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Methods 

 
Determining Regions  
R and the R packages ‘rgdal’,’raster’, and ’sp’ were used to assign each data point to a single region. 
These regions included the Aleutian Islands, west Gulf of Alaska, east Gulf of Alaska, southeast Alaska, 
British Columbia (excluding the Salish Sea), the Salish Sea, the Washington outer coast (excluding the 
Salish Sea), Oregon, northern California, central California, southern California, and the Pacific coast of 
Baja California. From west to east then north to south, we used the following regional border cutoffs: the 
Aleutians began at Samalga Pass/Umnak Island at -169.5°W; west Gulf of Alaska began at -157.7°W; 
east Gulf of Alaska began at the eastern edge of Kodiak Island around -152.2°W; southeast Alaska began 
at -138.1°W; British Columbia began at the Alaska-Canada border at 54.7°N; Salish Sea began at 
Campbell River around 50.0°N and included the Strait of Juan de Fuca and Puget Sound; Washington 
outer coast began near Neah Bay around 48.4°N, -124.8°W; Oregon began at its northern border around 
46.3°N; northern California began at California’s northern border at 42.0°N; central California began at 
the San Francisco Bay at 37.8°N; southern California began at Point Conception at 34.5°N; Baja 
California began at the United States-Mexico border around 32.5°N; and Baja California ended at 26.7°N 
at Bahia Asunción.  
 
Epidemic Timeline - The Multi-Agency Rocky Intertidal Network (MARINe) database is the most 
comprehensive dataset of sea star wasting records, and is populated by a combination of observations 
submitted by the public through seastarwasting.org, MARINe long-term monitoring data, Partnership for 
Interdisciplinary Studies of Coastal Oceans (PISCO) network diver surveys, and various community 
science programs. Thus, it was uniquely well suited for this analysis. While this dataset is powerful, there 
are some limitations to our analysis of epidemic phases. When estimating the ‘date SSWD first observed’, 
the true date is likely somewhat earlier since the first day of infection likely occurred before the first 
recorded observation. However, we do not think the true date is later than reported since the MARINe 
database included a requirement for photo verification of disease symptoms by an expert during the early 
phase of the epidemic.  

For calculating the date first observed and outbreak date, we elected to pool data from both 
intertidal Pisaster ochraceus and P. helianthoides since P. ochraceus has more observations than 
Pycnopodia, enabling more accurate estimates of outbreak timing among regions (N = 450 and N= 247 
sites, respectively). To determine if the timing was similar between species, we performed a two-sample 
Kolmogorov-Smirnov test (k.s test in dgof package v1.2 in R) on the count of sites over time when the 
first observation of SSWD occurred, and compared the two species. We found that P. ochraceus had 
slightly earlier dates of first SSWD observation than P. helianthoides (Fig. S3). Since the disease 
apparently spread quickly in the water, it probably was nearly simultaneously present in subtidal and 
intertidal habitats at a given site. Thus, it is likely that the slight lag in date first observed for P. 
helianthoides was due to the easier access to intertidal P. ochraceus than subtidal P. helianthoides. 
However, it is also possible that this lag was truly a difference in disease dynamics between the warmer 

https://marine.ucsc.edu/data-products/sea-star-wasting/index.html
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intertidal and cooler subtidal, but we were not able to address this question because there were not enough 
within-site comparisons to explore in our dataset. 

When estimating ‘outbreak date’, we first fit a normal distribution to the date SSWD was first 
observed at each site, then calculated the date of the 10th percentile to approximate the date at which 10% 
of the sites with a region had reported SSWD observations. No symptomatic sea star observations were 
recorded in the Aleutians or Baja California and thus our ability to estimate crash date is limited. Only 
three observations were recorded in the western Gulf of Alaska and these estimated an outbreak date of 
Aug 25, 2016. Konar et al. (2019) never recorded a symptomatic sea star in the Katmai Peninsula 
(western Gulf of Alaska), but the initial decline occurred between June 2016 and June 2017, so an 
outbreak date of Aug 25, 2016 is reasonable (1). We also used Aug 25, 2016 as the outbreak date for the 
adjacent Aleutians region only for purposes of splitting the data into phases, though it is unclear whether 
the disease affected this region (pers. comm. B. Konar). For Baja California, we used the southern 
California outbreak date of Nov 6, 2013, and it is likely that this date estimate is accurate since 
populations declined shortly thereafter.  

