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Abstract— Though object detection has made tremendous
strides, small face detection remains one of the key challenges
in face detection. A central issue of small face detection
is the appearance degradation caused by shallow resolution.
Therefore, aggregating information from context becomes a
natural choice. This paper discusses how to properly utilize
high-level contextual prior to enhance the capabilities of anchor-
based detectors for dense and degenerate face detection. We
mine the spatial contextual information on the holistic view
according to the density estimation and propose face co-
occurrence prior for inferred box harmonization. We also
propose score-size-specific non-maximum suppression to replace
the traditional non-maximum suppression at the end of anchor-
based detectors. According to the inferred face boxes’ quantity,
score and size, the proposed synthetical solution reduces false
positives and increases true positives. Our approach is plug and
play and model-independent, which could be integrated into the
existing anchor-based face detectors without extra learning. We
also collect a challenging face detection dataset - Crowd Face,
to provide adequate samples to prominent the bottleneck of
detecting crowded faces. We integrate our proposed methods
with state-of-the-art anchor-based face detectors on massively
benchmarked face datasets (WIDER FACE and Crowd Face).
When compared to the prior art on the WIDER FACE hard
set, our method increase an Average Precision of 0.1%-1.3%.
On Crowd Face, it increases an Average Precision of 1% -
6%. Dataset is available on: https://github.com/QxGeng/Crowd-
Face.

I. INTRODUCTION

Robust face detection in open world is an ultimate com-
ponent to handle various facial related problems. Due to the
promising development of deep Convolutional Neural Net-
works, face detection has made tremendous progress in re-
cent years [44], [43], [9]. Renewed detection paradigms [16],
[8], strong backbone [18], [24], [17] and large scale
dataset [35] jointly push forward the limit of face detection
to approach humans’ cognition that many detectors have
surpassed humans on visual detection and recognition com-
petitions. However, because flexible mechanisms and abun-
dant domain knowledge guide human’s cognition, human has
advantages on handing the challenges of low resolution [21].
In video surveillance, since the faces are usually far away
from the surveillance camera and have varying degrees of
occlusion problems, small face detection in crowded scenes
is a challenging problem with practical needs.
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Fig. 1: Architecture of the proposed post-processing frame-
work. Face co-occurrence prior increase true positives of the
inferred face boxes according to crowd density estimation.
S3NMS further increases true positive and reduces false
positive according to the inferred face boxes’ score and size.
Detector confidence is given by the colorbar on the right of
each image, i.e., blue boxes represent low confidence, and
yellow boxes represent high confidence.

Anchor-based face detectors have achieved satisfactory
performance on the benchmark WIDER FACE [35]. Re-
cently, many face detectors based on deep learning rely
on features extracted from deep Convolutional Neural Net-
work (CNN). They obtain low-level features of the objects
such as texture information, edge information from the low
layers of the network, and high-level features such as rich
semantic information from the high layers of the network.
However, for face detectors, thorny issues involved in de-
tecting degraded faces are caused by small-size, defocus blur
and occlusion in surveillance videos [38]. The central issue
of small and occluded face detection in crowded scenes is the
appearance degradation caused by shallow resolution. These
blur and low-resolution faces only have dozens or even a few

https://github.com/QxGeng/Crowd-Face
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pixels, so they contain limited feature information. When
using the standard spatial pooling process [38] in a CNN,
appearance features would be further degraded. CNN can
only provide very few low-level features at the low layers,
and there are almost no high-level features of these faces
at the high layers. This problem is essentially ill-posed for
a low-resolution object. Therefore, aggregating information
from context becomes a natural choice.

In order to solve this problem, some works [8], [38], [42],
[13] have introduced contextual information to make low-
resolution faces contain more feature information. In anchor-
based face detection methods, the contextual information
of faces is usually employed in the low-level context via
a different receptive field of feature maps. Obviously, rich
low-level features are helpful to detect small objects, [4],
[27] reviewed contextual information and analyzed its role
for challenging object detection in empirical evaluation.
[2] shows that humans detecting objects that violate their
standard context take longer and make more errors. For face
detection, [38] focus on low-level context to detect small
faces and [8] demonstrates that both contextual information
and scale-variant representations are crucial.

