Supplementary Information

Polycyclic arene-fused selenophenes via site selective selenocyclization of arylethynyl substituted polycyclic arenes

Himadri S. Karmakar, Chandan Kumar, Neha Rani Kumar, Sarasija Das, Abhijeet R. Agrawal, Nani Gopal Ghosh and Sanjio S. Zade*
Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India.
E-mail: sanjiozade@iiserkol.ac.in

Table of Contents

Sl. No Contents Page No
1 Effect of additional water on product formation S2-S3
2 Recycling of Selenium powder S3-S4
3 X-Ray Crystallographic Data S4-S9
4 Optical Study S9-S10
5 Theoretical Study S10-S11
6 NMR data S15-S51
7 References S52

Effect of additional water on product formation.

2-(4-(tert-butyl)phenyl)naphtho[1,2-b]selenophene (2c) and (E)-2-(4-(tert-butyl)styryl)naphthalene (2ca).

Four sets of reactions were put in four 15 ml volume capacity sealed tubes (pressure tube) containing $\mathbf{1 c}(95 \mathrm{mg}, 0.34 \mathrm{mmol})$ and selenium powder ($221 \mathrm{mg}, 2.66 \mathrm{mmol}$) in dry NMP (1.2 ml) in each with different percentage of additional water and simultaneously refluxed at 205 ${ }^{\circ} \mathrm{C}$ for 78 h using a single oil bath.

Set 1. -1.2 ml NMP $+1 \%$ distilled water
Set 2. -1.2 ml NMP $+2 \%$ distilled water
Set 3. -1.2 ml NMP $+3 \%$ distilled water
Set 4. -2 ml NMP $+15 \%$ distilled water
It was observed that with increase in water percentage in the reaction mixture fraction of E alkene is increased with respect to the fused selenophene but total yield of the product was decreased gradually. But adding 2 ml of NMP with $15 \%(\mathrm{v} / \mathrm{v})$ water to the reaction mixture no product was formed, rather it gave the starting material back (Figure S44).

2-(4-(tert-butyl)phenyl)phenanthro[9,10-b]selenophene (2a) and (E)-9-(4-(tert-butyl)styryl)phenanthrene (2aa)

Reaction between 1a ($100 \mathrm{mg}, 0.30 \mathrm{mmol}$) and selenium powder ($190 \mathrm{mg}, 2.4 \mathrm{mmol}$) was carried out in dry NMP (2 ml) in a sealed tube in presence of additional 2% of water (2.22 Tmmol). The trans-alkene 2aa corresponding to 1a was obtained in major quantity (87\%) in mixture with 2a (Figure S45). The mixture of 2a and 2aa is not separable using simple column chromatography. After fractional crystallization of 50 mg of product mixture from DCM/Hexane ($1: 20$) solvent mixture (20 ml) at room temperature white needle shaped crystals of 2aa (30 mg) was obtained after $24 \mathrm{~h} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{ppm}\right) \delta=8.75(\mathrm{~d}, J=7.8$, $1 \mathrm{H}), 8.67(\mathrm{~d}, J=7.9,1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.8,1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.3,1 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $15.9,1 \mathrm{H}), 7.72-7.56(\mathrm{~m}, 6 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4,2 \mathrm{H}), 7.26\left(\mathrm{~s}, \mathrm{CDCl}_{3}\right) 7.22(\mathrm{~d}, J=15.9,1 \mathrm{H}), 1.55$ (s, $\mathrm{H}_{2} \mathrm{O}$), $1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=151.2,135.0,134.4,132.1$, 132.1, $131.0,130.6,130.3,128.8,128.3,127.5,127.0,126.8,126.7,126.2,125.9,125.8,124.9,124.6$,
123.7, 123.3, 122.7, 34.9, 31.5. HRMS (ESI-TOF) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{25}$ 337.1950, found 337.1949 .

Recycling of Selenium powder.

The selenium powder was used during the formation of fused selenophene is immiscible with NMP and can be reused after purification. Also, no significant change in powder XRD data of selenium powder was found after the reaction from its initial state (Figure S1). ${ }^{1}$ It signifies that there is no chemical change that occurred during the reaction in selenium powder. Only the crystallinity of selenium powder was improved during reaction, which was indicated by the sharpening of peaks of respective positions (Figure S1).