Unlike ‘date SSWD first observed’ and ‘outbreak date’ we defined ‘crash date’ using the 
Pycnopodia population changes to determine disease progress. Ideally the timeline of the epidemic would 
rely on metrics of signs of disease in the field such as prevalence or disease occurrence. However, SSWD 
kills individual Pycnopodia within days to weeks, and can move through a population within weeks to 
months (2–4). Consequently, it is likely that seasonal or annual surveys at a given site or region missed 
peak disease prevalence or any occurrence of disease entirely. We calculated the ‘crash date’ by fitting a 
logistic regression model to the occurrence of Pycnopodia over time for each region. We fit a logistic 
regression model to the occurrence of Pycnopodia from 1/1/2012 to 12/31/2019 to model the shape of the 
population decline for each region (Fig. 1a). From these models, we 1) estimated regional Pycnopodia 
occurrence rates on 1/1/2012 and 12/31/2019, 2) calculated the predicted occurrence value corresponding 
to a 75% decline in starting versus ending occurrence in each region, and 3) solved the inverse logistic 
equations for the date at which this occurrence value was predicted. We note that the disease itself is still 
present in many or all of the regions after the crash date, and that it is possible the disease may still be in 
the epidemic phase in some regions (e.g., Alaskan regions).  

 While this worked well for most regions, we had to modify this procedure for several regions. 
For instance, in southern California the abundance of data was resulting in an estimated crash date before 
the outbreak date. To remedy this, we restricted southern California models to fit data from 1/1/2013 to 
12/31/2019, instead of 1/1/2012 to 12/31/2019. We lumped data from the Aleutians and the western Gulf 
of Alaska to increase the sample size in the model and because these regions likely had similar disease 
timing and population trends (pers. comm. B. Konar, 1).  

 
Density and Occurrence Models  
For the shallow models, we tested how density and occurrence varied with population phase 
(historic/current), region, and their interaction. For all shallow models, we dropped Baja California and 
southern California because the ‘current’ surveys consisted entirely of zeros, so this prevented the models 
from fitting the data. We also lumped the Aleutian Islands and west Gulf of Alaska into ‘western Alaska’ 
and the Washington outer coast and Oregon into the Pacific Northwest (excluding the Salish Sea). We 
also compared graphs and models with and without fjord habitats in British Columbia (CCIRA dataset), 
and elected to drop these data because the current anomalously high densities of sea stars in these habitats 
have no historical comparison, and these data were masking the declines in density that were evident in 
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other datasets in the region. We instead investigate these populations in the remnant population analyses 
elsewhere. For density models at deep depths, data were limited to only a few regions, so we did not 
compare regions and we tested only how density varied with population phase (historic/current). For 
occurrence models at deep depths, we merged the data into three ‘super-regions’ (Alaska, British 
Columbia including Salish Sea, and the outer coast of the contiguous US). 
 
SDM modeling 
Time Periods - We modeled Pycnopodia distribution for pre-outbreak populations using species and 
environmental data from 2009-2012 and for current populations using data from 2017-2020. We chose to 
limit the pre-outbreak model to 2009-2012 because a) of the very patchy nature of long-term Pycnopodia 
observations that would greatly increase spatial heterogeneity in sampling effort and b) we wanted to 
represent the state of the population directly prior to the outbreak. To the first point, only a single dataset 
goes back to 1967, and only 6 of the 30+ datasets goes back before 1990.  We specifically limited the 
species distribution models to 2009-2012 and 2017-2020 because we wanted to minimize the impacts of 
differential sampling effort between the two periods. Maxent models are sensitive to uneven sampling 
effort, and we tried to minimize this whenever possible. We felt that including data from 1967 - 2012 for 
the pre-outbreak model would a) pit 35 years of sampling pre-SSWD against just 3 years of sampling 
post-outbreak and b) could bias models towards older data that was not representative of populations near 
the beginning of SSWD. 
 