On the other hand, we argue that high-level contextual
information is also valuable for small face detection, espe-
cially for the degenerate faces. Therefore, we explore the
spatial contextual information and the relationship of objects
as high-level contextual information. Different from low-
level contextual information which adjusts the local receptive
fields, our work extends the contextual information to the
whole image rather than just surrounding objects. In our
previous researches, we proposed a series of background
modeling methods based on high-level contextual informa-
tion to obtain stable context information between pixels for
video foreground segmentation [11], [14], [15], [33], [32],
[40], [34], [22], [12]. Inspired by this, in this paper, we try
to introduce the high-level contextual information to hard
face detection to improve the utilization efficiency of scene
spatial information.

In this paper, we propose a universal strategy with
density-map-based face co-occurrence prior and score-size-
specific non-maximum suppression, independent of training
paradigms to directly replace the standard non-maximum
suppression (NMS) post-processing formula in anchor-based
detectors. Specifically, we mine the high-level spatial con-
textual information according to crowd density estimation
to detect the occurrence of degenerate faces, which we call
co-occurrence prior. Face co-occurrence prior harmonizes
the outputs of a detector. It enhances the sensitivity and
specificity of the detector via increasing true positives. We
also propose score-size-specific non-maximum suppression
for better removing redundant boxes in crowd scenes. It
reduces false positives and increases true positives according
to the inferred face boxes’ score and size. Fig. 1 illustrates
the proposed detection framework. We can observe that,
after integrate with our method, the detector can find more
true faces. We also collect a challenging face detection
dataset with tiny faces (i.e., Crowd Face) to provide adequate

samples to further prominent the bottleneck of detecting
crowded faces.

II. RELATED WORK

A. Face Detection

Face detection has derived benefit from the development
of generic object detection [24], [16], [17], [23]. Most recent
state-of-the-art face detectors are built upon the anchor-
based detection paradigm. S3FD [37] indicates that multi-
scale features perform better for tiny faces and it predicts
boxes on multiple layers of feature hierarchy. [41] adopts
a new anchor matching strategy to improve the recall rate
of tiny faces. [1] introduces the super-resolution based on
GAN to face detection to make up the feature of low-
resolution faces. PyramidBox [28] fully exploits the context
information to provide extra supervision for small faces.
DSFD [9] constructs pseudo two-stage structure based on
a single-shot framework to make the face detector more
effective and accurate. ProgressFace [43] adopts a novel
scale-aware progressive training mechanism to address large
scale variations for face detection. TinaFace [44] indicates
that methods presented in generic object detection can be
used for handling tiny face detection and achieves state-of-
the-art face detection performance. In this paper, we continue
to tap the potential of anchor-based face detectors, expecting
to enhance these methods’ performance in crowd scenarios.

B. Context in Face Detection

The ideas of using context in object detection have been
studied in many works [21], [31], [4], [27], [38]. For specific
face detection algorithms, Hybrid Resolution Model (HR) [8]
is a simple yet effective framework for finding small faces
and it specifically shows that massively-large receptive fields
can be effectively encoded as a foveal descriptor that captures
both coarse context and high-resolution image features. Sim-
ilarly, [42] pools ROI features around faces and bodies for
detection, which significantly improves overall performance.
The context information of faces is usually employed in the
low-level context by acquiring different feature maps’ recep-
tive fields. We expect to fit into a proper high-level context
of a scene to enhance the anchor-based face detectors.

