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A. Out-of-plane piezoelectricity 

For out-of-plane direction, periodic boundary condition is not fulfilled, and thus the gauge-

invariant phase of Bloch wave function is not a legitimate variable. This means both the berry 

curvature and pseudomagnetic field are not well defined. As a result, the analytical model 

developed in this study for predicting the in-plane piezoelectricity is not applicable to describe 

the out-of-plane piezoelectricity. Alternatively, considering that the polarization of finite 

system can safely adopt the classical definition, the piezoelectricity of monolayers along the 

out-of-plane direction can be calculated via the expectation value of position operator. With 

such definition, we can no longer take advantage of the simplification to treat strain induced 

electronic polarization by integral of berry curvature, and instead need to directly investigate 

the charge density redistribution under strain, which is beyond the scope of this work. 

B. Two-band tight binding Hamiltonian 

As illustrated in Figure S1, the variables associated with the two-band tight binding 

Hamiltonians include on site energy △, nearest neighbor hopping energy 𝑡𝑖 , axis distance 

between adjacent atoms 𝑥0, bond length 𝑎1 = 𝑎2 = 𝑙, lattice vector a and b. In this study, 

only the three equivalent nearest neighbor hopping 𝑡1 = 𝑡2 = 𝑡3 is considered for buckled and 

planer structures, while both the nearest neighbor hopping 𝑡1  and next nearest neighbor 

hopping 𝑡2 = 𝑡3 are considered for puckered structures. The tight binding Hamiltonian takes 

the form as 

 𝑯0= ∑ 𝜎𝑖𝑓𝑖(𝒌)𝑖  (S1)  
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where 𝜎𝑖 represents the Pauli matrices,  

 𝑓𝑥(𝒌) + 𝑖𝑓𝑦(𝒌) = −𝑡1𝑒−𝑖𝑥𝑜∙𝒌 − 𝑡2(ⅇ𝑖𝒌∙𝒂𝟏 + ⅇ𝑖𝒌∙𝒂𝟐)] (S2) 

 𝑓𝑧(𝒌) = △.  (S3) 

The two-band tight binding Hamiltonian for unstrained TCH monolayers is therefore 

written as 

 𝑯0 = (
△ 𝛿 + α𝑥𝑘𝑥

2 + α𝑦 𝑘𝑦
2 − 𝑖 𝑣 𝑘𝑥

𝛿 + α𝑥𝑘𝑥
2 + α𝑦𝑘𝑦

2 + 𝑖 𝑣 𝑘𝑥 − △
) 

  (S4) 

with the parameters defined as  

 δ = t1 − 2t2 (S4a) 

 ν = −2𝑎𝑥t2 − t1𝑥0 (S4b) 

 𝛼𝑥 = t2𝑎𝑥
2 − t1𝑥0

2/2 (S4c) 

 𝛼𝑦 = t2𝑎𝑦
2 (S4d) 

where 𝑎𝑥 (𝑎𝑦) represents the bond length projection on 𝑥 (𝑦) axis.  
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(a) (b) (c)  

  

Figure S1. Illustration of two-band Hamiltonian for TCH monolayers. Variable definitions of 

(a) buckled/planer structure and (b) puckered structure. Schematic change of puckered 

structure in reciprocal space under strain (c). 

C. Strained Hamiltonian  

Strain is described by a perturbation term in tight binding Hamiltonian1, 2 (Figure S1 c) in 

this study, which takes the form as  

 𝑓𝜉
’ = 𝑡1

’ + 𝑡2
’ 𝑐𝑜𝑠 𝜃 + 𝑡3

’ 𝑐𝑜𝑠 𝜃 − 𝑖 (𝑡2
’ − 𝑡3

’ ) 𝑠𝑖𝑛 𝜃  (S5) 

The nearest neighbor hopping of strained system is derived from that of pristine system as 

 𝑡1
’ = −𝛽𝑡1𝜀𝑥𝑥  (S6) 

 𝑡2
’ = −𝛽𝑡2 𝑠𝑖𝑛2 𝜃 (𝜀𝑥𝑥 𝑐𝑜𝑡2 𝜃 + 2𝜀𝑥𝑦 𝑐𝑜𝑡 𝜃 + 𝜀𝑦𝑦) (S7) 

 𝑡3
’ = −𝛽𝑡2 𝑠𝑖𝑛2 𝜃 (𝜀𝑥𝑥 𝑐𝑜𝑡2 𝜃 − 2𝜀𝑥𝑦 𝑐𝑜𝑡 𝜃 + 𝜀𝑦𝑦). (S8) 

where 𝜀𝑖𝑗 represents the strain.  