Figure S1. PXRD data of selenium powder (i) initially (ii) after first cycle and (iii) after Third cycle

Experimental details

First Cycle

To verify the reusability of selenium powder, $\mathbf{1 a}(112 \mathrm{mg}, 0.334 \mathrm{mmol})$ and $\mathrm{Se}(210 \mathrm{mg} ; 2.67$ $m \mathrm{~mol}$.) was taken in a 15 ml Schlenk tube containing a magnetic stirrer bar. The system was degassed and refilled with nitrogen, and dry NMP (1.2 ml) was added. The temperature of the system was slowly raised to $205^{\circ} \mathrm{C}$ and kept constant for a further 48 h . After cooling to room temperature $\operatorname{DCM}(10 \mathrm{ml})$ was added to dilute the mixture and collected using a glass syringe after allowing to settled remaining selenium powder for 15 min . The process was repeated 2-3 times until the solution becomes clear, and the sealed tube containing unreacted selenium powder was dried in an oven. The liquid part was treated with $\mathrm{NH}_{4} \mathrm{Cl}$ and washed with 2×100 ml of water to remove NMP. The product mixture was collected in DCM and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ to concentrated under reduced pressure. Residual NMP was removed from the product mixture by performing flash column chromatography on silica gel (100-200) packed column
using Hexane/DCM solvent mixture (50:1) to obtain 118 mg crude solid. It was observed from ${ }^{1}$ H NMR analysis (Figure S47(a)) that 63% of the starting material was converted to product 2a, and the remaining 37% starting material remain as such.

Second Cycle

Unreacted selenium powder obtained after the first cycle was weighed ($183 \mathrm{mg}, 2.32 \mathrm{mmol}$) and reused for the second cycle. It was reacted with $\mathbf{1 a}(97 \mathrm{mg}, 0.290 \mathrm{mmol})$ in the presence of NMP (1 ml) following the same procedure employed in the first cycle by maintaining exactly the same substrate to selenium ratio (1:8). After workup total of 96 mg of crude solid was obtained containing the majority of $\mathbf{2 a}(59 \%)$ and the rest is $\mathbf{1 a}(41 \%)$ as observed in their ${ }^{1} \mathrm{H}$ NMR data (Figure S47(b)).

Third Cycle

After the second cycle remaining selenium powder ($160 \mathrm{mg}, 2.02 \mathrm{mmol}$) was reacted with 1a ($84 \mathrm{mg}, 0.253 \mathrm{mmol}$) in the presence of NMP (1 ml), yielding 78 mg of crude solid. This time corresponding E-alkene 2aa (20%) was obtained along with fused selenophene 2a (40%) and unreacted starting material 1a (40\%) (Figure S47(c)).

Table S1 Recycling of selenium powder

Cycles	Substrate (1a) mg (mmol)	selenium mg (mmol)	NMP	Isolated Mixture after Reaction*		
	Substrate (1a) $\%$	Selenophene (2a) $) \%$	Alkene $(\mathbf{2 a a}) \%$			
1	$112(0.334)$	$210(2.67)$	1.2 ml	63	37	-
2	$97(0.290)$	$183(2.32)$	1 ml	59	41	-
3	$84(0.253)$	$160(2.02)$	1 ml	40	40	20

* percentage yield determined using NMR spectra

Figure S2. Yield of product formation at different cycles.

Single Crystal X-ray Diffraction Study.

All the crystals were obtained by the slow evaporation method from the mixture of solvents at room temperature. After the formation of good quality crystals, they are generally kept under ethanol as an anti-solvent. For diffraction, a suitable crystal was chosen from a glass slide covered with mineral oil. The crystals were diffracted on Super Nova, Dual, Cu/Mo at zero,

Eos diffractometer. The crystals were solved using Olex $2,{ }^{2}$ the structure was solved with the ShelXT ${ }^{3}$ structure solution program and refined with the ShelXL ${ }^{4}$ refinement package using Least Squares minimization. Details of crystal data were listed in Table S1.

