Synthesis and CO₂ Photoreduction of Lead-Free Cesium Bismuth Halide Perovskite Nanocrystals

Daofu Wu^a, Xusheng Zhao^a, Yanyi Huang^a, Junan Lai^a, Jiayu Yang^b, Changqing Tian^b, Peng He^{a,*}, Qiang Huang^{b,*}, Xiaosheng Tang^{a,b,c,*}

^a Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China

^b College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

^c School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

* Corresponding author.

E-mail: xstang@cqu.edu.cn (X. Tang), qhuang1986@163.com (Q. Huang), penghe@cqu.edu.cn(P. He).

EXPERIMENTAL SECTION

Materials. BiBr₃ (99%, Alfa Aesar), BiI₃ (98%, Aladdin), BiCl₃ (analytical pure, Aladdin), CsI (99.9%, Aladdin), CsBr (99.9%, Aladdin), CsCl (99%, Aladdin), oleic acid (90%, Sigma-Aldrich), n-Octylamine (99%, Aladdin), oleylamine (90%, Energy Chemical), tri-n-octylphosphine (90%, Alfa Aesar), 1,2-ethanedithiol (98+%, Alfa Aesar), tolune (analytical pure, Sinopharm Chemical Reagent Co., Ltd, China), acetone (analytical pure, Sinopharm Chemical Reagent Co., Ltd, China), isopropanol (High performance liquid chromatography pure, Kermel, China), dimethyl sulfoxide (>99%, Sinopharm Chemical Reagent Co., Ltd, China), n,N-Dimethylformamide (High performance liquid chromatography pure, Kermel, China). All materials were used as received without further purification.

Synthesis of Cs₃Bi₂X₉ NCs. For Cs₃Bi₂Cl₉ NCs, the dissolution of 15.2 mg CsCl and 18.9 mg BiCl₃ with molar proportion 3:2 was made in DMSO to produce the precursor solution, and then the addition of 200 μ L precursor solution into acetone was made dropwise while vigorous stirring. To synthesize ligand free Cs₃Bi₂Br₉ NCs, the dissolution of 19.2 mg CsBr and 26.9 mg BiBr₃ was made in 2 mL DMSO to form Cs₃Bi₂Br₉ precursor solution. The injection of 200 μ L precursor solution into 5 mL isopropanol was made while vigorous stirring. For Cs₃Bi₂I₉, the dissolution of 23.4 mg CsI and 35.4 mg BiI₃ with molar ratio 3:2 was made in DMF for the generation of the precursor solution, and then the addition of 200 μ L precursor solution into toluene was made dropwise while vigorous stirring. Typically, Cs₃Bi₂(I_{0.5}Br_{0.5})₉ and Cs₃Bi₂(Cl_{0.5}Br_{0.5})₉ was isopropanol.

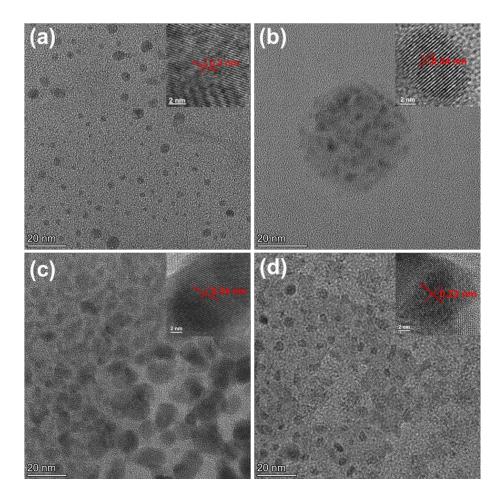
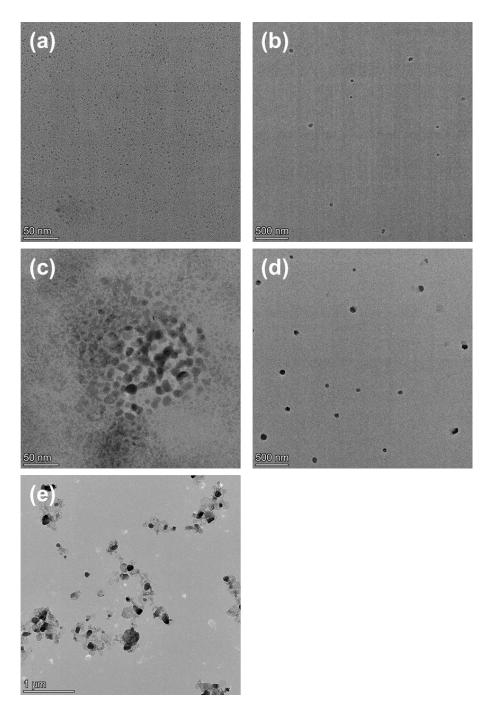
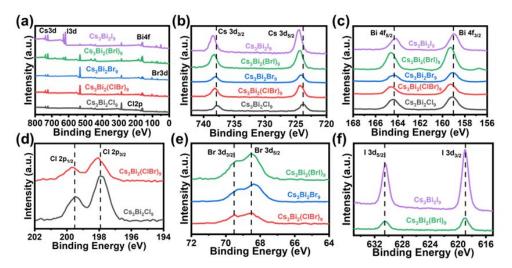
Characterization. X-ray diffraction (XRD) spectra of the samples was decided by powder X-ray diffraction (XRD) with Cu Ka radiation (MADZU, Japan). The transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) were examined on ZEISS LIBRA 200FE. The UV-visible absorption spectrum was determined by the scan UV-vis spectrophotometer (UV-2100)

