Supporting Information

Molecular Dynamics Explains the Interactions Driving Sickle Cell Fibrillation

Dibyajyoti Maity[‡], and Debnath Pal*[‡]

[‡]Department of Computational and Data Sciences, Indian Institute of Science, Bangalore, 560012, Karnataka, INDIA

Modified CHARMM force field parameters for heme in oxyhemoglobin

The CHARMM force field parameters for heme and O_2 in oxyhemoglobin were ported to GROMACS from the AMBER parameters provided in the Supplementary information of Bringas et al.¹ These were added to the aminoacids.rtp file in the charmm27.ff force field directory in GROMACS.

[HEO2]			
[atoms]		
FE	FE	0.362	0
NA	NPH	-0.1	1
NB	NPH	-0.1	2
NC	NPH	-0.1	3
ND	NPH	-0.1	4
C1A	СРА	-0.04	5
C2A	СРВ	0.02	6
C3A	СРВ	0.02	7
C4A	CPA	-0.04	8
C1B	CPA	-0.04	9
C2B	СРВ	0.02	10
C3B	СРВ	0.02	11
C4B	CPA	-0.04	12
C1C	CPA	-0.04	13
C2C	СРВ	0.02	14
C3C	СРВ	0.02	15
C4C	СРА	-0.04	16
C1D	СРА	-0.04	17
C2D	СРВ	0.02	18
C3D	СРВ	0.02	19
C4D	СРА	-0.04	20
CHA	CPM	-0.12	21
HA	HA	0.16	22
СНВ	CPM	-0.12	23
HB	HA	0.16	24
CHC	CPM	-0.12	25

HC	HA	0.16	26
CHD	CPM	-0.12	27
HD	НА	0.16	28
СМА	СТЗ	-0.227	29
HMA1	HA	0.07	30
ΗΜΔ2	HΔ	0 07	31
НИЛЗ	НА	0.07	32
	CT2	0.07	22
		0.05	24
		0.015	54 25
	HA	0.015	35
CBA	CT2	-0.025	36
HBA1	HA	0.025	37
HBA2	HA	0.025	38
CGA	CC	0.635	39
01A	OC	-0.752	40
02A	OC	-0.752	41
CMB	CT3	-0.17	42
HMB1	HA	0.05	43
HMB2	HA	0.05	44
HMB3	HA	0.05	45
CAB	CE1	-0.08	46
НАВ	HE1	0.13	47
CBB	CE2	-0.38	48
HBB1	HF2	0.15	49
HBB2	HE2	0.15	50
CMC	CT3	-0 17	51
HMC1	нл	0.17	52
		0.05	52
		0.05	55 F4
		0.05	54
	CEI	-0.08	55
HAC	HEL	0.13	56
CBC	CE2	-0.38	57
HBC1	HE2	0.15	58
HBC2	HE2	0.15	59
CMD	CT3	-0.227	60
HMD1	HA	0.07	61
HMD2	HA	0.07	62
HMD3	HA	0.07	63
CAD	CT2	0.05	64
HAD1	HA	0.015	65
HAD2	HA	0.015	66
CBD	CT2	-0.025	67
HBD1	HA	0.025	68
HBD2	НА	0.025	69
CGD	CC	0.635	70
01D	00	-0 752	71
020	00	-0 752	72
020	OM	-0 12	72
02	OM	-0.12 _0 10	, , 7/1
L handa	1	-0.10	74
	NA		
FE	NR		

FE	NC
FE	ND
NA	C1A
C1A	C2A
C2A	C3A
C2A	
C3A	C4A
NA	C4A
C2A	CAA
CAA	CBA
CBΔ	CGΔ
CGA	
CGA	014
CGA	02A
C3A	CMA
CHB	C4A
СНВ	C1B
NB	C1B
C1D	COD
CID	
C2B	C3B
C3B	C4B
NB	C4B
C2B	CMB
CBB	CAR
CHC	C4B
CHC	C1C
NC	C1C
C1C	C2C
C2C	C3C
C2C	
NC	C4C
C2C	CMC
C3C	CAC
CAC	CBC
CHD	C4C
CHD	C1D
CID	C2D
C2D	C3D
C3D	C4D
ND	C4D
C2D	CMD
C2D	
CAD	CRD
CBD	CGD
CGD	01D
CGD	02D
CHA	C4D
CHA	C1A
CHA	
CHB	нв
CHC	HC
CHD	HD

CAA	7	HAA1					
CAA	4	HAA2					
CBA	4	HBA1					
CB4	7	HBA2					
CMA	7	HMA1					
	\	ΗΜΔ2					
	- \						
	4						
CME	נ						
	כ י						
CME	5	HMB3					
CAL	3	HAB					
CBF	3	HBB1					
CBE	3	HBB2					
CMC	2	HMC1					
CMC	2	HMC2					
CMC	2	HMC3					
CAC	2	HAC					
CBC	2	HBC1					
CBC	2	HBC2					
CME)	HMD1					
CME)	HMD2					
CME)	HMD3					
CAE)	HAD1					
CAL)	HAD2					
CRI)	HBD1					
CRI)	HBD2					
01	-	02					
01							
Г Г	angle	1 L No 1					
	angre		ək	th0	cth	ubQ	cub
,		a j E E		190 0		0.0	
		гс гг		100.0	0.0	0.0	0.0
				122.0		0.0	0.0
г	FE June of a		02	122.0	50.00	0.0	0.0
	, Tubuc	opers j		C 2 A	C ^ ^		
CZF	•						
C3A	4	CZA		C4A	CMA		
CZE	3	CIR		C3B	CMB		
C3E	3	C2B		C4B	CAB		
C2(_	C1C		C3C	CMC		
C3(2	C2C		C4C	CAC		
C2E)	C1D		C3D	CMD		
C3[)	C2D		C4D	CAD		
CGA	7	CBA		02A	01A		
CGE)	CBD		02D	01D		
C44	4	NA		C1A	C2A		
C1/	4	NA		C4A	C3A		
C4E	3	NB		C1B	C2B		
C1E	3	NB		C4B	C3B		
C40	2	NC		C1C	C2C		
C10	2	NC		C4C	C3C		
C4)	ND		C1D	C2D		
C1)	ND		C4D	C3D		
		-					

NA	C1A	C2A	C3A
NA	C4A	C3A	C2A
NB	C1B	C2B	C3B
NB	C4B	C3B	C2B
NC	C1C	C2C	C3C
NC	C4C	C3C	C2C
ND	C1D	C2D	C3D
ND	C4D	C3D	C2D
NA	C1A	CHA	C4D
NA	C4A	CHB	C1B
NB	C1B	CHB	C4A
NB	C4B	CHC	C1C
NC	C1C	CHC	C4B
NC	C4C	CHD	C1D
ND	C1D	CHD	C4C
ND	C4D	CHA	C1A
CHA	C1A	C4D	HA
CHB	C1B	C4A	HB
CHC	C1C	C4B	HC
CHD	C1D	C4C	HD
C1A	C2A	CHA	NA
C4A	C3A	CHB	NA
C1B	C2B	CHB	NB
C4B	C3B	CHC	NB
C1C	C2C	CHC	NC
C4C	C3C	CHD	NC
C1D	C2D	CHD	ND
C4D	C3D	CHA	ND
NA	C1A	C4A	FE
NB	C1B	C4B	FE
NC	C1C	C4C	FE
ND	C1D	C4D	FE

Structure	PDB ID¶	Box length (L in Å)	Water	Na^+	Cl^-
deoxy HbS [†]	2HBS	89.428	21243	49	45
deoxy HbA	2DN2	89.561	14370	38	32
deoxy HbS fibril	2HBS	266.158	402124	110	50
deoxy HbA fibril		266.390	402945	110	20
oxy HbS (T state)		89.904	14452	36	32
oxy HbA (T state)	1GZX	89.795	14449	38	32
oxy HbS (R state)		88.851	13934	35	31
oxy HbA (R state)	1HHO	88.736	13932	37	31

Table S1. Parameters used for MD simulation of each hemoglobin structure.

[†] The initial simulation was performed in a cubic box, which accommodated more water molecules than a rhombic dodecahedral box, leading to slower simulation. The box-type was changed to the rhombic dodecahedron for subsequent simulations to reduce the computation time.

§ The box dimensions were automatically selected by GROMACS, ensuring a minimum of 1 nm (2 nm for fibril models) distance between the protein edge and the box faces. A cube and a rhombic dodecahedron both have three equal edges so that the box dimension would be $L \times L \times L$

¶ The structures without a PDB ID were prepared in silico.

Table S2. Free energy values of the potential wells and barrier heights in the free energy landscapes of hemoglobin. The unit of energy for all columns is kJmol⁻¹.

	Well-1	Barrier $1 \rightarrow 2$	Saddle 1-2	Barrier $2 \rightarrow 1$	Well-2	Barrier $2 \rightarrow 3$	Saddle 2-3	Barrier $3 \rightarrow 2$	Well-3
HbS fibril	-8.64	1.17	-7.47	5.06	-12.53				
HbA fibril	-8.03	6.30	-1.73	7.59	-9.32	2.92	-6.40	7.05	-13.45
deoxy HbS	-10.93	4.73	-6.20	7.10	-13.30	2.10	-11.20	6.01	-17.21
deoxy HbA	-9.71	3.97	-5.74	7.47	-13.21	3.71	-9.50	7.83	-17.33
oxy HbS (T)	-9.90	5.43	-4.47	4.67	-9.14	4.29	-4.85	12.88	-17.73
oxy HbA (T)	-10.08	10.08	0	5.19	-5.19	5.19	0	18.65	-18.65
oxy HbS (R)									-18.68
oxy HbA (R)									-19.86

PDB ID	Dimer-dimer rotation	Description	Comment
5HU6	48.64	Human haptoglobin-hemoglobin bound to T. Brucei haptoglobin-hemoglobin receptor	
2M6Z	113.55	Solution NMR of carboxyhemoglobin	
1CBL	113.58	Deoxy-β4 hemoglobin	β4
6FQF	114.05	Ferric-β4 hemoglobin	β4
1CBM	114.75	B4 carboxyhemoglobin	β4
1CH4	115.35	Hemoglobin with an artificial exon-shuffling, module M4-substituted	Chimera hemoglobin βα
5WOG	117.10	Hemoglobin immersed in Liquid Oxygen for 1 minute	
4WJG	129.97	Human haptoglobin-hemoglobin bound to T. Brucei haptoglobin-hemoglobin receptor	
5JDO	138.68	Human haptoglobin-hemoglobin bound to T. Congolense haptoglobin-hemoglobin receptor	
6TB2	161.75	Human haptoglobin-hemoglobin bound to S. Aureus IsdH	
4X0L	168.02	Human haptoglobin-hemoglobin bound to T. Brucei haptoglobin-hemoglobin receptor	

Table S3. Outlier human hemoglobin PDB structures with dimer-dimer rotation $< 70^{\circ}$ and $> 110^{\circ}$, which deviate from the classified T or R states.