C. Non-Maximum Suppression

The goal of Non-Maximum Suppression (NMS) [25] has
a positive impact on performance measures that penalize
false detections, which has been an integral part of many
object detection algorithms in computer vision for almost
50 years [30], [7], [20], [26]. Soft-NMS [3] argues that the
conventional NMS is too greedy because only the bounding-
box with the maximum score is selected. Soft-NMS employs
an approach that suppresses the bounding box by reducing
its score instead of just removing it. More complex learning
based post-processing methods rely on the model-related
learning process. Hosang [6] proposed a learning-based NMS
to improve localization and occlusion handling. Tychsen-
Smith [29] argued that many detection methods are designed
to identify only a sufficiently accurate bounding box, rather
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than the best available one, and proposed fitness NMS. We
tend to develop a plug and play and model-independent
paradigms to better remove the redundant boxes, which could
be integrated into the existing anchor-based face detectors
without extra learning.

D. Density Map Based Crowd Counting

A density map is widely used in crowd analysis since it can
exhibit the headcount, locations and spatial distribution. [39]
proposes geometry adaptive and fixed kernels with Gaussian
convolution to generate a density map. [10] introduces a
dilated convolutional neural network to improve the density
map’s quality. [19] introduces an end-to-end trainable deep
architecture that combines features obtained using multiple
receptive field sizes and learns the importance of features
at each image location, which adaptively encodes the scale
of the contextual information required to predict crowd
density accurately. In this paper, crowd density estimation is
employed to derive face co-occurrence prior for harmonizing
a face detector’s outputs.

III. THE PROPOSED APPROACHES

A. Face Co-occurrence Prior Based on Density map

1) Crowd density map: Given a set of N training images
{Ii}(1≤i≤N) with corresponding ground-truth density maps
Dgt
i , the goal of density map estimation is to learn a non-

linear mapping F that maps an input image Ii to an estimated
density map Dest

i (Ii) = F(Ii), that is close to the ground
truth Dgt

i in term of L2 norm. To represent the density maps,
to each image Ii, we associate a set of 2D points P esti =
{Pi,j}1≤j≤Ci

that denote the position of each human head
in the scene, where Ci is the headcount in image Ii. The
corresponding estimated density map Dest

i is obtained by
a total probability formula via convolving an image with a
Gaussian kernel N est

(
p | µ, σ2

)
. We have ∀p ∈ Ii,

Dest
i (p | Ii) = F(p | Ii) = F [

Ci∑
j=1

N gt
(
p | µ = Pi,j , σ

2
)
],

(1)
where µ and σ represent the mean and standard deviation of
the normal distribution.

For each head point Pi,j in a given image, denoting the
distances to its K nearest neighbors as {di,jk }(1≤k≤K). The
average distance is therefore

di,j =
1

K

K∑
k=1

di,jk . (2)

A crowd density map cannot directly show the size of
the head. However, in a high-density crowd scene, since the
individuals are densely distributed, the distance can roughly
represent the head size. The head size is approximately equal
to the distance between two neighboring individuals’ centers
in crowded scenes. The density estimate network we used is
Context-Aware Network (CAN) [19]. It adaptively encodes
the scale of context information by combining the features
obtained from multiple receptive fields. Therefore, it can

Algorithm 1: Face co-occurrence prior for inferred
box harmonization

Data: B = {bx,y}, S = {sx,y}, A = {Ani }, Dest
i , γ,

st,
B is the list of initial inferred boxes, S contains
corresponding inferred scores, Ani is the list of
different density areas, Dest

i is the estimated density
map.
for bx,y in B do

BSx,y ← size(bx,y)
for B in Ani do

ani ← size(Ani ); Ẑ
n
i ←

∑
p∈An

i
Dest(p|Ani );

ρni = Ẑni /a
n
i

if sx,y > st then
m← m+ 1; BSnsum ← BSnsum +BSi

BSnavg ← BSnsum/m

for bx,y in B do
if bx,y in Ani then

if (1− γ)BSnavg ≤ BSx,y ≤ (1 + γ)BSnavg
then
sx,y = σ[Dest

i(x,y)(p | bx,y)ρ
n
i ]sx,y + sx,y

accurately estimate the crowd density map, especially when
perspective effects are strong.