(Shima dzu, Japan) with a range of 300 to 800 nm. X-ray photoelectron spectroscopy (XPS) determined the chemical states of samples on ESRCALAB250Xi, Thermo Fisher Scientific. The binding energies were referenced to the C 1s peak at a binding energy of 284.8 eV. The photoluminescence (PL) spectrum was recorded on a photoluminescence spectrometer (Cary Eclipse G9800A, Agilent Technologies) from 400 to 600 nm, under an excitation wavelength of 365 nm. In an isotope labelling experiment, the CO products were detected by differentially pumped quadrupole mass spectrometer (QMS, Hiden HPR20).

Photocatalytic CO₂ Reduction. Photocatalytic CO₂ decrease was carried out at the Labsolar-6A system (Perfect Light Co., China). Meanwhile, the system is made up of a fully-enclosed quartzose reactor, a 300 W Xe lamp, and gas chromatography (GC). Before carrying out catalysis, the Xe lamp was configured with 420 nm filter for the simulation of the visible solar light illumination. The measurements were carried out within a 40 mL sealed Pyrex bottle filled with CO₂ and H₂O vapor. During the representative progress, the ultrasonic dispersion of 3 mg photocatalyst was made in 1.0 mL toluene. Then, the mixture solution was applied onto a glass (2.0 * 2.0 cm) and heated to 100 °C in ambient atmosphere for 0.5 hours to remove the extraneous toluene. The treated clean sample films and 10 μ L water were put into the bottle which was degassed repeatedly to remove air and then filled with CO₂. In the reaction, the analysis of gaseous products collected was made per hour by a gas chromatography.

Photoelectrochemical characterizations. The NCs thin film was fabricated by spincoated process. The ITO substrates were cleaned by sonicating sequentially in deionized water, alcohol and acetone, each for 10 min. The NCs toluene suspension was then spin-coated on the ITO substrates at 2000 rpm for 30 s. The as-prepared thin films were subsequently dried at 60 °C on a hotplate to completely evaporate any residual supernatant. The photocurrent was performed on the CHI760e in a 3-electrode configuration with the assembled photoelectrodes (THE NCs on ITO glass) as the working electrode, the Pt mesh as the counter electrode and the Ag/AgCl electrode as the reference electrode. Filling the ethyl acetate with 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆) in the cell can be taken as electrolyte. The variation of photoinduced current density versus time (i-t curve) was recorded at a 0 V bias potential under simulating sunlight switching on and off mode.

