 a large bond a; = 0.4R, and tends to unity as the bond size decreases.

The tangential force law for the bond follows a similar law:

2F

= Tt (2-v)

ap
Ir (ﬁ, V) apy (26)
where u; is the tangential accumulated relative displacement between the two particles and fr (%, 1/) is a
correcting functions similar to fy.

Resisting moments My and Mr oppose relative rotations between two bonded particles:

FE ayp
My =iy (v) alos (27)
and ) £
a
Mr =~y (o) obor 2

where 6 and 61 represent the accumulated relative rotation along the normal and tangential axis of the bond,
respectively.

Bond fracture is dictated in this example by the strengths of the bond in tension and in shear (sig-N and
sig_T in input_dp3D). Approximating the solid bridge to a cylindrical beam of radius as, the maximum tensile
and shear stresses at the bond periphery may be evaluated by beam theory:

Nbond 4|MT| Tbond 2|MT| (29)
ON = — o = ——5—
N a3 a3 r mad a3

Bond fracture arises when one of the two following criterion is met -force are negative in tension here):
—on >sig N, op>sig.T (30)

A fractured bond does not transmit any tensile stress. However, a fractured bond may still transmit a
compressive stress (Eq. (25)). A fractured bond may transmit a shear force according to a Hertz-Mindlin
friction law. Correspondingly, a fractured bond continues to transmit a resisting moment in the tangential
direction but none in the normal direction.
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At A A A A A
# simulation conditions #

# coordinate file:
cylpBs_rm_bc_bonds_size_tag

# mode key word:
# jammin? elasto_plasticity wiscoplasticity sintering
elasto_plasticity

# general key words:

# none stress_ref Tlarge_dens no_rotation rot_elast_only
# constant_velocity gravity

none

# models #

# elasto_plasticiy and jamming key words:
# none bonds no_elasticity Tinear_elasticity
bonds

# bond key words:
# Tlarge bonds full Targe honds geom toughness dmpinge only bonds
# clump_cluster beam stiffness Rankine iso_bonds= psi_bar=
# unload_stiff_ratio= plast_stiff_ratio= strength_deviations=
Targe_bonds_fuTl

si_har=0.0000E+00

2am

# friction model:
# Hertz_mindlin Coulomb shear
Hertz_Mindlin

# adhesion model:
# DMT JKR
JKR

At A A A A A A
# outputs #

# simulation termination:

# density>= epsilon»= pressurer= pressure<= epsvdot<= aoR>= timer=
# timesteps= fracture=

epsilon>=0. 5000E-01

fracture=0.03

# writing coordinate files:
# density= epsilon= pressure= aoR= time= timestep= none end
eps1lon=0.1000E-02

# writing output files:
# density= epsilon= pressure= aoR= Time= timestep= none end
epsilon=0.1000E-03

# writing contact history files:
# dens1ty— epsilon= pressure= aoR= time= timestep= none end
end

# Toadings #*
At R e e
# periodic conditions:

# Ixlylz 1xly0z 1xOyp0z 1x(ylz Oxlylz Oxly0z OxOylz Oxiyiz

OxOylz

# Toading cond1t1ons (Pa for stressl:

# epsxdot= epsydot= epszdot= sigux= sigyy= sigzz= equal_stress= pressure
0.1000E-06

epsydo . Q000E+00

epszdot=0.0000E+00

# materials (from 0,1,2, ... to 9] #

# elastic parameters (Pa for stress):

# E(0)= poisson(0)= E(L)= poisson(l)= EC2)= poisson(2)=
E(1)=0. 2000E+12

E€0Y=0. 2000E+12

poisson(l)=0.2000E+00

poisson(0l=0, 2000E+00

# plastic parameters (Pa for stress):
# si%y(oj— s1gy(1)— sigy(2)= Mstrain= Nvisco=

sigy(1)=0.800
sigy (o .8000E+11
Mstrai . D0DOE+00

Myisco=0. 0000E+00

# friction parameters:
# frictdo,0)= frict(o,1)= frict(l,1)= frict(l,2)= frict(2,2)=
Frict(l,1)=0.5000E+00
frict(o,13=0.9000E+00

# work of adhesion parameters (1.m-2):
# adhes(0,0)= adhes(0,1)= adhes(l,1)= adhes(l,2)= adhes(2,2)=
adhes(1,1)=0.0000E+00

# bond strength in tension (Pal:
# sig nNC0,0)= sig_nN(0,1)= sig_N(1l,1)= sig_N({l,20= sig_N(2,20=
sig_N(1,1)=0.2000E+10

# hond strength in shear (Pal:
# sio TC0,00= sig_T(0,10= si0_T¢1,10= s9g_T¢1,20= sig_T(2,23=-
sig T(1,1)=0.2000E+10

# density (g.mm-32
# rofol= ro%l)- FD(Z)‘
ro(ly=0.8706E202

# numerics #*

# affine motion conditions:
# 1xlylz 1x1ly0z 1x0y0z 1x0ylz Oxlylz Oxlyoz 0x0ylz 0x0y0z
Ixlylz

# comtrol of strain-rates for guasi-static conditions:

# none aoamean= break= epsilon= ferror= kin_energy= vmax= ctrl_fact=
kin_energy=0.1000E-07

ctrl_fact=100.

# numerical parameters:

# safe_dt=_ upscale(l)= upscale(2)= damping= fixed_dt= random_seed=
# potential_contact=

safe_dt=0.1

upscale(l)=0.1000E+01

damping=0.5000E-01
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2.10 Elastic effective properties of a bonded cluster

e directory : eff_prop_bonded_aggregate; coordinate file: random_5k_D050_D76_bond

In this example, the effective Young’s modulus and Poisson’s ratio of a bonded cluster of 5,000 particles
is computed. The sample has been created via the weak jamming of an initial gas of particles (to a packing
density of 0.5). This green sample has then sintered using Pan_Bouvard model up to a sintered density of 0.76
(see section 2.16 for sintering exemple). Bonds were defined as explained in section 2.8'. Periodic boundary
conditions are used all along the sample generation. To obtain both Young’s Modulus and Poisson ratio, a
confined uniaxial test in the z direction is performed, with full periodic boundary conditions. The model with
interactions is used: large_bonds_full+geom. Here the geom keyword is used leading to a geometrical overlap
for the definition of the bond radius:

ai = 2R*6, (31)

where R* is the equivalent radius for two particles of radii Ry and Ry (R* = RI?:_Ré) and ¢ is the geometrical
indentation between the two particles. This definition of the bond radius fits better the experimental values

reported for partially sintered alumina [7,14]. A consequence of using the geom option is that the density

considering this bond model is lower that the "sintering density” using Coble option and is thus calculated
when executing dp3D (here geometric density = 0.7178).
Hooke’s law can be used to compute Young’s modulus and Poisson’s ratio :

U= — —
O'yy+0'zz Ezz

(T2 — 20Gyy) (32)

The results obtained with and without interactions (with the option psi=0.0) are as following:

large_bonds_full+geom large_bonds_full+geom+psi=0.0
E GPa) 129.8 138.0
v 0.173 0.122

The model with interaction is more involved numerically (and CPU intensive) and less stable. Thus, caution
must be exercised when using it.

1 cdp3D -bonds

Figure 14: z displacement contour normalized by the mean radius (vdp3D -dispz).
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##################################g###################################
ation condit #
HAH#RHHHH R R R AR R H AR R AR R R AR R AR
# coordinate file:

random_5k_D050_D76_bond

# mode key word:
# jamming elasto_plasticity viscoplasticity sintering
elasto_plasticity

# general key words: .
# none stress_ref large_dens no_rotation rot_elast_only
none

##############################ﬁ#######################################
# models #

# elasto_plasticiy and jamming key words:
# none bonds no_elasticity
bonds

# bond key words:

# large_bonds_full large_bonds small_bonds geom toughness impinge
# iso_bonds= psi_bar= strength_deviation=

large_bonds_full

geom

# friction model:
# Hertz_Mindlin Coulomb shear
Hertz_Mindlin

# adhesion model:
# DMT JKR
DMT

# outputs #

# simulation termination:

# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=
# timestep>= fracture=

epsilon>=0.5000E-03

# writing coordinate files:
# density= epsilon= pressure= aoR= time= timestep=
epsilon=0.1000E-04

# writing output files:
# density= epsilon= pressure= aoR= time= timestep=
epsilon=0.1000E-05

# writing contact history files: .
# gens1ty= epsilon= pressure= aoR= time= timestep= none end
en

# loadings #
HHRHHRAHHRBRR RSB RARRR BRI RR SRR IR R AR AHRRRRR AR ARSI RR AR
# periodic conditions:

# 1xlylz 1x1y0Oz 1x0yOz 1xOylz Oxlylz Ox1lyOz O0xOylz O0x0y0z

1x1lylz

# Toading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure
epsxdot=0.0000E+00

epsydot=0.0000E+00

epszdot=-0.5000E-05

# materials #
#'éiaétqc”p;rgmetérs'tﬁél%or s%résg)” e
# E(1)= poisson(1l)= E(2)= poisson(2)=

E(1)=0.4000E+12

poisson(1)=0.2000E+00

# plastic parameters (Pa for stress):
# sigy(1)= sigy(2)= Mstrain= Nvisco=
sigy(1)=0.8000E+13
Mstrain=0.0000E+00
Nvisco=0.0000E+00

# friction parameters:
# frict(1,1)= frict(1,2)= frict(2,2)= frict(object)=
frict(1,1)=0.5000E+00

# work of adhesion parameters (J.m-2)
# adhes(1, 1)— adhes(1,2)= adhes(2, 2)— adhes (object)=
adhes(1, l) .2000E+01

# bond strength in tension (Pa):
# sig_N(1,1)= sig_N(1,2)= sig_N(2,2)= sig_N(object)=
sig_N(1,1)=0.4000E+13

# bond strength in shear (Pa):
# sig_T(1,1)= sig_T(1,2)= sig_T(2,2)= sig_T(object)=
sig_T(1,1)=0.4000E+13

# density (g.mm-3):
# ro()= ro(2)=
ro(1)=0.8706E-02

HRBHBRARHRBRRBRRA R RR BB RRARRRR RSB RARR AR RRA R R SRR RR AR
# numerics #

# affine motion conditions:
# 1x1lylz 1x1lyOz 1x0y0z 1x0ylz Oxlylz Ox1ly0z OxOylz 0x0y0z
1x1lylz

# control of strain-rates for quasi-static conditions:
# none aoamean= break= epsilon= ferror= kin_energy= vmax= ctrl_fact=
none

# numerical parameters:

# safe_dt= upscale(1l)= upscale(2)= damping=
safe_dt=0.1000E+00

upscale(1)=0.1000E+01

damping=0.5000E-01
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2.11 Toughness of a partially sintered ceramic

e directory : toughness; coordinate file: plate_p75_crack; histc file: plate_p75_crack_histc

The toughness of a partially sintered microstructure is obtained in this example by straining up to fracture
a precracked sample. The sample is generated by packing and sintering with periodic boundary conditions.
Bonds were installed between the sintered particles as in examples 2.9 and 2.10 *. The crack is introduced first
by picking extrema particles ? of the crack and then defining the crack * (see section 3.1.7) with a crack width
of 4.0R (where R is the average particle radius). A _histc file is created after this stage, setting to broken
the status of the bonds pertaining to the crack. In contrast to the other examples discussed in this guide,
this is by necessity a large sample (10 000 particles). Thus, this simulation is CPU intensive. The keywords
kin_energy=1.E-08 and break=0.0001* are used to ensure a quasi-static simulation. When the normalized
kinetic energy diverges from the value set by the user with the key word kin_energy=1.E-08, the strain rates
(set in the section loadings) are increased or decreased to get back to this value. The maximum value the
strain-rates may be multiplied or divided by, is given by the keyword ctrl_fact. Similarly, if the stress on
a bond, o} is larger than (1. — break)o., with o, the critical stress at which the bond breaks, the strain-rate
is divided by ctrl_fact. This allows decreasing imposed strain-rates on the system before the breaking of a
bond, which is an event that transforms elastic energy into kinetic energy.

Periodic conditions are used in all three directions. Note that the bond toughness is given by the keyword
toughness in J.m 2. The expressions of the bond normal and tangential fracture stresses are given in [14].

The toughness can then be computed from the maximum stress and the half length of the crack a following
linear elastic fracture mechanics:

Kic=o0sY/ma (33)

The geometric factor Y depends on the configuration. For the collinear crack configuration used in this example
Y = [% tan (%)]0'5, with W the half-width of the crack. Fig. 15b shows the fracture process”.

1 cdp3D -bonds

2 cdp3D -pick

3 vdp3D -crack

4The key word break= must be used with caution for very large samples as it may slow down the simulation dramatically. A
0.00001 value is a more reasonable choice for very large samples (> 200 000 particles).

5ydp3D -fract_bonds

D stress (xe) ——
: stress (uu)

C stress (zz) —

T A

Stress (HPa)

a 0,0002 0,0004 0,0006 0,0008 0,001 0,0012 0,0014 0,001
Strain (z)

(a) (b)

Figure 15: (a) Stress strain curves showing the fracture of a pre-cracked sample. (b)(left) Initial pre-cracked sample
after the installation of the crack and (right) visualization of the fracture process . The colors show the number of
bonds broken per particle during the simulation of tensile testing (i.e. the central pre-crack is not represented on the
RHS image).
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Contact laws used in this example:

The same contact laws are used here as in example crushing (section 2.9). However, two important
differences must be noted concerning bond fracture when comparing the input_dp3D files. First the beam
keyword is not used here. Hence the bond stress does not include the term due to resisting moments in Eqs.
(29). Also, note that no normal or tangential strength is given input_dp3D. Instead, because the keyword
toughness is used, the value of the toughness (toughness(1,1) in input_dp3D) of the bond is directly used
to compute the critical stress (in tension and shear) at which the bond fails. Thus, The bond fractures when

one of the following conditions is fulfilled:

Nbond 9 T E f Tbond - 2\/5 T 2F f (34)
g = —_— g = — _—
N a2 map 1 -2’ T T a2 \ e A+ 0)(2—0)""

where I' is given by toughness(1,1) in input_dp3D.
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# simulation conditions #

# coordinate file:
plate_p75_crack

# mode key word:
# jamming elasto_plasticity viscoplasticity sintering
elasto_plasticity

# general key words: .
# none stress_ref large_dens no_rotation rot_elast_only
none

models

# elasto_plasticiy and jamming key words:
# none bonds no_elasticity
bonds

# bond key words:

# large_bonds_full large_bonds small_bonds geom toughness impinge
# iso_bonds= psi_bar= strength_deviation=

large_bonds_full

geom

toughness

psi_bar=0.

# friction model:
# Hertz_Mindlin Coulomb shear
Hertz_Mindlin

# adhesion model:
# DMT JKR
DMT

# outputs #
# simulation termination:

# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=

# timestep>= fracture=

epsilon>=0.1500E-02

fracture=0.05

# writing coordinate files: . .
# density= epsilon= pressure= aoR= time= timestep= none end
epsilon=0.5000E-04

# writing output files: .
# density= epsilon= pressure= aoR= time= timestep= none end
epsilon=0.1000E-05

# writing contact history files:
# density= epsilon= pressure= aoR= time= timestep= none end
end

# loadings #

#'ﬁé%%éa%é"ééﬁa%é{bééﬁ'"" i
# 1x1lylz 1x1yOz 1x0yO0z 1x0ylz Oxlylz Ox1lyOz OxOylz 0xOyOz
1x1lylz

# Toading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=
epsxdot=0.0000E+00

epsydot=0.0000E+00

epszdot=0.5000E-06

# materials #

# elastic parameters (Pa for stress):
# E(1)= poisson(1l)= E(2)= poisson(2)=
E(1)=0.2000E+12

poisson(1)=0.2000E+00

# plastic parameters (Pa for stress):
# sigy(1)= sigy(2)= Mstrain= Nvisco=
sigy(1)=0.8000E+13
Mstrain=0.0000E+00
Nvisco=0.0000E+00

# friction parameters:
# frict(1,1)= frict(1,2)= frict(2,2)= frict(object)=
frict(1,1)=0.5000E+00

# work of adhesion parameters (J.m-2):
# adhes(1, 1)— adhes(1,2)= adhes(2,2)= adhes(object)=
adhes(1, 1)

# bond toughness parameters (J.m-2):
# toughness(1l,1)= toughness(1, 2)— toughness(2,2)= toughness(object)=
toughness (1, 1)_

# density (g.mm-3):
# ro(1)= ro(2)=
ro(1)=0.8706€E-02

# numerics #

# affine motion conditions:
# 1x1lylz 1x1y0Oz 1x0y0z 1xOylz Oxlylz Ox1lyOz 0xOylz Ox0yOz
1x1lylz

# control of strain-rates for quasi-static conditions:

# none aoamean= break= epsilon= ferror= kin_energy= vmax= ctrl_fact=
kin_energy=1.E-08

break=0.001

ctrl_fact=0.1000E+02
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2.12 Buckling of a bar

e directory : buckling; coordinate file: bar

In granular-oriented applications described in the preceding sections, each modelled particle represents a
clear physical entity. Another possible application for the dp3D code is the modelling of continuum mechanics
with bonded particles. In this case, each modelled particle does not represent a physical entity. Instead, it is
a set of microproperties that enables the continuum to be modelled. Interactions laws must be implemented
and adjusted to correctly represent the material behaviour. To use this method, the keyword stiffness must
be invoked in the bond key words section of the input_dp3D file. This is because in that case the contact
interaction are not defined by elastic constants as for bonds but by normalized normal and tangential stiffness
(Kn and K, see the subsection Contact laws used in this example: afterwards).