Table S2. Crystal data and structure refinement

Identification code	2 a	2 c	2 ea	2 g
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{Se}$	C22H20Se	C24H16	$\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{Se}$
Formula weight	413.40	363.34	304.37	407.35
Temperature/K	100.00	100.00(10)	100	100.00
Crystal system	monoclinic	monoclinic	monoclinic	orthorhombic
Space group	I_{2}	P2 ${ }_{1}$	$\mathrm{P} 2_{1}$	$\mathrm{P}_{\text {bca }}$
a/Ă	19.253(2)	7.9313(3)	12.7769(9)	9.58910(10)
b/Ă	6.0322(4)	11.3299(4)	4.0491(2)	14.4311(2)
c/Ă	18.774(2)	18.9666(7)	15.6492(10)	25.6817(3)
$\alpha /{ }^{\circ}$	90.00	90.00	90.00	90.00
$\beta /{ }^{\circ}$	118.999(15)	91.108(3)	107.939(7)	90.00
γ^{\prime}	90.00	90.00	90.00	90.00
Volume/Å ${ }^{3}$	1907.0(4)	1704.04(11)	770.25(8)	3553.87(7)
Z	4	4	2	8
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.440	1.416	1.312	1.523
μ / mm^{-1}	2.696	2.201	0.074	2.892
$\mathrm{F}(000)$	848.0	744.0	320.0	1648.0
Crystal size/mm ${ }^{3}$	$\begin{gathered} 0.08 \times 0.06 \times \\ 0.04 \end{gathered}$	$\begin{gathered} 0.5 \times 0.2 \times \\ 0.1 \end{gathered}$	$\begin{gathered} 0.09 \times 0.03 \times \\ 0.01 \end{gathered}$	$\begin{gathered} 0.05 \times 0.05 \times \\ 0.01 \end{gathered}$
Radiation	$\begin{gathered} \operatorname{CuK\alpha }(\lambda= \\ 1.54184) \end{gathered}$	$\begin{gathered} \operatorname{MoK\alpha } \operatorname{Ko}(\lambda= \\ 0.71073) \end{gathered}$	$\begin{gathered} \operatorname{MoK} \operatorname{Kog}(\lambda= \\ 0.71073) \end{gathered}$	$\begin{gathered} \operatorname{CuK\alpha }(\lambda= \\ 1.54184) \end{gathered}$
2Θ range for data collection/ ${ }^{\circ}$	9.16 to 131.1	4.18 to 50.04	3.36 to 49.98	6.88 to 132.34
Index ranges	$\begin{gathered} -22 \leq \mathrm{h} \leq 22, \\ 7 \leq \mathrm{k} \leq 5,-21 \\ \leq 1 \leq 22 \end{gathered}$	$\begin{aligned} & -9 \leq \mathrm{h} \leq 9,-7 \\ & \leq \mathrm{k} \leq 13,-22 \\ & \leq 1 \leq 22 \end{aligned}$	$\begin{gathered} -15 \leq \mathrm{h} \leq 15,- \\ 4 \leq \mathrm{k} \leq 4,-18 \\ \leq 1 \leq 18 \end{gathered}$	$\begin{array}{r} -11 \leq \mathrm{h} \leq 11, \\ 17 \leq \mathrm{k} \leq 16, \\ 30 \leq 1 \leq 30 \end{array}$
Reflections collected	6302	7623	5353	32979
Independent reflections	$\begin{gathered} 2571\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0525, \\ \mathrm{R}_{\text {sigma }}= \\ 0.0537] \end{gathered}$	$\begin{gathered} 4300[\text { Rint }= \\ 0.0308, \\ \text { Rsigma }= \\ 0.0514] \end{gathered}$	$\begin{gathered} 2623[\text { Rint }= \\ 0.0212, \\ \text { Rsigma }= \\ 0.0300] \end{gathered}$	$\begin{gathered} 3102\left[\mathrm{R}_{\text {int }}=\right. \\ 0.0510 \\ \mathrm{R}_{\text {sigma }}= \\ 0.0216] \end{gathered}$
Data/restraints/parameters	2571/1/248	4300/1/421	2623/1/217	3102/0/244
Goodness-of-fit on F^{2}	1.048	1.069	1.293	1.068
Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\begin{gathered} \mathrm{R}_{1}=0.0603, \\ \mathrm{wR}_{2}=0.1521 \end{gathered}$	$\begin{aligned} \mathrm{R} 1 & =0.0379 \\ \mathrm{wR} 2 & =0.0892 \end{aligned}$	$\begin{aligned} \mathrm{R} 1 & =0.0519 \\ \mathrm{wR} 2 & =0.1594 \end{aligned}$	$\begin{gathered} \mathrm{R}_{1}=0.0384, \\ \mathrm{wR}_{2}=0.0955 \end{gathered}$
Final R indexes [all data]	$\begin{gathered} \mathrm{R}_{1}=0.0618 \\ \mathrm{wR}_{2}=0.1542 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0430, \\ \mathrm{wR} 2=0.0920 \end{gathered}$	$\begin{gathered} \mathrm{R} 1=0.0603, \\ \mathrm{wR} 2=0.1643 \end{gathered}$	$\begin{aligned} \mathrm{R}_{1} & =0.0413, \\ \mathrm{wR}_{2} & =0.0977 \end{aligned}$
$\underset{\AA^{-3}}{\text { Largest diff. peak/hole / e }}$	1.73/-1.21	0.74/-0.40	0.14/-0.22	1.62/-0.51
Flack parameter	-0.03(4)	0.044(12)	3(10)	
Identification code	2041369	2041373	2042639	2042641