Variable selection – We used prior studies on Pycnopodia to identify useful abiotic variables to include in 
our Maxent SDMs. For instance, Hemery et al. (2016) found depth, mean annual temperature, and mean 
annual salinity to be the three most important factors in predicting Pycnopodia distributions in Oregon 
(5). Additionally, Bonaviri et al. (2016) found Pycnopodia abundances in the Channel Islands to be 
structured along a temperature gradient (6). Based on these studies, we identified depth, temperature, and 
salinity as important variables to include in our models.  

Other variables we considered for inclusion were mean chlorophyll, substrate type, latitude, 
dissolved oxygen, mixed layer depth, water movement, and temperature at depth. However, we were 
unable to find datasets for dissolved oxygen, mixed layer depth, measurements of water movement, and 
temperature at depth that had both the sufficient spatial extent and resolution to use in our models, and 
thus were unable to include these variables. Another consideration for model selection was collinearity 
amongst variables. The remaining variables under consideration, temperature, salinity, chlorophyll, 
substrate type, latitude, and depth, are interdependent and thus will have some levels of collinearity. We 
were most concerned about potential collinearity of temperature with other variables, particularly latitude. 
We used linear models to assess correlation between these variables at points where Pycnopodia were 
observed. While all variables were significantly correlated with temperature, only latitude showed an 
adjusted R2 value > 0.015 with an R2 value = 0.14 (p-value < 0.001) (Fig S5). 

As noted in [12], it is considered best practice to avoid including collinear variables within 
Maxent models, and thus we preferred to use either a temperature metric or latitude. We tested Maxent 
model fit when one variable was substituted for the other. When latitude was added to the models and the 
temperature metric dropped, both the pre-outbreak and current models had a decreased fit (AUC by 0.28 
and 0.31, RTG by 0.07 and 0.2 for pre-outbreak and current respectively). Thus, model fit declined when 
including latitude instead of temperature, which indicated that we should use the temperature metric. We 
felt further justified in this decision considering that previous work has found a relationship between 
temperature and SSWD progression whereas we are unaware of any hypothesized relationship between 
latitude and SSWD [8,9,10]. Outside of temperature, the collinearity of the remaining variables was 
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investigated (e.g. salinity and depth), and again, while the relationship was often highly significant 
between variables, the adjusted R2 value rarely rose above 0.1. 
  After eliminating latitude, we were left with temperature, salinity, chlorophyll, depth, and 
substrate type. We decided to include mean chlorophyll measurements for two reasons: 1) as a proxy for 
general productivity and food availability in the system at large spatial scales and 2) because a recent 
investigation into the cause of SSWD indicated that the addition of organic material to a system could 
spur the disease (11). We included substrate type as this is a key component of the physical environment 
for benthic invertebrates. While the resolution of our dataset (~11 km grid cells) conceals much fine-scale 
variability that is likely important for Pycnopodia, we were unable to find abiotic data at higher 
resolutions that also encompassed our entire study area. However, given that we were ultimately studying 
the species from a biogeographic scale spanning an entire ocean basin, we felt that 11 km2 was high 
enough resolution to provide insight into the associations of Pycnopodia with their environment across 
their range. We used substrate data from the University of Colorado at Boulder’s dbSEABED inventory 
for substrate (https://instaar.colorado.edu/~jenkinsc/dbseabed). 

At 11 km resolution and covering the entire range of Pycnopodia, the best measurements of 
salinity we were able to find were 30-year climatological means produced by NOAA 
(https://www.nodc.noaa.gov/OC5/regional_climate/). With temperature, however, we had more options. 
We considered using mean temperature (measured using NASA’s Moderate Resolution Imaging 
Spectroradiometer (hereafter MODIS) satellite data), the standard deviation in temperature (using MODIS 
satellite data), marine heatwave frequency (7), degree days over 14˚C (6), and the 90th percentile of 
MODIS temperature measurements. All models performed similarly when substituted into the Maxent 
model and had similar predictive abilities (based on their AUCtest value). Thus we chose the 90th 
percentile of MODIS temperature measurements because we felt it had the most biological relevance to 
Pycnopodia based on previous investigations into the relationship between wasting and temperature (8–
10). 