We take the example of the buckling of a bar. Particles are compacted and sintered to a relative density
of 0.65. The preparation procedure is detailed in [27]. Particles are then bonded together and two planes
with normal z are used to impose compression. Note that we use the possibility offered by dp3D to block the
displacement of certain particles to impose fixed-fixed boundary conditions to the bar. This is indicated in the
input_dp3D file which lists the particle numbers and displacement to block (as deltax=nnnn,0. where nnnn
is the particle number, and 0. means that particle nnn has an imposed displacement of 0. in the z direction.).
Bond strength has been set to a very large value. Note that when the stiffness keyword is on, the bond
radius has no physical meaning. In all equation where it is used, its value is unity.

Fig. 16a shows the stress evolution for various conditions on the kinetic energy (see section 2.9 and
input_dp3D file, the control of strain-rates to ensure quasi-static conditions may be defined with a target
normalized kinetic energy). Three, decreasing, normalized kinetic energies have been tested. Fig. 16a demon-
strates that the value of the buckling stress (in quasi-static mode) converges for very slow kinetic energy. The
wrinkles after the peak stress are characteristic of a non quasi-static simulation. Also, the stress calculated by
dp3D has to be corrected by a factor 4/7 to take into account that the bar has a cylinder shape. Note that the
stress predicted by Euler theory is in good accordance with the simulation in quasi-static conditions.

bl

: epsz_dot=5,E-08;: kin_erergy=1,E-07 —
- epsz_dot=5,E-08: kin_energy=1,E-08

- gpzz_dot=5,E-08: kin_ensrgy=1,E-09 —
. Euler solution

Strezs (WPa)

0 0,005 0,01 0,015 0,02 0,025 0,03
Strain (z)

(a) (b)

Figure 16: Buckling of a bar. (a) Stress-strain curves for various strain rates. (b) Bar shape after buckling.
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The imposed displacement possibility exemplified here with zero displacement, can be used as follows for
more general cases:
deltax=nnn,dispps
where nnn is a particle number and dispps is a real means that in the direction x, particle nnn will be imposed
the following displacement at each time step:
dr = dispps x dt
Rotations may also be imposed but only to a zero value (deltar=nnn,0.).

Contact laws used in this example:
The normal and tangential forces when the keyword stiffness is invoked in input_dp3D are given by:

N =2KyR'u, ; T = 2K R*u, (35)

where R* is the equivalent radius for two particles of radii R; and Ry (R* = R}?{FR}% ). Up = 0y — Op o is the
normal and relative displacement between the two particles. Thus, Ky and K7 have the unit of a stress,
which allows having macroscopic elastic properties that are not dependent on the size of the particles. Note
that K and Kp must fulfill the conditionszg—;v #* %; Ky #0; Ky #0.

As for any bonds in dp3D, resisting moments are also included:

My = —4Kp (R*)* 0y (36)

and
Myp = —2Kn (R*)? 07 (37)

where 6 and 61 represent the accumulated relative rotation along the normal and tangential axis of the bond,
respectively.
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# simulation conditions #

# coordinate file:
bar

# mode key word:
# jamming elasto_plasticity viscoplasticity sintering
elasto_plasticity

# general key words:

# none stress_ref large_dens no_rotation rot_elast_only
# constant_velocity gravity thermal

none

# models #

# elasto_plasticiy and Jammlng key words:
# none bonds no_elasticity linear_elast
bonds

ty

# bond key words:

# large_bonds_full large bonds geom toughness lmplnge only bonds
# clump_cluster beam stiffness Rankine iso_bonds= r=

# unload_stiff_ratio= plast_stiff_ratio= strength_ devlatlon—
stiffness

# friction model:
# Hertz_Mindlin Coulomb shear
Hertz_Min

# adhesion model:
# DMT JKR
DMT

*

outputs #

# simulation termination:

# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=

# timestep>= sigxx>= sigxx<= sigyy>= sigyy<= sigzz>= sigzz<= fracture=
epsilon>=.03

# writing coordinate Files:

epsilon= pressure= SIgXX sigyy= sigzz=
# aoR= time= timestep= none end
epsilon=0.001

# writing output Files:

# density= epsilon= pressure= slgxx- sigyy= sigzz=
# aoR= time= timestep= none en

epsilon=0.0001

# writing contact history Tiles:

# density= epsilon= pressure- slgxx- sigyy= sigzz=

# aoR= time= timestep= no

end

# loadings #

# periodic conditions:
# 1xlylz 1x1yOz 1x0y0z 1x0ylz Oxlylz Ox1yOz OxOylz O0x0yOz
0x0y0z

# Toading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=
epsxdot=0.0000E+00
epsydo .0000E+00
epszdot=-0.5000E-07

# imposed disp. (i,m/s), rotation (i,0.), force (i,N/s) on part i:
# deltax= deltay= deltaz= deltar= deltaFx= deltaFy- deltaFz=
44,0.

deltax=608,0.
deltax=16443,0.

deltay=608, .0,

de |tay=16361 ,0.
deltay=16443,0.

# materials (from 0,1,2, ... to 9) #
# bond stiffnesses (tension and shear) (Pa):

# K_N(1)= K N(2) K_T(1)= K_T(2)=

K_N(1)=0.

K_T(1 .2E+11

KN .25E+12

IPEET?)

# plastic parameters (Pa for stress):

# slgy(O = sigy(1)= sigy(2)= Mstrain= Nvisco=
-8000E+33

-8000E+33

-0000E+00

.0000E+00

on parameters:
# frict(0,0)= frict(0,1)= frict(1,1)= frict(1,2)= frict(2,2)=
frict(1,1)=0.5000E+00

# work of adhesion parameters (J.m-2):
# adhes(0,0)= adhes(0,1)= adhes(1,1)= adhes(1,2)= adhes(2,2)=
adhes(1,1)=0.

# bond strength |n tension (Pa):

# sig_N(0,0)= N(0,1)= sig_N(1,1)= sig_N(1,2)= sig_N(2,2)=
N 1,1 4000E+33

_NC0.1)=0.4000E+33

# bond strength in_shear (Pa):

# sig_T( ig _T(0,1)= sig_T(1,1)= sig_T(1,2)= sig_T(2,2)=
-4000E+33

.4000E+33

G

'Y
_T(0,1)

# density (g.mm-3):
# ro(0)= ro(1)= ro(2)=
ro(1)=0.8706E-02

# numerics #

# affine motion conditions:
# 1x1lylz 1x1yOz 1x0y0z 1x0ylz Oxlylz Ox1yOz OxOylz OxOyOz
1xlylz

# control of strain-rates for quasi-static condi
# none aoamean= break= epsilon= ferror= kin energyf vmax ctri_fact=
kin_energy=1

ctrl fact=100.
# numerical parameters:
# safe_d upscale(1)= upscale(2)= damping= fixed_dt= random_seed=

# potential_contact=
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2.13 Bending of a fiber

e directory : fiber; coordinate file: fiber20

In this example, we continue to use the stiffness keyword to model a fiber. In contrast to the preceding
example, the fiber is simply a necklace of 20 bonded spheres (Fig. 17a). This is a much simpler example with
the advantage of a very small CPU time but with a simplistic description of the fiber surface.

Particle 1 must be pinned to impose the bending at its free end. This is done as in the example before
using: deltax=1.,0 ... deltar=1,0. to impose zero displacement in x, y, z directions and to impose zero
rotation (deltar=1,0.). Additionally, we need to impose a vertical force F), on particle 20 at the free end of
the fiber. This is done by stating in input_dp3D:
deltaFz=20,1.25E-09
which states that at each time step a force increment:
dF, =1.25E799 x dt
is imposed on particle 20 in the z direction. Note here that the kinetics of the loading are NOT imposed by
any strain-rate (the epsxdot, epsydot, epszdot are all zero in input_dp3D). The objects do not play any
role (they are only there to bound the simulation box, they could be removed). The kinetics are solely imposed
by the rate of increase of the vertical force F,. Note that the time step dt is constant (fixed_dt=0.1. Its
value has been evaluated by running dp3D with the standard safe_dt option first.

There are several ways to obtain the vertical deflection of the free end of the fiber, which is of interest here.
The simplest is to use the spy possibility. Thus, particle 20 has been marked as spy . This generates file
_spy0000020 which informs on the displacements (and many other things) of particle 20.

Fig. 17b shows the result of the test in terms of the vertical deflection of the fiber at its free end normalized
by (L — r) where L is the total length of the fiber and r is the radius of the spheres. The fori:e F' is normalized

EI r
L

by Tr where E is the Young’s modulus of the fiber and I its moment of inertia (I = ).

1cdp3D -spy fiber20 20

05 . .

T T
dp3D fiber 20 particles

small deformation beam theory ———
large deformation beam theory

z/(L-r)

2.5 I 1 I I 1 1

F(L-r)3/(El}

(a) (b)

Figure 17: (a) Gradual bending of a fiber made of 20 particles (b) Vertical normalized deflection of the fiber at its free
end vs the normalized load.
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Contact laws used in this example:
The contact laws are the same as in the preceding example (Egs. (35), (36)). However, it should be noted
that in contrast to the preceding example, spheres indent each other only by a very small value.

FExercise:

e Fdit the input_dp3D file to increase the rate of change of the force F, by a factor 10. Replot Fig. 17b
using the plot_fiber gnuplot file in the directory (and modifying the deltaFz accordingly in this file).
Is the fiber deflection still following the large deformation theory? Is the force equilibrium (quasi-static
condition) still enforced?

e Use the same £iber20 coordinate file to construct a simple tension (or compression) test of the fiber to
obtain the Young’s modulus of the fiber. This may be obtained by replacing the deltaF keyword in the
input_dp3D file to impose a displacement to the free end of the fiber. You will need to tag the last two
particles of the fiber (or actually any pair of particles in the fiber) to obtain the azial stress. Show that
the macroscopic Young’s modulus of the fiber discretized as in Fig. 17 is simply:

2K_N
™
where K_N is the normal stiffness in the input_dp3D file.

E =

(38)
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# simulation conditions #

# _coordinate file:
fiber20

# mode key word:
# jamming elasto_plasticity viscoplasticity sintering
elasto_plasticity

# general key words:

# none stress_ref large_dens no_rotation rot_elast_only
# constant_velocity gravity

none

# models #

# elasto_plasticiy and jamming key words:
# none bonds no_elasticity linear_elasticity
bonds

bond key words:

large_bonds_full large_bonds geom toughness impinge only_bonds
clump_cluster beam stiffness iso_bonds= psi_bar= strength_deviation=
unload_stiff_ratio= plast_stiff_ratio= Rankine

stiffness

Rankine

#
#
#
#

# friction model:
# Hert: lin Coulomb shear
Hertz_Mindlin

# adhesion model:
# DMT JKR
DMT

# outputs #

# simulation termination:

# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=
# timestep>= fracture=

timestep>=1.2E+07

# writing coordinate files:
# density= epsilon= pressure= aoR= time= timestep= none end
timestep=1.2E+05

# writing output files:
epsilon= pressure= aoR= time= timestep= none end
timestep=1.2E+05

# writing contact history files:
# density= epsilon= pressure= aoR= time= timestep= none end
end

# loadings #

# periodic conditions:
# 1x1lylz 1x1yOz 1x0y0z 1xOylz Oxlylz Ox1lyOz OxOylz Ox0y0z
0x0y0z

# loading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=

epsxdot=0.0000E+00
epsydo’ .0000E+00
epszdot=0.0000E+00

# imposed disp. (i,m/s), rotation (i,0.), force (i,N/s) on part i:
# deltax= deltay— deltaz= deltar= deitaFx= deltaFy— deltaFz=
1,0

materials (from 0,1,2, ... to 9) #

=3. 14160E+09
-14160E+09
-14160E+09
-14160E+08

# S|gy(0 = sugy(l) sigy(2)= Mstraln- Nvisco=
-8000E+33
.8000E+33
.0000E+00
-0000E+00

ion parameters:

# frict(0,0)= frict(0,1)= frict(1,1)= frict(1,2)= frict(2,2)=
frict(0,2)=0.000E+00

frict(2,2)=0.0000E+00

# work of adhesion parameters (J.m-2):

# adhes(0,0)= adhes(0,1)= adhes(1,1)= adhes(1,2)= adhes(2,2)=
adhes(0,2)=0.
adhes(2,2)=0.

# bond strength in tension (Pa):
# |g N(0,0)= sig_N(0,1)= sig_N(1,1)=
ig_N(0,2)=20.0E+30

_N(2.2)=20.0E+30

g_N(1,2)= sig_N(2,2)=

# bond strength in shear (Pa):
# slg T(0,0)= slg T(O 1)= sig_T(1,1)= sig_T(1,2)= sig_T(2,2)=
T(0,

)=
_T(2.2)=20. k50

# density (g.mm-3):
ro(O)— ro(l)— ro(2)=
ro(2)=1

# numerics #

# affine motion conditions:
# 1xlylz 1x1y0z 1x0yOz 1xOylz Oxlylz OxlyOz OxOylz OxOyOz
0x0y0z

# control of strain-rates for quasi-static conditions:
# none aoamean= break= epsilon= ferror= kin_energy= vmax= ctrl_fact=
none

# numerical parameters:

# safe_d upscale(1)= upscale(2)= damping= fixed_dt= random_seed=
# potentlal contact=

fixed dt=0

upscale(1)= O 1000E+01

damping=0.5000E-01

48



2.14 Thermal conduction and thermal expansion of a plate

e directory : thermal_shock; coordinate file: plate_T250C

In this example, we model a thermal shock experienced by a plate (here alumina) initially at a given uniform
temperature which is quenched in a cold bath (20 deg C). Heat conduction is handle by setting the general key
word thermal in input_dp3D. Each particle is given an initial temperature in the input coordinate file plate.
All particles have initially the same temperature (250 deg C, see column Temp). As in the preceding example,
particles are bonded together to model a continuous plate. The preparation procedure is detailed in [27].

Here, the external loading conditions are set by using marked particles (not by imposing a strain-rate).
Marked particles are particles which name (here cu) is followed by a + as cu+. Here, we have chosen to mark
particles that are on the surface of the plate to impose a thermal shock. This can be done after using the
cdp3D -pick command for example. A surface temperature or a fixed temperature can be invoked for these
marked particles by setting the key word surface_Temp=20. or fixed_Temp=20. in input_dp3D.

In dp3D, heat conduction for particle ¢ with temperatures T; leads to a temperature increment during
timestep dt:
4R*

ATy =6D Y dore = T (39)

contacts

where D is the thermal diffusivity, d;; is the center-center distance between particles 7 and j and ¢ is a
fitting parameter (set to 0.385). The summation is made on all contacts j around particle i. The key word
surface_Temp=20. make the marked particles to have an additional term in Eq. (39):

1 _
dT7 = 5Dﬁmax (Z - Z;,0.) (surface_Temp — T;) dt (40)

2

where Z is the average coordination number in the packing and Z; is the coordination number of particle i.
This term accounts very simply of the free surface of particles.

The necessary material parameters for the thermal mode are the thermal diffusivity (T_diffusivity) and the
thermal expansion (T_expansion). Note that the linear thermal expansion parameter has been multiplied by
a correction factor (2.75) to get back the correct Griffith length Iy that describes the severity of the thermal

shock: )
o KIc
lo - (EMT) (41)

with K. the toughness, 8 the linear thermal expansion coefficient and AT the difference between the initial
temperature of the slab (here 250°C) and the temperature of the bath (20°C).

Figs. 18 show the thermal field and the final crack system in the plate'. Fig. 18a indicates that when
a bond is broken and does transmit any force, it does not transmit heat either (not counted anymore in the

summation in Eq. (39)).

lcommands ovdp3D -Temp and ovdp3D -histo_bonds

(a) (b)

Figure 18: Thermal shock of a plate. (a) Temperature field at time=0.27 sec. (b) Plate after thermal shock showing
cracks. Colors indicate the timestep at which a bond has broken.
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Contact laws used in this example:

The keyword stiffness is invoked in input_dp3D. Thus, the normal and tangential forces and the resisting
moments are given by Egs (35), (36) and (37) (see section 2.12). Concerning bond fracture, the Rankine
keyword is invoked. This means that it is a combination of the normal and tangential stresses at the bond
which is used to write the fracture criterion (Rankine’s equivalent stress):

1
I0,R = 5 (Ub,N +y/ohn 4U§,T) (42)

where o3, v = ﬁ and oy 7 = # are the normal and the tangential stresses at the bond scale. The bond
breaks when the Rankine’s equivalent stress o r reaches a critical stress given by sig_N in input_dp3D. Note
that when the Rankine criterion is used the sig_T has no use.
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# simulation conditions #

# coordinate T
plate_T250C

# mode key word:
# jamming elasto_plasticity viscoplasticity sintering
elasto_plasticity

# general key words:

# none stress_ref large_dens no_rotation rot_elast_only
# constant_velocity gravity thermal

thermal

# models #

# elasto_plast
# none bonds no_
bonds

y and jamming key words
Iastl ity linear_elasti

bond key words:

large_bonds_full large_bonds geom toughness impinge only_bonds
clump_cluster beam stiffness Rankine iso_bonds= psi_bar=
unload_stiff_ratio= plast_stiff_ratio= strength_deviation=
stiffness

iso_bonds=1.