The pseudomagnetic vector potential 𝐴𝑥 (𝐴𝑦) in Hamiltonian is simplified as 
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 𝐴𝑥 = −𝛽 (𝑡1𝜀𝑥𝑥 + 2𝑡2(𝜀𝑥𝑥 𝑐𝑜𝑠3 𝜃 + 𝜀𝑦𝑦 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠 𝜃))  (S9) 

 𝐴𝑦 = −4𝛽𝑡2𝜀𝑥𝑦 𝑠𝑖𝑛2 𝜃 𝑐𝑜𝑠 𝜃 (S10) 

D. Simplification of piezoelectric coefficient 

To simplify the piezoelectric coefficient ⅇ𝑥𝑥 in Eq. 9 of main article, 

 𝑒𝑥𝑥 = −
4e 

(2𝜋)2 ∫
𝑣𝛼𝛽△

4((𝛿+𝛼𝑥 𝑘𝑥
2+𝛼𝑦 𝑘𝑦

2)
2

+( 𝑣𝑘𝑥)2+△2)
3 2⁄ 𝑑𝒌  

we implement a scaling transformation,  𝑞𝑥 ≡ √𝛼𝑥𝑘𝑥 , 𝑞𝑦 ≡ √𝛼𝑦𝑘𝑦  and 

𝑆𝐵𝑍,𝑞 =  𝜋𝑞2 =  √𝛼𝑥𝛼𝑦 𝑆𝐵𝑍, where 𝑆𝐵𝑍 is the first Brillouin zone (BZ) area. For buckled, 

planer and puckered structures, 𝑆𝐵𝑍 can be simplified as 𝑆𝐵𝑍 =
4𝜋2

𝑙𝑥𝑙𝑦
 =

𝑐

𝑥0
2. The integral can 

be rewritten as 

 𝑒𝑥𝑥 = −
4𝑒𝑣𝛼𝛽Δ

√𝛼𝑥𝛼𝑦(2𝜋)2
∫

𝑑𝒒

4((𝛿+𝑞𝑥
2+𝑞𝑦

2)
2

+(𝑣𝑞𝑥)2/𝛼𝑥+Δ2)
3/2  (S12) 

Use the polar coordinates, 

 𝑒𝑥𝑥 = −
4𝑒𝑣𝛼𝛽Δ

√𝛼𝑥𝛼𝑦(2𝜋)2 ∫  
𝑞𝑑𝑞𝑑ϑ

4((𝛿+𝑞2)2+𝑓(𝜃)𝑞2+Δ2)3/2. (S13) 

where 𝑓(ϑ) =
𝑣2cos2 ϑ

𝛼𝑥
. Write the integral as 

 

𝑒𝑥𝑥  = −
4𝑒𝑣𝛼𝛽Δ

8√𝛼𝑥𝛼𝑦(2𝜋)2 ∫  [∫  
𝑑𝑞2

((𝛿+𝑞2)2+𝑓(ϑ)𝑞2+Δ2)3/2
] 𝑑ϑ

 ≡ −
4𝑒𝑣𝛼𝛽Δ

8√𝛼𝑥𝛼𝑦(2𝜋)2 ∫  𝑔(ϑ)𝑑ϑ
 (S14) 

where 

 𝑔(ϑ) = ∫  
𝑑𝑞2

((𝛿+𝑞2)2+𝑓(ϑ)𝑞2+Δ2)
3
2

 (S15) 
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Since 
𝑓(ϑ)𝑞2

(𝛿+𝑞2)2+Δ2 goes to zero for both 𝑞 → 0 and 𝑞 → +∞, it may be justified to do a Taylor 

expansion about it. Then we used Taylor expansion around Γ point for Eq. (S15), and obtained 

