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Data

Data Availability

The policy of the UK HIV Drug Resistance Database is to make DNA sequences available to any

bona fide researcher who submits a scientifically robust proposal, provided data exchange complies

with Information Governance and Data Security Policies in all the relevant countries. This includes

replication of findings from published studies, although the researcher would be encouraged to work

with the main author of the published paper to understand the nuances of the data. Enquiries

should be addressed to iph.hivrdb@ucl.ac.uk in the first instance. More information on the UK

dataset is also available on the UK CHIC homepage: www.ukchic.org.uk. Amino acid sequences are

made available along with a metadata file.

The West and central African dataset is available as supplementary information along with a

metadata file containing HIV subtype, treatment information and known RAM presence/absence

for each sequence.

Predictions made for each sequence of both datasets, by all of the trained classifiers are made

available as part of the supplementary data as well as synthetic results from which the figures of the

paper were drawn. The importance values for each mutation and each trained classifier are also

made available.

All the data and metadata files made available are hosted in the online repository linked to this

project at the following URL:

github.com/lucblassel/HIV-DRM-machine-learning/tree/main/data

Data Preprocessing

For both the African and UK datasets, the sequences were truncated to keep sites 41 to 235 of

the RT protein sequence before encoding. This truncation was needed to avoid the perturbation

to classifier training due to long gappy regions at the beginning and end of the UK RT alignment

caused by shorter sequences. These positions were determined with the Gblocks software [3] with

default parameters, except for the Maximum number of sequences for a flanking position, set to



50,000, and the Allowed gap positions, which was set to ”All”. The encoding was done with the

OneHotEncoder from the category-encoders python module [4].

Classifiers

We used classifier implementations from the scikit-learn python library [5], RandomForestClassifier

for the random forest classifier, MultinomialNB for Näıve Bayes and LogisticRegressionCV for

logistic regression.

RandomForestClassifier was used with default parameters except:

• "n jobs"=4

• "n estimators"=5000

LogisticRegressionCV was used with the following parameters:

• "n jobs"=4

• "cv"=10

• "Cs"=100

• "penalty"=’l1’

• "multi class"=’multinomial’

• "solver"=’saga’

• "scoring"=’balanced accuracy’

MultinomialNB was used with default parameters.

For the Fisher exact tests, we used the implementation from the scipy python library [6], and

corrected p-values for multiple testing with the statsmodels python library [7] using the "Bonferroni"

method.

Scoring

To evaluate classifier performance several measures were used. We computed balanced accuracy

instead of classical accuracy, because it can be overly optimistic, especially when assessing a highly

biased classifier on an unbalanced test set [1].The balanced accuracy is computed using the following



formula, where TP and TN are the number of true positives and true negatives respectively, and

FP and FN are the number of false positives and false negatives respectively:
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We also computed adjusted mutual information (AMI). We chose it over mutual information

(MI) because it has an upper bound of 1 for a perfect classifier and is not dependent on the size of

the test set, allowing us to compare the performance for differently sized test sets [2]. The adjusted

mutual information of variables U and V is defined by the following formula, where MI(U, V ) is

the mutual information between variables U and V , H(X) is the entropy of the variable X (= U or

V ) and E{MI(U, V )} is the expected MI, as explained in [8].

AMI(U, V ) =
MI(U, V )� E{MI(U, V )}

1
2 [H(U) +H(V )]� E{MI(U, V )}

MI was used to compute the G statistic, which follows the chi-square distribution under the

null hypothesis [9]. This was used to compute p-values for each of our classifiers and assess the

significance of their performance. G is defined by equation below, where N is the number of samples.

G = 2 ·N ·MI(U, V )

Finally, to check the probabilistic predictive power of the classifiers we also computed the Brier

score which is the mean squared difference between the ground truth and the predicted probabil-

ity of being of the positive class for every sequence in the test set (therefore lower is better for

this metric). The Brier score is defined in equation below, where pt is the predicted probability

of being of the positive class for sample t and ot is the actual class (0 or 1, 1=positive class) of sample t:

Brier score =
1

N

NX

t=1

(pt � ot)
2

We used the following implementations from the scikit-learn python library [5] with default

options:



• balanced accuracy score

• mutual info score

• adjusted mutual info score

• brier score loss

We used the relative risk to observe the relationship between one of our new mutations and a

binary character X such as treatment status or presence/absence of a known RAM.

RR(new,X) =
prevalence (new mutation | X = 1)

prevalence (new mutation | X = 0)

=
|(new = 1) \ (X = 1)|

|(X = 1)| ÷ |(new = 1) \ (X = 0)|
|(X = 0)|
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