2) Co-occurrence of homogeneous faces: In this part, we
focus on using the face co-occurrence prior based on density
map to optimize the detectors in crowd scenarios. In a crowd
scene, since the face size approaches the limit of imaging
resolution, the face appearance is scarce and inadequate.
So, many faces are assigned low confidence scores by the
detector and then filtered by the score threshold, resulting
in failure to detect them. Therefore, we utilize the co-
occurrence of faces to make more sensitive detection when
the face is ambiguously or marginally visible in a crowd
scene. Face co-occurrence here refers to the co-occurrence
of homogeneous faces. Specifically, as mentioned earlier, the
head size in a high-density crowd scene is approximately
equal to the distance between two neighboring heads. There-
fore, we can observe that in the local region around each
head, the size of the face is approximately the same size.
So, if the scores of many faces dominate in a local region,
it is reasonable that some inferred boxes which are similar
to the sizes of these faces have a high probability of being
faces. According to the co-occurrence prior, we increase
the scores of real faces with low scores after a detector’s
inferring phase.

Hence, we need to design a mechanism to reconcile and
intervene face detection in high-density regions (small face
regions), and give up interventions for low-density regions.
As mentioned earlier, the density map presents how heads
distribute in terms of the pixel intensity of the map. So, we
propose a co-occurrence face strategy based on density map,
as illustrated in Algorithm 1. We send the image into the



density estimate network to get the density map Dest
i first.

We define a dense grid on image Ii, and produce blocks
A = {Ani } with 50% overlapping to minimize border effects,
where n is the number of blocks. The number of people in
different blocks is estimated by integrating over the values
of the predicted density map as follows,

Ẑni =
∑
p∈An

i

Dest
i (p | Ani ). (3)

We calculate the density of each corresponding block and
record it as ρni .

ρni = Ẑni /a
n
i , (4)

where ani is the area of region Ani . There are two constraints
to filter the inferred box for reconciliation. (1) In the corre-
sponding high-density block, if the score of an inferred box
sx,y exceeds the score threshold st, the inferred box could be
a true human face. Then, the average size of all the high score
faces is calculated and recorded as BSnavg , which tells us the
size of faces that appear in the region. (2) These boxes with
the size between (1−γ, 1+γ)BSnavg are further filtered out
as the inferred box for reconciliation and the inferred boxes
whose scores are ultimately lower than the original threshold
will be deleted. The reconciliation formula is as follows,

sx,y = σ[Dest
i(x,y)(p | bx,y)ρ

n
i ]sx,y + sx,y, (5)

where σ is the Sigmoid function, bx,y is the inferred box and
sx,y is the corresponding confidence score. In this way, we
increase the scores of real faces which have low confidence
scores.

B. Score-size-specific NMS

NMS [25] is utilized as standard post-processing for object
detection to partition bounding-boxes into non-overlapping
subsets. The final detections are obtained by averaging the
coordinates of the detection boxes in set B. If bu and bv
are two bounding boxes, IoU refers to the standard Jaccard
similarity (intersection over union overlap, IoU) used in
NMS, which can be expressed as follows,

IoU(bu, bv) =
bu ∩ bv
bu ∪ bv

. (6)

The conventional NMS preserves the detection box with
the maximum score and discards all the other inferred
boxes overlapped with an IoU threshold. Specifically, if
IoU(bu, bv) > Nt, (0.3 is obtained here as most detectors
using this value), then the box with the lower score is
deleted directly. NMS tends to guarantee that the same face
corresponds to only one bounding box. This principle is also
useful for the multi-scale pyramid scheme, as one face may
be detected in different layers of the pyramid. However, this
way will cause missed detection, and the face covered by
part of another face cannot be detected.