 𝑔(ϑ) ≈ ∫
1

((𝛿)2+△2)3 2⁄ − 
3𝑓(ϑ)𝑞2

2((𝛿)2+△2)5 2⁄  𝑑𝑞2  (S16) 

 𝑔(ϑ) ≈
𝑞2

((𝛿)2+△2)3 2⁄ −
3𝑓(ϑ)𝑞4

4((𝛿)2+△2)5 2⁄   (S17) 

The piezoelectric coefficients 𝑒𝑥𝑥 (Eq. (9)) can thus be approximated as 

 
𝑒𝑥𝑥 ≈ −

4𝑒𝑣𝛼𝛽Δ

8√𝛼𝑥𝛼𝑦(2𝜋)2 ∫  
𝑞2

((𝛿)2+△2)3 2⁄ −
3𝑓(ϑ)𝑞4

4((𝛿)2+△2)5 2⁄ 𝑑ϑ
 (S18) 

 
𝑒𝑥𝑥 ≈ −

4𝑒𝑣𝛼𝛽Δ

8√𝛼𝑥𝛼𝑦(2𝜋)
(

𝑞2

((𝛿)2+△2)3 2⁄ −
3𝑞4

8((𝛿)2+△2)5 2⁄

𝑣2

𝛼𝑥
)

 (S19) 

 𝑒𝑥𝑥 ≈ −
𝑒𝑣𝛼𝛽Δ

4(𝜋)2
(

𝑆𝐵𝑍,𝑞

((𝛿)2+△2)3 2⁄ −
3𝑆𝐵𝑍,𝑞

2

8𝜋((𝛿)2+△2)5 2⁄

𝑣2

𝛼𝑥
)  (S20) 

 𝑒𝑥𝑥 ≈ −
𝑒𝑣𝛼𝛽Δ𝑆𝐵𝑍

4(𝜋)2
(

1

((𝛿)2+△2)3 2⁄ −
3𝑆𝐵𝑍𝑣2

8𝜋((𝛿)2+△2)5 2⁄ √
𝛼𝑦

𝛼𝑥
) (S21) 

 𝑒𝑥𝑥 ≈ −
𝑐1𝑣𝛼Δ

𝑥0
2

(
1

((𝛿)2+△2)3 2⁄ −
𝑐2

((𝛿)2+△2)5 2⁄

𝑣2

𝑥0
2 √

𝛼𝑦

𝛼𝑥
) (S22) 

where 𝜈 = 𝑥0(−2𝑐𝑡2 − 𝑡1) . For planer and buckled structures 𝑐 <1, and for puckered 

structure 𝑐>1.  

 𝑒𝑥𝑥 ≈
𝑐1Δ𝛼(2𝑐𝑡2+𝑡1)

𝑥0
(

 1

((𝛿)2+△2)3 2⁄ −
𝑐2(2𝑐𝑡2+𝑡1)2

((𝛿)2+△2)5 2⁄ √
𝛼𝑦

𝛼𝑥
) (S23) 

piezoelectric coefficients of planer, buckled and puckered monolayers can be written in 

identical form 𝑒𝑥𝑥 ≈ 𝑐1
△

𝑥0
𝑓(𝑡,△)+𝑐2. According to the assumptions presented in Table 1, the 

piezoelectric coefficients of planer and buckled structures are approximated as  



S7 
 

 𝑒𝑥𝑥 ≈ 𝑐1
𝛥

𝑥0

𝑡2

(𝑡2+𝛥2)3/2 [1 − 𝑐2
𝑡2

(𝑡2+𝛥2)
] + 𝑐3 (S24) 

while the piezoelectric coefficient of puckered structures is approximated as 

 𝑒𝑥𝑥 ≈ 𝑐1
Δ

𝑥0

(𝑡1+cos 45∘𝑡2)(𝑡1+𝑡2c)

((𝑡1−2𝑡2)2+Δ2)
3
2

[1 −
𝑐2(2𝑐𝑡2+𝑡1)2

(𝑡1−2𝑡2)2+Δ2] + 𝑐4 (S25) 

Except for the above common TCH structures, we calculated the piezoelectric coefficients of 

another special TCH structure (spatial planer) to further illustrate the generality of our model. 