Table S4. The transition matrices from each hemoglobin simulation. The potential well labels are indicated on the edges of the matrices. The transition matrices were not evaluated for oxy HbS (R state) and oxy HbA (R state) because the corresponding free energy landscape has only one well.

doory Uhs Eih				deoxy	HbA Fibr	il
1 1 [0.8434 0.	2 1566]		1	$1 \\ [0.9924] 0.0020$	2 0.0076	$\begin{bmatrix} 3 \\ 0 \\ 0 \\ 2151 \end{bmatrix}$
2 l 0.0262 0.	9738]		2 3	0.0028	0.7821 0.0386	0.2151
deoxy HbS				deo	oxy HbA	
1 2	3			1	2	3
[0.9873 0.0127	ן 0		1	[0.9912	0.0088	ך 0
0.0029 0.9473	0.0498		2	0.0018	0.8931	0.1051
L 0 0.0079	0.9921		3	L O	0.0166	0.9834
oxy HbS (T sta	te)			oxy Hl	bA (T state	e)
1 2	3			1	2	3
[0.9361 0.0639	0]		1	[0.9418	0.0582	0]
0.0229 0.9151	0.0620		2	0.1357	0.8369	0.0274
l 0 0.0011	0.9989]		3	LΟ	0.0002	0.9998
	deoxy HbS Fib 1 1 $\begin{bmatrix} 0.8434 & 0.\\ 0.0262 & 0.9 \end{bmatrix}$ deoxy HbS 1 $\begin{bmatrix} 0.9873 & 0.0127 \\ 0.0029 & 0.9473 \\ 0 & 0.0079 \end{bmatrix}$ oxy HbS (T sta 1 2 $\begin{bmatrix} 0.9361 & 0.0639 \\ 0.0229 & 0.9151 \\ 0 & 0.0011 \end{bmatrix}$	$\begin{array}{cccc} deoxy HbS Fibril \\ 1 & 2 \\ 1 & \begin{bmatrix} 0.8434 & 0.1566 \\ 0.0262 & 0.9738 \end{bmatrix} \\ \\ deoxy HbS \\ 1 & 2 & 3 \\ \begin{bmatrix} 0.9873 & 0.0127 & 0 \\ 0.0029 & 0.9473 & 0.0498 \\ 0 & 0.0079 & 0.9921 \end{bmatrix} \\ \\ oxy HbS (T state) \\ 1 & 2 & 3 \\ \begin{bmatrix} 0.9361 & 0.0639 & 0 \\ 0.0229 & 0.9151 & 0.0620 \\ 0 & 0.0011 & 0.9989 \end{bmatrix}$	deoxy HbS Fibril 1 2 1 $\begin{bmatrix} 0.8434 & 0.1566 \\ 0.0262 & 0.9738 \end{bmatrix}$ deoxy HbS 1 2 3 $\begin{bmatrix} 0.9873 & 0.0127 & 0 \\ 0.0029 & 0.9473 & 0.0498 \\ 0 & 0.0079 & 0.9921 \end{bmatrix}$ oxy HbS (T state) 1 2 3 $\begin{bmatrix} 0.9361 & 0.0639 & 0 \\ 0.0229 & 0.9151 & 0.0620 \\ 0 & 0.0011 & 0.9989 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Detential Wall	Well-1		Well-2			Well-3		
Potential Well	$\frac{1 \text{ Well}}{\text{RMSD}(\text{\AA}) - \text{R}_{\text{G}}(\text{\AA})} - \frac{1}{\text{RMSD}(\text{\AA})}$		RMSD (Å)	R _G (Å)		RMSD (Å)	R _G (Å)	
deoxy HbS fibril	1.81	23.81		2.54	23.97			
deoxy HbA fibril	1.76	23.55		2.59	23.56		3.36	23.62
deoxy HbS	2.02	23.51		3.26	23.69		4.04	24.06
deoxy HbA	1.50	23.76		2.79	23.72		3.21	24.17
oxy HbS (T)	1.40	23.74		2.02	23.94		3.83	24.13
oxy HbA (T)	1.86	23.90		2.90	24.20		3.93	24.22
oxy HbS (R)							2.79	24.08
oxy HbA (R)							2.22	23.71

Table S5. The exact values of RMSD and R_G in Å for each potential well.

1st tetramer	2nd tetramer	<i>E_{vdW}</i> (kJ/mol)	Observation	Comment [§]
1-β ₁ -Asp-73	2-β ₂ -Pro-5	-4.0 ± 2.6	Yes	8 in total; 1 strong
1-β ₁ -His-77	$2-\beta_2$ -Thr-4	-4.7 ± 1.9	Yes	2 mild
1-β1-Thr-84	2-β ₂ -Pro-125	-3.9 ± 1.5	Yes	3 mild
1-β1-Leu-88	$2-\beta_2$ -Val- 6^*	-4.4 ± 1.9	Yes	4 mild
1-β1-Leu-88	2-β ₂ -Ser-9	-3.9 ± 1.9	Yes	4 in total; 1 strong
1-β ₁ -Heme	2-β ₂ -Pro-5	-4.7 ± 3.6	Yes	and 4 mild in HbA
1-β ₁ -Heme	$2-\beta_2$ -Val-6	-5.8 ± 1.8	Yes	15 in total
1-β ₂ -Asn-80	2-β ₂ -Lys-120	-4.7 ± 2.4	No	
1-β ₂ -Leu-81	2-β ₂ -Lys-120	-5.5 ± 2.8	No	
1-β ₂ -Leu-81	2-β ₂ -Glu-121	-3.9 ± 2.1	No	

Table S6 Comparison of contact matrix for lateral contact in which β_2 -Val-6 is involved (Figure S12) with the lowest energy van der Waals interactions reported by Galamba and Pipolo².

* Mutated residue in HbS

[§] We have taken the liberty of associating the percentage occurrence of contacts to the strength of the contacts in the comment column. Note that the multiple points in each pair of residues in the contact matrix only mean that the atoms are positioned in a particular manner to facilitate such interactions. It is not necessarily an estimate of the contact strength between the two residues, likewise, for the contacts along a particular row or column of the contact matrix. However, residue pairs with multiple contacts with high occurrence are likely strong.

1st tetramer	2nd tetramer	E _{pot} ² (kJ/mol)	E _{pot} ³ (kJ/mol)	Observation	Comment [§]
1-β1-Val-1	2-α ₂ -Glu-30	-127 ± 39		No	But observed in HbA
1-β1-Lys-8	2-α ₂ -Glu-30	-108 ± 25		No	
1-β1-Lys-8	2-α ₂ -Asp-47	-115 ± 28		No	
1-β1-Lys-8	2-β2-Glu-7	$\textbf{-}110\pm10$		No	
1-β1-Lys-65	2-β ₂ -Asp-79		-310 ± 86	No	But strong contacts made by 1B1-Lys66 with adjacent residue 2-B2-Leu-78
1-β1-Asp-73	2-β2-Lys-8	-143 ± 19		No	Asp-73 is in contact with beta-6 residue
$1-\beta_1$ -Asp-73	2-β ₂ -Lys-132	-114 ± 30	-239 ± 37	No	
1-β1-Asp-79	2-α ₂ -Lys-40		-234 ± 89	No	
1-β1-Lys-82	2-α ₂ -Glu-23	-143 ± 49		No	
$1-\beta_1$ -Lys-82	2-α ₂ -Glu-27	-172 ± 53		No	
1-β1-Lys-82	2-α2-Glu-30	-178 ± 61	-204 ± 110	No	
1-β1-Lys-82	2-α ₂ -Asp-47		-204 ± 40	No	
1-β1-Lys-82	2-α ₂ -Heme	-107 ± 8		No	
1-β ₁ -Lys-82	2-β ₂ -Glu-121	-113 ± 17		No	$1-\beta_1$ -Lys-82 makes 1 mild contact with 2- β_2 -Thr-123
1-β1-Glu-90	2-β ₂ -Lys-17	-232 ± 91	-169 ± 51	No	But 1- β_1 -Glu-90 makes 5 mild contacts with 2- β_2 -Ala-13
1-β1-Asp-94	2-β ₂ -Lys-17	-185 ± 55		No	
1-β1-Lys-144	2-α2-Glu-30		-156 ± 22	No	
1-β1-Lys-144	$2-\beta_2$ -Glu-121	-113 ± 26		Yes	3 mild
1-β1-Heme	2-β ₂ -Val-1	-120 ± 10		No	
1-β ₁ -Heme	2-β ₂ -Lys-8	-254 ± 66	-230 ± 56	Yes	Observed in both HbS fibril and HbA fibril with stronger interactions in HbS fibrils.
1-β1-Heme	2-β ₂ -Lys-17	-176 ± 25	-161 ± 24	No	
1-β ₁ -Heme	2-β ₂ -Lys-65	-111 ± 11		No	
1-β1-Heme	2-β ₂ -Lys-132	-139 ± 15		No	
1-β ₂ -Val-1	2-β2-Glu-121	-144 ± 31		No	22.7 Å C α -C α distance in the crystal structure
1-β2-Asp-79	2-β2-Lys-120	-194 ± 60		No	24.8 A C α -C α distance in the crystal structure (lowest 17.8 Å terminal side- chain atoms)
1-β2-Lys-82	2-β2-Glu-121	-171 ± 36	-177 ± 69	No	29.9 Å Cα-Cα distance in the crystal structure
1-β ₂ -Asp-79	2-α ₂ -Arg-31	-108 ± 15		No	
1-β2-Glu-90	2-α2-Lys-56		-161 ± 22	No	
1-β ₂ -Lys-144	2-α ₂ -Asp-47		-313 ± 56	No	
1-β2-Lys-144	2-α ₂ -Heme		-161 ± 12	No	
1-β ₂ -Heme	2-α ₂ -Lys-56	-123 ± 19	-261 ± 32	No	
1-β ₂ -Heme	2-α2-Lys-60	-112 ± 18	-192 ± 29	No	

Table S7 Comparison of contact matrix for lateral contact in which β_2 -Val-6 is involved (Figure S12) with the lowest energy electrostatic (attractive) interactions previously reported by Galamba and Pipolo, 2018² and Galamba, 2019³.