       
Environmental Data - After collecting environmental data from the sources listed above we calculated 
mean chlorophyll and 90th percentile of temperature for the 2009-2012 period for the pre-outbreak model 
and for the 2017-2020 period for the current model. This was possible due to the availability of high-
resolution, gridded, 8-day raster datasets of these variables derived from NASA’s MODIS Aqua sensor on 
Google Earth Engine. We have now added this information to the manuscript. It is unlikely that depth 
changed substantially at large spatial scales between the two periods so depth data were not recalculated 
for the two different periods.  

Ideally, we would have calculated mean salinity and substrate type for both the 2009-2012 and 
the 2017-2020 period. At this time, neither variable is easily mapped from remote sensing, but must rather 
be mapped in situ using depth profiles run from vessels. Thus, the data available for these variables is 
neither regular enough nor fine-scale enough to map these variables across the entire continent for each 
time period. For both datasets, the best maps available with the needed resolution (11 km grids) were only 
available as static maps created using long-term data. Despite the shortcomings of these static long-term 
representations of salinity and substrate variability, we believe that they do represent continental-scale 
patterns in substrate and salinity. For instance, in this region, salinity is most strongly influenced by the 
addition of freshwater from large rivers in the northern part of the range. While changes to these rivers 
from climate change are likely impacting ocean salinity at the river/ocean interface, it is unlikely that the 
patterns associated with these major rivers have disappeared between the early 2000s and the late 2010s. 
Furthermore, we tested how using a long-term climatology of temperature vs. 2009-2012/2017-2020 
temperature data impacted the models, and found that neither the pre-outbreak or current model was 
sensitive to this change. 

https://instaar.colorado.edu/%7Ejenkinsc/dbseabed/
https://www.nodc.noaa.gov/OC5/regional_climate/
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Substrate data were initially provided as four separate categories defining the percent of the 
substrate made of 1) mud, 2) sand 3) gravel and 4) rock at each location, which we transformed to 5 
substrate categories by conducting K Means clustering: 1) sand dominated, 2) mud dominated, 3) sandy 
with rocky outcrops, 4) mixed sandy and muddy substrate, and 5) gravel dominated. 
 
Background Data - We used our compiled Pycnopodia dataset, which includes presence and absence/non-
detection information, to create a kernel density estimate of sampling effort across the study area from 
2009-2012 and 2017-2020. These kernel density estimates were then used to create a set of 5000 
background points that had a similar spatial sampling bias as the presence data to mitigate the effects of 
uneven sampling effort across the region (referred to as a ‘biased background’ approach in (11)).  
  
Model Selection - We used ENMeval to choose the feature classes and regularization parameter 
combinations for our Pycnopodia Maxent models (12). ENMeval provides a suite of modeling statistics 
for Maxent models including training AUC, test AUC, AICc, and several threshold-based statistics. 
Unfortunately, the literature is somewhat unclear on which metrics are the most important in choosing a 
Maxent model (11,13–15). Based on the literature, we chose to use 1) the difference between training 
AUC and test AUC in order to prioritize models that had improved predictive capacity and 2) AICc to 
avoid overly complex models. Test and training data were cross-validated using the ‘checkerboard 1’ 
option to minimize the impacts of spatial autocorrelation on test and training models.  

While the models with the lowest AICc often included hinge feature classes, these models 
produced response curves that looked highly overfit and had relatively high AUCdiff (around 0.15). Thus 
we narrowed our focus to models that include Linear, Quadratic, and Product functions, which were more 
biologically interpretable and less prone to overfitting (11). Additionally, increasing the regularization 
parameter to be greater than the pre-set value = 1 did not consistently improve AICc or AUC metrics and 
thus we used the pre-set value = 1 in our models.  

 
Estimating Tau - We utilized the logistic output of Maxent which requires a mathematical transformation 
of the raw Maxent output. This transformation involves scaling the raw output by the probability of 
presence at an ‘average’ site in the model, also known as 𝛕𝛕. The pre-set value of 𝛕𝛕 = 0.5 in Maxent. The 
average probability of presence of Pycnopodia changed drastically between the pre-outbreak and current 
models due to SSWD. Thus, we needed to account for this by adjusting 𝛕𝛕 between the pre-outbreak and 
current models (11). There are few well-established methods for estimating 𝛕𝛕, so we estimated it as the 
total occurrence rate for Pycnopodia out of all available surveys in each time period (i.e. 2009-2012 and 
2017-2020). While this metric undoubtedly misses some of the nuance behind the parameter 𝛕𝛕, these 
estimates will at least help account for the gross differences in Pycnopodia presence rates across their 
range between the two periods.  
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Table S1. List of datasets used in the study. *Washington outer coast and British 

Columbia excludes the Salish Sea. 
 