The calculation of the energy band structure. The band gap of the Cs₃Bi₂X₉ NCs were analyzed via the $(\alpha hv)^{1/2}$ versus hv curves as shown in Figure S3. The band gap (E_g) values of the Cs₃Bi₂X₉ (X = Cl, Cl_{0.5}Br_{0.5}, Br, Br_{0.5}I_{0.5}, I) NCs ranged from 2.01 to 3.08 eV based on the Tauc plots. The valence band (VB) edges of the Cs₃Bi₂X₉ (X = Cl, Cl_{0.5}Br_{0.5}, Br, Br_{0.5}I_{0.5}, Br, Br_{0.5}I_{0.5}, Br, Br_{0.5}I_{0.5}, Br, Br_{0.5}I_{0.5}, Br, Br_{0.5}I_{0.5}, Br, Br_{0.5}I_{0.5}, I) NCs were determined by Valence-band XPS (VB XPS). As shown in Figure 2(a-e), the VB of Cs₃Bi₂Cl₆, Cs₃Bi₂(Cl_{0.5}Br_{0.5})₉, Cs₃Bi₂Br₉, Cs₃Bi₂(Br_{0.5}I_{0.5})₉, Cs₃Bi₂I₉ NCs are located at 2.67 eV, 2.15 eV, 2.13 eV, 1.36 and 1.15 respectively. Also, when we taking the bandgap values into consideration, the corresponding conduction band (CB) positions could be elucidated by the following equation: $E_{CB} = E_{VB} - E_{g}$. The band structures are calculated in Figure 2f, Cs₃Bi₂(Cl_{0.5}Br_{0.5})₉, Cs₃Bi₂(Br_{0.5}I_{0.5})₉, Cs₃Bi₂(Br_{0.5}I_{0.5})₉, Cs₃Bi₂(Br_{0.5}I_{0.5})₉ and Cs₃Bi₂I₉ have suitable bandgaps and energy band positions to achieve the photocatalytic CO₂-to-CO conversion.

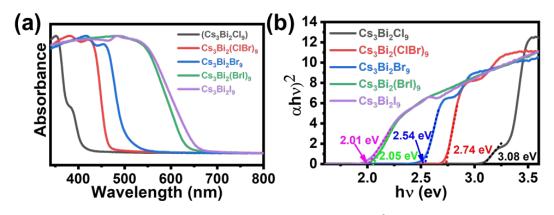

Figure S1. (a) TEM and HRTEM image of $Cs_3Bi_2Cl_9$ NCs. (b) TEM and HRTEM image of $Cs_3Bi_2(Cl_{0.5}Br_{0.5})_9$ NCs. (c) TEM and HRTEM image of $Cs_3Bi_2Br_9$ NCs. (d) TEM and HRTEM image of $Cs_3Bi_2I_9$ NCs.

Figure S2. (a) Low-resolution TEM image of $Cs_3Bi_2X_9$ (X=Cl, $Cl_{0.5}Br_{0.5}$, Br, $Br_{0.5}I_{0.5}$, I) NCs.

Figure S3. (a) X-ray photoelectron spectra (XPS), (b) Cs 3d, (c) Bi 4f, (d) Cl 2p, (e) Br 3d, (f) I 3d of $Cs_3Bi_2X_9$ (X=Cl, $Cl_{0.5}Br_{0.5}$, Br, $Br_{0.5}I_{0.5}$, I) NCs.

Figure S4. (a) UV–vis absorption spectra and (b) $(\alpha h\nu)^2$ versus hv curves of the Cs₃Bi₂X₉ (X=Cl, Cl_{0.5}Br_{0.5}, Br, Br_{0.5}I_{0.5}, I) NCs.

Catalysts	CO/µmol g ⁻¹ h ⁻¹	Selectivity/%	Cocatalyst	Model	Light	References
$Cs_{3}Bi_{2}(Br_{0.5}I_{0.5})_{9}$	18	100	/	gas-solid	Xe, ≥ 420 nm	This work
$Cs_{3}Bi_{2}(Cl_{0.5}Br_{0.5})_{9}$	16	100	/	gas-solid	Xe, ≥ 420 nm	This work
$Cs_3Bi_2I_9$	7.76	83.9	/	gas-solid	UV, 305 nm	1
MAPbI ₃ @Fe MOF	14.16	69.4	Fe MOF	ethyl acetate / water	Xe, 400 nm	2
Cs2AgBiBr6	2.35	59.9	/	ethyl acetate	AM 1.5G	3
CsPbBr ₃ /Pd	1.3	36.7	Pd	gas-solid	Xe lamp	4