Identification code	2ha	2 i	2kb
Empirical formula	C28H18	C17H16Se	$\mathrm{C}_{34} \mathrm{H}_{32}$
Formula weight	354.42	299.26	440.60
Temperature/K	293(2)	100.00(10)	293(2)
Crystal system	monoclinic	triclinic	triclinic
Space group	C_{c}	P-1	P-1
a/Ā	32.303(5)	6.1989(5)	9.8772(5)
b/A	6.2174(12)	11.0621(10)	13.1988(5)
c/Ā	9.0416(19)	20.7731(19)	21.2332(9)
$\alpha{ }^{\circ}$	90.00	104.826(8)	92.631(3)
$\beta /{ }^{\circ}$	97.505(16)	98.430(7)	98.313(4)
$\gamma{ }^{\circ}$	90.00	92.099(7)	107.660(4)
Volume/A3	1800.4(6)	1358.1(2)	2598.1(2)
Z	4	4	4
¢calcg/cm3	1.308	1.464	1.126
μ / mm-1	0.562	2.744	0.063
F(000)	744.0	608.0	944.0
Crystal size/mm3	$\begin{gathered} 0.08 \times 0.03 \times \\ 0.01 \end{gathered}$	$\begin{gathered} 0.56 \times 0.42 \times \\ 0.25 \end{gathered}$	$\begin{gathered} 0.08 \times 0.03 \times \\ 0.01 \end{gathered}$
Radiation	$\begin{gathered} \operatorname{CuK\alpha }(\lambda= \\ 1.54184) \end{gathered}$	$\begin{gathered} \operatorname{MoK\alpha }(\lambda= \\ 0.71073) \end{gathered}$	$\begin{gathered} \operatorname{MoK} \operatorname{Kog}(\lambda= \\ 0.71073) \end{gathered}$
2Θ range for data collection/ ${ }^{\circ}$	5.52 to 132.02	3.82 to 54.94	6.34 to 50.58
Index ranges	$\begin{gathered} -38 \leq \mathrm{h} \leq 37,- \\ 7 \leq \mathrm{k} \leq 6,-10 \\ \leq 1 \leq 10 \end{gathered}$	$\begin{aligned} & -8 \leq \mathrm{h} \leq 5,-9 \\ & \leq \mathrm{k} \leq 14,-25 \\ & \leq 1 \leq 23 \end{aligned}$	$\begin{array}{r} -11 \leq \mathrm{h} \leq 11, \\ 15 \leq \mathrm{k} \leq 15, \\ 25 \leq 1 \leq 25 \end{array}$
Reflections collected	3316	3776	49023
Independent reflections	$\begin{gathered} 2164[\text { Rint }= \\ 0.0334, \\ \text { Rsigma }= \\ 0.0487] \end{gathered}$	$\begin{gathered} 3328 \text { [Rint }= \\ 0.0139, \\ \text { Rsigma }= \\ 0.0447] \end{gathered}$	$\begin{aligned} & 9443\left[\mathrm{R}_{\text {int }}=\right. \\ & 0.0527, \\ & \mathrm{R}_{\text {sigma }}= \\ & 0.0423] \end{aligned}$
Data/restraints/parameters	2164/2/253	3328/0/181	9443/0/625
Goodness-of-fit on F2	1.037	1.030	1.026
Final R indexes $[\mathrm{I}>=2 \sigma$ (I)]	$\begin{gathered} \mathrm{R} 1=0.0802 \\ \mathrm{wR} 2=0.2116 \end{gathered}$	$\begin{aligned} \mathrm{R} 1 & =0.0440, \\ \mathrm{wR} 2 & =0.1057 \end{aligned}$	$\begin{gathered} \mathrm{R}_{1}=0.0631, \\ \mathrm{wR}_{2}=0.1656 \end{gathered}$
Final R indexes [all data]	$\begin{aligned} & \mathrm{R} 1=0.0878 \\ & \mathrm{wR} 2=0.2256 \end{aligned}$	$\begin{gathered} \mathrm{R} 1=0.0574, \\ \mathrm{wR} 2=0.1145 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.1220 \\ \mathrm{wR}_{2}=0.2009 \end{gathered}$
Largest diff. peak/hole / e A-3	0.51/-0.25	0.77/-0.50	0.34/-0.23
Flack parameter	-5(4)		
Identification code	2041466	2042640	2047804