[§] We have taken the liberty of associating the percentage occurrence of contacts to the strength of the contacts in the comment column. Note that the multiple points in each pair of residues in the contact matrix only mean that the atoms are positioned in a particular manner to facilitate such interactions. Thus, it is not necessarily an estimate of the contact strength between the two residues, likewise, for the contacts along a particular row or column of the contact matrix. However, residue pairs with multiple contacts with high occurrence are likely strong.

Correlation between:	Interface area and contacts	Interface area and H-bonds	H-Bonds and contacts
deoxy HbS fibril	0.97	0.75	0.84
deoxy HbA fibril	0.99	0.59	0.62
deoxy HbS	0.99	0.46	0.52
deoxy HbA	0.99	0.91	0.89
oxy HbS (T state)	1.00	0.90	0.92
oxy HbA (T state)	0.99	0.97	0.98
oxy HbS (R state)	0.99	0.72	0.78
oxy HbA (R state)	0.99	0.73	0.78

Table S8. Correlation between interface area, interface contacts, and interface H-bonds for all simulated systems. For fibril systems, only the interfaces of the central molecule were considered.

Table S9. The hydrogen bonds in hemoglobin at various in	ntersubunit interfaces.
--	-------------------------

	deoxy HbS Fibril		deoxy H	lbA Fibril	deox	y HbS	deox	y HbA	oxy HbS	S (T state)	OX	y HbA (T state)		oxy Hbs	S (R state)		oxy HbA	A (R state)	
	$\alpha_1\text{-Lys-99-N}^{\zeta} \longrightarrow \beta_1\text{-Tyr-35-O}^{\eta}$	36	α_1 -Lys-99-N ^{ζ} —H ^{ζ_1}	$\rightarrow \ \beta_1 \text{-} \text{Glu-} 101 \text{-} O^{\epsilon 2} \qquad 57$	$\beta_1\text{-}Gln\text{-}131\text{-}N^{\epsilon 2}H^{\epsilon 12}$	$\rightarrow \alpha_1$ -His-103-N ^{$\delta 1$} 100	α_1 -His-103-N ^{$\epsilon 2$} —H ^{$\epsilon 2$}	$\rightarrow \beta_1$ -Gln-131-O ^{ϵ_1} 4	7 α_1 -His-103-N ^{ϵ_2-H^{ϵ_2}}	$\rightarrow \ \beta_{1}\text{-}Tyr\text{-}35\text{-}O^{\eta}$	58 α ₁ -Ser-35-O ^γ	$-H^{\gamma 1} \rightarrow \beta_1$ -Gln-131-O ^{$\epsilon 1$}	55	α_1 -His-103-N ^{$\epsilon 2$} —H ^{$\epsilon 2$}	$\rightarrow \ \beta_l\text{-}Gln\text{-}131\text{-}O^{\epsilon l}$	41	β_1 -Arg-30-N ^{η1} —H ^{η11}	$\rightarrow \alpha_1$ -Thr-118-O	33
	α_1 -Lys-99-N ^{ζ} -H ^{ζ_1} $\rightarrow \beta_1$ -Asn-108-O ^{δ_1}	36	α_1 -His-103-N ^{$\epsilon 2$} -H ^{$\epsilon 2$}	$\rightarrow \beta_1$ -Asn-108-O 44	β_1 -Lys-132-N ^{ζ} —H ^{ζ_1}	$\rightarrow \alpha_1$ -Ser-35-O 95	$\beta_1\text{-}Arg\text{-}30\text{-}N^{\eta1}\text{-}H^{\eta11}$	$\rightarrow \ \alpha_1 \text{-His-122-N}^{\delta 1} \qquad 6$	8 α_1 -His-103-N ^{$\epsilon 2$} -H ^{$\epsilon 2$}	$\rightarrow \beta_1$ -Asn-108-O	41 α ₁ -Lys-99-N ^ζ	$-H^{\zeta 1} \rightarrow \beta_1$ -Arg-104-N ^{$\eta 2$}	39	α_1 -Lys-127-N ^{ζ} —H ^{$\zeta 1$}	$\rightarrow \beta_1$ -Val-34-O	41	β_1 -Arg-30-N ^{η1} —H ^{η11}	$\rightarrow \alpha_1$ -Pro-119-N	37
	α_1 -His-103-N ^{ϵ_2-H^{ϵ_2} $\rightarrow \beta_1$-Asn-108-O}	39	α_1 -His-103-N ^{$\epsilon 2$} -H ^{$\epsilon 2$}	$\rightarrow \ \beta_{l}\text{-}Gln\text{-}131\text{-}O^{\epsilon l} \qquad 36$			$\beta_1\text{-}Arg\text{-}30\text{-}N^{\eta2}\text{-}H^{\eta21}$	$\rightarrow \alpha_1$ -Phe-117-O 6	9 α ₁ -His-103-N ^{ε2} —H ^{ε2}	$\rightarrow \ \beta_1 \text{-} Gln\text{-} 127\text{-} N^{\epsilon 2}$	46 α ₁ -Lys-99-N ^ζ	$-H^{\zeta_1} \rightarrow \beta_1$ -Asn-108-O ^{δ_1}	52	β_1 -Arg-30-N ^{η1} —H ^{η11}	$\rightarrow \alpha_1$ -Phe-117-O	51	β_1 -Arg-30-N ^{η1} —H ^{η11}	$\rightarrow \alpha_1$ -His-122-N ^{$\delta 1$}	1 82
	β_1 -Arg-30-N ^{η2} —H ^{η21} $\rightarrow \alpha_1$ -Phe-117-O	46	α_1 -His-103-N ^{ϵ_2-H^{ϵ_2}}	$\rightarrow \ \beta_1 \text{-} Gln\text{-} 131\text{-} N^{\epsilon 2} \qquad 65$			β_1 -Tyr-35-O ^η —H ^η	$\rightarrow \alpha_1$ -Asp-126-O ^{$\delta 1$} 9	5 α_1 -His-103-N ^{ϵ_2-H^{ϵ_2}}	$\rightarrow \ \beta_{l}\text{-}Gln\text{-}131\text{-}O^{\epsilon l}$	98 α ₁ -Lys-99-N ⁵	$-H^{\zeta_1} \rightarrow \beta_1$ -Asn-108-N ^{δ_2}	92	β_1 -Arg-30-N ^{η1} —H ^{η11}	$\rightarrow \alpha_1$ -Thr-118-O	81	β_1 -Arg-30-N ^{η^2} -H ^{η^{21}}	$\rightarrow \alpha_1$ -Phe-117-O	99
a.B.	β_1 -Lys-120-N ^{ζ} -H ^{ζ_1} $\rightarrow \alpha_1$ -His-112-N ^{δ_1}	35	β_1 -Arg-30-N ^{η1} —H ^{η11}	$\rightarrow \alpha_1$ -Phe-117-O 95			β_1 -Asn-108-N ^{$\delta 2$} -H ^{$\delta 21$}	$\rightarrow \alpha_1$ -His-103-N ^{$\delta 1$} 7	0 β_1 -Arg-30-N ^{η^2} -H ^{η^{21}}	$\rightarrow \alpha_1$ -Phe-117-O	69 α ₁ -His-103-N	2 —H ^{ϵ2} \rightarrow β_{1} -Asn-108-O	66	β_1 -Arg-30-N ^{η1} —H ^{η11}	$\rightarrow \alpha_1$ -Pro-119-N	98	β_1 -Asn-108-N ^{δ_2} -1H ^{δ_2}	$\rightarrow \alpha_1$ -His-103-N ^{$\delta 1$}	1 58
$\alpha_1 p_1$	β_1 -Lys-120-N ^{ζ} —H ^{<math>\zeta_1 $\rightarrow \alpha_1$-His-112-O</math>}	100	β_1 -Arg-30-N ^{η1} —H ^{η11}	$\rightarrow \alpha_1$ -His-122-N ^{$\delta 1$} 71			β_1 -Gln-131-N ^{ϵ2} —H ^{ϵ12}	$\rightarrow \alpha_1$ -Ser-35-O ^{γ} 3	1 β_1 -Arg-30-N ^{η2} —H ^{η21}	$\rightarrow \alpha_1$ -Thr-118-O	74 α ₁ -His-103-N	2 —H ^{ϵ2} $\rightarrow \beta_{1}$ -Gln-127-N ^{ϵ2}	67	β_1 -Tyr-35-O ^{η} —H ^{η}	$\rightarrow \alpha_1$ -Asp-126-O ^{$\delta 1$}	65	β_1 -His-116-N ^{$\epsilon 2$} —H ^{$\epsilon 2$}	$\rightarrow \alpha_1$ -Ala-115-O	46
	β_1 -Lys-132-N ^{ζ} —H ^{<math>\zeta_1 $\rightarrow \alpha_1$-Ser-35-O</math>}	93	β ₁ -Tyr-35-O ^η —H ^η	$\rightarrow \alpha_1$ -Asp-126-O ^{$\delta 1$} 31			β_1 -Gln-131-N ^{ϵ2} —H ^{ϵ12}	$\rightarrow \alpha_1$ -His-103-N ^{$\delta 1$} 10	0 β_1 -Lys-120-N ^{ζ} —H ^{ζ_1}	$\rightarrow \alpha_1$ -His-112-O	38 β ₁ -Lys-120-N	$-H^{\zeta 1} \rightarrow \alpha_1$ -His-112-N ^{$\delta 1$}	36	β_1 -His-116-N ^{ϵ2} —H ^{ϵ2}	$\rightarrow \alpha_1$ -Ala-115-O	31	β_1 -Gln-131-N ^{<math>\epsilon_2-1Hϵ_2</math>}	$\rightarrow \alpha_1$ -His-103-N ^{$\delta 1$}	100
			β_1 -Gln-131-N ^{ϵ2} —1H ^{ϵ2}	$\rightarrow \alpha_1$ -Ser-35-O ^{γ} 100			β ₁ -Lys-132-N-H ^{ζ1}	$\rightarrow \alpha_1$ -Ser-35-0 9	β_1 -Gln-127-N ^{e2} —1H ^{e2}	$\rightarrow \alpha_1$ -Cys-104-O	100 β ₁ -Gln-127-N	$\alpha_1 - 1H^{\alpha_2} \rightarrow \alpha_1 - Arg - 31 - 0$	100	β_1 -Gln-131-N ^{$\epsilon 2$} —1H ^{$\epsilon 2$}	$\rightarrow \alpha_1$ -Ser-35-O ^{γ}	39	β ₁ -Lys-132-N ⁵ —H ⁵¹	$\rightarrow \alpha_1$ -Ser-35-O	96
			β1-Lys-132-N ⁵ —H ⁵¹	$\rightarrow \alpha_1$ -Leu-34-O 94					β ₁ -Lys-132-N ⁵ —H ⁵¹	$\rightarrow \alpha_1$ -Ser-35-O	92 β ₁ -Gln-131-N	α_1 -His-103-N ⁶¹ $\rightarrow \alpha_1$ -His-103-N ⁶¹	93	β_1 -Gln-131-N ^{ϵ_2-1H^{ϵ_2}}	$\rightarrow \alpha_1$ -His-103-N ^{o1}	100	ł		