The atomic structure and the related assumption for tight binding parameters of spatial planer 

monolayer are summarized in Table S1.  

 𝑒𝑥𝑥 ≈
𝑒

2𝜋2 ∫ ∫
−2𝑡𝑥0t𝛽△

(𝛿2+( 2𝑡𝑥0𝑘𝑥)2+( 2𝑡𝑥0𝑘𝑦)
2

+△2)
3 2⁄ 𝑑𝑘𝑥𝑑𝑘𝑦.  (S26) 

 𝑒𝑥𝑥 ≈ 𝑐 ∫
𝑡𝑥0t𝛽△𝜌𝑑𝜌

(𝛿2+( 2𝑡𝑥0)2𝜌2+△2)3 2⁄   (S27) 

where 𝜌2 = 𝑘𝑥
2 + 𝑘𝑦

2
.  

 𝑒𝑥𝑥 ≈ 𝑐
△

𝑥0
(

1

(𝛿2+△2)1 2⁄ −
1

(𝛿2+𝑐(𝑡𝑥0)2𝑆𝐵𝑍+△2)1 2⁄ ) + 𝑐1 (S28) 

 𝑒𝑥𝑥 ≈ 𝑐1
△

𝑥0
(

1

(𝑡2+△2)1 2⁄ −
1

(𝑡2+𝑐𝑡2+△2)1 2⁄ ) + 𝑐2 (S29)  

Table S1. Structural characters and piezoelectric coefficient of spatial planer monolayer. 

Structure Assumptions Results 

Spatial planer  
𝑡1 = 𝑡2 = 𝑡 

𝜃 = 90° 

𝑙𝑥 = 𝑥0 

𝑙𝑦 = 𝑥0 

𝑒𝑥𝑥 ≈ 𝑐1

△

𝑥0
(

1

(𝑡2 +△2)1 2⁄
−

1

(𝑡2 + 𝑐𝑡2 +△2)1 2⁄
) + 𝑐2 
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E. Orbital hybridization 

As an application of the theoretical model, we probed the origin of large difference in 

piezoelectricity between GeS and GeSe monolayers. It turns out that both monolayers have 

comparable bandgaps from the projected density of states (PDOS) computed by DFT approach 

as shown in Figure S2. However, the GeS monolayer possesses larger orbital hybridization 

between Ge and Se atoms around the Fermi level than that of GeSe monolayer, resulting in 

lower piezoelectricity as expected from the theoretical model. 

 

Figure S2. Projected density of states (PDOS) of (a) GeS monolayer and (b) GeSe monolayer. 

Relevant orbitals in our tight binding model are highlighted by pink rectangle. 

F. Convex hull 

Convex hull energy has been demonstrated to be an effective criterion for probing 

compound stability. The concept is illustrated by the convex hull diagram of SnS monolayer 

as shown in Figure S3. The SnS monolayer is regarded as stable if its formation energy lies in 

the light blue area. In case that its formation energy lies in the pink area, the distance between 

the formation energy and the boundary line connecting existent compounds (black line) is 
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further checked. The SnS monolayer is considered to be stable if the distance is smaller than 

0.2.  

 

Figure S3. Convex hull diagram for SnS monolayer. The formation energies of existent 

compounds are denoted by red dots. 

G. DFT results 

The results from DFT calculations are summarized in Table S2~S4. The piezoelectric 

coefficients obtained in this study are consistent with those reported by previous works.3 The 

predictive model for infrared materials is presented in Eq. (16a) of main text. As an exception, 

the piezoelectric coefficient of BN monolayer is derived based on its ultraviolet bandgap 

character as shown in Eq. (S30). The fitting coefficients 𝑐1 and 𝑐2 are identical to those of 

other planer structures, i.e. 𝑐1 = 2.73 and 𝑐2 = 0.16.  