Rankine

I3 I

# friction model:
# Hertz_Mindlin Coulomb shear
Hertz_Mind

# adhesion model:
# DMT JKR

# outputs #

# simulation termination:

# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=
# timestep>= fracture=

time>=0.4

# writing coordinate files:
# density= epsilon= pressure= aoR= time= timestep= none end
time=0.02

# writing output files:
# density= epsilon= pressure= aoR= time= timestep= none end
timestep=1000

# writing contact history files:
# density= epsilon= pressure= aoR= time= timestep= none end
end

# loadings #

# periodic conditions:
# 1xlylz 1x1ly0z 1x0y0z 1xOylz Oxlylz Ox1lyOz OxOylz OxO0y0z
0x0y0z

# Toading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=
epsxdot=0.0000E+00

epsydot=0.0000E+00

epszdot=0.0000E+00

# Properties of marked particles (Temp in deg C):
# fixed_Temp= surface Temp=
surface_Temp=20.0000E+00

materials (from 0,1,2, ... to 9) #

bond stiffnesses (tension and shear) (Pa):
K_N(1)= K. N(2) K_T(1)= K_T(2)=
0)=1810_E

# plastic parameters (Pa for stress):

# sigy(0)= sigy(l): sigy(2)= Mstrain= Nvisco=
sigy(0)=50000.E+06

sigy(1)=50000.E+06

Mstrain=0.0000E+00

Nvisco=0.0000E+00

# friction parameters:
# frict(0,0)= frict(0,1)= frict(l,1)= frict(l,2)= frict(2,2)=
frict(l,1)=0.5000E+00

# work of adhesion parameters (J.m-2):
# adhes(0,0)= adhes(0,1)= adhes(1,1)= adhes(1,2)= adhes(2,2)=
adhes(1,1)=0.

# bond strength in tension (Pa):

# sig_N(0,0)= sig_N(0,1)= sig_N(1,1)= sig_N(1,2)= sig_N(2,2)=
sig_N(1,1)=1189.E+06

sig_N(0,1)=1.E+33

# density (g.mm-3):
# ro(0)= ro(1)= ro(2)=
ro(1)=0.8706E-02

# Thermal expansion:
# T_expansion(1)= T_expansion(2)=
T_expansion(1)=31.11E-06

# Thermal diffusivity (m2.s-1):
# T_diffusivit (1) T_diffusivity(2)=
o dlffuswlty(l) .2E-05

# numerics #

# affine motion conditions:
# 1xlylz 1x1yOz 1x0yO0z 1xOylz Oxlylz Ox1ly0z OxOylz Ox0y0z
1x1lylz

# control of strain-rates for quasi-static conditions:
# none aoamean= break= epsilon= ferror= kin_energy= vmax= ctrl_fact=
none

# numerical parameters:

# safe_d upscale(1)= upscale(2)= damping= fixed_dt= random_seed=
# potential_contact=

safe_dt=0.100E+00

upscale(1)=0.1000E+01

damping=0.5000E-01
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2.15 Use of clumps instead of clusters

e directory : clumps; coordinate file: file_init

In this example, we explain how to use clumps to model non-deformable entities. clumps are defined like
clusters by a set of bonds between some particles. However, they differ from clusters in that the interaction
inside the clumps are not calculated. This is illustrated in Fig. 19. This means that the total number of
contacts is much smaller in general in problems that use clumps as compared to those that use clusters. This
translates into faster computation. This comes at the price of neglecting strains in the clump (it can only be
indented by particles that do not pertain to the clump) and of impeding any fracture in the clump.

The clumps option still belongs to the bonds models as bonds need to be declared to define the clumps.
Thus the bonds keyword must be invoked in input_dp3D and the clump_cluster keyword must be invoked
in the bond key words: section.

When using the clump_cluster option, the coordinate file filename must be accompanied by a file file—
name_clumps (here file_init_clumps). This file has generally been generated initially when generating the
gas'. Alternatively, the filename_clumps file may be generated afterwards through cdp3D?, providing bonds
have been defined.

In this example, several clumps (small spheres and platelets) and isolated particles are mixed together
and compacted using the jamming mode. This illustrates a possible use of clumps: speeding the jamming of
packings. You may test this by replacing in this example the clump_cluster key word by the key words:
large_bonds_full
beam
psi_bar=0.

The relative gain in CPU time is of the order of 100%.

lcdp3D -gas
2cdpSD -clumps

a)

Figure 19: Schematic of: a) Two clusters that interact through three (circled) contacts. Interactions are calculated
inside the clusters (red bonds). b) Two clumps that interact through three (circled) contacts. Interactions are not
calculated inside the clumps. Crosses indicate the center of gravity of clumps where the total force (and moment) is
calculated.
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#H# HHEHH
# simulation conditions #
HH#HH#
# coordinate file:
file_init
# mode key word:
# jamming elasto_plasticity viscoplasticity sintering
jamming
# general key words:
# none stress_ref large_dens no_rotation rot_elast_only
# constant_velocity gravity thermal
none
## ## ## #HH#HH
# models #
HH#HHE
# elasto_plasticiy and jamming key words:
# none bonds no_elasticity linear_elasticity
bonds
# bond key words:
# large_bonds_full large_bonds geom toughness impinge only_bonds
# clump_cluster beam stiffness Rankine iso_bonds= psi_bar=
# unload _stiff_ratio= plast_stiff_ratio= strength_deviation=
clump_cluster
# friction model:
# Hertz_Mindlin Coulomb shear
Hertz_Mindlin
# adhesion model:
# DMT JKR
DMT
HUHHRBRRBHHHRR R BHHRRRRRBHHRRHRRBHHHRH R HHHBHH #H#HHHHH#HY #H#H#
# outputs #
#HH# HHEHH
# simulation termination:
# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=
# timestep>= fracture=
epsvdot<=1.E-07
# writing coordinate files:
# density= epsilon= pressure= aoR= time= timestep= none end
density=0.01
# writing output files:
# density= epsilon= pressure= aoR= time= timestep= none end
density=0.002
# writing contact history files:
# density= epsilon= pressure= aoR= time= timestep= none end
end
## ## ## #H#HH
# loadings #
H#HHE
# periodic conditions:
# 1x1ylz 1x1y0z 1x0y0z 1x0y1z Ox1ylz Ox1yOz 0x0Oylz 0x0y0z
1xlylz
# loading conditions (Pa for stress):
# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=
2E+06
ey ## BEHY
# materials (from 0,1,2, ... to 9) #
## ## ## ## ## ## ## #H#tH#
# elastic parameters (Pa for stress):
# E(0)= poisson(0)= E(1)= poisson(1)= delta_c(0)= fact_mult(0)=
E(0)=10.E+09
poisson(0)=0.3000E+00
E(1)=10.E+09
poisson(1)=0.3000E+00
E(2)=10.E+09
poisson(2)=0.3000E+00
# plastic parameters (Pa for stress):
# sigy(0)= sigy(1)= sigy(2)= Mstrain= Nvisco=
sigy(1)=0.3000E+19
Mstrain=0.0000E+00
Nvisco=0.0000E+00
# friction parameters:
# frict(0,0)= frict(0,1)= frict(1,1)= frict(1,2)= frict(2,2)=
frict(1,1)=0.0
# work of adhesion parameters (J.m-2):
# adhes(0,0)= adhes(0,1)= adhes(1,1)= adhes(1,2)= adhes(2,2)=
adhes(1,1)=0.
# bond strength in tension (Pa):
# sig_N(0,0)= sig_N(0,1)= sig_N(1,1)= sig_N(1,2)= sig_N(2,2)=
sig_N(1,1)=0.2000E+33
# bond strength in shear (Pa):
# sig_T(0,0)= sig T(0,1)= sig_T(1,1)= sig_T(1,2)= sig_T(2,2)=
sig_T(1,1)=0.2000E+33
# density (g.mm-3):
# ro(0)= ro(1)= ro(2)=
ro(1)=0.7890E-02
## ## BHEHH
# numerics #
## ## ## ## ## BHEHH

# affine motion conditions:
# 1x1ylz 1x1y0z 1x0y0z 1x0y1lz Ox1lylz Ox1y0z 0xOylz 0x0y0z
1x1lylz

# control of strain-rates for quasi-static conditions:
# none aoamean= break= epsilon= ferror= kin_energy= vmax= ctrl_fact=
none

# numerical parameters:

# safe_dt= upscale(1)= upscale(2)= damping= fixed_dt= random_seed=
# potential_contact=

safe_dt=0.1

upscale(1)=0.1000E+01

damping=0.1000
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2.16 Sintering of a compact

e directory : sinter_velocity; coordinate file: p400p6365R6p75

The sintering mode is invoked in dp3D by setting the mode key word to sintering in input_dp3D. A
model must also be chosen. There are currently three force models available for the sintering normal contact
law (see the Contact laws used in this example: section afterwards): Parhami_Mc_Meeking, Bouvard_Pan and
viscous.

Because sintering involves specific flow mechanisms that are quire different from elasticity or plasticity, a
whole new set of material parameters are needed. The following table summarizes the material parameters
that must be given for each type of model in input_dp3D to define sintering parameters. These are parameters
that are sufficient when no particle coarsening is invoked.

model material eq. number input_dp3D name units
parameter

Parhami_Mc_Meeking, s (43,44,45) gamma_s Jm™2

Bouvard_Pan, viscous

Bouvard_Pan Q@ (44) alpha none

Parhami_Mc_Meeking, v Doy (46,47 ) DeltabDOb m.s 1

Bouvard_Pan

Parhami_Mc_Meeking, Qv, Q (47,48) Qb KJ.mol !

Bouvard_Pan, viscous

Parhami_Mc_Meeking, U (50) frict none

Bouvard_Pan

viscous Mo (48,51) eta_0 Pa.s

Parhami_Mc_Meeking, P (49) chi °

Bouvard_Pan, viscous

Parhami_Mc_Meeking, Q (47) omega m?

Bouvard _Pan

In this example, only one material is used. The parameters are the sintering material (if two materials
are defined, one may be a non-sintering inclusion), the surface energy, the diffusion parameter, the
activation energy, the dihedral angle, the atomic volume, and the coarsening parameter which tells
if coarsening is on or not (here set to zero, no coarsening). Temperature must also be defined (loading
conditions).

In the sintering mode, the strain rate imposed on the simulation box is not given by the user in input_dp3D
file. Instead, the user imposes an external stress state in input_dp3D and dp3D computes at each time step
the strain-rate which will make the principal stresses to tend towards the desired value. In this example, the
three stresses are set to 0 to simulate standard free sintering'.

An important action that must be conducted after a sintering simulation is to check that indeed the imposed
macroscopic stress has been reached by the simulation. Fig. 20a shows how the stress should evolve if the
simulation is correct? . At the initial time-step, because the velocity of particles is zero, there exist tensile
forces between particles and a macroscopic tensile stress is exerted on the sample. Afterwards, dp3D attempts
to reach the imposed stress but overshoot it in this exemple and it is only after a small amount of densification
that stresses converge toward the correct value. Note also that for large density (above 0.85), the stresses
start to oscillate again a bit. In the present exemple, this is not an issue. However in more involved problems,
the macroscopic stress may diverge. In that case, the simulation should be discarded. Fig. 20b shows the
strain-rate evolution as densification proceeds® .

Lin fact, dp3D will use a very small pressure value calculated from the material parameters (4.1073~,/R)
2ddp3D -dens -sig
3ddp3D -dens -epsdot
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Figure 20: (a) Evolution of the macroscopic stress versus density for a free sintering simulation. (b)Densification rate
vs density.

Contact laws used in this example:

Three models are available in the sintering mode. The Parhami_Mc_Meeking model [8,9]:

s = ;TZ;Z % — s [4R (1 — cos 15) + a4 sin é}} (43)
the Bouvard_Pan model: [15,28,29] \
e, @
and a purely viscous model [30,31]
Ny = %nas% — 3masys (45)

In these models, as is the sintering contact radius, and dds i the rate of approach between the two particles.

The driving force for all these models is the surface energy 5. The Parhami_Mc_Meeking and Bouvard Pan
models have very similar forms and a common material parameter:

Q
Ay = 0Dy (46)
with
Db = DOb exp(—Qb/RT) (47)

the diffusion coeflicient for vacancy transport in the grain boundary with thickness §, and activation energy
Qp, 2 is the atomic volume, and T the temperature.

The viscous model introduces directly a viscosity 1 which varies with temperature in a similar Arhenius
manner:

1 = 1o exp(Q/RT) (48)
In all these models the dihedral angle v defines the equilibrium size of the sintering contact, a.,:
Geq = Rsin % (49)

When a; reaches aeq, the second term in Eq. (43), (44), (45) is set to zero and any further growth in contact
size necessitates a compressive contact force. For example, if 1 is set to 60°, the sintering part of the force
will be set to zero when the contact radius is half the particle radius.
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These models also introduce shear force at the contact, T, which opposes the tangential component of the
relative velocity at the contact, dd;/d¢t. For the Parhami Mc_Meeking and Bouvard_Pan models, its takes the

form:
ma? R? doy

8A, dt

where (1 is a viscous parameter with no dimension [32]. For the viscous model, T is written with the same

T, = —K (50)

temperature dependent viscosity 7 as in Eq.(45) [30,31]

T do
T, = —naasd—tt (51)
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# simulation conditions #

# coordinate file:
p400p6365R6p75

# mode key word:
# jamming elasto_plasticity viscoplasticity sintering
sintering

# general key words:

# none stress_ref large_dens no_rotation rot_elast_only
# constant_velocity gravity thermal

no rotation

# models #

# sintering model:
# Parhami_Mc_Meeking Bouvard_Pan viscous
Parhami_Mc_Meeking

# friction model:
# Hertz_Mindlin Coulomb shear
Coulomb

# adhesion model:
# DMT JKR
JKR

#

outputs #

# simulation termination:

# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=

# t|mestep>- sigxx>= sigxx<= sigyy>= sigyy<= sigzz>= sigzz<= fracture=
density>=0.9000E+00

# writing coordinate files:

# density= epsilon= pressure= sigxx= sigyy= sigzz=
# aoR= time= timestep= none end
density=0.1000E-01

# writing output files:

# density= epsilon= pressure= sigxx= sigyy= sigzz=
# aoR= time= timestep= none end
density=0.1000E-03

# writing contact history files:

# density= epsilon= pressure= sigxx= sigyy= sigzz=
# aoR= time= timestep= none end

end

# loadings #

# periodic conditions:
# 1x1lylz 1x1yOz 1x0yOz 1x0ylz Oxlylz Ox1lyOz OxOylz 0xOy0z
1x1ylz

# Toading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=
sigxx=0.0

yy=0.0

0zz=0.0

# temperatures(IC) and duratlon (s) for stage 1:
# none T_init= T_final= tim

T init=0.1100E+04

T final=0.1100E+04

time=0.

# materials (from 0,1,2, ... to 9) #

# elastic parameters (Pa for stress):

# E(0)= poisson(0)= E(1)= poisson(1)= delta_c(0)= fact_mult(0)=
E(1)=0.1000E+12

poisson(1)=0.2200E+00

# plastic parameters (Pa for stress):

# sigy(0)= sigy(1)= sigy(2)= Mstrain= Nvisco=
sigy(1)=0.1000E+10

Mstrain=0.0000E+00

Nvisco=0.0000E+00

# friction parameters:
# frict(0,0)= frict(0,1)= frict(l,1)= frict(l,2)= frict(2,2)=
frict(l,1)=0.0000E+00

# work of adhesion parameters (J.m-2):
# adhes(0,0)= adhes(0,1)= adhes(1,1)= adhes(1,2)= adhes(2,2)=
adhes(1,1)=0.

# sintering material(s):
#012 ...9
1

# surface energy parameters for sintering (J.m-2):
# gamma_s(O, 0) gamma_s(0,1)= gamma_s(1,1)= gamma_s(1,2)= gamma_s(2,2)=
gamma_s(1,1)=0.1720E+01

# diffusion parameter (m3.s-1), activation energy (KJ/mol):
# DeltabDOb(0,0)= DeltabDOb(0,1)= DeltabDOb(1,1)=

# Qb(0,0)= Qb(0,1)= Qb(1,1)=

DeltabD0Ob(1,1)=0.5120E-14

Qb(1,1)=0.1050E+03

# dihedral angle (0):
# chi(O, 0)— chl(O 1) chi(1,1)= chi(1,2)= chi(2,2)=
chi(1,1)=0.1460E+0:

# atom vol(m3):
# omega(0)= omega(l)=
omega(1)=0.1180E-28

# density (g.mm-3):
# ro(0)= ro(1)= ro(2)=
ro(1)=0.8706E-02

# numerics #

# affine motion conditions:
# 1x1lylz 1x1yOz 1x0yOz 1xOylz Oxlylz Ox1lyOz OxOylz 0xOy0z
1xlylz

# numerical parameters:

# safe_dt= upscale(1)= upscale(2)= damping= fixed_dt= random_seed=
# potential_contact=

safe_dt=0.1000E-01

upscale(1)=0.1000E+01

damping=0.0000E+00
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2.17 Sintering of a compact with a temperature profile

e directory : sinter_ramp_temperature; coordinate file: p400p6365R6p75

A temperature scheme may be given in the loadings key-words in input_dp3D to define a temperature
ramp. The ramp is defined by its initial and final temperatures (T_init, T_final) and by the duration of
this ramp (time). Note that it is not wise, from a numerical point of view, to start with too low a temperature
since this will generate large viscoplastic forces to counter sintering forces. Here the lowest temperature is
300°C as compared to the highest sintering temperature of 1100°C.

This example also shows how to introduce tangential viscous forces at the contact when sintering. The value
of the viscous parameter y is set in the frict keyword in input_dp3D. A value of 0.001 leads to a standard
shear resisting force. Note that for the time being, there is no resisting moment at the contact. Also, as in
the previous example, rotations are not considered in the sintering mode. This is because we consider that
finite size contacts grow very rapidly during sintering hindering rotations. In this example the Bouvard_Pan
is invoked. For this model, an o parameter (named alpha in input_dp3D) must be provided as indicated by
Eq. (44). Its value depends on the ratio between the grain-boundary and surface diffusion. A standard value
for ceramics is 4.5.

As in other modes, it is possible to define a composite. This may be done in two ways. It is possible to
define a matrix-inclusion mixture by defining only one sintering material * in the mixture [16]. The other one
will behave elastoplastically as defined by the material parameters given for its family. It is also possible to
define a mixture of two sintering materials with specific sintering material parameters for each family. In that
case the two materials should be defined as sintering as in:

# sintering material(s):
#12

1

2

0,08

Temperature (°C) —— . : . Strain {x) =—
1200 b . . . Strain (y)
(NNiF| la e oa 0000 e ST
1000 | (73| Weoaaaaan000s f060aa6aaBaa Boaoog 5 SEER0aa00a000a Boaanoaa
5 el 006 CEFFFPEEE A CERTTEEPRRTEE CEETEET
s =
£ g 004 F RS 8 Sl AR [REEERNE
2 BUOF i : : : :
T ! ! ! !
g o0g ko S R S e
L . . . .
400
0,02
200 F 0,01
0 . 5 [} L L L L
0 500 1000 1500 2000 2500 v 500 1000 1500 2000 2500
Time {(sec) Time (sec)
(a) (b)

Figure 21: (a) Temperature profile imposed. (b) Strain evolution with time.