														β ₁ -Lys-132-N ⁵ —H ⁵	$\rightarrow \alpha_1$ -Ser-35-U	93	L		
	α_2 -Ser-35-O ^{γ} —H ^{γ1} \rightarrow β_2 -Gln-131-O ^{ϵ1}	52	α ₂ -Lys-99-N ^ζ —H ^{ζ1}	$\rightarrow \beta_2$ -Glu-101-O ^{$\epsilon 2$} 54	α_2 -His-103-N ^{$\epsilon 2$} -H ^{$\epsilon 2$}	$\rightarrow \beta_2$ -Gln-131-O ^{$\epsilon 1$} 49	α_2 -His-103-N ^{$\epsilon 2$} -H ^{$\epsilon 2$}	$\rightarrow \beta_2$ -Gln-131-O ^{ε1} 5	6 α ₂ -Lys-99-N ^ζ —H ^{ζ1}	$\rightarrow \beta_2$ -Asn-108-N ^{$\delta 2$}	50 α ₂ -Lys-99-N ⁵	$-H^{\zeta_1} \rightarrow \beta_2$ -Glu-101-O ²	57	α_2 -His-103-N ^{$\epsilon 2$} -H ^{$\epsilon 2$}	$\rightarrow \beta_2$ -Asn-108-O	46	α_2 -His-103-N ^{$\epsilon 2$} —H ^{$\epsilon 2$}	$\rightarrow \beta_2$ -Asn-108-O ^{δ}	31 35
	α_2 -Lys-99-N ^{ζ} -H ^{ζ1} $\rightarrow \beta_2$ -Asn-108-O ^{δ1}	37	α_2 -His-103-N ^{ϵ_2} -H ^{ϵ_2}	$\rightarrow \beta_2$ -Asn-108-O 33	$\beta_2\text{-}Arg\text{-}30\text{-}N^\epsilon\text{-}H^\epsilon$	$\rightarrow \alpha_2$ -His-122-N ^{δ_1} 37	β_2 -Arg-30-N ^{η2} —H ^{η21}	$\rightarrow \alpha_2$ -Phe-117-O 5	2 α ₂ -His-103-N ^{ε2} —H ^{ε2}	$\rightarrow \beta_2$ -Cys-112-N	35 α ₂ -His-103-N	2 —H ^{ϵ2} $\rightarrow \beta_{2}$ -Gln-131-O ^{ϵ1}	46	α_2 -Lys-127-N ^{ζ} —H ^{ζ1}	$\rightarrow \beta_2$ -Val-33-O	62	α_2 -His-103-N ^{$\epsilon 2$} —H ^{$\epsilon 2$}	$\rightarrow \beta_2$ -Gln-127-N ^{a2}	² 47
	α_2 -His-103-N ^{ϵ_2} —H ^{ϵ_2} $\rightarrow \beta_2$ -Asn-108-O ^{δ_1}	54	α_2 -His-103-N ^{$\epsilon 2$} -H ^{$\epsilon 2$}	$\rightarrow \beta_2$ -Gln-131-N ² 70	$\beta_2\text{-}Arg\text{-}30\text{-}N^\epsilon\text{-}H^\epsilon$	$\rightarrow \alpha_2$ -His-122-N ^{$\epsilon 2$} 50	β_2 -Arg-30-N ^{η^2} -H ^{η^{21}}	$\rightarrow \alpha_2$ -Thr-118-O 4	4 α_2 -His-103-N ^{ϵ2} —H ^{ϵ2}	$\rightarrow \beta_2$ -Gln-127-N ^{e2}	46 α ₂ -His-103-N	2 —H ^{ϵ2} $\rightarrow \beta_{2}$ -Gln-131-N ^{ϵ2}	38	β_2 -Gln-127-N ^{$\epsilon 2$} -1H ^{$\epsilon 2$}	$\rightarrow \alpha_2$ -Thr-108-O ^{$\gamma 1$}	34	α_2 -His-103-N ^{$\epsilon 2$} —H ^{$\epsilon 2$}	$\rightarrow \beta_2$ -Gln-131-O ^{ε1}	¹ 60
	α_2 -His-103-N ^{$\varepsilon 2$} —H ^{$\varepsilon 2$} $\rightarrow \beta_2$ -Asn-108-O	83	β_2 -Arg-30-N ^{η1} —H ^{η11}	$\rightarrow \alpha_2$ -Phe-117-O 67	β_2 -Arg-30-N ^{η^2} -H ^{η^{21}}	$\rightarrow \alpha_2$ -Phe-117-O 80	β_2 -Arg-30-N ^{η^2} -H ^{η^{21}}	$\rightarrow \alpha_2$ -Pro-119-N 9	8 α_2 -His-103-N ^{$\epsilon 2$} -H ^{$\epsilon 2$}	$\rightarrow \beta_2$ -Gln-131-N ^{$\epsilon 2$}	93 α ₂ -Phe-117-N	$-H \rightarrow \beta_2$ -His-116-N ^{$\varepsilon 2$}	96	β_2 -Gln-131-N ^{$\epsilon 2$} —1H ^{$\epsilon 2$}	$\rightarrow \alpha_2$ -His-103-N ^{$\delta 1$}	100	α_2 -His-103-N ^{$\epsilon 2$} —H ^{$\epsilon 2$}	$\rightarrow \beta_2$ -Gln-131-N ²²	² 49
$\alpha_2\beta_2$	α_2 -His-103-N ^{ϵ_2-H^{ϵ_2} $\rightarrow \beta_2$-Gln-131-N^{ϵ_2}}	90	β_2 -Arg-30-N ^{η^2} -H ^{η^{21}}	$\rightarrow \alpha_2$ -Thr-118-O 54	β_2 -Arg-30-N ^{η^2} -H ^{η^{21}}	$\rightarrow \alpha_2$ -His-122-N ^{$\delta 1$} 76	β_2 -Tyr-35-O ^η —H ^η	$\rightarrow \alpha_2$ -Asp-126-O ^{δ^2} 7	3 β_2 -Arg-30-N ^{η1} —H ^{η11}	$\rightarrow \alpha_2$ -Phe-117-O	65 β ₂ -Arg-30-N ⁴	2 —H ^{η21} $\rightarrow \alpha_{2}$ -Phe-117-O	71	β_2 -Lys-132-N ^{ζ} —H ^{ζ_1}	$\rightarrow \alpha_2$ -Ser-35-O	92	α ₂ -Phe-117-N—H	$\rightarrow \beta_2$ -His-116-N ^{$\epsilon 2$}	85
	β_2 -Arg-30-N ^{ε} —H ^{ε} $\rightarrow \alpha_2$ -His-122-N ^{δ1}	93	β_2 -Arg-30-N ^{η_2} -H ^{η_{21}}	$\rightarrow \alpha_2$ -His-122-N ⁸¹ 43	β_2 -Tyr-35-O ^{η} —H ^{η}	$\rightarrow \alpha_2$ -Asp-126-O ⁸² 93	β_2 -Asn-108-N ⁸² —H ⁸²¹	$\rightarrow \alpha_2$ -His-103-N ^{δ1} 6	7 β ₂ -Arg-30-N ^{η2} —H ^{η21}	$\rightarrow \alpha_2$ -Phe-117-O	67 β ₂ -Arg-30-N ¹	2 —H ^{η21} $\rightarrow \alpha_{2}$ -Thr-118-O	70				α_2 -Lys-127-N ^{ζ} —H ^{ζ1}	$\rightarrow \beta_2$ -Val-34-O	69
	β_2 -Gln-131-N ^{ϵ2} —1H ^{ϵ2} $\rightarrow \alpha_2$ -Ser-35-O ^{γ}	100	β_2 -Gln-131-N ^{<math>\epsilon_2-1Hϵ_2</math>}	$\rightarrow \alpha_2$ -Ser-35-O ^{γ} 100	β_2 -Gln-131-N ^{<math>\epsilon_2-Hϵ_12</math>}	$\rightarrow \alpha_2$ -His-103-N ^{b1} 100	β_2 -Gln-131-N ^{<math>\epsilon_2-Hϵ_1_2</math>}	$\rightarrow \alpha_2$ -His-103-N ^{b1} 10	0 β ₂ -Lys-120-N ^ζ —H ^{ζ1}	$\rightarrow \alpha_2$ -His-112-O	37 β ₂ -Gln-127-N	α^{ϵ_2} —1 $H^{\epsilon_2} \rightarrow \alpha_2$ -Arg-31-O	33				β_2 -Gln-127-N ^{<math>\epsilon_2-1Hϵ_2</math>}	$\rightarrow \alpha_2$ -His-103-O	34
	β_2 -Gln-131-N ^{<math>\epsilon_2-1H$\epsilon_2 \rightarrow \alpha_2$-His-103-N^{$\circ_1$}</math>}	95	β ₂ -Lys-132-N ⁵ —H ⁵¹	$\rightarrow \alpha_2$ -Leu-34-0 95	β ₂ -Lys-132-N ⁵ —H ^{c1}	$\rightarrow \alpha_2$ -Ser-35-O 94	β ₂ -Lys-132-N ⁵ —H ⁵¹	$\rightarrow \alpha_2$ -Ser-35-0 9	5 β ₂ -Gln-131-N ^{ε2} —1H ^{ε2}	$\rightarrow \alpha_2$ -Ser-35-O	100 β ₂ -Gln-131-N	e2 —1H ^{e2} $\rightarrow \alpha_2$ -His-103-N ^{o1}	100				β_2 -Gln-131-N ^{<math>\epsilon_2-1Hϵ_2</math>}	$\rightarrow \alpha_2$ -Ser-35-O	100
									β ₂ -Lys-132-N ⁵ —H ⁵	$\rightarrow \alpha_2$ -Ser-35-O	92 β ₂ -Lys-132-N	$\rightarrow \alpha_2$ -Ser-35-O	92				β ₂ -Lys-132-N ⁵ —H ⁵¹	$\rightarrow \alpha_2$ -Leu-34-O	94
	α_1 -Tyr-140-O ^{η} —H ^{η} $\rightarrow \beta_2$ -Trp-37-N ^{$\epsilon 1$}	57	α_1 -Arg-92-N ^{η1} —H ^{η11}	$\rightarrow \beta_2$ -Glu-43-O ^{ϵ^2} 97	$\alpha_1\text{-}Arg\text{-}92\text{-}N^\epsilonH^\epsilon$	$\rightarrow \beta_2$ -Pro-36-O 34	α_1 -Thr-41-O ^{$\gamma 1$} -H ^{$\gamma 1$}	$\rightarrow \beta_2$ -His-97-N ^{δ_1} 4	3 α ₁ -Lys-40-N ^ζ —H ^{ζ1}	$\rightarrow \beta_2$ -His-146-O ^{T2}	53 α ₁ -Tyr-42-O ^η	$-H^{\eta} \rightarrow \beta_2$ -Arg-40-N ^{ϵ}	43	α_1 -Thr-38-O ^{γ_1} -H ^{γ_1}	$\rightarrow \beta_2$ -Asp-99-O ^{δ_1}	49	α_1 -Thr-41-O ^{γ_1} —H ^{γ_1}	$\rightarrow \beta_2$ -His-97-N ^{$\epsilon 2$}	39
	α_1 -Arg-141-N ^{η1} \rightarrow β_2 -Val-34-O	37	α_1 -Arg-92-N ^{η2} —H ^{η21}	$\rightarrow \ \beta_2 \text{-} Glu \text{-} 43 \text{-} O^{\epsilon 2} \qquad 50$	$\alpha_l\text{-}Tyr\text{-}140\text{-}O^\etaH^\eta$	$\rightarrow \beta_2$ -Trp-37-N ^{$\epsilon 1$} 38	α_1 -Thr-41-O ^{$\gamma 1$} -H ^{$\gamma 1$}	$\rightarrow \beta_2$ -His-97-N ^{$\epsilon 2$} 5	2 α ₁ -Tyr-42-O ^η —Η ^η	$\rightarrow \ \beta_2 \text{-} Arg \text{-} 40 \text{-} N^{\eta 1}$	32 α ₁ -Tyr-42-O ^η	$-H^{\eta} \rightarrow \beta_2$ -Asp-99-O ^{$\delta 2$}	44	α_1 -Thr-38-O ^{$\gamma 1$} -H ^{$\gamma 1$}	$\rightarrow \beta_2$ -Asp-99-O ^{δ^2}	48	α_1 -Tyr-42-O ^{η} —H ^{η}	$\rightarrow \beta_2$ -Arg-40-N ^{ϵ}	37