To deal with this problem, Soft-NMS [3] provides a
chance to preserve the overlapped objects using a function of
penalizing the inferred scores. It decays the detection scores
of all other objects with a continuous penalty function which

Algorithm 2: Score-size-specific NMS
Data: B = {bx,y}, S = {sx,y}, Nt, St, Bt
B is the list of initial inferred boxes, S contains
corresponding inferred scores, Nt is the IoU
threshold, St is the score threshold, Bt is the ACB
threshold.
for bx,y in B do

bm ← argmax(S)
if IoU(bm, bx,y) > Nt or ACB(bm, bx,y) > Bt
then

if sx,y > St then
sx,y = sx,ye

−IoU(bu,bv)
2/δ

else
B ← B − bx,y; S ← S − sx,y

has no penalty when there is no overlap and a large penalty
at a high overlap. Soft-NMS updates the pruning step with
a Gaussian penalty function as follows,

sx,y = sx,ye
−IoU(bu,bv)

2/δ. (7)

This update rule is applied in each iteration, and scores of all
the remaining detection boxes are updated. It suppresses the
inferred box by reducing its score instead of just removing
it. Finally, if the score of the bounding box is lower than the
threshold of score, then this bounding box will be deleted.
However, in our early experiments, we observed that Soft-
NMS can cause the increase of false positives because some
redundant boxes cannot be deleted due to their final penalized
scores still higher than the threshold. Therefore, we need to
make careful consideration of scores of the bounding-boxes
to better remove redundant boxes.

These two methods also ignore the role of boxes’ size in
the inferred boxes aggregation. Considering the most extreme
situation that the areas of the two boxes are quite different,
the bu is very big, and bv is very small, from the definition of
formula (6), the intersection is much smaller than the union,
and the IoU(bu, bv) cannot reach the threshold of deleting
redundant boxes in NMS and Soft-NMS. In the inferred box
aggregation process, we need to comprehensively consider
the score and size of bounding-boxes to design a more
reasonable method to implement removal and retention op-
erations. Based on IoU, we propose ACB (Area Consistency
of boxes), which is defined as follows,

ACB(bu, bv) =
bu ∩ bv

min(bu, bv)
. (8)

We adopt a constraint that if ACB(bu, bv) higher than
Bt (the value we choose is 0.9), the box with a lower
score will be considered as a redundant box. Algorithm 2
shows our proposed algorithm. If IoU(bm, bx,y) > Nt or
ACB(bm, bx,y) > Bt, where bm is the box with the higher
score in B, it decays the scores using a continuous function
sx,y = sx,ye

−IoU(bu,bv)
2/δ . It uses NMS when the bounding

box’s score is low and uses Soft-NMS when the score is
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high. A high score box is more likely to be an occluded
face, and Soft-NMS is used to re-identify such a case. For
a low score box, NMS avoids this non-face box to be false
positive. It gives a chance to detect faces covered by other
faces without causing false positives as Soft-NMS does.

Score-size-specific NMS is a compromise solution of
NMS and Soft-NMS, which provides a fine-grained consider-
ation of the score and the size to avoid arbitrary discarding or
preservation of the bounding box, which is essential in the
multi-scale face detection task. More detailed performance
evaluation will be discussed in the experiment section.

IV. EXPERIMENTAL EVALUATION

A. Dataset Preparation and Experimental Setting
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Fig. 2: Comparison of benchmark dataset WIDER FACE and
our Crowd Face dataset. Two quantities are measured for
each dataset: average size of objects (blue plots)and average
number of objects per image (orange plots).

WIDER FACE In face detection literature, a widely used
benchmark is WIDER FACE [35]. WIDER FACE contains
32203 images with 393793 faces, 40% of which are used for
training, 10% for validation, and 50% for testing. According
to the detection rate, the validation data are divided into three
classes: ”easy”, ”medium”, and ”hard”, gradually increases
various difficult situations in various face detection scenes in
open environments.
Crowd Face Considering the proposed solution in this paper
is mainly for low-resolution and obscured face detection in
crowd scenes, we have prepared a harder dataset - Crowd
Face. There are 34 images with 10731 annotated faces, and
the maximum number of faces on an image is 1001. As
illustrated in Fig. 2, each image in Crowd Face has smaller
and more faces than WIDER FACE. As shown in Fig. 5,
images from Crowd Face dataset have many low-resolution,
small, and obscured faces. It is a challenging dataset with
difficult samples, specifically for high-density face detection.
Testing face detection algorithms on Crowd Face is helpful
to explore the shortages of face detectors.
Experimental Setting In our experiments, the models we
used to verify our proposed methods are , Hybrid Resolution
Model (HR) [8], Single Shot Scale-invariant Face detec-
tor (S3FD) [37], Light and Fast Face Detector (LFFD) [5],
Context-anchor Hybrid Resolution Model (CAHR) [32],