 Table S1. Comparison of the photocatalytic CO2 reduction activity and CO selectivity

 of various perovskites-based photocatalysts

Nanosheet						
CsPbBr ₃ @TiO ₂	3.9	32.3	TiO_2	ethyl acetate / isopropano	AM 1.5G	5
CsPbBr ₃ /C ₃ N ₄	148.9	71.4	C_3N_4	acetonitrile / water	Xe, ≥ 420 nm	6
CsPbBr ₃ @ZIF-67	0.5	12.8	ZIF-67	gas-solid	AM 1.5G	7
CsPbBr ₃ @GO	4.89	66.4	GO	ethyl acetate	AM 1.5G	8
CsPbBr ₃ QDs	4.25	73.9	/	ethyl acetate / water	AM 1.5G	9
CsPbBr ₃ -Ni(tpy)	373	86.9	Ni(tpy) organic photosensitizer	ethyl acetate / water	$Xe,nm \ge 40$	10
Pb-rich Ni doped CsPbCl ₃	169.37	99	Pb, Ni	gas-solid	AM 1.5G	11
CsPbBr ₃	32.675	68.97	/	ethyl acetate / water	Xe, 450 nm	12
$Cs_3Sn_2Br_9$	127.5	/	/	octadecene / water	AM 1.5G	13
Mn doped CsPb(BrCl) ₃	213	95.89	Mn	ethyl acetate / water	AM 1.5G	14
Co doped CsPbBr ₃ /Cs ₄ PbBr ₆	122.33	/	Co	acetonitrile/water/methanol	Xe, 300 W	15
CsPbBr ₃ @UiO- 66(NH ₂)	8.2	96.97	UiO-66(NH ₂)	ethyl acetate / wate	$Xe,nm \ge 42$	16
Fe doped CsPbBr ₃	3.2	34.4	Fe	gas-solid	Xe, 400 W	17
CsPbBr ₃ /MXene	26.61	79.73	MXene	ethyl acetate / water	Xe, ≥ 420 nm	18
Co doped CsPbBr ₃ Cs4PbBr ₆	11.95	/	Co	pure water	$Xe,\!nm \geq 40$	19
CsPbBr ₃ /TiO ₂	12.9	/	TiO ₂	ethyl acetate / water	Xe, ≥400 nm	20
$CsPb(Br_{0.5}Cl_{0.5})_3$	85.22	87.66	/	ethyl acetate / water	AM 1.5G	21
Cs ₃ Bi ₂ Br ₉	26.95	98.7	/	gas-solid	AM 1.5G	22
Cs ₃ Bi ₂ Cl ₉	21.01	98.3	/	gas-solid	AM 1.5G	22

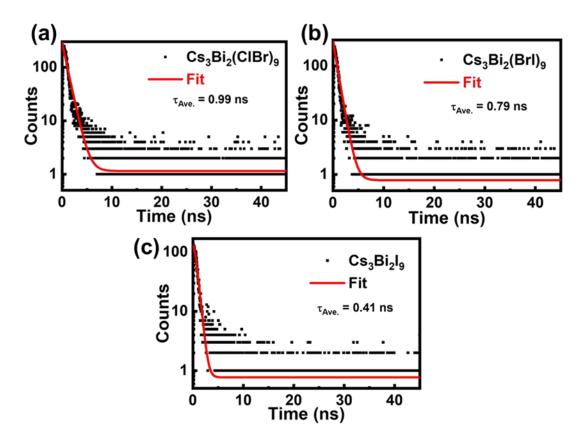


Figure S5. Time-resolved fluorescence emission decay spectra of (a) $Cs_3Bi_2(Cl_{0.5}Br_{0.5})_9$ (b) $Cs_3Bi_2(Br_{0.5}I_{0.5})_9$ and (c) $Cs_3Bi_2I_9$ NCs.

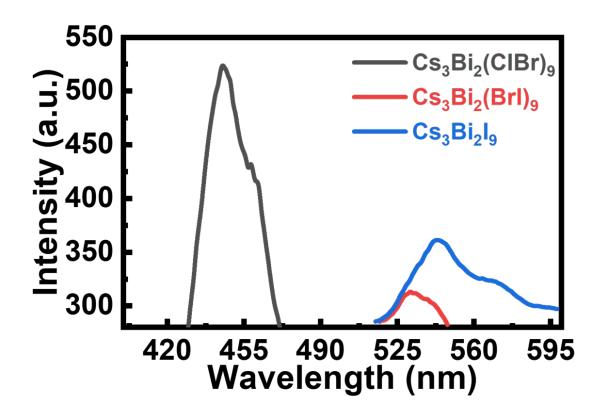


Figure S6. Photoluminescence (PL) spectra of $Cs_3Bi_2(Cl_{0.5}Br_{0.5})_9$, $Cs_3Bi_2(Br_{0.5}I_{0.5})_9$ and $Cs_3Bi_2I_9$ NCs.