Dataset Institution Contact Region(s) Survey Type Years References / Websites 

ADFG 
Alaska Dept of Fish and 
Game Tom Dean east Gulf of Alaska SCUBA Dive 

1990-
1999 Jewett et al. 1995 

AFSC 
Alaska Fisheries 
Science Center Nancy Roberson 

Aleutians, west and east 
Gulf of Alaska, southeast 
Alaska Trawl 

1983-
2018 

www.fisheries.noaa.gov/reg
ion/alaska 

CACS 
Center for Alaskan 
Coastal Studies Katie Gavenus east Gulf of Alaska 

Intertidal 
Survey 

2014-
2020 www.akcoastalstudies.org 

CCIRA 

Central Coast 
Indigenous Resource 
Alliance 

Tristan Blaine, 
Alejandro Frid British Columbia* SCUBA Dive 

2018-
2020 https://www.ccira.ca/ 

CDFW-BML 

California Dept of Fish 
and Wildlife & Bodega 
Marine Laboratory 

Laura Rogers-
Bennett northern California SCUBA Dive 

1999-
2018 marinescience.ucdavis.edu 

CDFW-MARE 

California Dept of Fish 
and Wildlife & Marine 
Applied Research & 
Exploration 

Mike Prall, Dirk 
Rosen, Andy 
Lauermann 

northern, central, southern 
California ROV Dive 

2005-
2016 www.maregroup.org 

COBI 
Comunidad y 
Biodiversidad 

Eduardo Diaz, 
Jorge Torre, 
Fiorenza Micheli Baja California SCUBA Dive 

2009-
2019 https://cobi.org.mx/en/ 

FHL Friday Harbor Labs David Duggins southeast Alaska SCUBA Dive 
1976-
1988 Duggins 1983 

Glacier Bay 
NP 

Glacier Bay National 
Park and Preserve 

George 
Esslinger, Ben 
Weitzman southeast Alaska SCUBA Dive 

2018-
2018 Donnellan et al. 2002 

Gulf Watch 
Alaska Gulf Watch Alaska 

Brenda Konar, 
Ben Weitzman 

west and east Gulf of 
Alaska 

Intertidal 
Survey 

2005-
2017 Konar et al. 2019 

Gwaii Haanas 

(1) Gwaii Haanas Parks 
Canada 
(2) Haida Fisheries 
Program 
(3) Florida State 
University 

(1) Lynn Lee 
(2) Dan McNeill 
(3) Dan 
Okamoto British Columbia* SCUBA Dive 

2017-
2020 

https://www.pc.gc.ca/en/pn-
np/bc/gwaiihaanas 

Hakai Hakai Institute Alyssa Gehman British Columbia* SCUBA Dive 
2014-
2018 www.hakai.org 

iNaturalist iNaturalist 

California 
Academy of 
Sciences all except Baja California 

Community 
Science 
Observation 

1978-
2020 www.inaturalist.org 

MARINe-Dive 
Multi-Agency Rocky 
Intertidal Network Melissa Miner 

east Gulf of Alaska, 
British Columbia*, Salish 
Sea, Oregon 

Community 
Science 
SCUBA Dive 

2013-
2019 

https://marine.ucsc.edu/data
-products/collaborative-
monitoring/index.html 

MARINe-
Observation 

Multi-Agency Rocky 
Intertidal Network Melissa Miner all except Aleutians 

Community 
Science 
Observation 

2012-
2019 

http://data.piscoweb.org/mar
ine1/seastardisease.html 

MBNMS 
Monterey Bay National 
Marine Sanctuary Steve Lonhart central California SCUBA Dive 