	β_2 -Trp-37-N ^{$\epsilon 1$} —H ^{$\epsilon 1$} $\rightarrow \alpha_1$ -Asp-94-O ^{$\delta 2$}	42	α_1 -Asn-97-N ^{$\delta 2$} -1H ^{$\delta 2$}	$\rightarrow \beta_2$ -Asp-99-O ^{$\delta 1$} 46	β_2 -Arg-40-N ^{η1} —H ^{η11}	$\rightarrow \alpha_1$ -Thr-41-O 46	α_1 -Tyr-42-O ^{η} —H ^{η}	$\rightarrow \beta_2$ -His-97-N ^{$\delta 1$} 3	8 α ₁ -Tyr-42-O ^η —Η ^η	$\rightarrow \beta_2$ -Arg-40-N ^{η^2}	65 α ₁ -Arg-141-Ν	η^2 — $H^{\eta^{21}} \rightarrow \beta_2$ -Tyr-35- O^{η}	64	α_1 -Thr-41-O ^{$\gamma 1$} -H ^{$\gamma 1$}	$\rightarrow \beta_2$ -His-97-N ^{$\delta 1$}	35	α_1 -Tyr-42-O ^{η} —H ^{η}	$\rightarrow \beta_2$ -Asp-99-O ^{δ^2}	33
$\alpha_1\beta_2$			α_1 -Arg-141-N ^{η1} —H ^{η11}	$\rightarrow \beta_2$ -Val-34-O 35	β_2 -Arg-40-N ^{η^2} -H ^{η^{21}}	$\rightarrow \alpha_1$ -Thr-41-O 50	α_1 -Arg-92-N ^{η2} —H ^{η21}	$\rightarrow \beta_2$ -Gln-39-O ^{$\varepsilon 1$} 7	5 α_1 -Arg-92-N ^{η2} —H ^{η21}	$\rightarrow \beta_2$ -Gln-39-O ^{ϵl}	64 β ₂ -Arg-40-N ^ε	$-\mathrm{H}^{\varepsilon} \rightarrow \alpha_1 - \mathrm{Arg} - 92 - \mathrm{N}^{\eta^2}$	38	α_1 -Thr-41-O ^{$\gamma 1$} -H ^{$\gamma 1$}	$\rightarrow \beta_2$ -His-97-N ^{$\epsilon 2$}	64	α_1 -Arg-92-N ^{ϵ} —H ^{ϵ}	$\rightarrow \beta_2$ -Arg-40-N ^{η1}	32
			α_1 -Arg-141-N ^{η_2} -H ^{η_{21}}	$\rightarrow \beta_2$ -Tyr-35-O ^{η} 32	β_2 -Arg-40-N ^{η^2} -H ^{η^{21}}	$\rightarrow \alpha_1$ -Tyr-42-O ^{η} 46	α_1 -Asn-97-N ^{$\delta 2$} —H ^{$\delta 12$}	$\rightarrow \beta_2$ -Asp-99-O ^{δ_1} 3	4		β ₂ -Arg-40-N ^ε	$-H^{\epsilon} \rightarrow \alpha_1$ -Tyr-140-O ^{η}	36	α_1 -Tyr-42-O ^{η} —H ^{η}	$\rightarrow \beta_2$ -Arg-40-N ^{ϵ}	88	α_1 -Arg-141-N ^{ϵ} —H ^{ϵ}	$\rightarrow \beta_2$ -Val-34-O	45
			β_2 -Asn-102-N ⁸² —1H ⁸²	$\rightarrow \alpha_1$ -Asp-94-O ⁸¹ 42	β_2 -Arg-40-N ^{η^2} -H ^{η^{21}}	$\rightarrow \alpha_1$ -His-89-N ^{$\delta 1$} 48	α_1 -Asn-97-N ⁸² —H ⁸¹ 2	$\rightarrow \beta_2$ -Asp-99-O ⁸² 3	7		β ₂ -Arg-40-N ⁴	$-H^{\eta 11} \rightarrow \alpha_1$ -Lys-90-O	34	α_1 -Arg-92-N ^{η^2} -H ^{η^{21}}	$\rightarrow \beta_2$ -Gly-46-O	34	ł		
			β_2 -Asn-102-N ⁸² —1H ⁸²	$\rightarrow \alpha_1$ -Asp-94-O ^{δ_2} 41	β_2 -Arg-40-N ^{η2} —H ^{η21}	$\rightarrow \alpha_1$ -His-89-O 50	β ₂ -Trp-37-N—H	$\rightarrow \alpha_1$ -Tyr-140-O 3	4		β ₂ -Arg-40-N ⁴	$-H^{\eta 11} \rightarrow \alpha_1$ -Leu-91-O	37	α_1 -Arg-92-N ^{η2} —H ^{η21}	$\rightarrow \beta_2$ -Asp-47-O ^{δ_1}	33	<u>. </u>		
	β_1 -Trp-37-N ^{$\epsilon 1$} -H ^{$\epsilon 1$} $\rightarrow \alpha_2$ -Asp-94-O ^{$\delta 2$}	45	β_1 -Trp-37-N ^{$\epsilon 1$} -H ^{$\epsilon 1$}	$\rightarrow \alpha_2$ -Asp-94-O ^{$\delta 1$} 74	$\alpha_2\text{-}Arg\text{-}92\text{-}N^\epsilonH^\epsilon$	$\rightarrow \beta_1$ -Gln-39-O ^{$\epsilon 1$} 54	β_1 -Trp-37-N ^{$\epsilon 1$} -H ^{$\epsilon 1$}	$\rightarrow \alpha_2$ -Asp-94-O ^{$\delta 2$} 6	8 β_1 -Trp-37-N ^{$\epsilon 1$} -H ^{$\epsilon 1$}	$\rightarrow \alpha_2$ -Asp-94-O ^{δ^2}	69 β_1 -Gln-39-N ^a	$-1 H^{\epsilon 2} \rightarrow \alpha_2$ -Arg-92-N ^{η1}	69	β_1 -Tyr-35-O ^η —H ^η	$\rightarrow \ \alpha_2\text{-}Arg\text{-}141\text{-}N^{\eta 2}$	55	β_1 -Arg-40-N ^s —H ^s	$\rightarrow \alpha_2$ -Leu-91-O	49
	β_1 -Arg-40-N ^{η1} —H ^{η11} $\rightarrow \alpha_2$ -Arg-92-O	42	$\beta_1\text{-}Arg\text{-}40\text{-}N^{\eta1}\text{-}H^{\eta11}$	$\rightarrow \alpha_2$ -Thr-41-O 38	$\alpha_2\text{-}Arg\text{-}92\text{-}N^{\eta2}\text{-}H^{\eta21}$	$\rightarrow \beta_1$ -Pro-36-O 57	$\beta_1\text{-}Arg\text{-}40\text{-}N^{\eta1}\text{-}H^{\eta11}$	$\rightarrow \alpha_2$ -Ala-88-O 3	9 β_1 -Arg-40-N ^{η1} —H ^{η11}	$\rightarrow \alpha_2$ -Thr-41-O	38 β_1 -Arg-40-N ^a	$-H^{\epsilon} \rightarrow \alpha_2$ -Asp-94-O ^{$\delta 2$}	44	α_2 -Lys-40-N ^{ζ} —H ^{ζ_1}	$\rightarrow \ \beta_1\text{-His-97-N}^{\delta 1}$	69	β_1 -Arg-40-N ^{η1} —H ^{η11}	$\rightarrow \ \alpha_2 \text{-} Thr \text{-} 41 \text{-} O^{\gamma 1}$	48
	β_1 -Arg-40-N ^{η1} $\rightarrow \alpha_2$ -Asp-94-O ^{δ1}	39	$\beta_1\text{-}Arg\text{-}40\text{-}N^{\eta1}\text{-}H^{\eta11}$	$\rightarrow \ \alpha_2\text{-}Asp\text{-}94\text{-}O^{\delta 2} \qquad 36$	$\alpha_2\text{-}Arg\text{-}92\text{-}N^{\eta2}\text{-}H^{\eta21}$	$\rightarrow \beta_1$ -Gln-39-O ^{$\epsilon 1$} 33	$\beta_1\text{-}Arg\text{-}40\text{-}N^{\eta1}\text{-}H^{\eta11}$	$\rightarrow \alpha_2$ -His-89-N ^{$\delta 1$} 3	7 β_1 -Arg-40-N ^{η1} —H ^{η11}	$\rightarrow \ \alpha_2\text{-}Tyr\text{-}42\text{-}O^\eta$	39 β1-Arg-40-N ¹	$-H^{\eta 11} \rightarrow \alpha_2$ -Thr-41-O	33	α_2 -Arg-92-N ^{η1} —H ^{η11}	$\rightarrow \ \beta_1 \text{-} Arg\text{-} 40\text{-} N^{\eta 1}$	66	β_1 -Arg-40-N ^{η1} —H ^{η11}	$\rightarrow \alpha_2$ -Asp-94-N	35
			β_1 -Arg-40-N ^{η2} —H ^{η21}	$\rightarrow \ \alpha_2 \text{-Thr-}41\text{-}O^{\gamma 1} \qquad 43$	$\alpha_2\text{-}Arg\text{-}92\text{-}N^{\eta2}\text{-}H^{\eta21}$	$\rightarrow \beta_1$ -Gln-39-O 42	$\beta_1\text{-}Arg\text{-}40\text{-}N^{\eta1}\text{-}H^{\eta11}$	$\rightarrow \alpha_2$ -Asp-94-O ^{δ^2} 3	9 β_1 -Arg-40-N ^{η1} —H ^{η11}	$\rightarrow \alpha_2$ -Arg-92-O	39 β1-Arg-40-N ¹	$-H^{\eta 11} \rightarrow \alpha_2$ -Val-93-O	33				β_1 -Arg-40-N ^{η1} —H ^{η11}	$\rightarrow \alpha_2$ -Asp-94-O ^{$\delta 1$}	38
a.B.			α_2 -Arg-92-N ^{η^2} -H ^{η^{21}}	$\rightarrow \beta_1$ -Pro-36-O 66			β_1 -Arg-40-N ^{η1} —H ^{η11}	$\rightarrow \alpha_2$ -Tyr-140-O ^{η} 4	1 β_1 -Arg-40-N ^{η1} —H ^{η11}	$\rightarrow \alpha_2$ -Asp-94-N	37 β ₁ -Arg-40-N ⁴	$-H^{\eta 11} \rightarrow \alpha_2$ -Asp-94-O ^{$\delta 1$}	44				α_2 -Thr-38-O ^{γ1} —H ^{γ1}	$\rightarrow \beta_1$ -Asp-99-O ^{δ_2}	37
u_2p_1			α_2 -Arg-92-N ^{η2} —H ^{η21}	$\rightarrow \beta_1$ -Gln-39-O ^{ε1} 47			α_2 -Thr-41-O ^{γ1} —H ^{γ1}	$\rightarrow \beta_1$ -His-97-N ^{$\delta 1$} 7	9 α_2 -Thr-41-O ^{γ_1} -H ^{γ_1}	$\rightarrow \beta_1$ -Tyr-145-O ^η	48 α ₂ -Thr-41-O ^γ	$-H^{\gamma 1} \rightarrow \beta_1$ -His-97-N ^{$\delta 1$}	42				α_2 -Arg-92-N ^{ϵ} —H ^{ϵ}	$\rightarrow \beta_1$ -Gln-39-O	58
							α_2 -Arg-92-N ^{η2} —H ^{η21}	$\rightarrow \beta_1$ -Pro-36-O 7	⁸ α ₂ -Tyr-42-O ^η —H ^η	$\rightarrow \beta_1$ -Arg-40-N ^{ε}	53 α ₂ -Thr-41-O ^γ	$-H^{\gamma 1} \rightarrow \beta_1$ -Val-98-O	59				α_2 -Arg-92-N ^{ϵ} —H ^{ϵ}	$\rightarrow \beta_1$ -Glu-43-O ^{ϵ1}	46