 𝑒𝑥𝑥 ≈  𝑐1
𝐸𝑀

𝑥0×𝐸𝑔
+ 𝑐2 (S30) 

Table S2 Lattice constant (𝑎1and 𝑎2), axle atomic distance (𝑥0), band gap (𝐸𝑔), effective mass 

(𝐸𝑀) and piezoelectric coefficient 𝑒𝑥𝑥 obtained by DFT simulations for planer structures. 
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𝑎1 𝑎2 𝑥0 𝐸𝑔 𝐸𝑀(me)  𝑒𝑥𝑥 (DFT) 

BP 3.212 3.212 1.851 1.891 1.098 2.199 

AlN 3.123 3.123 1.802 3.034 0.924 2.169 

BN 2.490 2.490 1.437 4.892 2.079 1.235 

GaN 3.222 3.222 1.862 2.278 0.572 2.716 

PbS 4.799 4.799 2.773 1.081 1.204 0.707 

AlP 3.938 3.938 2.269 2.460 0.469 1.147 

AlSb 4.460 4.460 2.572 0.726 0.221 0.151 

 

Table S3 Lattice constant (𝑎1and 𝑎2), axle atomic distance (𝑥0), band gap (𝐸𝑔), effective mass 

(𝐸𝑀) and piezoelectric coefficient 𝑒𝑥𝑥 obtained by DFT simulations for buckled structures. 

 

𝑎1 𝑎2 𝑥0 𝐸𝑔 𝐸𝑀(me) 𝑒𝑥𝑥 (DFT) 

AlAs 4.059 4.059 2.341 1.831 0.341 0.666 

AsSb 3.867 3.867 2.234 1.475 0.275 0.720 

BAs 3.390 3.390 1.960 1.790 0.609 1.607 

BiSb 4.245 4.245 2.446 0.954 0.227 0.385 

CO 2.353 2.353 1.355 3.511 1.054 7.640 

GaAs 4.051 4.051 2.334 1.244 0.217 0.390 

GaP 3.916 3.916 2.260 1.803 0.290 0.421 

GaSb 4.379 4.379 2.524 0.858 0.184 0.468 
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GeO 3.019 3.019 1.743 2.241 0.887 4.886 

GeS 3.497 3.497 2.024 2.485 0.585 3.103 

GeSe 3.673 3.673 2.122 2.284 0.423 1.643 

InAs 4.379 4.379 2.531 0.795 0.217 0.834 

InN 3.634 3.634 2.099 0.482 0.299 2.047 

InP 4.245 4.245 2.452 1.176 0.259 0.318 

InSb 4.680 4.680 2.703 0.693 0.190 0.144 

PbO 3.597 3.597 2.074 1.825 1.061 4.967 

PbSe 4.095 4.095 2.366 1.857 0.491 2.041 

PbTe 4.347 4.347 2.505 1.625 0.417 2.573 

PN 2.722 2.722 1.568 1.837 0.828 3.513 

SbAs 3.867 3.867 2.234 1.475 0.275 0.669 

SbBi 4.245 4.245 2.446 0.954 0.227 0.386 

SiS 3.304 3.304 1.905 2.221 0.642 2.199 

SiSe 3.527 3.527 2.037 2.135 0.431 2.169 

SnO 3.344 3.344 1.929 1.833 0.935 4.529 

SnSe 3.914 3.914 2.261 2.220 0.464 2.716 

SnTe 4.192 4.192 2.419 1.906 0.329 0.707 

TiS 3.526 3.526 2.031 0.527 8.595 12.507 

TiSe 3.665 3.665 2.112 0.400 12.743 14.324 

TiTe 3.922 3.922 2.265 0.222 13.090 9.802 

Table S4 Lattice constant (𝑎1and 𝑎2), axle atomic distance (𝑥0), band gap (𝐸𝑔), effective mass 

(𝐸𝑀) and piezoelectric coefficient 𝑒𝑥𝑥 obtained by DFT simulations for puckered structures. 
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𝑎1 𝑎2 𝑥0 𝐸𝑔 𝐸𝑀(me) 𝑒𝑥𝑥 (DFT) 