	$\tau_1(ns)$	A_1	$\tau_2(ns)$	A ₂	$\tau_{ave}(ns)$
Cs ₃ Bi ₂ (ClBr) ₉	0.99	151.2	0.99	101.7	0.99
Cs ₃ Bi ₂ (BrI) ₉	0.79	387.3	0.79	48.1	0.79
Cs ₃ Bi ₂ I ₉	0.42	144.5	0.41	-133.3	0.41

Table S2. TRPL decay parameters of the $Cs_3Bi_2X_9$ (X = $Cl_{0.5}Br_{0.5}$, $Br_{0.5}I_{0.5}$, I)

References

(1) Bhosale, S. S.; Kharade, A. K.; Jokar, E.; Fathi, A.; Chang, S. M.; Diau, E. W., Mechanism of Photocatalytic CO₂ Reduction by Bismuth-Based Perovskite Nanocrystals at the Gas-Solid Interface. *J. Am. Chem. Soc.* **2019**, *141*, 20434-20442.

(2) Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B., Encapsulating Perovskite Quantum Dots in Iron-Based Metal-Organic Frameworks (MOFs) for Efficient Photocatalytic CO₂ Reduction. *Angew. Chem. Int. Ed. Engl.* **2019**, *58*, 9491-9495.

(3) Zhou, L.; Xu, Y. F.; Chen, B. X.; Kuang, D. B.; Su, C. Y., Synthesis and Photocatalytic Application of Stable Lead-Free Cs₂AgBiBr₆ Perovskite Nanocrystals. *Small* **2018**, *14*, 1703762.

(4) Xu, Y.; Yang, M.; Chen, H.; Liao, J.; Wang, X.; Kuang, D., Enhanced Solar-Driven Gaseous CO₂ Conversion by CsPbBr₃ Nanocrystal/Pd Nanosheet Schottky-Junction Photocatalyst. *ACS Appl. Energy Mater.* **2018**, *1*, 5083-5089.

(5) Xu, Y.; Wang, X.; Liao, J.; Chen, B.; Chen, H.; Kuang, D., Amorphous-TiO₂-Encapsulated CsPbBr₃ Nanocrystal Composite Photocatalyst with Enhanced Charge Separation and CO₂ Fixation. *Adv. Mater. Interfaces* **2018**, *5*, 1801015.

(6) Ou, M.; Tu, W.; Yin, S.; Xing, W.; Wu, S.; Wang, H.; Wan, S.; Zhong, Q.; Xu, R., Amino-Assisted Anchoring of CsPbBr3 Perovskite Quantum Dots on Porous g-C3N4 for Enhanced Photocatalytic CO₂ Reduction. *Angew. Chem. Int. Ed. Engl.* **2018**, *57*, 13570-13574.

(7) Kong, Z.; Liao, J.; Dong, Y.; Xu, Y.; Chen, H.; Kuang, D.; Su, C., Core@Shell CsPbBr3@Zeolitic Imidazolate Framework Nanocomposite for Efficient Photocatalytic CO₂ Reduction. *ACS Energy Lett.* **2018**, *3*, 2656-2662.

(8) Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su,
C. Y., A CsPbBr₃ Perovskite Quantum Dot/Graphene Oxide Composite for
Photocatalytic CO₂ Reduction. *J. Am. Chem. Soc.* 2017, *139*, 5660-5663.

(9) Hou, J.; Cao, S.; Wu, Y.; Gao, Z.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L., Inorganic Colloidal Perovskite Quantum Dots for Robust Solar CO₂ Reduction. *Chem. - Eur. J.* **2017**, *23*, 9481-9485.

(10) Chen, Z.; Hu, Y.; Wang, J.; Shen, Q.; Zhang, Y.; Ding, C.; Bai, Y.; Jiang, G.; Li,Z.; Gaponik, N., Boosting Photocatalytic CO₂ Reduction on CsPbBr₃ Perovskite

Nanocrystals by Immobilizing Metal Complexes. *Chem. Mater.* **2020**, *32*, 1517-1525. (11) Zhu, J.; Zhu, Y.; Huang, J.; Hou, L.; Shen, J.; Li, C., Synthesis of Monodisperse Water-Stable Surface Pb-Rich CsPbCl₃ Nanocrystals for Efficient Photocatalytic CO₂ Reduction. *Nanoscale* **2020**, *12*, 11842-11846.