2003-
2012 

https://sanctuarysimon.org/d
btools/project-
database/index.php?ID=100
312 

MexCal-
UABC 

Universidad Autónoma 
de Baja California Rodrigo Baes Baja California SCUBA Dive 

2017-
2020 Beas-Luna et al. in prep 

http://data.piscoweb.org/marine1/seastardisease.html
http://data.piscoweb.org/marine1/seastardisease.html
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NOAA 

NOAA- National 
Marine Fisheries 
Science Aimee Keller 

Washington*, Oregon, 
northern, central, southern 
California Trawl 

2004-
2008 

Harvell et al. 2019; 
https://www.nwfsc.noaa.gov
/data/map 

OceanWise 
Oceanwise - Vancouver 
Aquarium Donna Gibbs 

all except Aleutians, west 
Gulf of Alaska, northern 
California, Baja California 

Community 
Science 
SCUBA Dive 

1967-
2019 https://ocean.org/ 

OCNMS 
Olympic Coast National 
Marine Sanctuary 

Ole Shelton, 
Greg Williams Washington* SCUBA Dive 

2015-
2019 

https://olympiccoast.noaa.go
v/ 

ODFW-
Marine Habitat 

Oregon Dept of Fish 
and Wildlife Scott Marion Oregon ROV Dive 

2001-
2018 

https://www.dfw.state.or.us/
MRP/habitat/ 

ODFW-
Marine 
Reserves 

Oregon Dept of Fish 
and Wildlife 

Lindsay 
Aylesworth,  Oregon SCUBA Dive 

2010-
2019 

https://oregonmarinereserve
s.com/ 

PISCO 
U of California Santa 
Cruz & Santa Barbara Dan Malone 

Oregon, northern, central, 
southern California SCUBA Dive 

1999-
2019 

http://www.piscoweb.org/ke
lp-forest-study 

REEF 
Reef Environmental 
Education Foundation 

Christy 
Pattengill-
Semmens 

all except Aleutians, west 
and east Gulf of Alaska SCUBA Dive 

1994-
2020 

Harvell et al. 2019; 
https://www.reef.org/reefs-
invertebrate-and-algae-
monitoring-program 

Reef Check Reef Check Jan Friewald 
northern, central, southern 
California SCUBA Dive 

2006-
2017 

https://www.reefcheck.org/c
alifornia-program/ 

Simon Fraser-
Lee Simon Fraser U Lynn Lee British Columbia* SCUBA Dive 

2010-
11 Lee et al. 2016 

Simon Fraser-
Salomon 

(1) Simon Fraser 
University, (2) Fisheries 
and Oceans Canada, (3) 
Gwaii Haanas Parks 
Canada, and Council of 
the Haida Nation 

(1) Anne 
Salomon, (2) 
Hannah Stewart 
and (3) Lynn 
Lee British Columbia* SCUBA Dive 

(1) 
2009-
2013 
(2) 
2013-
2016 

(1) Trebilco et al. 2014 
(2) Burt et al. 2018 

Simon Fraser-
Schultz 

Simon Fraser U & 
Vancouver Aquarium Jessica Schultz 

British Columbia*, Salish 
Sea SCUBA Dive 

2009-
2014 Schultz et al. 2016 

UAF-Dive U of Alaska Fairbanks Brenda Konar Aleutians SCUBA Dive 
2016-
2017 

www.uaf.edu/cfos/people/fa
culty/detail/brenda-
konar.php 

UCSC 
U of California Santa 
Cruz Kristy Kroeker southeast Alaska SCUBA Dive 

2016-
2020 

kristy-
kroeker.squarespace.com 

UW U of Washington*  Washington* SCUBA Dive 1987 Kvitek et al. 1989 

VIU-Watson Vancouver Island U Jane Watson British Columbia* SCUBA Dive 
1987-
2019 

https://scitech.viu.ca/biolog
y/faculty/jane-watson-phd 

WDFW-Dive 
Washington Dept of 
Fish and Wildlife 

Taylor Frierson 
and Henry 
Carson Salish Sea, Washington* SCUBA Dive 

1984-
2019 https://wdfw.wa.gov/ 

WDFW-Trawl 
Washington Dept of 
Fish and Wildlife 

Taylor Frierson 
and Henry 
Carson Salish Sea Trawl 

1991-
2019 https://wdfw.wa.gov/ 
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Table S2. Dates and associated information describing the epidemic timeline among 
regions. Gray text indicates low confidence due to limited data. ^These dates were 

inferred based on the dates in neighboring regions. *British Columbia and Washington 
outer coast exclude the Salish Sea. 