(a) (b)

(c) (d)

(e) (f)

Fig. 3: P-R curve of face co-occurrence based on density
maps, compared with the original models (HR, CAHR,
EXTD, S3FD, PyramidBox, DSFD).

PyramidBox [28], Dual Shot Face Detector (DSFD) [9],
Extremely Tiny Face Detector (EXTD) and TinaFace [44].
All the models we used in the experiments are trained with
the WIDER FACE training set and tested on the WIDER
FACE validation set and Crowd Face. In our experiments, we
compare many different settings of parameters, and finally set
st = 0.5, γ = 0.1 for face co-occurrence prior, Nt = 0.3,
St = 0.5, Bt = 0.9 for score-size-specific NMS. Our
experiments are run on GTX1080 with 16 GB RAM and
12-core i7 CPU.

B. Experiments for Face Co-occurrence Prior Based on
Density map

In this part, in order to verify the performance of our
proposed face co-occurrence prior based on density map in
crowd scenarios, we test it on Crowd Face dataset. We intro-
duce density information on the basis of the state-of-the-art
anchor-based detectors, and then combine with our proposed
algorithm. As is illustrated in Fig. 3, Precision-Recall curves
show that our method has higher Average Precision (AP)
performance than original detectors around 0.3-5.7%. All
the state-of-the-art anchor-based detectors enhance the per-
formance after integrating our method compared with their
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Fig. 4: Comparison of true and false positives for original
HR, CAHR, PyramidBox and these models with our pro-
posed score-size-specific NMS.

original detectors, indicates the capability of the proposed
approach in challenging situations.

C. Experiments for Score-size-specific NMS

TABLE I: Average Precision (AP) performance of NMS,
Soft-NMS and our proposed S3NMS for HR, CAHR and
PyramidBox on WIDER FACE hard and Crowd Face sets.

Data/Method NMS Soft-NMS S3NMS Tested model

WIDER FACE hard
0.816 0.820 0.827 HR
0.832 0.835 0.843 CAHR
0.888 0.889 0.890 PyramidBox

Crowd Face
0.665 0.683 0.707 HR
0.691 0.707 0.720 CAHR
0.663 0.671 0.681 PyramidBox

In this part, we test our proposed score-size-specific NMS
on the WIDER FACE hard set and Crowd Face set. Our
proposed S3NMS is a post-processing method without any
additional training. We compared our approach with other
post-processing methods NMS and Soft-NMS, which also
do not need to re-train the model. We respectively integrate
NMS, soft-NMS, and our proposed S3NMS into anchor-
based detectors including HR [8], CAHR [32] and Pyra-
midBox [28]. As shown in Table I, S3NMS has the highest

Average Precision (AP) compared with NMS and soft-NMS
on WIDER FACE hard set and Crowd Face set. It illustrates
that we need a fine-grained consideration of the score and the
size to remove redundant boxes. Fig. 4 shows the comparison
of true and false positives for baseline models and these
models integrated with our proposed S3NMS on Crowd Face.
It illustrates that our method can reduce false positives and
increase true positives in crowd scenes.

D. Ablation Study on Crowd Face

TABLE II: Ablation study of our proposed co-occurrence
prior based on density map and score-size-specific NMS
integrated with HR, PyramidBox, EXTD, CAHR, DSFD and
TinaFace on Crowd Face.