Iby stating # sintering material(s):1 in the materials
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# simulation conditions

# coordinate file:
p400p6365R6p75

# mode key word:
# jamming elasto_plasticity viscoplasticity sintering
sintering

# general key words:

# none stress_ref large_dens no_rotation rot_elast_only
# constant_velocity gravity thermal

no rotation

# models

# sintering model:
# Parhami_Mc_Meeking Bouvard_Pan viscous
Bouvard Pan

# friction model:
# Hertz_Mindlin Coulomb shear
Coulomb

# adhesion model:
# DMT JKR
JKR

# outputs

# simulation termination:
# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=

# timestep>= sigxx>= sigxx<= sigyy>= sigyy<= sigzz>= sigzz<= fracture=

time>=2500.

# writing coordinate files:

# density= e on= pressure= sigxx= sigyy= sigzz=
# aoR= time= timestep= none end

time=250.

# writing output files:
= sigyy= sigzz=

# density= epsilon= pressure= sigxx= sigyy= sigzz=
i mestep= none end

# loadings

# periodic conditions:
# 1x1lylz 1x1yOz 1x0yOz 1xOylz Oxlylz OxlyOz OxOylz OxOyOz
1xlylz

# loading conditions (Pa for stress):
# epsxdot— epsydot= epszdot= sigxx= sigyy= sigzz= none

# temperatures(IC) and duration (s) for stage 1:
T_init= T_final= time=

time=600.

# temperatures(IC) and duration (s) for stage 2:
# none T_i _Final= time=
i inl —1100.

time= 600.

# temperatures(IC) and duration (s) for stage 3:
# none T_init= T_final= time=
i 1

TF 00
time=1000.

# materials (from 0,1,2, ... to 9)

# elastic parameters (Pa for stress)

# E(0)= poisson(0)= E(1)= pousson(l) delta_c(0)= fact_mult(0)=
E(1)=0.1000E+12

poisson(1)=0.2200E+00

# plastic parameters (Pa for stress
# sigy(0)= S|gy(1) sigy(2)= Mstrai
sigy(1)=0.100

Mstrai .ODDDE+OO
Nvisco=0.0000E+00

Nvisco=

# friction parameters:
# frict(O0, 0) frlct(O 1)= frict(1,1)= frict(1,2)= frict(2,2)=
frict(1,1)=0

# work of adhesion parameters (J.m-2):
# adhes(0,0)= adhes(0,1)= adhes(1,1)= adhes(1,2)= adhes(2,2)=
adhes(1,1)=0.1720E+01

# sintering materl 1(s):
#0122

# surface energy parameters for sintering (J.m

m-2)
# gamma_s(0,0)= gamma_s(0,1)= gamma_s(1,1)= gamma s(l 2)= gamma_s(2,2)=

gamma_s(1,1)=0.1720E+01

# diffusion parameter (m3.s-1), activation energy (KJ/mol):
# DeltabDOb(0,0)= DeltabDOb(0,1)= DeltabDOb(1,1)=

# Qb(0,0)= Qb(0,1)= Qb(1,1)=

DeltabD0Ob(1,1)=0.5120E-14

Qb(1,1)=0.1050E+03

# dihedral angle O:
# chi(0,0)= chi(0,1)= chi(1,1)= chi(1,2)= chi(2,2)=
chi(1,1)=0.1460E+03

# atom vol(m3):
# omega(0)= omega(l)=
omega(1)=0.1180E-28

# alpha parameter for sinte|
# alpha(o, 0)— alpha(0,1)= alpha(l 1)= alpha(1,2)= alpha(2,2)=
alpha(1,1)=4.5

# density (g.mm-3):
# ro(0)= ro(1)= ro(2)=
ro(1)=0.8706E-02

# numerics
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2.18 Sintering of a compact including grain growth
e directory : sinter_grain_growth; coordinate file: p4000dens59R021n035

The grain growth model is invoked in the sintering mode by adding directly the values of the grain growth
parameters in input_dp3D. If surface diffusion is not introduced in input_dp3D, coarsening will not be taken
into account. The following table summarizes the material parameters that must be given for grain growth.
For the time being, the coarsening model is only compatible with the Bouvard_Pan (Eq.(44)) sintering model
and for a single material.

Name material eq. number input_dp3D name units
parameter

Pre-exponential factor of  Dgg (55) DOs m Z.s

surface diffusion

Activation energy of sur- Qg (55) Qs KJ.mol !

face diffusion

Pre-exponential factor of Moygg (56) Mob0 m* N Ts!

GB mobility

Activation energy of GB  Qapm (56) Qmob KJ.mol !

mobility

The driving force for grain growth is the difference in size among particles, therefore it is necessary to
have an initial size distribution different from a purely monomodal packing, which is in accordance with real
packings. The probability distribution type and its parameters are declared in the input_gas file, in this
example a lognormal distribution is used. As coalescence between particles progresses, small particles will
be ’eaten’ away by large ones and gradually disappear. The total number of particles will decrease during
the simulation. Thus, it is necessary to start with a significant number of particles in order to still obtain
representative results. In this example for illustration purposes we have initially 4k particles, however we
recommend at least 40k or even more.

Fig. 22a shows the evolution of the mean particle radius during densification' . The simulations stops either
when the simulation termination condition declared in input_dp3D is reached or when a particle overgrows,
reaching a quarter of the simulation periodic box size. Fig. 22b displays the evolution of the number of
particles with time? .

As particle size changes or even disappears, it is needed to set a lower time step than in standard sintering
simulations without grain growth. In addition, the tangential viscous force will influence the grain growth, a
value of 0.01 for the frict keyword in input_dp3D leads to consistent values of the tangential force (Eq. (50)).

In coupled sintering and grain growth, significant changes on microstructure are expected. The command
dp3D_pixel allows to generate 2D raw images of a given coordinate file. As the coordinate files still includes
particles that have reached a critically small radius (their label is set to 00), first it is necessary to keep only
particles that still exist®, in this example al. Fig. 23 shows the microstructures for different coordinate files
of the current example.

Contact laws used in this example:
Some equations from Section 2.16 are updated when considering grain growth in order to refine accuracy
for large particle size ratios. Eq.(44) of Bouvard_Pan model is modified to [29]:

Wa4

dh
Ny=——T 24 Sy (52)

s dt 4
(1 +—£;) BAGB

where r; and r; are the radius of the smaller and larger particle respectively for each contact. In grain

growth, the parameter « is directly calculated by dp3D depending on the ratio of grain boundary and surface

diffusion [28].

1ddp3D -dens -rp
2ddp3D -time_s -Npart
3¢dp3D -keep filename
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Figure 22: (a) Evolution of mean particle radius versus density. (b)Number of particles vs time.
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Figure 23: 2D microstructure evolution of a 4000 particles packing.

The sintering contact radius is calculated by [29]:

o =k [0.5 (1 + T—)] C rih (53)

where k = 2.4 and ¢ = 1.5 are fitted empirical values.

The Eq.(49) is replaced by :

where U = 92.937° is a fitted constant.

Grain growth laws:

The grain growth model implemented in dp3D considers two mechanisms of grain growth. When a, > a¢q
the surface diffusion is activated:

dVis Dg T 2 2
LI [ Yot o PR ds)? —
( dt )S T ° m+rs—5[ﬁ(a+ s)" = ma’] (55)
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If as > 75 then grain boundary migration is switch on:

avi., 11 §
( di’ ) = —2MeBGB ( - ) [Wa 2}
GBM e Ts

The second term of Eq.(52) is set to zero during surface diffusion and reactivated in GB migration.
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[aadasasdssissis Laadasasdssdsstssdsy
# simulation conditions

FEEHARRA AR AR R R R RRRRRRRRRRRRRRRRRRRRRRRRRRRRR R R R AR R A R RS
# coordinate file:

p4000dens59R021n035

¥ mode key word:
# jamming elasto_plasticity viscoplasticity sintering
sintering

¥ general key words:
# none stress_ref large_dens no_rotation rot_elast_only
# constant_velocity gravity thermal

no_rotation

FEERERER AR FRERERERRF

# models #
laaasssississsass (iiaaassissiisssssss

# sintering model:

4 Parhami Mc_Meeking Bouvard_Pan viscous

Bouvard_Pan

# friction model:
# Hertz_Mindlin Coulomb shear
Coulomb

# adhesion model:
# DMT JKR
JKR

[Eiiiaaaaizaaasy FEEERERRRRFRRRAEE
¥ outputs ¥
R R R R R
# simulation termination:

# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=

# timestep>= sigxx>= sigxx<= sigyy>= sigyy<= sigzz>= sigzz<= fracture=
density>=0.90

¥ writing coordinate files:
# density= epsilon= pressure= sigxx= sigyy= sigzz=
# aoR= time= timestep= none end

density=0.1000E-01

¥ writing output files:
# density= epsilon= pressure= sigxx= sigyy= sigzz=
# aoR= time= timestep= none end

density=0.1000E-03

¥ uriting contact history files:
# density= epsilon= pressure= sigxx= sigyy= sigzz=
# aoR= time= timestep= none end

end

TEFREEEREE RS FEFREREEEES

# loadings #
FEEREEEREEERRRRR B PR R R R R B
# periodic conditions:

# 1xlylz 1xly0z 1x0y0z 1xOylz Oxlylz OxlyOz OxOylz 0x0y0z

1xlylz

¥ loading conditions (Pa for stress):
4 epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressure=

¥ temperatures (°C) and duration (s) for stage 1
# none T init= T final= time=

= 1350404
T_final=0.1350E+04
time=0.

FEREEREREAAERE IS KERRERRRREAR R AARAE

# materials (from 0,1,2, ... to
BEREEEERERRRRRRR AR BB R R R R BB B
# elastic parameters (Pa for stress):

# B(0)= poisson(0)= E(1)= poisson(l)= delta c(0)= fact_mult (0)=
E(1)=0.1000E+12

poisson (1)=0.2200E+00

# plastic parameters (Pa for stress):

# sigy(0)= sigy(l)= sigy(2)= Mstrain= Nvisco=
sigy (1)=0.1000E+10

Mstrain=0.0000E+00

Nvisco=0.0000E+00

¥ friction parameters:
# frict(0,0)= frict(0,1)= frict(l,1)= frict(l,2)= frict(2,2)=
frict(1,1)=0.0100E+00

¥ work of adhesion parameters (J.m-2):
# adhes (0,0)= adhes (0,1)= adhes(1,1)= adhes(1,2)= adhes(2,2)=
adhes (1,1)=0.

¥ sintering material (s):
$012 9
1

¥ surface energy parameters for sintering (J.m-2):
# gamma_s (0,0)= gamma_s(0,1)= gamma_s(1,1)= gamma_s (1,2)= gamma_s (2,2)=
gamma_s(1,1)=0.0905E+01

¥ diffusion parameter (m3.s-1), activation energy (KJ/mol):
# DeltabD0b(0,0)= DeltabDOb(0,1)= DeltabDOb(1,1)=

# Qb(0,0)= 0b(0,1)= Qb(1,1)=

DeltabDOb(1,1)=1.3000E-08

Qb (1,1)=0.4750E+03

# dihedral angle (°):
# chi(0,0)= chi(0,1)= chi(l,1)= chi(l,2)= chi(2,2)=
chi(1,1)=0.1380E+03

¥ atom vol (m3)
# omega(0)= omega (1)=
omega (1)=0.2110E-28

¥ mobility (m3/(N.s)), activation energy (KJ/mol):
# Mob0 (0)= Qmob (0)= Mob0 (1)= Qmob(1)=

Mob0 (1)=0.0100E+00

Qmob (1) =0. 443E+03

¥ surface diffusion (m2/s), activation energy (KJ/mol):
# DOs(0)= Qs (0)= DOs (1)= Qs(1)=

DOs (1) =0.0900E+00

Qs (1)=0.3138E+03

# density (g.mm-3):
# ro(0)= ro(l)= ro(2)=
ro(1)=0.3950E-02

HERREREREAAERE IS HERRERREREARREEARRE
# numerics #
FHARAER AR A R R R R R R R R R R R R R
# affine motion conditions:

# 1xlylz 1x1y0z 1x0y0z 1xOylz Oxlylz Ox1y0z 0xOylz 0x0y0z

1xlylz

¥ numerical parameters:

# safe_dt= upscale(l)= upscale(2)= damping= fixed dt= random seed=
# potential contact=

safe_dt=0.00500E+00

upscale(1)=0.1000E+01

damping=0.0000E+00




2.19 Close-die compaction of a viscoplastic compact

e directory : closedie_viscoplast; coordinate file: p400p6365ur

The viscoplastic mode is invoked in dp3D by setting the mode to viscoplasticity in the input_dp3D
file. No elasticity is considered. Thus, all contacts behave viscoplastically. We consider a particle made of a
material that behaves in uniaxial tension with the following viscoplastic constitutive equation:

o =oeMeN, (57)

where o is the uniaxial stress, and € and £ are the uniaxial strain and strain-rate, and o1, M and N are
material constants.

Fig. 24 shows the stress evolution generated from the calculation with the input_dp3D shown above. Note
how the stress evolves with no stress asymptote towards large density. This artificial effect is due to the
power 1+ M/2 — N/2 in Eq. (58) which for N > 0 tends to soften the response of the material. The option
large_dens may be invoked to model the hardening effect arising at large density.

Contact laws used in this example:
The normal force between the two particles is written:
N, = Upart5£1+M/27N/2)57]y (58)
where §,, is the normal rate of approach of the two particles. N, opposes the relative motion of the two
particles in tension and compression. 7,4, is defined as [4]:

T]pa'r‘t — 217%7%3171\471\[ (1 + QN) 7702+M+N0'0 (R*)

M _N
1-3 2

(59)
1 1 1 1

where o, Y =g "N +o, MY =20, ™ in the case of a homogeneous material (o1 = 03). The material

constants oy, oo (which units are Pa.sec’V), and N are set in the input_dp3D file. In the example shown here,

Mstrain=0.5 and Nvisco=0.3. A shear force at the contact is also implemented and its formulation derives

from the writing of the shearing stress at the contact location.

27
T’U = — %CQR*(SHOH <
where dd;/d¢ is the tangential component of the relative velocity at the contact. p is a viscous parameter
with no dimension. The value of the viscous parameter is set in the frict line in input_dp3D (in the present
example it is set to 1.0). A value of 1.0 leads to the standard shear resisting force. Note that for the time
being, there is no resisting moment at the contact.

N
|dd:/dt|| ) dé,/dt (60)

Ry + Ry — 6y, Idéde /de]|

30

stress (xx)
straefs (uy

ess (zz)
[ I DI B N AT L

20

15

Stress (fPa)

10

—

0.6 0.65 0.7 0.78 0.8 0.88 0.3
Relative Density

Figure 24: Stress evolution for viscoplastic aggregates under close-die compaction.
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simulation conditions

# coordinate file:
p400p6365ur

# mode key word: L . L .
# jamming elasto_plasticity viscoplasticity sintering
viscoplasticity

# general key words:
# none stress_ref large_dens no_rotation rot_elast_only
none

# models #

#"&%Eébﬁﬁéé%%é"%éaéi?""""'"""'"""""'"""""""""""'"""""'"""'"""""'""'""
# standard oriented
standard

# friction model:
# Hertz_Mindlin Coulomb shear
shear

# adhesion model:
# DMT JKR
JKR

outputs

# simulation termination:

# density>= epsilon>= pressure>= pressure<= epsvdot<= aoR>= time>=
# timestep>= fracture=

density>=0.8500E+00

# writing coordinate files: .
# density= epsilon= pressure= aoR= time= timestep=
density=0.1000E-01

# writing output files:
# density= epsilon= pressure= aoR= time= timestep=
density=0.1000E-02

# writing contact history files:
# gensity= epsilon= pressure= aoR= time= timestep= none end
en

Toadings
# periodic conditions:
# 1x1lylz 1x1yOz 1x0yOz 1xOylz Oxlylz Ox1lyOz OxOylz 0x0y0z
1x1lylz

# loading conditions (Pa for stress):

# epsxdot= epsydot= epszdot= sigxx= sigyy= sigzz= equal_stress= pressur
epsxdot=0.0000E+00

epsydot=0.0000E+00

epszdot=-0.1000E-03

# materials #
# elastic parameters (pa for stress): o TEEEEEE
# E(1)= poisson(1l)= E(2)= poisson(2)=

E(1)=0.2000E+22

poisson(1)=0.3400E+00

# plastic parameters (Pa for stress):
# sigy(1)= sigy(2)= Mstrain= Nvisco=
sigy(1)=0.4000E+09
Mstrain=0.5000E+00
Nvisco=0.3000E+00

# friction parameters:
# frict(1,1)= frict(1,2)= frict(2,2)= frict(object)=
frict(1,1)=0.1000E+01

# work of adhesion parameters (J.m-2):
# adhes(1,1)= adhes(1,2)= adhes(2,2)= adhes(object)=
adhes(1,1)=0.0000E+00

# density (g.mm-3):
# ro()= ro(2)=
ro(1)=0.7890E-02

# numerics #

R
# 1x1lylz 1x1yOz 1x0yOz 1xOylz Oxlylz Ox1ly0z OxOylz Ox0y0z
1x1lylz

# control of strain-rates for quasi-static conditions:
# none aoamean= break= epsilon= ferror= kin_energy= vmax= ctrl_fact=
none

# numerical parameters:

# safe_dt= upscale(1)= upscale(2)= damping=
safe_dt=0.1

upscale(1)=0.1000E+01

damping=0.0000E+00
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3 Additional tools with dp3D

3.1 Visualization tools: vdp3D and ovdp3D

vdp3D is a tool to create images and animations from the simulations that you have run with dp3D. vdp3D
can also be used as a preprocessor to dp3D to modify a coordinate file. vdp3D uses the rather old but sturdy
free software RASMOL 2.7 (RasMol is a program for molecular graphics visualisation originally developed by
Roger Sayle (www.RasMol.org) and www.OpenRasMol.org).