We have found that the large flack parameter (3(10)) was associated with the crystal 2ea, which is most probably due to the presence of twinning nature in the crystal which was believed to cause the inversion of the structure (as observed during changing the thermal ellipsoids to anisotropy while solving the crystal in Olex2) via changing the coordinates.

The diffraction measured fraction theta full value for the crystal $\mathbf{2 i}$ was found as 0.622 , which is lower than the expected value. The reason for this error may be the crystals obtained for $\mathbf{2 i}$ were found to be twinned with a severe overlap of Bragg reflections from both domains. Data reduction was performed for both domains, while a significant number of reflections were rejected due to bad agreement between reflection profiles (mostly partially overlapped) in order to obtain a reasonable structural model.

Figure S3. ORTEP of 2a with 50\% probability (Hydrogens are omitted for clarity).

Figure S4. ORTEP of 2c with 50% probability (Hydrogens are omitted for clarity).

Figure S5. ORTEP of 2ea with 50\% probability (Hydrogens are omitted for clarity).

Figure S6. ORTEP of $\mathbf{2 g}$ with 50% probability (Hydrogens are omitted for clarity).

Figure S7. ORTEP of 2ha with 50\% probability (Hydrogens are omitted for clarity).

Figure S8. ORTEP of $\mathbf{2 i}$ with 50% probability (Hydrogens are omitted for clarity).

Figure S9. ORTEP of $\mathbf{2 k}$ with 50% probability (Hydrogens are omitted for clarity).

Optical Study.

Experimental details of $U V$-vis absorption and fluorescence spectroscopy.

The UV-vis absorption and fluorescence spectra of the compounds were recorded in solution state by dissolving them in chloroform at the concentration of $10^{-5} \mathrm{M}$ on Perkin Elemer Lamba 35 UV-Vis spectrometer. Fluorescence spectra of the same were recorded on Horiba JobinYvon, Fluoromax-3 (Xe-150 W, 250-900 nm). Most of the compounds absorbed light in UV region (340-390 nm) except for pyrene based compounds, which shows absorption maxima at the visible region (beyond 400 nm). All of them emits mainly in the blue region. The only pyrene based trans-alkenes 2fa and 2ha emit in the green region, which is also observed under UV light (335 nm). The relative fluorescence quantum yield (Φ_{F}) of the fluorophores were calculated against the standard solution of Quinine sulfate in $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, which give $\Phi_{\mathrm{F}}=$ 0.57 when excited at 350 nm . For this purpose, the solutions were diluted to $10^{-6} \mathrm{M}$ concentration range to restrict the absorbance of each compound under 0.1 , which maintain a proper balance between absorption and emission during the calculation of Φ_{F}. The emission spectra for all the fluorophores were recorded by exciting each of them at 350 nm . The Φ_{F} values of the fluorophores were calculated from the following equation (eqn. 1).

$$
\Phi_{F}=\Phi_{Q s} X \frac{(\text { Intigrated FL Intensity)Fluorophore }}{(\text { Intigrated FL Intensity)Qs }} X \frac{\text { (o.D.)Qs }}{(\text { (o.D.)Fluorophores }} X\left(\frac{\eta_{C H C l_{3}}}{\eta_{H_{2}} \mathrm{O}}\right)^{2} .
$$

\qquad
Where Φ_{Qs} is the fluorescence quantum yield of quinine sulfate; $\eta_{\mathrm{CHCl}_{3}}$ and $\eta_{\mathrm{H}_{2} \mathrm{O}}$ are the refractive indices of CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$, respectively (refractive index of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is similar to water).

Figure S10. UV absorption spectra of 2c

Quantitative analysis of HOMO coefficient.

The HOMO coefficients of $\mathbf{1 b}, \mathbf{1 g}, \mathbf{1 n}$ and $\mathbf{1 0}$ was calculated from their optimized structure via DFT calculation at B3LYP/6-31G(d) using multiwfn program. ${ }^{6}$ Individual HOMO coefficient of each atom is given in Table S3.