GeO 2.985 3.741 0.378 2.894 1.235 2.869 

GeS 3.670 4.434 0.382 1.779 1.878 3.124 

GeSe 3.981 4.276 0.148 1.143 11.605 8.412 

GeTe 4.240 4.375 0.068 0.855 3.312 7.317 

NBi 3.436 3.502 0.033 1.309 2.538 12.148 

NSb 3.287 3.562 0.137 1.643 2.600 3.790 

PAs 3.505 4.709 0.602 0.929 1.484 2.915 

PBi 4.118 4.456 0.169 0.741 3.544 1.161 

SbP 3.906 4.461 0.278 0.495 2.868 1.460 

SiS 3.345 4.809 0.732 1.431 1.428 5.435 

SiSe 3.599 4.778 0.589 1.193 1.786 6.682 

SiTe 4.115 4.275 0.080 0.397 3.054 7.703 

SnO 3.246 3.331 0.042 2.345 1.896 9.573 

SnS 4.077 4.242 0.083 1.471 2.148 7.973 

SnSe 4.302 4.359 0.029 0.903 7.949 23.955 

SnTe 4.559 4.579 0.011 0.727 4.373 44.266 

 

 

H. Correlation analysis  

Despite the negative correlation coefficients between 𝑒𝑥𝑥 and 𝐸𝑔, both 𝐸𝑀 × √𝐸𝑔 and 

𝐸𝑀/√𝐸𝑔 have smaller correlation coefficients than 𝐸𝑀. This can be explained by the distinct 
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expressions of piezoelectricity for different types of TCH materials. Specifically, 𝐸𝑀 × √𝐸𝑔 

possesses larger correlation coefficient for planer and buckled structures (Figure S4a) while 

smaller correlation coefficient (Figure S4b) compared with 𝐸𝑀/√𝐸𝑔 . 

 

Figure S4. Correlation analyses between piezoelectricity and related parameters for (a) 

buckled and planer monolayers and (b) puckered monolayers. 

 

I. Cross-validation 

Cross validation (LFCV) is a data enhancement approach within the category of machine 

learning that recurrently utilizes subsets of data with different roles. For each group of buckled, 

planer and puckered monolayers, the data is randomly split into five sub-groups in LFCV 

process. Linear fitting (LF) is then conducted for five times, with the five sub-groups taking 

turns to serve as test set and the remaining four sub-groups serving as training set. The linear 

correlation constants 𝑐1 and 𝑐2 are calculated by averaging over the results of five fittings. 

The comparisons between the results obtained by the original linear fitting method and the 

LFCV method are summarized in Table S5 and Figure S5. It turns out that the linear correlation 
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constants 𝑐1  and 𝑐2  attained by both approaches are comparable to each other. The R-

squared score of the LFCV method is slightly higher than that of the LF method for the 

puckered monolayers, while equal R-square scores are observed for both the buckled and 

planer monolayers. In all, the performance of the LF almost reaches that of the LFCV method 

as visualized in Figure S5. This demonstrates the reliability of our model and justifies the 

results obtained by the LF method training with the entire data set. 

Table S5 Comparison of fitting coefficients and R-squared scores obtained by the LF 

and LFCV methods. 

Structures LF LFCV 

Buckled 𝑐1= 4.03; 𝑐2=0.53 R2=0.95 𝑐1= 4.02; 𝑐2=0.59  R2=0.95 

Planer 𝑐1=2.73; 𝑐2=0.16 R2=0.96 𝑐1=2.70; 𝑐2=0.19  R2=0.96 

Puckered 𝑐1=0.08; 𝑐2=3.23 R2=0.94 𝑐1=0.08; 𝑐2=3.58  R2=0.95 

 

 

Figure S5. Reliability check of piezoelectric model. Comparison of results obtained by LF and 

LFCV methods for (a) buckled, (b) planer and (c) puckered monolayers. 
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J. Analysis of effective mass 

We considered the dependence of effective mass on theoretical variables t and ∆. The 

effective mass increases with ∆, while decreases with increasing t as shown in Figure S6.  

 

Figure S6. Dependence of effective mass on (a) ∆ and (b) t. 
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