The vdp3D command accepts many options. All options are listed below by alphabetical order (options
that can be combined to make an animation are labelled (-anim)). The simplest one is vdp3D -i filename
which simply shows the packing.

The visualization tool ovito (http://www.ovito.org/), [17], has been added since rasmol is becoming
gradually obsolete. It is called with the command ovdp3D and has the same arguments as vdp3D. The quality
of images is much better than ramol, and ovito downloads much faster large files. ovito is also a much better
tool for generating animations. In the list below, (0)vdp3D means that the command can be either called with
vdp3D or ovdp3D.

vdp3D synopsis: vdp3D [-optionl] filel file2 ... filen range/xx:yy/
ovdp3D synopsis: vdp3D [-optionl] file

3.1.1 (o)vdp3D -anim

e makes a series of images (gif files) that can be used to make an animation from the _coordxxxx files
generated by dp3D. For ovdp3D -anim, the animation settings is created in ovito. ovito is much more
powerful than RASMOL for animations.

3.1.2 (o)vdp3D -anim[n]

e same as above, but uses only a fraction (n < 10) of the _coordxxxx files (typically when too many _coord
files have been generated)

e Example: in section 2.3 (directory crushing) the command:
(0)vdp3D -anim?2

generates a gif file every two _coord file. These gif files may be used for creating an animation. The
command may be combined with another option like:

(0)vdp3D -anim2 -fract_bonds

to obtain a series of images showing the evolution of broken bonds. To fix a given setting for all images
a rasmol script may be given by copying the default ivdp3D rasmol script file to another file (here
ivdp3D_90) and then:

vdp3D -anim2 -fract_bonds ivdp3D_90

where the rasmol command rotate x 90 has been embedded in the ivdp3D_90 file.

3.1.3 (o)vdp3D (-anim) -bonds filename

e generates an image showing number of non-broken bonds
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3.1.4 (o)vdp3D (-anim) center_clumps filename

e generates an image showing the gravity center of clumps. Necessitates that file filename_clumps exists.

3.1.5 (0o)vdp3D (-anim) -class filename

e generates an image showing non broken clusters of bonded particles. If file filename_clumps is provided,
it only shows clumps.

e Example: in section 2.9 (directory crushing), the two figures on the RHS of Fig. 12 have been generated
by the commands:

(0)vdp3D -class _coord0010
(0)vdp3D -class _coord0020

and by rotating the figure in rasmol by the command :rotate x 90

3.1.6 (o)vdp3D (-anim) -contact filename

e generates an image of the packing showing sintered contacts. This is only an artificial viewing of the
flow of matter near the contact.

3.1.7 vdp3D -crack filename

e generates a crack by breaking bonds between initially bonded particles from the coordinate filename.

e Example: in section 2.9 (directory crushing), you can create a crack by typing :
vdp3D -crack cylp85_rm_bc_bonds

then by selecting two particles that define the crack and then select the crack geometry (centered or
edge), and its width. vdp3D will then display the sample with the number of bonds broken per particle.
Note that this command generates two files: the coordinate filename cylp85_rm_bc_bonds_crack and the
contact history file cylp85_rm_bc_bonds_crack_histc. This last file must be in the same directory as the
cylp85_rm_bc_bonds_crack for further treatment (see sections 2.5 and 5.10).

RasMol> set write on
RasMol> seript crack
RasMol> exit

Type Boundary conditions
1zlylz means periodic B.C. on all three axzis
Ox0yvlz means periocdic B.C. z axis only ...
O0x0ylz
periodic conditions on z
centered noteh (c) or edge notch (e) ? e

< s

notch long axis : s |~ -->z

Give the width of the crack in number of mean radius: 2.

NN RN R R R RN R RN RR Y

| Length of the notch (microns): 5.89325403973800

(RN NN RN RN RN RN AR R RN RR Y

Mumber of cells in the 3 directions a 12 4
Periodic conditions in the 3 directions F F T

Prrrrrerrrrrrrrrrrrrrrrrrrerrrrrrren
Breaking 20 bonds
R RN RN NN R RN NN R RN A RN

approx number of particles marked on the lip : 43
Generating file: cylp85_rm _bc_bonds_crack
trrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrend

Generating contact history file: oylp85_rm_be_bonds_crack_histe
(AR N R R R RN AR R NN NN

Processing file:

_coord0001

3.1.8 (o)vdp3D (-anim) -damage filename

e generates damage_file.xyz with only damaged particles for viewing in ovito.
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3.1.9 (o)vdp3D (-anim) -deltats filename

e generates an image showing maximum tangential strain accumulated for each particle.

3.1.10 (o)vdp3D -dens filename

e Using the the radical Voronoi tesselation (Voro++ [20]) of the packing, generates an image showing the
relative density of each particle (ratio of the particle volume to the Voronoi cell volume). This command
will also generate a file named filename_voronoi_dens that contains the local Voronoi relative density
for each particle. This file is necessary when using the large_dens keyword (see example 2.7).

3.1.11 vdp3D -disp_field filename
e displays the displacement field of a 2D section

e Example: in section 2.3 (directory crushing), type :
vdp3D -disp_field _coord0040
to obtain the displacement field on the section defined by the two particles that you have selected.

[chris@richeboury closedie compact]$ vdp3D -disp field _coord0040

at rasmol prompt. type 'set write on'

Pick two particles on the surface to define the section

type 'script disp_field' when you are done with mouse selectian
and 'exit'

Processing file:

_coord0040

RasMol Molecular Renderer
K EEL Roger Sayle, August 1995
Copyright (C) Rager Sayle 1992-1999
mean displacement field norm:  0LBIE+D0 {in mean radius) ersion 2.7.2.1 April 2001
3 Copyright (C) Herkert J. Bernstein 1993-2001
*x% See "help notice" for further notices #x=
[32-bit wversion]

nable to find RasMol help filel

RasMal>

substract 7 to rasmol atom number to get dp3D particle number
ultiply rasmecl length by 52.5433023770000 to get microns
RasMaly

lBtom #1: MOL-7.CUN.x§ .xy (317)

RasMaol>

Btom #2: MOL-7.CUL.x% .xy (365)
Distance MOL-7.CUI.x¥ .xy-MOL-7.CUI.x§ .x¥: 46.611

RasMol> set write on
RasMol> script disp_field
RasMol> exit

Particles selected : 310 358
Restrict the plot to the rectangle defined by these two points (y~r
n) ? n
trrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrn

Thresold for ploting ~ mean value (0.0<{= <=1.0)

0. means all values are plotted
0.5 means only values > 0.5 mean value are plotted

y {mean radii of particles}

9,04484 y= 6,40404 Mzan displacement field norm in the slab (in mean radius) 0.888C
063
Mumber of particles to plot S8
HNumber of displacement field to plot 58

3.1.12 (o)vdp3D (-anim) -disp[x,y or z] filename

e generates an image of the packing showing particle displacements in x, y or z direction as compared to
the initial position of particles.

3.1.13 vdp3D -ellipsoid filename

e generates a coordinate file with particles inside the ellipsoid selected in rasmol with a new name.

3.1.14 (o)vdp3D (-anim) -eps[x,y or z] filename

e generates an image of the packing showing local strains
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3.1.15 (o)vdp3D (-anim) -force filename

e uses coordinate file to generate an image with maximum normal contact force for each particle.

3.1.16 (o)vdp3D (-anim) -fract_bonds

e generates an image with the number of fractured bonds for each particle.

3.1.17  (o)vdp3D -histo_bonds

e generates an image of the history of bonds fracture

3.1.18 (o)vdp3D -i filename

e uses coordinate file to generate an image

3.1.19 (o)vdp3D -iref filename

e generates an image of the packing showing the reference sphere or the reference rectangular slice, see
-ref_sphere and -ref_rect options.

3.1.20 vdp3D -keep[n] filename

e keeps only the particles from file that you have selected in rasmol.

e vdp3D -keep3 means keeping particles 3 radii around the selected particle (and the selected particle
itself).

3.1.21 vdp3D -Nnetwork filename

e displays the normal force network of a 2D section, similar to -disp_field option but needs a _histc file

3.1.22 vdp3D -notch filename

e generates a notch by removing particles from the coordinate file, similar to -crack option.

3.1.23 vdp3D -normal_axis filename

e displays the normal vector of clusters (needs the _clumps file).

3.1.24 vdp3D -object filename

e generates an image of the packing showing the cylin and spher objects

3.1.25 vdp3D -pick filename

e generates a coordinate file with picked particles having a new name (similar to cdp3D -pick).

3.1.26 vdp3D -probe filename

e generates a plot of the gradient of relative density along the axis normal to the plane chosen by picking
two particles.
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3.1.27 vdp3D -ref_sphere filename

e generates a reference sphere from two particles that you have specified in rasmol. The first one sets the
center of the reference sphere, the second one defines the radius of the reference sphere. It generates a
file filename_ref. When using this file, the reference sphere will be used to compute the density during
the dp3D calculation. See also the option stress_ref in the general keywords of input_dp3D to use this
volume to compute stresses during the calculation. This option may also be used to know the density,
average coordination ... of the particles inside the reference volume. This option may be used to obtain
properties of a specific part of the compact.

3.1.28 vdp3D -ref_rect filename

e generates a reference rectangular slice from two particles that you have specified in rasmol. The first
one sets a corner of the slice, the second one defines the second corner. The normal to the slice has to
be given by the user. It generates a file filename_ref. When using this file, the reference rectangular
slice will be used to compute the density during the dp3D calculation. See also the option stress_ref
in the general keywords of input_dp3D to use this volume to compute stresses during the calculation.
This option may also be used to know the density, average coordination ... of the particles inside the
reference volume. This option may be used to obtain properties of a specific part of the compact.

3.1.29 vdp3D -rm[n] filename

e generates a coordinate file with the particles, which you have selected in rasmol, removed.

e vdp3D -rm3 means removing particles 3 radii around the selected particle (and the selected particle
itself).
3.1.30 (o)vdp3D (-anim) -siglxx,yy,zz,xy,xz,...] or -press filename

e generates an image of the packing showing the components of the stress tensor (or the pressure) for each
particle. Note that the local stress tensor is taken from the _coord file. The local (per particle) stress
tensor in the _coord file is calculated by using eqn (63) with:

4
V = pmacro §7TR3 (61)

where ppacro 1S the density of the total sample or of the region delimited by a ref_sphere or ref rectangle
(see 3.1.27). However, as the local density around each particle may differ from the averaged pmacro, the
vdp3D command for the stress will display the stress using a different volume:

4
V= pVoronoig’ﬂFi3 (62)
where pvoronei is the density calculated from the Voronoi cell (see 3.1.10) .

3.1.31 vdp3D -sphere filename

e generates a coordinate file with particles inside the sphere selected in rasmol with a new name.

3.1.32 vdp3D -spy filename

o Works similarly to -tag option. Here it will generate a coordinate file with some particles spyed during the
dp3D calculation. These particles are followed all along the simulation. _spyxxxxx file will be generated
during the dp3D calculation. Use ddp3D -spy command to display specific feature for these spyed
particles.
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3.1.33 vdp3D -tag filename

e generates a tagged coordinate file from filename. Tagged coordinate files have some particles tagged.
The contacts that pertain to tagged particles are followed all along the simulation. dp3D generates a file:
_tagxxxxx_yyyyyy for the contact between particles xxxxxx and particle yyyyyy if such a contact exists.
Use ddp3D -tag command to display specific feature for these tagged contacts.

3.1.34 vdp3D -Temp filename

e generates an image with temperature of each particle.

3.1.35 vdp3D -voronoi filename

e generates the radical Voronoi tesselation (using Voro++ [20]) of the packing by showing particles together
with the edges of the cells. For large packings (> 1000 particles), it is unwise to plot the Voronoi cells
because Rasmol interprets each node as an atom which renders the visualisation extremely slow.

3.1.36 (o)vdp3D (-anim) -z filename

e uses coordinate file to generate an image with coordination numbers of each particle.

To obtain the last set of available options of (0)wvdp3D, type (o)vdp3D.

The standard rasmol script loaded by vdp3D into rasmol is /usr/local/dp3D/ivdp3D. This script is for
setting colors, zoom etc ... Each time, you run vdp3D, a copy of ivdp3D file is copied on the local directory.
You may give it another name to use your own settings for your images (rasmol script commands are quite
straightforward). For any options used with vdp3D, it is possible to give your own script by typing for example:
vdp3D -i file yourscript.

To use an animation, in a powerpoint presentation for example, coming from vdp3D. The simplest way is
to proceed as following. Once the gif files have been generated by the vdp3D command, type on the linux
prompt: animate _coord*.gif, then click on the animation and slow down the animation as desired. Click
on the save menu and save the animation in gif format (for example animation.gif). The animation.gif
file, once copied on your system, can be directly used in the powerpoint presentation.
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Ovito can be downloaded from http://www.ovito.org/. The version should be 2.2.2 or higher. On the
first use of ovito, you need to declare the file format that will be used. ovdp3D generates .xyz files that are
readable by ovito with columns as given by Fig. 25a. The format must follow Fig. 25a. To visualize a given
property (for example the coordination number with ovdp3D -z _coord0006), you need to select the add
modification and color coding buttons as shown in Fig. 25b.

To save an animation on ovito with good quality graphics, use the png format. The whole animation must
be screened in the renderer before saving the file.

e example of ovdp3D series of actions:

1. ovdp3D -z filename to generate a plot of coordination numbers in the coordinate file £ilename
2. load (remote) file in ovito

3. fill the File column mapping (see Fig. 25 ) on the first use of ovito

4. select Add modification

5. select Color coding

6. select myprop

/7 =
_Coord0006.xyz [XYZ File] -
Add modification... -
SeleCt COIOr v Simulation ceuwa‘ @
v Particles
—_
co d | n g @ coorcodng | m:

_coord0006.xyz [XYZ File]
- Simulation cell
~ Particle types

select myprop

Property:

myprop 3 S
Color gradient:
Rainbow -
End value: 00174718 =

File column =]

Please specify how the data columns of the input file should be mapped to _

OVITO's particle properties. 5
Start value:|-0.0153923 =

Fle column Particle property Component Adjust range
¥ Column 1 Particle Type - laverse anoe
¥ Column 2 Position ) - Color anly selected particles
Keep selection

v Column 3 Position A - Render color legend (experimental)

¥ Column 4 Position - |Z -

¥ Column 5 Radius -

¥ Column 6 Calor - |R -

¥ Column 7 Color |G -

¥ Column 8 Color ~|B -

¥ Column 9 myprop -

| OK Cancel
(a)

Figure 25: (a) Column format in ovito to read xyz files generated by ovdp3D. Reproduce the particle properties shown
here on your first use of ovito(b) ovito screen shot with the use of Add modification and myprop to generate a plot
of the ovdp3D option that you have selected.
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3.2

Using an already existing coordinate file from dp3D_library

The densification of a gas of particles to form a jagged packing may be a CPU time consuming task (see section

2.2).

Thus, before generating a whole new coordinate file (new microstructure), it is worth considering that

there exists a library of coordinate files that have been created by dp3D users in the dp3D_library directory,
which comes with the installation package. You may use/modify these files to suit your particular need. The

dp3D_library directory is a series of coordinate files plus a dp3D_library_log file that gives information on
each of these coordinate files. The file names already give some important information on the packing. For

example:
part4000_densp6153_sizelpl0_objO_bond0_pct00_xr100_yr100_zr100
indicates :

e part: the number of particles (here 4000);

e dens: the relative density (here 0.6153);

e size: the ratio of maximum size to minimum size of particles (here 1.10);

e obj: the number of objects (here none);

e bond: the total number of bonds in the packing (here none).

e pct: the volume fraction (percentage) of material 2 particles.

e xr yr zr: the packing relative geometry in the three directions, x, y, and z. Here for example the box

is fully cubic with xr=yr=zr.

3.3 Working on a packing coordinate file using cdp3D

The command cdp3D allows to work on a dp3D coordinate file in order to carry a wide variety of operations or

to obtain information on it.

You may write a script (or a macro) with cdp3D to automatize a shell for example. This is carried out by:

cdp3D -option_write file
This will write the file script_dp3D, which can then be read and used with the command:

cdp3D -option_read file
This is a very useful option to automatize simulations and simulation preparations, using for exemple a shell

or python like scripting.