Table S3. HOMO coefficient of different atoms for $\mathbf{1 b}, 1 \mathrm{~g}, 1 \mathrm{n}$ and 10.

1b, Orbital 76				1n, Orbital68		10, Orbital64	
Atom	HOMO coefficient						
1	8.027	1	0.965	1	7.346	1	8.087
2	1.67	2	3.415	2	1.431	2	1.732
3	2.14	3	2.92	3	1.999	3	2.153
4	8.622	4	3.515	4	7.114	4	9.03
5	4.618	5	1.543	5	3.35	5	5.081
6	0.412	6	4.755	6	0.315	6	0.446
7	3.906	7	9.524	7	3.117	7	4.145
8	2.432	8	0.946	8	1.766	8	2.675
9	4.947	9	0.874	9	3.689	9	5.394
10	0.577	10	6.842	10	0.533	10	0.579
11	0.301	11	2.12	11	0.243	11	0.317

12	0.169	12	0.224	12	0.122	12	0.186
13	0.369	13	0.79	13	0.275	13	0.401
14	9.933	14	1.69	14	10.705	14	9.425
15	11.65	15	1.543	15	10.711	15	11.508
16	4.709	16	0.68	16	6.432	16	4.33
17	3.511	17	0.044	17	3.378	17	3.531
18	1.659	18	0.247	18	2.848	18	1.586
19	0.241	19	0.096	19	0.217	19	0.247
20	5.632	20	0.396	20	6.163	20	4.828
21	0.083	21	0.05	21	0.183	21	0.092
22	10.784	22	0.135	22	9.371	22	11.109
23	0.845	23	0.117	23	0.743	23	0.867
24	4.414	24	8.965	24	3.59	24	4.678
25	0.288	25	9.156	25	0.228	25	0.308
26	4.072	26	6.039	26	4.576	26	3.535
27	0.287	27	1.7	27	0.315	27	0.248
28	1.672	28	6.229	28	2.893	28	1.575
29	0.092	29	2.857	29	0.211	29	0.091
30	0.627	30	1.214	30	5.054	30	1.816
31	0.415	31	3.065	31	0.501		
32	0.031	32	0.451	32	0.275		
33	0.106	33	2.653	33	0.032		
34	0.055	34	0.268	34	0.275		
35	0.415	35	3.147				
36	0.055	36	7.958				
37	0.106	37	0.195				
38	0.031	38	1.498				
39	0.057	39	0.207				
40	0.019	40	0.234				
41	0.019	41	0.63				
42	0.003	42	0.103				

The electronic states involved during the desired electronic transition of 2aS, 2aSe, 2dS and 2dSe were determined via TD-DFT calculation at B3LYP/6-31G. The HOMO coefficients of different atoms of those compounds were calculated using multiwfn program ${ }^{6}$ at the ground states of those particular transitions. The individual HOMO coefficient of each atom is given in Table S4.

Table S4. Molecular Orbital diagram at ground states of 2aS, 2aSe, 2dS and 2dSe for different electronic transitions.

Atom	HOMO coefficient						
1	2.456	1	12.562	1	24.315	1	2.764
2	12.887	2	2.703	2	0.274	2	4.208
3	1.565	3	11.006	3	2.177	3	10.913
4	6.164	4	6.268	4	4.071	4	3.78
5	0.46	5	0.432	5	9.041	5	1.498
6	2.726	6	8.528	6	8.193	6	6.209
7	10.164	7	1.23	7	0.615	7	0.433
8	1.893	8	3.298	8	9.117	8	1.284
9	0.072	9	0.273	9	2.45	9	4.658
10	8.534	10	1.088	10	0.256	10	0.343
11	0.662	11	0.065	11	0.172	11	4.842
12	5.974	12	2.826	12	6.426	12	1.089
13	0.437	13	0.227	13	0.493	13	0.065
14	2.706	14	2.362	14	4.342	14	4.467
15	0.124	15	0.179	15	0.174	15	3.638
16	10.85	16	1.441	16	0.159	16	0.269
17	5.509	17	4.541	17	0.181	17	3.204
18	6.194	18	2.163	18	0.044	18	0.257
19	0.428	19	0.138	19	1.957	19	2.391
20	1.543	20	6.437	20	0.08	20	0.18
21	0.065	21	0.534	21	3.261	21	8.872
22	8.121	22	1.312	22	1.193	22	6.346
23	0.643	23	0.059	23	0.055	23	0.526
24	4.128	24	4.697	24	3.956	24	2.164
25	0.346	25	0.342	25	0.268	25	0.139
26	4.212	26	3.909	26	5.676	26	2.938
27	0.247	27	4.272	27	0.427	27	0.236
28	0.19	28	3.724	28	0.036	28	1.405
29	0.036	29	0.297	29	0.002	29	0.075
30	0.039	30	1.444	30	2.241	30	12.571
31	0.002	31	0.084	31	5.86	31	1.283
32	0.18	32	4.893	32	0.467	32	0.058
33	0.152	33	1.49	33	1.727	33	3.384
34	0.011	34	0.082	34	0.07	34	0.281
35	0.118	35	3.186	35	0.15	35	1.486
36	0.085	36	0.228	36	0.012	36	0.089
37	0.023	37	0.543	37	0.023	37	0.537
38	0.013	38	0.351	38	0.017	38	0.35
39	0.002	39	0.048	39	0.002	39	0.047
40	0.003	40	0.087	40	0.001	40	0.025
41	0.001	41	0.026	41	0.005	41	0.088
42	0.018	42	0.368	42	0.008	42	0.356
43	0.002	43	0.048	43	0.001	43	0.093
44	0.002	44	0.029	44	0	44	0.028

