Supporting Information

Revisiting the aqueous solutions of dimethyl sulfoxide by spectroscopy in the mid- and

near-infrared: experiments and molecular dynamics simulations

Victoria M. Wallace,^a Nilesh R. Dhumal,^b Florian M. Zehentbauer,^c Hyung J. Kim^{b,e} and

Johannes Kiefer^{a,c,d}*

^aSchool of Engineering, University of Aberdeen, Fraser Noble Building, Aberdeen AB24 3UE, United Kingdom

^bDepartment of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

^cTechnische Thermodynamik, Universität Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany

^dErlangen School of Advanced Optical Technologies (SAOT), Universität Erlangen-Nürnberg, Erlangen, Germany

^eSchool of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, Korea

*corresponding author. Email: jkiefer@uni-bremen.de

Fig. S1. NIR combination bands of aqueous DMSO solutions.

Fig. S2. Enlarged contour plot of the excess absorbance as a function of wavenumber and DMSO mole fraction in the fingerprint region.

Fig. S3. Enlarged contour plot of the excess absorbance as a function of wavenumber and DMSO mole fraction in the CH/OH stretching region.

Fig. S4. Enlarged contour plot of the excess absorbance as a function of wavenumber and DMSO mole fraction in the near-infrared region.

Fig. S5. Excess absorbance at given wavenumber as a function of DMSO mole fraction. The data at 952 cm⁻¹ represent a non-symmetric case with a peak around $x_{DMSO} = 0.33$. The data at 1019 cm⁻¹ represent a symmetric case with a peak around $x_{DMSO} = 0.5$.