									α_2 -Arg-92-N ^{η1} —H ^{η11}	$\rightarrow \beta_1$ -Arg-40-N ^{η^2}	46 α ₂ -Arg-92-N ¹	$-H^{\eta 11} \rightarrow \beta_1$ -Arg-40-O	54				α_2 -Arg-92-N ^{η1} —H ^{η11}	$\rightarrow \beta_1$ -Gln-39-O	46
									α_2 -Arg-92-N ^{η1} —H ^{η11}	$\rightarrow \beta_1$ -Arg-40-O	51 α ₂ -Arg-92-N ¹	$-H^{\eta_{11}} \rightarrow \beta_1$ -Glu-43-O ^{ε_1}	34				α_2 -Arg-92-N ^{η1} —H ^{η11}	$\rightarrow \beta_1$ -Glu-43-O ^{ε1}	58
																	α_2 -Arg-92-N ⁴² —H ⁴²¹	$\rightarrow \beta_1$ -GIn-39-O ^{er}	/8
	α_1 -Val-1-N—H ¹ $\rightarrow \alpha_2$ -Arg-141-O ^{T2}	86	α1-Val-1-N—H1	$\rightarrow \alpha_2$ -Ser-138-O 40	α_1 -Val-1-N—H ¹	$\rightarrow \alpha_2$ -Arg-141-O ^{T2} 34	α_1 -Val-1-N—H ¹	$\rightarrow \alpha_2$ -Ser-138-0 8	4 α ₁ -Val-1-N—H ¹	$\rightarrow \alpha_2$ -Ser-138-O	46 α ₁ -Val-1-N-	H ¹ $\rightarrow \alpha_2$ -Ser-138-O	46	α_1 -Val-1-N—H ¹	$\rightarrow \alpha_2$ -Ser-138-O	40	α_1 -Arg-141-N ^{ϵ} —H ^{ϵ}	$\rightarrow \alpha_2$ -Asp-126-O ⁸	⁵² 36
	α_2 -Val-1-N—H ¹ $\rightarrow \alpha_1$ -Arg-141-O ^{T2}	33	α_1 -Val-1-N—H ¹	$\rightarrow \ \alpha_2 \text{-} Arg \text{-} 141 \text{-} O^{T2} \qquad 61$	α_1 -Ser-3-O ^{γ} —H ^{η21}	$\rightarrow \alpha_2$ -Arg-141-O ^{T2} 40	α_2 -Lys-127-N ^{ζ} —H ^{ζ_1}	$\rightarrow \alpha_1$ -Arg-141-O ^{T2} 5	6 α_1 -Lys-127-N ^{ζ} -H ^{ζ_1}	$\rightarrow \alpha_2$ -Arg-141-O ^{T1}	59 α ₁ -Val-1-N-	$H^1 \rightarrow \alpha_2$ -Arg-141- O^{T1}	65	α_1 -Val-1-N—H ¹	$\rightarrow \alpha_2$ -Lys-139-O	60	α_1 -Arg-141-N ^{ϵ} —H ^{ϵ}	$\rightarrow \alpha_2$ -Lys-127-O	36
	α_2 -Lys-127-N ^{ζ} -H ^{ζ_1} $\rightarrow \alpha_1$ -Arg-141-O ^{T1}	72	α_1 -Lys-127-N ^{ζ} —H ^{ζ_1}	$\rightarrow \alpha_2$ -Arg-141-O ^{T1} 38	α_1 -Thr-134-O ^{$\gamma 1$} -H ^{$\gamma 1$}	$\rightarrow \alpha_2$ -Arg-141-N ^{η1} 34	α_2 -Arg-141-N ^{ϵ} —H ^{ϵ}	$\rightarrow \alpha_1$ -Asp-126-O ^{$\delta 2$} 4	3 α ₁ -Lys-127-N ^ζ —H ^{ζ1}	$\rightarrow \alpha_2$ -Arg-141-O ^{T2}	38 α ₁ -Val-1-N—	H ¹ $\rightarrow \alpha_2$ -Arg-141-O ^{T2}	32	α_2 -Val-1-N—H ¹	$\rightarrow \alpha_1$ -Ser-138-O ^{γ}	35	α_1 -Arg-141-N ^{η1} —H ^{η11}	$\rightarrow \alpha_2$ -Asp-126-O ⁸	⁵² 50
	α_2 -Arg-141-N ^{η1} —H ^{η11} $\rightarrow \alpha_1$ -Asp-126-O ⁸²	55	α_1 -Arg-141-N ^{η1} —H ^{η11}	$\rightarrow \alpha_2$ -Asp-126-O ^{δ1} 62	α_1 -Arg-141-N $^{\eta 2}$ -H $^{\eta 21}$	$\rightarrow \alpha_2$ -Ala-123-O 46			α_2 -Ser-3-O ^{γ} —H ^{γ1}	$\rightarrow \alpha_1$ -Arg-141-O ^{T1}	46 α ₂ -Val-1-N-	$H^1 \rightarrow \alpha_1$ -Ser-138-O	46	α ₂ -Val-1-N—H ¹	$\rightarrow \alpha_1$ -Ser-138-O	36	α_1 -Arg-141-N ^{η1} —H ^{η11}	$\rightarrow \alpha_2$ -Thr-134-O ^{γ1}	58
			α_1 -Arg-141-N ^{η1} —H ^{η11}	$\rightarrow \alpha_2$ -Asp-126-O ⁶² 40	α_1 -Arg-141-N $^{\eta 2}$ -H $^{\eta 21}$	$\rightarrow \alpha_2$ -Asp-126-O ⁸¹ 52			α ₂ -Lys-127-N ⁴ H ⁴¹	$\rightarrow \alpha_1$ -Arg-141-O ¹²	74 α ₂ -Val-1-N—	H ¹ $\rightarrow \alpha_1$ -Arg-141-O ¹¹	72				α_2 -Arg-141-N ^{η1} —H ^{η11}	$\rightarrow \alpha_1$ -Ala-130-O	52
asas			α_1 -Arg-141-N ⁴² —H ⁴²¹	$\rightarrow \alpha_2$ -Asp-126-O ⁶¹ 34	α ₂ -Val-1-N—H ¹	$\rightarrow \alpha_1$ -Ser-138-O ⁷ 67											α_2 -Arg-141-N ^{η1} —H ^{η11}	$\rightarrow \alpha_1$ -Ser-131-O ⁷	48
0.202			α_2 -Val-1-N—HI	$\rightarrow \alpha_1$ -Ser-138-0 76	α ₂ -Val-1-N—H ¹	$\rightarrow \alpha_1$ -Lys-139-0 35											α_2 -Arg-141-N ^{η_2} -H ^{η_21}	$\rightarrow \alpha_1$ -Asp-126-O°	¹¹ 52
			α_2 -Lys-12/-N ⁵ —H ⁵	$\rightarrow \alpha_1$ -Arg-141-O ²² 95	α ₂ -Val-I-N—H·	$\rightarrow \alpha_1$ -Arg-141-O ^{TI} 62											α_2 -Arg-141-N ^{1/2} —H ^{1/2/}	$\rightarrow \alpha_1$ -Asp-126-O	- 4/
			a2-Arg-141-N ⁴ -H ⁴¹	$\rightarrow a_1$ -Asp-126-0 ⁻¹ 49	a2-Sel-151-0/	\rightarrow u_1 -Alg-141-0 ¹¹ 58											02-AIg-141-N	$\rightarrow a_1$ -1111-154-0/	43
			α_2 -Arg 141-N ⁺ —H ⁺	$\rightarrow a_1$ -Asp-126-0 31													1		
			α_2 -Arg-141-N ¹² —H ¹²¹	\rightarrow u ₁ -Asp-120-0 57 \rightarrow u ₁ -Asp-126-0 ⁸² 60													ł		
	L		······································	a, risp 120-0 00											-	<u> </u>		-	
			β_1 -Arg-104-N ^{η1} —H ^{η11}	$\rightarrow \beta_2$ -Glu-101-O ^{ε2} 48	β_1 -His-146-N ^{ϵ2} —H ^{ϵ2}	$\rightarrow \beta_2$ -Asn-139-O ^{δ1} 37			β_1 -Arg-104-N ^{ε} -H ^{ε}	$\rightarrow \beta_2$ -His-146-O ^{T1}	44 β ₁ -Val-1-N-	$H^1 \rightarrow \beta_2$ -His-146-O ^{T2}	51	β_1 -Arg-104-N ^{η^2} -H ^{η^{21}}	$\rightarrow \beta_2$ -Glu-101-O ^{ε1}	31	β_1 -Asn-139-N ⁸² —1H ⁸²	$\rightarrow \beta_2$ -His-146-N ^{$\delta 1$}	56
			β_1 -Arg-104-N ^{η_2-H^{η_{21}}}	$\rightarrow \beta_2$ -Glu-101-O ^{ε1} 50	β_1 -His-146-N ^{<math>\epsilon_2-Hϵ_2</math>}	\rightarrow β_2 -Asn-139-N ⁶² 36			β_1 -Arg-104-N ^{ε} —H ^{ε}	$\rightarrow \beta_2$ -His-146-O ¹²	43 β ₁ -His-146-N	2 —H ^{ϵ_{2}} $\rightarrow \beta_{2}$ -Asn-139-O ^{δ_{1}}	56	β_1 -Asn-139-N ⁶² —1H ⁶²	$\rightarrow \beta_2$ -Tyr-145-O ^{η}	41	β ₁ -Asn-139-N ⁶² —1H ⁸²	$\rightarrow \beta_2$ -His-146-N ^{$\epsilon 2$}	- 55
$\beta_1\beta_2$			β ₂ -His-146-N ^{ε2} —H ^{ε2}	$\rightarrow \beta_1$ -His-2-N ^{ϵ_2} 49	β ₂ -His-146-N ^{ε2} —H ^{ε2}	$\rightarrow \beta_1$ -Gly-136-N 39			β_1 -Arg-104-N ^{η_1} -H ^{η_1}	$\rightarrow \beta_2$ -His-146-N ^{ϵ_2}	44 β ₁ -His-146-N	$-H^{*-} \rightarrow \beta_2$ -Asn-139-O	57	β ₁ -Asn-139-N ⁶² —1H ⁶²	$\rightarrow \beta_2$ -Tyr-145-O	42	β₂-Val-1-N—H¹	$\rightarrow \beta_1$ -Asp-94-O ^{δ_1}	38
			β₂-H18-146-N ^{≈2} —H ^{≈2}	$\rightarrow \beta_1$ -Ala-135-0 45	p ₂ -H1s-146-N ^{s2} −−H ⁸²	$\rightarrow \beta_1$ -Asn-139-O ^{o1} 41			β_1 -Arg-104-N ^{η_1} -H ^{η_1}	$\rightarrow \beta_2$ -His-146-O ¹¹	45 β ₂ -Val-1-N-	H [*] $\rightarrow \beta_1$ -His-146-O ¹² 2 Hs ² β_1 β_1 -His-146-O ¹²	56	β ₁ -H1s-143-N ⁸² −H ⁸²	$\rightarrow \beta_2$ -Lys-82-N ⁵	39	1		
									p2-ASB-159-N°2-1H°2 B2 Acp 120 N ⁸² 1H ⁸²	→ p1-HIS-143-0	24 B. U.s. 146 N	$-\pi^- \rightarrow p_1$ -His-140-O ¹² ² H ²² $\rightarrow p_1$ -Acm 120 $-\rho_1^{\delta_1}$	51	p1-HIS-143-N ⁴⁴ —H ⁶²	\rightarrow p ₂ -mis-143-N ⁶¹	38 20	1		
									P2-750-157-10 — III	· pi-1yi-145-0	5-1 p2-1115-140-IN	11 / pi-Asii-139-0	54	B2-Tyr-145-O ⁿ —H ⁿ	$\rightarrow \beta_1 - A sp - 139 - O^{\delta_1}$	39	1		
	1	- 11	1		1		11		11		11			F- 1,1 1.0 0 11	P11101 157 0	~	1		