45	0.006	45	0.097	45	0.002	45	0.047
46	0.002	46	0.05	46	0.003	46	0.051
47	0.001	47	0.017	47	0	47	0.003
48	0	48	0.015	48	0.001	48	0.016
49	0	49	0.003	49	0.001	49	0.018

2dS, Orbital102							
HOMO-1							

32	4.643	32	3.534	32	9.395
33	0.414	33	0.284	33	0.095
34	0.093	34	0.067	34	3.882
35	0.092	35	0.078	35	0.503
36	0.714	36	9.46	36	0.262
37	0.272	37	0.096	37	0.753
38	2.37	38	3.847	38	0.287
39	0.582	39	0.489	39	0.185
40	0.339	40	0.259	40	0.025
41	0.099	41	0.061	41	0.013
42	0.034	42	0.026	42	0.046
43	0.038	43	0.028	43	0.191
44	0.027	44	0.759	44	0.05
45	0.16	45	0.283	45	0.015
46	0.043	46	0.024	46	0.026
47	0.006	47	0.004	47	0.027
48	0.006	48	0.004	48	0.008
49	0.003	49	0.002	49	0.009
50	0.021	50	0.012	50	0.002
51	0.003	51	0.002	$\mathbf{5 1}$	$\mathbf{2 . 2 1 6}$

NMR spectra of Products (2a-n):

(ii) ゅN菏

$$
\begin{aligned}
& \infty \\
& \stackrel{\infty}{1} \\
& \stackrel{1}{1}
\end{aligned}
$$

Figure S11. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of 2a

$\stackrel{+}{o}$

(iii) $\stackrel{\infty}{l}_{\infty}^{\infty}$
of mim

Figure S12. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{2} \mathrm{H}\left(77 \mathrm{MHz}, \mathrm{CHCl}_{3}\right)$ NMR Spectra of deuterated product 2a-1D and (iii) Comparison of ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ spectra of $\mathbf{2 a}$ and 2a-1D

(iii)

命

Figure S13. (i) ${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (iii) ${ }^{77} \mathrm{Se}\left\{{ }^{1} \mathrm{H}\right\}(95$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) NMR Spectra of $\mathbf{2 b}$

(i)
 ${ }_{\angle \mathrm{L}}^{\mathrm{LS} \cdot \mathrm{T}-\mathrm{O}-\mathrm{O}} \mathrm{H}$

(ii)
黄荡

Figure S14. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of 2c

(ii)
$\stackrel{N}{\infty}$

Figure S15. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{77} \mathrm{Se}\left\{{ }^{1} \mathrm{H}\right\}\left(95 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of mixture of 2c and 2ca

(iii)

Figure S16. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (iii) ${ }^{77} \mathrm{Se}\left\{{ }^{1} \mathrm{H}\right\}(95$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) NMR Spectra of $\mathbf{2 d}$

Figure S17. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of 2ea

(ii)

Figure S18. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of $2 f a$

2fa-2D

(iii)

Figure S19. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{2} \mathrm{H}\left(77 \mathrm{MHz}, \mathrm{CHCl}_{3}\right)$ NMR Spectra of 2fa-2D and (iii) Comparison of ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{2 f}$ and $\mathbf{2 f a}$

Figure S20. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of (i) product mixture $(\mathbf{1 g + 2 g})(1: 2)$ and (ii) pure $\mathbf{2 g}$.