(12) Shyamal, S.; Dutta, S. K.; Das, T.; Sen, S.; Chakraborty, S.; Pradhan, N., Facets and Defects in Perovskite Nanocrystals for Photocatalytic CO₂ Reduction. *J. Phys. Chem. Lett.* **2020**, *11*, 3608-3614.

(13) Lu, C.; Itanze, D. S.; Aragon, A. G.; Ma, X.; Li, H.; Ucer, K. B.; Hewitt, C.; Carroll, D. L.; Williams, R. T.; Qiu, Y. et al., Synthesis of Lead-Free Cs₃Sb₂Br₉ Perovskite Alternative Nanocrystals with Enhanced Photocatalytic CO₂ Reduction Activity. *Nanoscale* 2020, *12*, 2987-2991.

(14) Liu, Y. W.; Guo, S. H.; You, S. Q.; Sun, C. Y.; Wang, X. L.; Zhao, L.; Su, Z. M.,
Mn-Doped CsPb(Br/Cl)³ Mixed-Halide Perovskites for CO₂ Photoreduction. *Nanotechnology* 2020, *31*, 215605.

(15) Dong, G.-X.; Zhang, W.; Mu, Y.-F.; Su, K.; Zhang, M.; Lu, T.-B., A Halide Perovskite as a Catalyst to Simultaneously Achieve Efficient Photocatalytic CO₂ Reduction and Methanol Oxidation. *Chem. Commun.* **2020**, *56*, 4664-4667.

(16) Wan, S. P.; Ou, M.; Zhong, Q.; Wang, X. M., Perovskite-Type CsPbBr₃ Quantum Dots/UiO-66(NH₂) Nanojunction as Efficient Visible-Light-Driven Photocatalyst for CO₂ Reduction. *Chem. Eng. J.* **2019**, *358*, 1287-1295.

(17) Shyamal, S.; Dutta, S. K.; Pradhan, N., Doping Iron in CsPbBr₃ Perovskite Nanocrystals for Efficient and Product Selective CO₂ Reduction. *J. Phys. Chem. Lett.* **2019**, *10*, 7965-7969.

(18) Pan, A.; Ma, X.; Huang, S.; Wu, Y.; Jia, M.; Shi, Y.; Liu, Y.; Wangyang, P.; He,
L.; Liu, Y., CsPbBr₃ Perovskite Nanocrystal Grown on MXene Nanosheets for
Enhanced Photoelectric Detection and Photocatalytic CO₂ Reduction. *J. Phys. Chem. Lett.* 2019, *10*, 6590-6597.

(19) Mu, Y.-F.; Zhang, W.; Guo, X.-X.; Dong, G.-X.; Zhang, M.; Lu, T.-B., Water-Tolerant Lead Halide Perovskite Nanocrystals as Efficient Photocatalysts for VisibleLight-Driven CO2 Reduction in Pure Water. ChemSusChem 2019, 12, 4769-4774.

(20) Guo, X.-X.; Tang, S.-F.; Mu, Y.-F.; Wu, L.-Y.; Dong, G.-X.; Zhang, M., Engineering a CsPbBr3-Based Nanocomposite for Efficient Photocatalytic CO₂ Reduction: Improved Charge Separation Concomitant with Increased Activity Sites. *RSC Advances* **2019**, *9*, 34342-34348.

(21) Guo, S.-H.; Zhou, J.; Zhao, X.; Sun, C.-Y.; You, S.-Q.; Wang, X.-L.; Su, Z.-M., Enhanced CO₂ Photoreduction *via* Tuning Halides in Perovskites. *J. Catal.* **2019**, *369*, 201-208.

(22) Sheng, J.; He, Y.; Li, J.; Yuan, C.; Huang, H.; Wang, S.; Sun, Y.; Wang, Z.;

Dong, F., Identification of Halogen-Associated Active Sites on Bismuth-Based

Perovskite Quantum Dots for Efficient and Selective CO₂-to-CO Photoreduction. *ACS Nano* **2020**, *14* (10), 13103-13114.