Table S10. The Average backbone RMSF over all residues in a chain and the complete tetramer for various hemoglobin simulations. RMSF is greater in β chains than the α chains for deoxyhemoglobin, but it is similar for oxyhemoglobins. The 'All residues' column contains the mean of RSMF for all residues in each molecule. The column 'Whole' lists the backbone RMSF of the complete tetramer. Moreover, these values are higher because they include the contribution from inter-subunit motions.

	α_1 chain	β_1 chain	α_2 chain	β_2 chain	All residues	Whole
HbS Fibril	0.59 ± 0.24	0.66 ± 0.38	0.55 ± 0.20	0.77 ± 0.34	0.65 ± 0.31	0.96 ± 0.39
HbA Fibril	0.55 ± 0.18	0.61 ± 0.20	0.57 ± 0.18	0.63 ± 0.22	0.59 ± 0.20	0.93 ± 0.31
deoxy HbS	0.60 ± 0.24	0.76 ± 0.31	0.59 ± 0.22	0.70 ± 0.27	0.66 ± 0.27	1.12 ± 0.32
deoxy HbA	0.58 ± 0.24	0.83 ± 0.49	0.56 ± 0.21	0.71 ± 0.36	0.67 ± 0.36	1.05 ± 0.41
oxy HbS (T)	0.62 ± 0.32	0.64 ± 0.23	0.62 ± 0.28	0.73 ± 0.31	0.65 ± 0.29	1.07 ± 0.35
oxy HbA (T)	0.64 ± 0.35	0.68 ± 0.32	0.61 ± 0.30	0.64 ± 0.24	0.64 ± 0.30	1.06 ± 0.37
oxy HbS (R)	0.60 ± 0.33	0.82 ± 0.37	0.70 ± 0.37	0.91 ± 0.45	0.76 ± 0.40	1.08 ± 0.43
oxy HbA (R)	0.66 ± 0.32	0.68 ± 0.27	0.58 ± 0.21	0.63 ± 0.20	0.64 ± 0.26	0.89 ± 0.31