(i)

(ii)

Figure S21. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of 2ha

Figure S22. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of 2i

jјa

(ii)

Figure S23. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of 2ja
(i) $\operatorname{lic}_{\infty}^{\infty} \cos _{\infty}^{\infty}$

(ii)

䩗

Figure S24. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of

Figure S25. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of $2 \mathbf{l}$

$\stackrel{+}{+}$
$\stackrel{\text { ® }}{\stackrel{\sim}{1}}$

(ii)

ஸin

Figure S26. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of $\mathbf{2 m}$
io
$\stackrel{\infty}{\infty}$
$\stackrel{-}{6}$

$2 n$
(ii)

$\stackrel{\sim}{n} \stackrel{0}{m}$

Figure S27. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of 2n

(ii)商楞

Figure S28. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$, (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (iii) ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}(375$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) NMR Spectra of $\mathbf{2 0}$

NMR spectra of arylethynyl substituted polyarenes (1a-n).

Figure S29. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \mathrm{NMR}$ Spectra of $\mathbf{1 a}$

Figure S30. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of $\mathbf{1 b}$

Figure S31. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of $\mathbf{1 c}$

(ii)

Figure S32. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of 1d

Figure S33. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of $\mathbf{1 f}$

$\stackrel{\stackrel{i}{n}}{i}$

Figure S34. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of $\mathbf{1 g}$

(ii)

Figure S35. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of $\mathbf{1 h}$
(i)

(ii)

Figure S36. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of $\mathbf{1 i}$

Figure S37. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of $\mathbf{1} \mathbf{j}$

Figure S38. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of $\mathbf{1 k}$

$\stackrel{\leftrightarrow}{2}$

11
(ii)

*
ก ก ก ก
$\stackrel{\bullet}{\stackrel{\circ}{i}} \stackrel{m}{\underset{1}{ \pm}}$

Figure S39. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of $\mathbf{1 1}$

Figure S40. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of $\mathbf{1 m}$

\&ั m

$\stackrel{\infty}{\infty}$

む N
0
0
0
1
$\stackrel{\stackrel{n}{i}}{\stackrel{\circ}{i}} \stackrel{\sim}{i}$

1n

Figure S41. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) Spectra of $\mathbf{1 n}$

Figure S42. ${ }^{1} \mathrm{H}$ NMR Spectra ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 0}$

（ii）
胢胢

(iv)

Figure S 43 . ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra obtained during selenocyclization of $\mathbf{1 c}$ in 1.2 ml of (a) 1% (b) 2% (c) $3 \% ~(\mathrm{v} / \mathrm{v}$) water in NMP and (d) 2 ml of $15 \% ~(\mathrm{v} / \mathrm{v})$ water in NMP

Figure $\mathrm{S} 44 .{ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra for products formed during selenocyclization of 1a in 2 ml of $2 \%(\mathrm{v} / \mathrm{v})$ water in NMP

Figure S45. (i) ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ and (ii) ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of 2aa
(i)

(iii) $\underbrace{\text { orongion }}$

1

Figure S46. ${ }^{1} \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NMR Spectra of products obtained during selenocyclization of $\mathbf{1 a}$ at different cycles (i) first cycle (ii) second cycle and (iii) third cycle

References

(1) Cheng, B.; Samulski, E. T. Rapid, High Yield, Solution-Mediated Transformation of Polycrystalline Selenium Powder into Single-Crystal Nanowires. Chem. Commun. 2003, No. 16, 2024-2025. https://doi.org/10.1039/b303755j.
(2) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. J Appl Crystallogr 2009, 42 (2), 339-341. https://doi.org/10.1107/S0021889808042726.
(3) Palatinus, L.; Chapuis, G. SUPERFLIP - a Computer Program for the Solution of Crystal Structures by Charge Flipping in Arbitrary Dimensions. J Appl Crystallogr 2007, 40 (4), 786-790. https://doi.org/10.1107/S0021889807029238.
(4) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr C Struct Chem 2015, 71 (1), 3-8. https://doi.org/10.1107/S2053229614024218.
(5) Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; G. Petersson, A.; Nakatsuji, H.; X. Caricato, Li, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A.; Peralta, J. E. Jr.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; and Fox, D. J.; Gaussian, Inc., Wallingford CT, 2016.
(6) Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33 (5), 580-592. https://doi.org/10.1002/jcc.22885.