Method NMS S3NMS Co-occurrence. AP (%)
X 0.665

HR X 0.707
[8] X X 0.697

X X 0.710
X 0.663

PyramidBox X 0.681
[28] X X 0.720

X X 0.725
X 0.659

EXTD X 0.674
[36] X X 0.682

X X 0.688
X 0.691

CAHR X 0.720
[32] X X 0.702

X X 0.728
X 0.772

DSFD X 0.780
[9] X X 0.776

X X 0.781
X 0.771

TinaFace X 0.776
[44] X X 0.781

X X 0.784

As shown in Table II, we perform ablation experiments
on Crowd Face. We separately integrate NMS, score-size-
specific NMS, and co-occurrence prior to HR, PyramidBox,
EXTD, CAHR, DSFD and TinaFace on the Crowd Face set.
We first compare the performance of NMS and our proposed
S3NMS, it shows that our proposed S3NMS has higher
AP performance. Then, we respectively integrate NMS and
S3NMS with our co-occurrence prior into the detectors. The
result shows our proposed co-occurrence prior can further
improve the performance, and S3NMS combined with co-
occurrence prior has the best AP performance. Our results
increase an AP of 1% - 6%. Fig. 5 shows some of the
visual comparisons between our proposed method within
HR (cyan ellipses) and original HR (magenta rectangles) in
crowd scenes. The proposed method achieves notably better
precision as it can detect more true faces. It illustrates that the
proposed method can enhance the detectors to find more true
faces in crowd scenes when there are many low-resolution
small faces.
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Fig. 5: Comparison of the proposed approach integrated into HR detector (cyan ellipses) and the original HR (magenta
rectangles) in crowd scenes.

TABLE III: Performance of integrating co-occurrence prior and score-size-specific NMS to the trained detectors on WIDER
FACE.

Sub-set in WIDER FACE easy medium hard
Method Orignal Proposed Orignal Proposed Orignal Proposed

LFFD [5] 0.873 0.876 0.861 0.865 0.750 0.758
HR [8] 0.925 0.925 0.911 0.912 0.816 0.829

CAHR [32] 0.928 0.928 0.912 0.913 0.832 0.844
EXTD [36] 0.921 0.923 0.911 0.912 0.846 0.853
S3FD [37] 0.945 0.945 0.934 0.936 0.853 0.855

PyramidBox [28] 0.960 0.960 0.948 0.950 0.888 0.890
DSFD [9] 0.966 0.966 0.957 0.957 0.905 0.906

TinaFace [44] 0.963 0.964 0.956 0.958 0.930 0.932

E. Overall Performance on WIDER FACE

In this part, we test our proposed co-occurrence prior and
score-size-specific NMS on the WIDER FACE dataset. As
shown in Table III, we integrate our propose method to
several anchor-based detectors including the state-of-the-art
ones, and compare their AP performance with the original
detectors on the WIDER FACE dataset. Table III shows that
the proposed approach integrating within all face detectors
have better performance than the original methods in WIDER
FACE-hard set, indicating the capability of the proposed ap-
proach in challenging situations. Especially for the detectors
with poor inferring performance, the improvements of the
detectors integrated with the proposed scheme are obvious.
As WIDER FACE-easy set contains almost no high-density
scenes, our co-occurrence prior based on density information
cannot find more faces, but our method does not deteriorate

the original performance in low-density scenarios.

V. CONCLUSION

In this paper, we propose a general approach with density-
map-based face co-occurrence prior by mining high-level
spatial contextual information, and score-size-specific non-
maximum suppression (S3NMS) according to the inferred
face boxes’ score and size. Co-occurrence prior can detect
more true faces and makes sense to detect low-resolution
faces in the crowded challenge. S3NMS avoids arbitrary
discarding or preservation of the bounding box and reduces
false positives and increases true positives. The proposed
method does not require any extra training and is simple
to implement. In the future, we will further explore richer
context information to solve low-resolution face detection in
crowded scenes.
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