Figure S1 A schematic showing the substructure of the putative HbS fibril model (a 14-stranded model obtained from computer reconstruction of electron micrographs⁴⁻⁹) for which the MD simulation was performed (HbS Fibril). Barring a slight helical twist, the structure of the 14-stranded model closely resembles the packing in the HbS crystal. The 15 colored HbS tetramer arrangement was the structure used

in the MD simulation of the HbS Fibril in this study. For clarity, some of the tetramers towards the top of the schematic have not been displayed, and the strands have been colored in alternate shades of gray. The chains of the first tetramer in the unit cell are colored: α_1 =green, β_1 =cyan, α_2 =magenta, and β_2 =yellow. The chains of the second tetramer in the unit cell are colored: α_1 =pink, β_1 =white, α_2 =purple, and β_2 =orange.

Figure S2. Hemoglobin dimer-dimer rotation and separation. The center of mass of each chain in the hemoglobin, the $\alpha_1\beta_1$ dimer, and the $\alpha_2\beta_2$ dimer was evaluated. The vector from the center of mass of α_1 to the center of mass of β_1 was calculated. Likewise, for the vector from α_2 to β_2 . The projections of these vectors were taken on the plane normal to the vector from the center of mass of $\alpha_1\beta_1$ dimer to the center of mass of $\alpha_2\beta_2$ dimer. The angle between these two projections is the dimer rotation (θ). The distance between the center of masses $\alpha_1\beta_1$ and $\alpha_2\beta_2$ dimers is the dimer separation.

Figure S3 Evolution of free energy landscapes from the hemoglobin MD simulations. For each hemoglobin fibril simulation, free energy landscapes were created using the trajectories till 25 ns, 50 ns, ..., 200 ns. Moreover, free energy landscapes for each hemoglobin tetramer simulation were created using the trajectories till 125 ns, 250 ns, ..., 1000 ns. The landscapes are on the same ranges and energy scale for each case, with 100 bins in each dimension. Beyond 625 ns for single tetramer simulation and beyond 125 ns for fibril simulations, there is very little change in the features of the free energy landscapes, demonstrating that the entire trajectory had been adequately sampled.

Figure S4. RMSD with respect to the respective crystal structure or starting model and radius of gyration (R_G) from the hemoglobin MD simulations. Savitzky-Golay filter with a window size of 1001 and a polynomial of degree 2 was applied to smooth the data.

Figure S5. Free energy landscapes of hemoglobin evaluated using dimer-dimer rotation and separation. The landscapes are in the same range for each case, with 100 bins in each dimension. The trajectory points are plotted on the surface and colored according to the time given in the color bars. The landscapes for the fibril models are smaller because they were generated using 20,000 frames, while the others used 200,000 frames. The wells close to the dimer-dimer rotation of 85° are in R state, and the wells closer to 98° are in T state. The wells are labeled 1, 2, and 3 in the order in which these are visited. Hence, wells with the same label have a similar location. Each well has been labeled T or R state based on the dimer-dimer rotation; the well in the two oxyhemoglobin simulations starting from the R state remained in the R state and is labelled '3' because well-3 in all other cases was determined to be in R state. These landscapes confirm the information gained from the RMSD-R_G landscapes.

Figure S6. 2D histograms from RMSD and R_G of each hemoglobin subunit for the frames corresponding to each potential well in the free energy landscapes of hemoglobin.

Figure S7. Structure of hemoglobin with the helices in α_1 and β_2 labeled. The molecule has its center of mass at the origin. The first, second, and third principal axes (corresponding to the principal moments of inertia) are aligned with x, y, and z, respectively, with the y-axis pointing out of the page. The chains are colored as follows: α_1 =Green, β_1 =Cyan, α_2 =Magenta, and β_2 =Yellow.

Figure S8. Intersubunit interface properties in hemoglobin averaged over the MD trajectory. In the fibril simulations, the area between the chain of the central molecule is listed above. Contacts are defined as pairs of atoms within 4 Å of each other.

Figure S9. Amino acid composition of hemoglobin. The absolute number of each amino acid is given above the respective bars. The blue bars are the expected propensity of each amino acid in all- α proteins,¹⁰ and the orange bars are the values observed in normal hemoglobin.

Figure S10. Axial contacts in the first strand of deoxy-HbS (crystal contacts after translation by 1 unit along x). The rows and columns give the atoms involved in the contact, and each atom label is for one and two points, respectively. The contacts in HbS fibril are in blue, and the contacts for HbA fibril are in red to the right of the corresponding contact. The brightness of the color gives the percentage of occurrence in the trajectory.

Figure S11. Axial contacts in the second strand of deoxy-HbS (crystal contacts after translation by -1 unit along x). The rows and columns give the atoms involved in the contact, and each atom label is for one and two points, respectively. The contacts in HbS fibril are in blue, and the contacts for HbA fibril are in red to the right of the corresponding contact. The brightness of the color gives the percentage of occurrence in the trajectory.

Figure S12. Lateral contacts between the two strands of deoxy-HbS (crystal contacts between the two independent tetramers in the asymmetric unit). The rows and columns give the atoms involved in the contact, and each atom label is for one and two points, respectively. The contacts in HbS fibril are in blue, and the contacts for HbA fibril are in red to the right of the corresponding contact. The brightness of the color gives the percentage of occurrence in the trajectory. Val- 6 is listed to the right of Glu-6 as a separate residue, but only one is present in a molecule; Val-6 in HbS Fibril and Glu-6 in HbA fibril.

Figure S13. Lateral contacts between the two strands of deoxy-HbS (crystal contacts between the second tetramer in the asymmetric unit and the first tetramer after translation by -1 unit along x). The rows and columns give the atoms involved in the contact, and each atom label is for one and two points, respectively. The contacts in HbS fibril are in blue, and the contacts for HbA fibril are in red to the right of the corresponding contact. The brightness of the color gives the percentage of occurrence in the trajectory. Val- 6 is listed below Glu-6 as a separate residue, but only one is present in the molecule; Val-6 in HbS Fibril and Glu-6 in HbA fibril.

Figure S14. Contacts between anti-parallel double strands in deoxy-HbS (crystal contacts involving asymmetric units related by the crystallographic 2-fold screw axis with translation by -1 unit along y). The rows and columns give the atoms involved in the contact, and each atom label is for one and two points, respectively. The contacts in HbS fibril are in blue, and the contacts for HbA fibril are in red to the right of the corresponding contact. The brightness of the color gives the percentage of occurrence in the trajectory.

Figure S15. Contacts between anti-parallel double strands in deoxy-HbS (crystal contacts between asymmetric units related by the crystallographic 2-fold screw axis with a translation of -1 unit along y and -1 unit along z). The rows and columns give the atoms involved in the contact, and each atom label is for one and two points, respectively. The contacts in HbS fibril are in blue, and the contacts for HbA fibril are in red to the right of the corresponding contact. The brightness of the color gives the percentage of occurrence in the trajectory.

Figure S16. Contacts between parallel double strands in deoxy-HbS (crystal contacts after translation by -1 unit along x and -1 unit along z). The rows and columns give the atoms involved in the contact, and each atom label is for one and two points, respectively. The contacts in HbS fibril are in blue, and the contacts for HbA fibril are in red to the right of the corresponding contact. The brightness of the color gives the percentage of occurrence in the trajectory.

Figure S17. Contacts between parallel double strands in deoxy-HbS (crystal contacts between first and second tetramer after translation by -1 unit along z). The rows and columns give the atoms involved in the contact, and each atom label is for one and two points, respectively. The contacts in HbS fibril are in blue, and the contacts for HbA fibril are in red to the right of the corresponding contact. The brightness of the color gives the percentage of occurrence in the trajectory.

Figure S18. Contacts between parallel double strands in deoxy-HbS (crystal contacts between first tetramers after translation by -1 unit along z). The rows and columns give the atoms involved in the contact, and each atom label is for one and two points, respectively. The contacts in HbS fibril are in blue, and the contacts for HbA fibril are in red to the right of the corresponding contact. The brightness of the color gives the percentage of occurrence in the trajectory.

Figure S19. Contacts between parallel double strands in deoxy-HbS (crystal contacts between second tetramers after translation by -1 unit along z). The rows and columns give the atoms involved in the contact, and each atom label is for one and two points, respectively. The contacts in HbS fibril are in blue, and the contacts for HbA fibril are in red to the right of the corresponding contact. The brightness of the color gives the percentage of occurrence in the trajectory.

References:

1. Bringas, M.; Petruk, A. A.; Estrin, D. A.; Capece, L.; Martí, M. A., Tertiary and quaternary structural basis of oxygen affinity in human hemoglobin as revealed by multiscale simulations. *Scientific Reports* **2017**, *7* (1), 10926.

2. Galamba, N.; Pipolo, S., On the Binding Free Energy and Molecular Origin of Sickle Cell Hemoglobin Aggregation. *The Journal of Physical Chemistry B* **2018**, *122* (30), 7475-7483.

3. Galamba, N., On the Nonaggregation of Normal Adult Hemoglobin and the Aggregation of Sickle Cell Hemoglobin. *The Journal of Physical Chemistry B* **2019**, *123* (50), 10735-10745.

4. Carragher, B.; Bluemke, D. A.; Gabriel, B.; Potel, M. J.; Josephs, R., Structural analysis of polymers of sickle cell hemoglobin: I. Sickle hemoglobin fibers. *Journal of Molecular Biology* **1988**, *199* (2), 315-331.

5. Crepeau, R. H.; Dykes, G.; Garrell, R.; Edelstein, S. J., Diameter of haemoglobin S fibres in sickled cells. *Nature* **1978**, *274* (5671), 616.

6. Cretegny, I.; Edelstein, S. J., Double Strand Packing in Hemoglobin S Fibers. *Journal of Molecular Biology* **1993**, *230* (3), 733-738.

7. Dykes, G.; Crepeau, R. H.; Edelstein, S. J., Three-dimensional reconstruction of the fibres of sickle cell haemoglobin. *Nature* **1978**, *272* (5653), 506.

8. Dykes, G. W.; Crepeau, R. H.; Edelstein, S. J., Three-dimensional reconstruction of the 14-filament fibers of hemoglobin S. *Journal of Molecular Biology* **1979**, *130* (4), 451-472.

9. Garrell, R. L.; Crepeau, R. H.; Edelstein, S. J., Cross-Sectional Views of Hemoglobin S Fibers by Electron Microscopy and Computer Modeling. *Proceedings of the National Academy of Sciences of the United States of America* **1979**, *76* (3), 1140-1144.

10. Costantini, S.; Colonna, G.; Facchiano, A. M., Amino acid propensities for secondary structures are influenced by the protein structural class. *Biochemical and Biophysical Research Communications* **2006**, *342* (2), 441-451.