This is a list of the current cdp3D options (the extension of the generated file is given in parenthesis):

cdp3D -bc filename modifies Boundary Conditions in a packing. It replaces periodic B.C. by two plane
objects which will be tangent (or further away) to the further located particle. (_bc).

cdp3D -bonds filename creates bonds between particles and between particles and objects. (_bonds).

cdp3D -clumps filename. If the file filename_clumps does not exist, it will create this file to allow for
clumps use. If the file filename_clumps already exists, it will help you modify it to your needs. In that
case, the previous filename_clumps is simply overwritten.

cdp3D -contact filename translates objects to contact nearest particles. (_trans).
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cdp3D -cut_cyl filename modifies the simulation box coordinates. Particles that are inside or outside
a cylinder are removed. (_rm).

cdp3D -cut_rect filename modifies the simulation box coordinates. Particles that are outside a rect-
angular box are removed. (_rm)

cdp3D -export(_nxyz or _nxyzR) file Exports a file from a dp3D format filetoan x y zorn x y
z R format where n is an integer (particule number), x, y, z are the particle center coordinates and R
is the particle radius.

cdp3D -full_info filename Generate a file filename_full info listing all contacts in the coordinate file
with information on each contact. See also cdp3D -info.

cdp3D -gas Generates a gas of particles or clusters or aggregates. Needs an input_gas file.

cdp3D -image filename Given an initial coordinate file (generally a cube with a large number of par-
ticles), uses a raw image file to generate a dp3D format output file. Particles are of different types
depending on the image level of grey. Generates two files: filename_image (with all particles from the
initial coordinate files but with various atom names) and filename_image_rm where the particles origi-
nating from voxel with 0 value (black) are removed.

cdp3D -import(_xyz or _Geodict) file Imports a file from various formats to generate a dp3D for-
mat output file. The standard command cdp3D -import_xyz accepts formats of the type: x y z (will
ask a common radius for all particles), x y z Rand x y z R i (where i is a integer which defines the
color of the particle).

cdp3D -info filename gives information on the coordinate file filename. See also cdp3D -full_info.

cdp3D -keep filename keeps particles from a coordinate file by selecting them by atom name or particle
number.

cdp3D -merge filenamel filename2 creates a file filenamel_filename2_bc which merges filenamel and
filename?2.

cdp3D -mixture filename generates a packing with a mixture of particles either. Inclusion particles
may be arranged as homogeneous, clusters, with gradient, or layers. (filename_mixt).

cdp3D -noisolated filename Enlarges isolated particles to form one contact or remove isolated parti-
cles.

cdp3D -part filename nn mm ... gives coordinates, atom name and radius of particles nn mm ...
cdp3D -pick filename pick particles by atom number or coordinates and rename them. (_pick).
cdp3D -probe_x (or y or z) filename creates a plot of the relative density along the z, y or z axis.
cdp3D -rdf filename creates a plot of the Radial Distribution Function.

cdp3D -renum filename Optimize the numeration of particles to save on cache miss during the calcu-
lation. (_renum).

cdp3D -resize filename allows to modify the size of the particles by a given size ratio. (_size).
cdp3D -rm filename remove particles by atom name or number. (_rm).
cdp3D -rmobj filename remove all objects from the coordinate file. (_rm).

cdp3D -rotate filename rotates the packing of particles around an axis. (_rot).
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e cdp3D -sinter filename "sinters” a packing by simply decreasing isostatically the distance between the
particles. This will create larger contacts between particles. Of course such a microstructure is highly
simplified as compared to one obtained by sintering with dp3D (with equilibrium of sintering forces ...).
(_size)

e cdp3D -spy filename nn mm ... creates a spied coordinate file filename_spy with the particles nn mm
. spied. (_spy)

e cdp3D -tag filename nn mm ... creates a tagged coordinate file filename_tag with the particles nn
mm ... tagged. (_tag)

e cdp3D -trans filename translates the whole packing (with objects if any). (_trans).

e cdp3D -voxel filename creates a raw file with voxels to create a 3D image of the packing. Contacts
between particles may be filled using various options, depending on the mechanism for material flow.

New options in cdp3D are added routinely. Simply type cdp3D to get the latest description of the available
options.
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3.4 Generating a gas of clusters

e directory : generate_gas_clusters; coordinate file: file_init

The command cdp3D -gas has already been commented in section 2.1. Here we describe how to use the
same command to create a gas of clusters (also termed aggregates in this guide). The input_gas example file
is used to generate a gas of bonded clusters enclosed in a cylinder (axis z). Clusters of primary particles are
sets of particles that are bonded together by strong elastic bonds as exemplified in sections 2.8, 2.9, and 2.11.
Clusters are inserted in the gas as motif that are located randomly in the simulation box. Keywords have the
following meaning:

e A motif file must be provided. The motif is given for each class, by a coordinate file. A set of such motif
files (that have standard dp3D coordinate file format) are given in the generate_gas_clusters directory.
The motif must already contain bonds which will be saved accordingly in the final gas of clusters.

e The packing_density is the packing density of the packing of motifs, taking into account the internal
porosity of motifs.

e The number is the number of motifs in each class.

e The name of particles will be the name of all the particles of the imported motif. If this keyword is not
provided the particle name(s) of the motif is(are) used.

e The mat of particles will be the material number of all the particles of the imported motif. If this keyword
is not provided the particle material number(s) of the motif is used.

e The particle_size sets the average size of the primary particles contained in the motif (no deviation
available). If this keyword is not provided the particle size of the motif is used.

e FEach motif is introduced in the simulation box with a random rotation as compared to its original
orientation. However, it can be interesting to impose some anisotropy to the initial gas. To do this,
invoke max_angle to define a maximum cone for setting the cluster into the simulation box.

In the example shown here, three classes are used. The first two classes use motif to introduce clusters in
the simulation box (motif files large_sphere and platelet). The last class is simply composed of particles.

Note that on top of the file_init file, the command cdp3D -gas has also generated a file_init_clumps
file, which use has been described in section 2.15.
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Figure 26: The gas of clusters generated from the input_gas. Note the effect of z periodic conditions on the
large spherical aggregates, the use of a cylindrical object and the mixture of different shapes of aggregates.

################################g#####################################
general condition
HHARBRHH BB HHRRFHARRHH AR RHHARRHHARR AR R R A AR R HHARR AR R HAA R AR
ﬁ.%OOfd1nate file:

ile_init

# packing density to reach:
# packing_density= relative_overlap=
packing_density=0.1

# boundary conditions:

# lx%ylz 1x1y0z 1x0y0z 1x0ylz Oxlylz Ox1ly0z 0xOylz Ox0yOz cyl_x cyl_y
# cyl_z

0x0ylz

cyl_z

# simulation box size ratios:

z=2.00

# size distribution:
# plus_minus normal Tognormal
plus_minus

######################################################################

# cla #
######################################################################
# prop. of class (particle sizes in pm) 1:

# number= mat= name= particle_size= deviation= Temp= motif= max_angle=
number=2

mat=1

name=ar

particle_size=0.20

motif=Tlarge_sphere

# prop. of class (particle sizes in um) 2:

# number= mat= name= particle_size= dev1at1on— Temp= motif= max_angle=
number=10

mat=1

name=cu

particle_size=0.05

motif=platelet

# prop. of class (particle sizes in um) 3:

# number= mat= name= particle_size= deviation= Temp= motif= max_angle=
number=100

mat=2

name=ni

particle_size=0.3
R

# numerics #
#H#RRHHHBHHRBRHH AR BHHH BB HHARRHH R AR HH AR B HH AR H AR AR R R AR BB
# random seed:
# random_seed=
random_seed=-5
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3.5 Post-processing data: ddp3D

Many of the output files that are generated by dp3D can be viewed as 2D plots using the ddp3D tool which is
a simple shell preparing and then calling gnuplot. In order to know which type of data ddp3D command can
display, simply type ddp3D. The possible options will be listed.

The general synopsis is:

ddp3D -datatype(optional) -{x axis variable} -{first y axis variable} -{second y axis vari-
able} ... xrange/minvalue:maxvalue/ yrange/minvalue:maxvalue/ anim

For example the commands:

ddp3D -dens -sigxx -sigyy -pressure will display the zz and yy stress components of the macroscopic
stress tensor together with the pressure as a function of the relative density.

or

ddp3D -dens -z xrange/0.7:0.8/ yrange/6:7/ will display the average coordination number as a func-
tion of density with given ranges for x and y axis.

The possible data types, which are given before the x and y variable definitions, include:

e -tag
® -Spy
e -histo

tag and spy types allow the specific information stored in the _tag*x* and _spy**x*x files to be plotted
for tagged contacts or spyed particles. For example: ddp3D -tag -epsx -sigN_b will display the normal
stress at the bond of tagged particles as a function of the z strain component.

The data type -histo, allows histogram to be plotted. For example: ddp3D -histo -z filename will
display the distibution of coordination numbers for the coordinate file filename.

valid x labels for ddp3D are :

e -dens : density -dgeom : geometric density

e -epsx | -epsy | -epsz : x y and z strain

-time_s | -time_h | -time_y : time in sec, hour or year
e -timestep : time step

® D : pressure

e -temperature : temperature

Type ddp3D -help to get the list of valid x labels. Type ddp3D together with a valid x label to obtain the
list of valid y labels. New y labels are added routinely.

The options xrange/minvalue:maxvalue/ and yrange/minvalue:maxvalue/ allow ranges to be imposed
to the plot. Note that if the range is not set, gnuplot will use default values. The option anim generates an
animated plot with an animated point synchronized with _coord files.

3.6 Stress calculation in dp3D
The macroscopic stress tensor in the packing is calculated from Love’s formulation [33,34]:
1
Xij =1 > Filpg;, (63)
contacts

where the summation is made on all contacts and where V is the sample volume, Fj is the i*" component of
the total contact force (with normal and tangential terms), and I, ; is the j* component of the l,, vector
connecting the centers of two particles p and ¢ (see Fig. 27 for the case of a bonded contact).
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When using composites (different materials) or bonded contacts, it can be interesting to obtain some
information on the contribution of various materials or on the contribution of various bond types on the
overall stress. For example, the command:
ddp3D -dens -sigzz_mat_1 -sigzz_mat_2 -sigzz
displays the zz component of the macroscopic stress contribution for materials 1, 2 and the total stress. Fig. 7
shows the result of this command for a composite packing. For material 1, the stress contribution is calculated
from an equation similar to Eq. (63):

Zij,matl = % Z Fi (Rp — ;571) ni, (64)
contacts matl

where the summation is made here on all contacts that involve a particle of material 1. §,, is the geometrical
indentation between the two particles at the contact (see Fig. 4) and n; is the jth component of the normal
vector n.

The same methodology applies for clusters. The command:
ddp3D -dens -sigzz_0 -sigzz_1 -sigzz_2 -sigzz
displays the zz component of the macroscopic stress contribution for Hertzian contacts (-sigzz_0), bonded
contacts (-sigzz_1), broken contacts (-sigzz_2), and the total stress.

If objects are present in the simulation, stresses may also be calculated from the summation of the contact
forces on these objects (for planes and cylinders) with a appropriate choice of surface normalization. See
section 4.5 for a more detailed discussion on stress and objects.

Figure 27: Sketch of the bond between two spherical particles p and ¢ transmitting normal and tangential
forces and resisting moments.
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4 Coordinate file

dp3D needs two files to start a calculation: the initial coordinate file that keeps the location of each particles in
the simulation box and the input_dp3D file that describes the conditions of the simulation. This last file has
been described in the examples and its entries are detailed in section 6. Here we will focus on the coordinate
file.

An example of a (very short and hypothetical) coordinate file is given in figure 29. Units in the coordinate
files are in mm.

4.1 The two first lines

The first line of the file gives the number of particles, the number of objects, the number of bonds and the
mean radius of the packing. Note that the mean particle radius is only given as a user information, dp3D does
not use this information.

The second line of the file gives the coordinates of the rectangular simulation box.

4.2 The description of the particles of the packing

The first column gives the material index of the particle (integer from 0 to 9) . This refers to the material
index used in the file input_dp3D to define material parameters. Atom labels are used in order to give colors
to the particles in vdp3D (a list of colors associated to each atom type may be found in the ivdp3D file once
you have run vdp3D once). Particles labeled:

‘ac’al’, 'ag’, 'am’, ’ar’, ’at’, ’au’, 'ba’, ’be’, ’bi’, 'bk’, ’br’, 'ed’, 'cu’, 'fe’, fr’; ’ge’ ’in’, ’li,)mg’, 'ni’, 'nb’, 'os’,
'pd’, 'po’, 'pt’, 'pu’, ‘ra’, 'sn’, 'ti’, tm’, xi’, 'zn’, 'zr’

are permitted.

You may tag a particle by adding a star ™ after the label (this is exemplified for three particles "cu” in
figure 29)!. This will tell dp3D to write detailed information on any contact between these particles and any
other tagged particles. Typically information on contacts are size, contact forces, ... If you tag two particles
that never make contact during the simulation, no _tag file will be written.

You may spy a particle by adding a hat """ after the label (particle 9 is both spied and tagged in the
exemple)?. This will tell dp3D to write detailed information on any particle which has been defined as spied.
Typically information on particles are their position, velocity, total force acting on them ...

The label of the particle is followed by the 3 coordinates of the center of the sphere and by the radius of

the sphere. After calculation, the _coord files may have some more columns after the 3 coordinates and radius.

4.3 The description of objects of the packing

Following the particles, is a list of the objects. By default, all objects are tagged, hence the object label does
7*7 - Objects are also ascribed a material index in the first column, as particles. Here material
index for the three objects is 0.

not need the

A plane is characterized by the label "plane” and its equation:
Ng® +NyY + Nz =7 (65)

where the vector (ng,ny,n,) is the normal to the plane pointing outward (as compared to the particles) (fig.
28). The four parameters (ng,ny,,n.,r) are given after the plane label. The parameter r may be negative or
positive. The vector (ng,n,,n,) is a unit vector.

A cylinder is characterized by the label ”"cylin” followed by its unit axis vector and its radius. The
second set of parameters that are needed to define the cylinder is given after the label "C_cyl” which gives the
coordinates of a point on the axis of the cylinder.

A sphere is characterized by the label "spher” followed by the coordinate of its center and its radius.

LA simpler way to tag particles for large packings, is to use vdp3D -tag as explained in section 3.1.
2 A simpler way to spy particles for large packings, is to use vdp3D -spy as explained in section 3.1.
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nx,ny,nz

Figure 28: The normal to the plane points outward (as compared to the particles)

0.499682833026E-04
0.227740355488E-03

3 bonded_contacts: & mean_radius:
0.227740355488E-03

particles: x
-0.227740355488E-03 -0.227740355488RE-03 -0.167772889903E-03

10 ocbjects:
0.167772889903E-03

1 cu 0.209994526031E-04 0.147964422698E-04 0.115622938462E-03 0.485437946009E-04
1 cu -0.420316717224E-04 -0.606050323877E-04 0.118854545041E-03 0.489183448624E-04
1 cu 0.387305721265E-04 0.131111452603E-03 -0.101426536563E-03 0.522194444583E-04
1 cu -0.516565004525E-05 0.106815568600E-03 0.899676514298E-04 0.514065728295E-04
1 cu* —-0.785830800535E-05 0.431746691846E-04 -0.118079873084E-03 0.496930168190E-04
1 cu* 0.189926912701E-04 -0.250221979960E-04 -0.530662259893E-04 0.492645440781E-04
1 cu -0.280680366057E-04 -0.152462895878E-03 0.972732869980E-05 0.477583578957E-04
1 cu” 0.694794165134E-05 ~0.662996103951E-04 0.347825060285E-04 0.495317430618E-04
1 cu** -0.109009713780E-04 0.148500591001E-03 -0.475270574720E-05 0.517206627734E-04
1 cu 0.386503314117E-05 -0.147754953831E-03 0.115496816044E-03 0.506263516469E-04
lisgt of objecte:
hE hhAAK KA FRAAAAAEAAAAAAAK KEA AR A R AR AR AR AR L FAAAAA AR AAARRAAAAA AR AR AR ARAAERAAAAS
0 plane 0.000000000000E+00 0.000000000000E+00 0.100000000000E+01 0.167772889903E-03
hE AAAAE  hEEhAAAAAEAAAAAAAK AEAAAA AR AR AR AR ARE  RAAAAAAAAAARAAAAAS  AAAAAAAAAASRARAAS
0 plane 0.000000000000E+00 0.000000000000E+00 —0.100000000000E+01 0.167772889903E-03
hE AAAAE  hEEhAAAAAEAAAAAAAK AEAAAA AR AR AR AR ARE  RAAAAAAAAAARAAAAAS  AAAAAAAAAASRARAAS
0 cylin 0.000000000000E+00 0.000000000000E+00 0.100000000000E+01 0.227740355488E-03
C cyl 0.000000000000E+00 0.000000000000E+00 0.000000000000E+00
*E O EFEEEX FEEXREAFRLAXTEALASXAELA S FEAFXEAFRLFXREAFT LS FEAFAEAFRLFXREAS LS FEAFEXAEAFT LS L ZAEAS
bonded contacts (i,3): 8 Coble

1 4

2 8

2 10

3 5

5 3

5 12

3 8

7 g

Figure 29: Example of a coordinate file with ten particles, seven bonds and three objects.
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4.4 Imposing motion to objects

For planes, the rate of change of the parameter R (the distance from the origin) is given by default by the
loading conditions of input_dp3D. However, the user may also specify a different rate of change for R by
adding a line just after the plane or cylin line. Note that both an srate and an irate option may be
specified. srate tells dp3D that the initial rate of change of R is given by this line (but may then be changed
by the dp3D controller when a stress controlled test is imposed for example). irate tells that the rate of change
of R is imposed strictly by this line. Thus, for example, the two lines defining a plane and its optional rate of
change may be written:
T R R R I T I E I I I I I T I T R I I
0 plane 0.000000000E+00 0.00000000OE+00 1.000000000E+00 0.123456789E-01

rate 0.000000000E+00 0.000000000E+00 0.000000000E+00 -0.100000000E-04
HRAKKHAAA KA AAAAAAKAKRAK KA KA AAAAAAKAKARK KA A KA AAAAAAFARAK KA KA KA KA KA KA KA K

or
ook ok KoK KoK KK KKK KoK KoK KoKk kKRR oK oK KoK ook KoK Kok ok ok ok ok ok ok ok ok koo ok ok ok ok ok ok ok ok sk sk sk ok ok ook ok
0 plane 0.000000000E+00 0.000000000E+00 1.000000000E+00 0.123456789E-01

irate 0.000000000E+00 0.000000000E+00 0.000000000E+00 -0.100000000E-04
sokokokok skokokskskskokskokskokokokokokokokok  skokskskokokokokokokoskokskokskokokok  skokokokokokoksksksk sk skokokokokokok kokoksksk sk sk sk sk sk sk ok ok ook ok

The rate of change of R is given by:

1 dR
Ty = Srate = —0.100000000E 04 (66)

Thus, it is a strain rate which defines the motion of the planes.
A second way to move planes is to write for example:
KKK HAAAKARAAAAAAKAKAK KA KA AAAAAAKAKARAE KA A KA AAAAAAFAKAK A KA KA KA KA KA KA K
0 plane 0.000000000E+00 0.000000000E+00 1.000000000E+00 0.123456789E-01
irate 0.000000000E+00 1.000000000E-05 0.000000000E+00 0.000000000E+00
HoRAK K KRR AR KRR AR KK KRR KRR KRR KKKk KR KRRk ok KKKk Kok ok KKk K
In that case the motion of the plane is in the y direction. Thus, it will generate a shear motion of the plane,
which normal is in the z direction. The velocity of the plane in the y direction, Vj;, is:

V,, = irate(y)R = 1.00000000E~*° R (67)

The same type of motion may be imposed to spheres. Typically by providing a strain-rate in one direction
for the object spher:
HRAKK KA KA KA KA A KARAK KA KA AAAAAAKAKARE KA KA KA AAAAAAFAKAK A FA KA KA KA KA KA K
0 sphere 0.123456789E-01 0.123456789E-01 0.123456789E-01 0.123456789E-01

irate 0.000000000E+00 -1.000000000E-05 0.000000000E+00 0.000000000E+00
HRAK K KRR AR KK KRR KRR KRR AR KRRk K R KRRk KKK KRRk kKK kK ok
which will impose a motion in the y direction to the sphere with the following velocity for the center of the
sphere in the y direction:

V, = irate(y)y = —1.00000000E %y (68)

Note that the velocity of the spher will not be constant (since y will be variable), only the strain rate is
constant.