 

 Determined using 1st symptomatic sea stars at each site 

Determined using declines in 
occurrence of Pycnopodia 
helianthoides 

Region 
N sites 
surveyed 

Date SSWD 
First Observed Outbreak Date 

Emergence 
Duration 
(mo.) 

N 
surveys Crash Date 

Epidemic 
Duration 
(mo.) 

Aleutians 0 no data ^2016/08/25 no data 15 2018/02/07 ^17.5 
west Gulf of 
Alaska 3 2016/08/25 2016/08/25 no data 36 2018/02/07 ^17.5 

east Gulf of Alaska 14 2013/11/04 2015/06/04 19.0 222 2018/02/02 32.0 

southeast Alaska 63 2013/08/21 2014/06/25 10.1 156 2018/09/17 50.8 

British Columbia* 37 2013/11/07 2014/01/04 1.9 1515 2017/08/13 43.3 

Salish Sea 369 2013/03/30 2013/11/03 7.2 9759 2017/12/15 49.4 
Washington outer 
coast* 22 2013/06/07 2013/06/25 0.6 157 2017/08/25 50.0 

Oregon 65 2013/04/24 2014/04/11 11.6 438 2016/12/16 32.2 

northern California 47 2013/08/07 2013/09/07 1.0 195 2016/01/03 27.9 

central California 79 2013/07/15 2013/09/20 2.2 1035 2015/06/11 20.7 

southern California 64 2013/10/18 2013/11/06 0.6 2694 2014/05/18 6.3 

Baja California 1 2013/10/18 ^2013/11/06 0.6 269 2014/01/08 2.1 
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Table S3. Logistic regression model results of declines in occurrence from 2012-2019 for 
shallow depths (except in southern California, where 2013-2019 data were used). These 
models were used to estimate Pycnopodia helianthoides population crash dates among 

regions, and delineate epidemic and post-epidemic phases. *British Columbia and 
Washington outer coast excluding the Salish Sea. 

 

Term N df Chi Sq. P R2 

western Alaska 51 1 3.66 0.0556 0.054 
east Gulf of Alaska 222 1 21.92 <.0001 0.073 
southeast Alaska 156 1 9.14 0.0025 0.054 
British Columbia* 1515 1 233.12 <.0001 0.112 
Salish Sea 9759 1 1464.68 <.0001 0.110 
Washington outer coast* 157 1 40.88 <.0001 0.191 
Oregon 438 1 47.63 <.0001 0.080 
northern California 195 1 89.17 <.0001 0.378 
central California 1035 1 591.65 <.0001 0.438 
southern California 2694 1 95.33 <.0001 0.186 
Baja California 269 1 591.65 <.0001 0.302 
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Table S4. Data descriptors and density and occurrence metrics for Pycnopodia 
helianthoides populations in historic (before outbreak date in each region) and current 

(2017-2019) population phases, reflecting impacts of the Sea Star Wasting Disease 
outbreak from 2013-2017: a) populations in shallow depths (< 25 m) split by region; b) 
populations in deep depths (>25 m) globally; and c) Populations at all depths globally. 

Gray text indicates low confidence due to low sample size or inconsistent sampling 
efforts. *British Columbia and Washington outer coast excluding the Salish Sea. 

 

Region Population 
Phase 

Density (Pycnopodia km-2) Occurrence (% surveys present) 

N 
Surveys Mean SD SE % Decline 

Density 
N 

Surveys Mean SD SE % Decline 
Occurrence 

a) Regionally at shallow depths (< 25m) 