If several objects are used together to form a whole meta object, it may be useful to impose a rigid body
motion to it. Typically, this may be useful if a series of spher objects are used to represent a complex shape
meta object. In dp3D, rigid body motion may be imposed by declaring a master object and several slave
objects:

1 cu 0.397619482720E-01 0.336330798024E-01 0.755523710191E-01 0.975257332123E-03
1 cu 0.494025233448E-01 -0.556199169059E-01 0.265963474629E-03 0.103153505529E-02
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1 cu 0.498359740187E-01 0.139189457044E-01 -0.733279450527E-01 0.964238293021E-03
list of objects:
T R R I I I T I I
0 sphere 0.234567891E-01 0.234567891E-01 0.234567891E-01 0.234567891E-01
slave 5
kokokokk  kokokokskkokskkokokkkokkkokk kokkkokkkokdkkokdkkkokkkok kokokkkokkkokdkkokdkkokokkk o kkokkkkokkkokkkokkkkk
0 sphere 0.123456789E-01 0.123456789E-01 0.123456789E-01 0.123456789E-01
irate 0.000000000E+00 -1.000000000E-05 0.000000000E+00 0.000000000E+00
HRAKK KKK AK AR A FARAK KK AR AAA KA KARK  H A A KA AR A A A KA KA KA KA KA A KA KA KA K
In this example, object spher 4 (since there are three particles in the packing, the first object is n°4), is slaved
to object spher 5, which is the master object (several master objects can be declared). In that case the velocity
of object 4 is the same as the velocity of object 5:

V,(4) = V,(5) = irate(y(5))y(5) = —1.00000000E "y (5) (69)

A third way to impose motion to object is specific to cylinders. It consists in imposing rotation to the
cylinder around its axis (for example to model a Couette rheometer) by writing:
T R R R R I T I T I T ITITITITT:
0 cylin 0.000000000E+00 0.00000000OE+00 1.000000000E+00 0.123456789E-01

irota 0.000000000E+00 0.000000000E+00 0.100000000E-04 0.000000000E+00

C_cyl 0.000000000E+00 0.000000000E+00 0.000000000E+00
KAKKKK KKK A KA KK KKKKKKK  H KKK KK KKK KKK F A KK KKKKAK KKK KA A KKK KKK KoK oK oK oK kKK KKK KoK oK oK

In that case the rotation will be anti-clockwise (0.100000000E-04>0) and must be given around the axis of
the cylinder (z axis here). The velocity at the cylinder frontier, V,,; will be given by:

Vyor = irota(z)R = 0.100000000E ‘R (70)

4.5 Imposing stress on objects

By default stress imposed tests use the macroscopic stress to control strain rates. The macroscopic stress is
calculated from [33-35] (see section 3.6):

1
Ojk = V < Z (Rl + Ry — 5n) Nnj.nk + Z (Rl + Ry — 5n) T’/lj.tk> (71)

contacts contacts

where V is the volume of the packing considered (a periodic box, or a spherical volume as defined by the option
stress_ref), n and t are the unit vectors, respectively normal and parallel to the contact plane.

Alternatively, stresses can be calculated from the total contact forces applied onto objects and using an
appropriate measure of the surface. The output file object contains this information for each object. A
stress imposed test can thus use an object to control the strain rate. This option (only available for planes in
the x,y and z principal directions and for cylinders in the radial directions) imposes to declare the keyword
stress_ref in the general key words of the input_dp3D file and when declaring the object in the coordinate
file:
kokokskk  Skokokokskkokdkkokokkokokkkokk  kokkokokkkokskkokdkkkokkkok kokokkkokkkokdkkokdkkokokkk o kkokkkkokkkokkkokkkkk
0 plane 0.000000000E+00 0.000000000E+00 1.000000000E+00 0.123456789E-01

stress_ref
sokokokok okokdokokokkokokdokkdokkokok  kokokokdokskokokokokdokkokok  kokkokokokokskokok ok kokokskokok ok sk ok sk ok ok ok ok sk ok ok

In the example above, the stress ¢,, on this plane will be used to control the strain-rate.
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4.6 The list of bonds

The last set of information that may be needed is the list of particles or objects that are bonded together. Fig.
29 shows for example that particle 7 and 8 are bonded together and that particle 5 is bonded to object 12.
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5 Output Files

Upon calculation, dp3D generates result or output files. Most of these files may not be interesting for the
beginner. This is because the post-processing tool ddp3D will manage graphic visualization of the information
contained in these files. Nevertheless, it may be useful to know where information is stored after the simulation.
Most of these files are written when the writing output files: condition is met. A short description of
these files is given hereafter.

5.1 1log file

The log file is generated even if the simulation failed. It contains a summary of the evolution of the calculation.

The information contained in the log allows you to evaluate the most important aspects of the calculation.
Each section of the log file is written when the writing output files: condition is met. The log file also
tells when a coordinate file has been written and gives valuable information if the calculation crashes.

5.2 tstress file

The tstress file gives information on the evolution of several parameters, mostly related with strain, time,
time-step and stress. Each column has a label which should be self-explanatory.

5.3 zave file

The zave file gives information on the evolution of several parameters, mostly related with coordination,
contact size, and indentation. Each column has a label which should be self-explanatory.

5.4 rupt file

The rupt file is generated only if the cluster mode is on. It gives information on the evolution of several
parameters, mostly related with cluster bonds. Each column has a label which should be self-explanatory.

5.5 object file

The object file is generated only if objects exist in the simulation. For each object, it gives information on
the evolution of several parameters, mostly related with the total force and stress applied to objects. Each
column has a label which should be self-explanatory.

5.6 fract_bonds file

The fract_bonds file is generated when bonds are present in the simulation. The file gives information on the
fracture events of each bond. It is used by the vdp3D -fract_bonds option. Each line corresponds to a bond
that has fractured. Each column has a label which should be self-explanatory.

5.7 warnings file

The warnings file is written if one or more warnings have been generated during the calculation.

5.8 cstatus file

There are a number (more than 30 to date) of different contact status in dp3D. For example hertzian,
broken_bond or sinter_equil. The cstatus file gives the number of contacts for each status. The name of
the status should be self explanatory and the complete list is available in get_cstat.£90.
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5.9 _coord files

The _coord files are generated when the writing coordinate files: condition is met. These files have
been described in section 4. These files may be renamed (highly recommended, since it may be overwritten)
and used for another dp3D calculation. See next section on how to restart a calculation with the full contact
information from the last run.

5.10 _histc files

A _nnnn_histc file is written at the end of each calculation (except for the sintering mode). The nnnn number
corresponds to the number of the last _coordnnnn coordinate file written in the simulation. See section 2.5 on
how to use this file to restart a calculation with the full contact information from the last run.

5.11 _clumps files

A _nnnn_clumps file is written at the end of each calculation (except for the sintering mode) if a _clumps file
has been provided initially and if the clump_cluster option has been given. The nnnn number corresponds
to the number of the last _coordnnnn coordinate file written in the simulation.

5.12 _tag files

The _tagnnnnnn_mmmmmm file exists if both particles (or object) nnnnnn mmmmmm have been tagged (see
section 3.1 or 3.3 on how to tag particles prior to the simulation) and if they have formed a contact during the
simulation.

The _tag file gives information on the contact evolution (typically indentation, contact size, maximum
normal and tangential contact forces, ...). Each column has a label which should be self-explanatory. The
_tag file is used by the command ddp3D -tag (see section 3.5).

5.13 _spy files

The _spynnnnnn file exists if particle nnnnnn particle has been spied (see section 3.1 or 3.3 on how to spy par-
ticles prior to the simulation). The _spy file gives information on the particle evolution (typically coordinates,
velocity, acceleration, coordination number, ...). Each column has a label which should be self-explanatory.
The _spy file is used by the command ddp3D -spy (see section 3.5).
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6 The input_dp3D file

The input_dp3D file lists the input parameters needed to run a dp3D simulation. The example sections have
shown the use of most of the key words in input_dp3D. Some new ones appear frequently. They are listed
below. Key words are arranged in six classes:

e simulation conditions: general conditions for the simulation

e models: specifies the models used

outputs: when outputs should be written

loadings: loading conditions
e materials: material parameters
e numerics: numerical parameters

For each class, there are different key words (kw). For example in the models class, there are the friction
model or adhesion model key words. For each of these key words, there are various input parameters asked
for. Note that some may be useless for a given simulation and thus may be omitted. You may also, give more
than one input parameter for a given parameter. For example, you may ask for the simulation to have both
the stress_ref and the gravity key words.

In the following, we describe each class, key word and input parameter. The default value (if the input
parameter is omitted) is indicated. None means that a kw must be given). A class may accept multiple key
words. If it does not (last column of the following description), then if the user gives several kws, only the last
one will be taken into account. Some key words accept values as: kw=value.
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HitHHHHH R R R R R R R R

# simulation conditions #
HESSHHHAERFHHBHBHFHAGHH R RHH R EHHBEERFH G R HH RS FHH B HH RS H R B RHH B R EH
comment default entry if omitted accepts
multiple
kw
# coordinate file: The name of the input coordinate file must be defined no
# mode key word: type of simulation to be run must be defined no
jamming: jamming mode none
elasto-plasticity: elasto-plastic mode none
viscoplasticity: viscoplastic mode none
sintering: sintering mode, forbids rotations none
# general key words: kw that apply to the simulation yes

none:
stress_ref :

large_dens= :

no_rotation :
rot_elast_only :

constant_velocity :

gravity :
thermal :

no specific kw given

A reference sphere or rectangle or an object is used
to compute stresses

Large density type of (visco)-plastic models, uses
Voronoi cells to compute local density. The value
after the kw gives the density at which the material
becomes incompressible.

Forbids rotations. Not available with bonds.
Forbids rotations for non-elastic contacts (plastic
contacts). Not available with bonds.

Velocity is constant and determined from initial
length v = lpé

gravity is accounted for
Solid thermal conduction may be used

stress computed on the en-
tire simulation box
Standard models.

standard rotations
Standard rotations.

strain rate is constant and
velocities determined from
actual length v = lé. Ap-
plies also to dilatation rates.
No gravity.

No thermal conduction
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HERFHFHAHHHH B HBRGHH BB R H B GHHBREHH BB H BB R R R R S

#

models

#

i HH R R R R R R R R R

comment default entry if omitted accepts
multiple
kw
# elasto_plasticity and kws attached to elasto_plasticity and jamming no
jamming key words: modes
none: no specific kw none
bonds: use bonds between particles (if they have been  no bonds
listed in the coordinated file)
no_elasticity: does not consider Hertzian interactions, only plas- Hertzian interactions con-
ticity for non-bonded contacts sidered
linear_elasticity: Elastic repulsion is linear for non-bonded contacts  Hertzian interaction
# bond key words: define kws for bonds. A bond model must yes

be defined in the list:  large_bonds_full,
large_bonds, stiffness or clump_cluster

large_bonds_full :

large_bonds :

geom:

toughness :

only_bonds:

clump_cluster :

beam :

stiffness :

Rankine :

iso_bonds= :

psi_bar= :

unload_stiff_ratio= :

strength_deviation= :

Standard bond model described in [7,24]. May take
bond interactions into account (cf psi_bar param-
eter).

Older bond model described in [23, 36]. No bond
interactions.

The contact size is defined by the geometric inter-
section of the two particles.

Uses the toughness model for fracture of bonds
[14]. Needs bond toughness in material parame-
ters

Particles that are not bonded together do not
transmit contact forces

bonded particles are clumped together. No force or
fracture inside the clump.

Resisting moments are used to compute the bond
stress and to compare with bond strength [24]

Linear stiffness explicitly defined for bonds, see
bond stiffnesses (tension and shear) in materials

Rankine criterion is used for bond failure [26]:

1 (O'N + /o3 + 40%) >sig_N, needs
sig_N in the material properties.

All bonds, whatever their geometry are affected
with the same a/R value iso_bonds

Value of ¥ in Eq.(A5) of [7]. When a ¥ value is
given, bond interactions are not taken into account
explicitly. The standard value is ¥ = 0.

The normal stiffness of a unloading bond is un-—
load_stiff_ratio X the loading stiffness (defined
by material parameters).

Generates a Gaussian distribution of bond
strength with mean value dictated by stg_N or
toughness (see material parameters) depend-
ing on the model (toughness model or standard
model). strength_deviation gives the standard
deviation from the mean value

O Rankine =

none
none

Contact type (geom or
Coble) defined in the

coordinate file
Bond strength explicitly de-
fined (see bond strength)

Hertzian contacts between
non-bonded particles
none

Bond stress computed with-
out resisting moments, typi-
cally when using the tough-
ness model [14]

Young’s moduli and Pois-
son’s ratio used to compute
bond stiffness

Bond fractures when either
normal or tangential bond
stress > sig_N or sig_T.

Bond size computed from
the actual geometry

¥ calculated with the full
model (Eq. (15) of [7].

Normal stiffness of a unload-
ing bond is equal to the load-
ing stiffness.

Bond strength strictly given
by material parameters.
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HHH R R RS R

# models #
HESSHHHHAHFHHERBHH RS HH R RHHBREHHBEERHHRERHH R RS H BB S HH RS HH R B R R HBREH
comment default entry if omitted accepts
multiple
kw
# viscoplastic model: defines the viscoplastic model no
standard: standard viscoplastic model for a constitutive eq.  standard viscoplastic model
of the type:o = o1eMeN
oriented: viscoplastic model taking crystal orientation into standard viscoplastic model
account. Specific to ice. o1 depends on the crystal
orientation.
# sintering model: defines the sintering model no
Parhami_Mc_Meeking : Parhami and McMeeking sintering model [8, 9] Bouvard_Pan
Bouvard_Pan: Bouvard and Pan model for sintering [15, 28, 29]
viscous: viscous model for sintering Bouvard_Pan
# friction model: defines the friction model no
Hertz_Mindlin: simplified Hertz Mindlin model wused. Uses Hertz Mindlin
Young’s modulus and Poisson’s ratio to compute
shear stiffness in stick region. Slip is dictated by
the friction coefficient (see materials, friction pa-
rameters). Direction given by accumulated tan-
gential relative displacement at contact.
Coulomb: Contact slips always active and dictated by the Hertz Mindlin
friction coefficient (see materials, friction param-
eters). Direction given by accumulated tangential
relative displacement at contact.
shear: tangential force opposes actual relative shear ve- Hertz Mindlin
locity, value dictated by the friction coefficient (see
materials, friction parameters)
# adhesion model: defines the adhesion model no

JKR: JKR [2,19] adhesion model used. Adhesion is dic- JKR
tated by the work of adhesion (see materials, work
of adhesion parameters).

DMT: DMT [3, 19] adhesion model used. Adhesion is JKR
dictated by the work of adhesion (see materials,
work of adhesion parameters).
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# outputs #
HESSHHHEHHHH BB HHHAEHHHBEFHHBREHHBEERHHRERHH R RS H BB S HH RS HH R AR RHHBREH
comment default entry if omitted accepts
multiple
kw
# simulation termina- defines when simulation stops must be defined fracture=
tion: can be
combined
density>= simulation stops when relative density > value
epsilon>= simulation stops when the absolute value of the
strain in x, y or z directions > value
pressure>=,<= simulation stops when pressure is > or < wvalue
(Pa)
epsvdot<= simulation stops when the volumic strain rate is
< wvalue in sec”*. Only used in jamming mode.
aoR>= stmulation stops when the average contact size
(normalized by the mean radius) is > value.
time>= stmulation stops when time (in seconds) is >
value.
timestep>= sitmulation stops when timestep is > wvalue (inte-
ger).
siglzz, yy, 22]>=,<= stmulation stops when the diagonal stress is > or
< wvalue (Pa).
fracture= sitmulation stops when a stress mazximum (omaz)
has been reached and the stress < wvalue XOmaxz-
Must be combined with another criterion.
# writing coordinate defines when to write _coordnnn files no
files:
density= writing each increment (value) of relative density —none
epsilon= writing each increment (value) of strain none
pressure= writing each increment (value) of pressure none
aoR= writing each increment (value) of average contact none
size (normalized by the mean radius)
time= writing each increment (value) of time (seconds)  none
timestep= writing each increment (value) of timestep none
siglzz, yy, zz]= writing each increment (value) of sig (Pa) none
none does not write any _coordnnn file none
end writes a _coordnnn file only upon termination none
# writing output files: defines when to write output files (log, tstress, no
zave, Tupt ...)
density= writing each increment (value) of relative density —none
epsilon= writing each increment (value) of strain none
pressure= writing each increment (value) of pressure none
aoR= writing each increment (value) of average contact none
size (normalized by the mean radius)
time= writing each increment (value) of time (seconds)  none
timestep= writing each increment (value) of timestep none
siglzx, yy, zz]= writing each increment (value) of sig (Pa) none
none does not write any _coordnnn file none
end writes a _coordnnn file only upon termination none
# writing contact his- defines when to write nnnn_histc and no
tory files: nnnn_clumps files
density= writing each increment (value) of relative density — none
epsilon= writing each increment (value) of strain none
pressure= writing each increment (value) of pressure none
aoR= writing each increment (value) of average contact none
size (normalized by the mean radius)
time= writing each increment (value) of time (seconds)  none
timestep= writing each increment (value) of timestep none
siglzx, yy, 22]= writing each increment (value) of sig (Pa) none
none does not write any _coordnnn file none
end writes a _coordnnn file only upon termination none
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#

loadings

#

HERHHFHAHHHH B H R H R B SHH R R R R R R

comment default entry if omitted accepts
multiple
kw
# periodic conditions: defines periodic conditions in the simulation box no
1xlylz periodic conditions on all three azis 1x1lylz
1x1y0z no periodic conditions on z axis 1x1ylz
1x0y0z periodic conditions only on x axis 1x1lylz
c.. etc ... 1x1ylz
# loading conditions (Pa defines the loading conditions. When a stress yes
for stress): is imposed it takes predominance over imposed
strain-rates (Strain-rates still must be given to
help the PID controller).
epsxdot= imposed strain-rate on axis x (in 1/sec) 0.
epsydot= imposed strain-rate on axis y (in 1/sec) 0.
epszdot= imposed strain-rate on azis z (in 1/sec) 0.
sigxx= imposed 0z (in Pa) no imposed stress
sigyy= imposed oy (in Pa) no imposed stress
sigyy= imposed o (in Pa) no imposed stress
equal_stress= when imposing stress, special controls. See com- 0
pute_strnz_nstrn.f90
pressure= imposed pressure (in Pa). Only used in jamming. no imposed pressure
# imposed disp. defines the particles on which increment of dis- can be entirely omitted if no yes
(i,m/s), rotation placement (in m/s) or increment of force (in N/s) imposed displacement nor
(i,0.), force (i,N/s) can be imposed force is sought for
on part i:
none no imposed displacement or force
deltax=10,0. 0 imposed disp for particle 10 on x no imposed displacement
deltay=11,1.E-12 1L.E72 m.s™! imposed disp for particle 11 on y no imposed displacement
deltaz=12,-1.E-12 -1.E7'2 m.s™! imposed disp for particle 12 on y no imposed displacement
deltar=12,0. zero imposed rotation for particle 12 no imposed rotation
deltaFx=2,1.E-12 1.LE7'2 N.s™! imposed force increment for particle no imposed force
2onx
deltaFy=3,1.E-12 1.E7'2 N.s™! imposed force increment for particle no imposed force
Sony
deltaFz=21.E-12 1.E7'2 N.s™! imposed force increment for particle no imposed force
2onz
# temperatures(deg C) defines the temperature profile to be imposed Used only for sintering for yes
and duration (s) for the time being.
stage
none no imposed temperature none
T_init= initial temperature of stage, should be equal to final 0.
temperature of preceding stage
T_final= final temperature of stage, should be equal to initial 0.
temperature of preceding stage
time= duration of stage in sec. A zero value means that 0.
no time limit is imposed for this stage
#  Properties of marked Defines properties to impose to marked particles No specific property im- yes

particles (Temp in deg
C):

(marked with + in the particle name of the coor-
dinate file)

posed even if some particles
are marked

fixed_Temp=
surface_Temp=

marked particles have a fized temperature
marked particles are in contact with a surface with
a given temperature

none
none
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#

materials (from 0,1,2, to 9)

#

it H R R R R R R R

comment default entry if omitted accepts
multiple
kw
# elastic parameters (Pa  FElastic properties Young’s modulus of material  yes
for stress): 1 must be defined
E(1) Young’s modulus of material 1 0.D0
poisson(1) Poisson’s ratio of material 1 0.D0
E(2) Young’s modulus of material 2 0.D0
poisson(2) Poisson’s ratio of material 2 0.D0
delta_c(1) indentation (normalized by R) at which E(1) is 0.DO0
multiplied by fact-mult(1)
fact_mult(1) factor by which E(1) is multiplied (see Fig. 30) 1.D0
# plastic parameters (Pa  Plastic properties yes
for stress):
sigy(1)= o1 of material 1 for a material with constitutive 103>
equation: o = o1eMely
sigy(2)= o2 of material 2 for a material with constitutive 10%
equation: o = JQEME'N
Mstrain= hardening coefficient for all materials: o = 0.D0
0_172€IMst'rainéN
Nvisco= creep indicia for all materials: o = Ul,gaMéN“i“o 0.D0
# friction parameters: friction coefficients, see models for the definition yes
of the associated friction model. In sintering mode
(not viscous model), frict is the u parameter in
Eq. (50)
frict(1,1)= friction coefficient between materials 1 and 1 0.D0
frict(1,2)= friction coefficient between materials 1 and 2 0.DO
(=frict(2,1))
frict(1,1)= friction coefficient between materials 1 and 1 0.D0
frict(2,2)= friction coefficient between materials 2 and 2 0.D0
# work of adhesion pa- work of adhesion, see models for the definition of yes
rameters (J.m-2): the associated adhesion model [11]
adhes(1,1)= work of adhesion between materials 1 and 1 0.D0
adhes(1,2)= work of adhesion between materials 1 and 2 (=ad- 0.DO
hes(2,1))
adhes(1,1)= work of adhesion between materials 1 and 1 0.D0
adhes(2,2)= work of adhesion between materials 2 and 2 0.D0
# bond toughness parame- toughness of a bond in the toughness model for the yes
ters (J.m-2): fracture of bonds, see models definition [1/]
toughness(1,1)= bond toughness between materials 1 and 1 0.D0
toughness(1,2)= bond toughness between materials 1 and 2 0.DO
(=toughness(2,1))
toughness(1,1)= bond toughness between materials 1 and 1 0.D0
toughness(2,2)= bond toughness between materials 2 and 2 0.D0
# bond stiffnesses (ten- stiffness of a bond in the stiffness model [37] yes
sion and shear) (Pa):
K_N(1)= normal bond stiffness for material 1 0.D0
K_N(2)= normal bond stiffness for material 2 0.D0
K_T(1)= tangential bond stiffness for material 1 0.D0
K_T(2)= tangential bond stiffness for material 2 0.D0
# bond strength in ten- bond strength in tension for the fracture of bonds. yes
sion (Pa): Default model (not toughness)
sig N(1,1)= strength in tension between materials 1 and 1 0.D0
sig N(1,2)= strength in tenston between materials 1 and 2 0.DO
(=sig-N(2,1))
sig N(1,1)= strength in tension between materials 1 and 1 0.D0
sig_N(2,2)= strength in tension between materials 2 and 2 0.D0
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Figure 30: (a) Two elastic particles coated with thickness ¢; = delta_c x R; and t; = delta_c x R;. (b) When the
indentaion reaches the critical indentation 6, > d. = t; + t;, the elastic moduli of particles ¢ and j are multiplied by

fact_mult and the contact enters branch 2. Upon unloading of a contact that has entered branch 2, when the condition

2
3 applies, the contact fails and transmits no normal force. See elastic properties.

on <02 = (ti +15) (1—m>
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#

materials (from 0,1,2, to 9)

#

HHH R R R R

comment default entry if omitted accepts
multiple
kw
# sintering material(s):  Lists materials that sinter. See Yan et al. [16] for no sintering material yes
interactions between sintering and non-sintering
particles.
1 material 1 sinters material 1 does not sinter
2 material 2 sinters material 2 does not sinter
# surface energy pa- surface energies for sintering contacts [15, 28, 29] yes
rameters for sintering
(J.m-2):
gamma_s(1,1)= surface energy between materials 1 and 1 0.D0
gamma_s(1,2)= surface energy between materials 1 and 2 0.DO
(=gamma_s(2,1))
gamma_s(1,1)= surface energy between materials 1 and 1 0.D0
gamma_s(2,2)= surface energy between materials 2 and 2 0.D0
# diffusion parameter diffusion parameter for sintering contacts. Ob- yes
(m3.s-1): jects cannot sinter.
DeltabDOb(1,1)= diffusion parameter between materials 1 and 1 0.D0
DeltabDOb(1,2)= diffusion parameter between materials 1 and 2 0.D0
(=DeltabD0b(2,1))
DeltabDOb(1,1)= diffusion parameter between materials 1 and 1 0.D0
DeltabDOb(2,2)= diffusion parameter between materials 2 and 2 0.D0
#  pre-exponential vis-  pre-exponential viscosity coefficient for the viscous yes
cosity coefficient model [30,31]
(Pa.s):
eta_0(1,1)= pre-exponential viscosity coefficient between mate- 0.D0
rials 1 and 1
eta_0(1,2)= pre-exponential viscosity coefficient between mate- 0.D0
rials 1 and 2 (=eta_0(2,1))
eta_0(1,1)= pre-exponential viscosity coefficient between mate-  0.D0
rials 1 and 1
eta_0(2,2)= pre-exponential viscosity coefficient between mate- 0.D0
rials 2 and 2
# activation energy Activation energy for diffusion or viscosity. yes
(KJ/mol):
Qb(1,1)= Activation energy for diffusion or wiscosity be- 0.D0
tween materials 1 and 1
Qb(1,2)= Activation energy for diffusion or wviscosity be- 0.DO0
tween materials 1 and 2 (=Qb(2,1))
Qb(1,1)= Activation energy for diffusion or wiscosity be- 0.DO
tween materials 1 and 1
Qb(2,2)= Activation energy for diffusion or wiscosity be- 0.DO0
tween materials 2 and 2
# dihedral angle (°): Dihedral angle [8, 9] yes
chi(1,1)= Dihedral angle between materials 1 and 1 180
chi(1,2)= Dihedral angle between materials 1 and 2 180
(=chi(2,1))
chi(1,1)= Dihedral angle between materials 1 and 1 180
chi(2,2)= Dihedral angle between materials 2 and 2 180
# atomic volume (m3) and atomic volume (m3) and coarsening parameter for yes
coarsening parameter: sintering models. Coarsening model is described
in [9]
omega(1)= atomic volume for material 1 0.D0
omega(2)= atomic volume for material 2 0.D0
coarsen(1l)= coarsening parameter for material 1 0.D0
coarsen(2)= coarsening parameter for material 2 0.D0
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#

materials (from 0,1,2, to 9)

#

HHHHHH R R R R R R R R

comment default entry if omitted accepts
multiple
kw
# dilatation parameter Particle radius (R) may dilate according to: yes
(s-1): +4 — dilate(material). If constant_velocity is
given (see general key words), initial radius Ro is
used: Rio% = dilate(material)
dilate(1)= dilatation rate for material 1 0.D0
dilate(2)= dilatation rate for material 2 0.D0
# density (g.mm-3): Material density. Density is multiplied by an up- yes
scaling factor (see upscale in numerics) for quasi-
static conditions
ro(1)= density for material 1 7.89D-03
ro(2)= density for material 2 7.89D-03
# dissipation parameter Dissipation. Model is from Péschel [38]. Applies yes
(s): to the normal component of the Hertzian elastic
model of contact.
dissip(1,1)= dissipation between materials 1 and 1 0.D0
dissip(1,2)= dissipation between materials 1 and 2 (=dis- 0.D0
sip(2,1))
dissip(1,1)= dissipation between materials 1 and 1 0.D0
dissip(2,2)= dissipation between materials 2 and 2 0.D0
# Thermal expansion: Linear thermal expansion coefficient yes
T_thermal(1)= Thermal dilatation for material 1 0.D0
T_thermal(2)= Thermal dilatation for material 2 0.D0

The list given here is limited to two materials (1 and 2). However dp3D can handle 10 different materials ranging from

material number 0 to 9.
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#

numerics

#

it H R R R R R R R

comment

default entry if omitted accepts
multiple
kw

# affine motion condi-
tions:

Defines on which axis, affine motion is imposed
on particles in the first half time-step

yes

1xlylz
1x1y0z
1x0y0z

affine conditions on all three axis
affine conditions only on x and y azis
affine conditions only on x axis

etc ...

1x1ylz
1x1ylz
1x1lylz
1x1ylz

# control of strain-
rates for quasi-static
conditions:

Defines the type of control to ensure quasi-static
conditions. Multiple conditions can be defined.
Imposed strain-rate is calculated from the condi-
tion and from ctrl_fact factor. Actual strain-rate

€ is bounded by ( €0 X ctrl_ fact) where €y

ctr[i}act’
is defined in the loading conditions.

yes

none
aoamean=

break=

epsilon=

ferror=

kin_energy=

vmax=

ctrl_fact=

Strain-rates strictly given by loading conditions
strain-rates are divided by ctrl_fact when a bond
of size - @ has broken amean 1S the mean bond
size. "

strain-rates are divided by ctrl_fact when o, >
(1. — break) x sigmag, where oy s the mazimum
stress on the bond (tensile or shear) and sigmag
is the strength of the bond (see materials). Con-
dition is released after bond breakage. This condi-
tion s best used with the kin_energy condition to
ensure that strain-rates are not too high after bond
fracture.

strain-rates are divided by ctrl_fact when any
strain is greater than epsilon.

A proportional controller is used to control strain

rates é 1 é = é X —LTT" _ The strain-rate
ferrorgctual

ean

multiplier is in the interval [#ﬁwt’ ctrl,fact]
A proportional controller is used to control strain
rates € : € = € X % The strain-rate
S 9Yactual
ctrl,lfact ’ Ctrl*faCt]
A proportional controller is used to control strain

rates € : € = € X —22% __ The strain-rate mul-
VMAT g ctual

multiplier is in the interval [

tiplier is in the interval m,ctrl,fact}

The multiplier or the dividing factor used for the
strain-rate controllers described above.

none

none

none

none

none

none

none

# numerical parameters:
safe_dt=

upscale(1)=

damping=

fixed_dt=
random_seed=
potential_contact=

aff_fact=

P_fact=, I_fact=,
D_fact=

numerical parameters

Safety factor which multiplies the standard time
step value calculated (typical value should be in
between 0.001 and 0.1)

If set to 1., dp3D computes the upscaling. If set to
zero, no upscaling is used. If # from 0 or 1, the
dp3D wupscaling is X by upscale(1).

Numerical damping, Typical value is 0.05.
User-imposed timestep in second.

Imposes a random seed (integer) for distri-
butions (see oriented wiscoplastic model or
strength_deviation of bond strength,).

Imposes the multiplying factor for particle radii to
list potential contacts. Should be larger than 1.
When using affine conditions, multiply the affine
displacement by aff_fact

When calling for a stress controlled test, multiply
the standard dp3D calculated P, I and D parame-
ters of the PID controller by P_fact, I fact, D_fact,
respectively

none yes
51073

0.05
dp3D computes the timestep
dp3D chooses the random
seed

dp3D computes the multiply-

ing factor
1.
1,1, 1.
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7 dp3D on linux

7.1 dp3D and parallel computation

Discrete element simulations can be CPU demanding and dp3D is no exception in that regard. The code has
been parallelized with a fine-grained method (at the loop level) with openMP directives. The scalability is far
from fully satisfactory as shown by Fig. 31. Depending on the architecture of the shared memory, you might
choose to use 2, 4, 6, 8, 12 or even 16 processes. Here four exemples are shown:

e 2x4 cores (typically machine richebourg, Intel 5560, 2009).

e 2x6 cores (typically machine charlemagne, Intel 5660, 2010), not hyperthreaded.
e cluster on nodes with 12 cores (typically ZEBULON cores, Intel 5660, 2012).

e cluster on nodes with 8 cores (typically DP3D cores, Intel Xeon, 2009).

Fig. 31 shows that depending on the available number of processes, the machine used and the number of
simulations to be run, an optimized number of processes can be found.

7.2 Some useful tips and commands

Since some simulations can be long, and one may not have properly set the interval between two coordinate
file writes or two outputs for the result files (see simulation termination conditions in 6), it is useful to be
able to force dp3D to write these files during a simulation. This is invoked by the commands:

dp3D -write_log writes into the result files (log tstress zave ...)

dp3D -write_coord  writes a coordinate file (and a _histc)

dp3D -clean_stop kills ’cleanly’ the simulation, writes a coordinate file and a last line in the result files

which must be executed in the directory where dp3D is running.
A more direct way to kill a dp3D job that is running with PID nnnn, is to invoke the command:
kill -s 2 nnnn
that will send a signal to dp3D to write a coord file before killing the job. kill signal works when using the

12
10 ) 2x6 cores
optimal (Intel 5660, 2010
(Intel 5660, 2012)
2 6
E S
. %I/“ \ \
2 |i, cluster, 8 cores 2x4 cores
w (Intel Xeon, 2009) (Intel 5560, 2009)

0 2 4 6 8 10 12 14 16

number of processes

Figure 31: Scalability of a typical calculation (with bonds) of dp3D for three types of architectures.
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cdp3D -gas command. When working on gsub environment on a cluster, the command becomes:
gsig -s 2 nnnn

The command: mydp3D tells in which directory and the PID of the current dp3D jobs of the user on the
machine.

The command: lastdp3D -nn tells the directory of the dp3D jobs that ran in the last nn hours. If nn is
not provided, the last 48 hours are looked for.

The command: dp3D -v gives the version of the dp3D executable which is running.

rasmol is an old but useful visualization tool. It is a 32 bit executable. To make it run on a 64 bit machine
you need to install the following packages:
sudo apt-get install gcc-multilib
sudo apt-get install libxrender1:i386 libxtst6:1386 1ibxi6:i386
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