Aleutians 
Historic 9 83,333 132,288 44,096 

40.0 
23 35% 49% 10% 

-115.6 
Current 2 50,000 70,711 50,000 4 75% 50% 25% 

west Gulf 
of Alaska 

Historic 45 27,444 34,093 5,082 
100.0 

73 53% 50% 6% 
100.0 

Current 5 0 0 0 6 0% 0% 0% 

east Gulf of 
Alaska 

Historic 152 120,193 304,314 24,683 
93.8 

168 78% 42% 3% 
58.9 

Current 54 7,438 22,288 3,033 78 32% 47% 5% 

southeast 
Alaska 

Historic 47 118,715 98,711 14,399 
96.0 

106 81% 39% 4% 
20.8 

Current 31 4,758 12,499 2,245 84 64% 48% 5% 

British 
Columbia* 

Historic 1,091 23,095 46,650 1,412 
87.9 

2,239 63% 48% 1% 
68.9 

Current 220 2,794 9,000 607 568 20% 40% 2% 

Salish Sea 
Historic 244 101,049 873,132 55,897 

92.4 
12,235 81% 39% 0% 

52.9 
Current 87 7,641 15,511 1,663 3,457 38% 49% 1% 

Washington 
outer coast* 

Historic 9 85,724 100,015 33,338 
99.6 

140 95% 22% 2% 
70.6 

Current 15 304 895 231 43 28% 45% 7% 

Oregon 
Historic 72 44,137 41,983 4,948 

100.0 
742 60% 49% 2% 

92.2 
Current 19 0 0 0 85 5% 21% 2% 

northern 
California 

Historic 192 33,526 32,542 2,348 
99.2 

220 89% 31% 2% 
94.9 

Current 85 267 1,397 152 88 5% 21% 2% 

central 
California 

Historic 1,041 38,755 47,778 1,481 
99.5 

1,580 83% 37% 1% 
96.0 

Current 169 181 1,140 88 361 3% 18% 1% 

southern Historic 1,062 35,790 82,750 2,539 100.0 2,768 22% 42% 1% 99.3 
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California Current 268 0 0 0 1,240 0% 4% 0% 

Baja 
California 

Historic 81 2,586 6,049 672 
100.0 

87 25% 44% 5% 
100.0 

Current 128 0 0 0 128 0% 0% 0% 

b) Globally at deep depths (> 25m) 

All 
Historic 1,976 636 2,852 64 

96.2 
13,710 18% 38% 0% 

55.3 
Current 177 24 94 7 697 8% 27% 1% 

c) Globally at all depths 

All 
Historic 6,021 27,552 189,911 2,447 

94.3 
34,091 49% 50% 0% 

52.3 
Current 1,260 1,580 8,322 234 6,891 23% 42% 1% 
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Table S5. Generalized linear model results analyzing the trends in Pycnopodia 
helianthoides for a) densities and b) occurrence at shallow depths (≤ 25 m), and c) 
densities and d) occurrence at deep depths (> 25 m) among regions and population 

phases. Population phases compared historic (before the outbreak date in a given region) 
and current (2017-2020) populations. In a) and b), we lumped the Aleutian Islands and 
west Gulf of Alaska into ‘western Alaska’, the Washington outer coast and Oregon into 
the ‘Pacific Northwest’ (excluding the Salish Sea) and dropped southern California and 

Baja California because current populations had zero Pycnopodia. In d) Three super 
regions were classified as Alaska, British Columbia including Salish Sea, and the outer 

coast of the contiguous US).   
 

Term df Chi Sq. P 
a) Shallow Density Model 

Population Phase 1 0.5 0.473 
Region 7 8600.1 <.0001 
Population Phase * Region 7 684.2 <.0001 

b) Shallow Occurrence Model 
Area 1 2.0 0.156 
Population Phase 1 744.7 <.0001 
Region 7 50.3 <.0001 
Population Phase * Region 7 269.1 <.0001 

c) Deep Density Model 
Population Phase 1 137 <.0001 

d) Deep Occurrence Model 
Area 1 1.8 0.1851 
Population Phase 1 870.8 <.0001 
Super region 2 74.5 <.0001 
Population Phase * Super 
region 

1 203.8 <.0001 
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Table S6: Maxent permutation importance, a measurement of variable predictive 

capacity, for the five environmental variables used to predict Pycnopodia helianthoides 
distributions in pre-outbreak (2009-2012) and current (2017-2020) Maxent species 

distribution models.  
 
 

Variable Pre-Outbreak (2009-2012) Current (2017-2020) 

90th Percentile of Temperature (℃) 9.0% 39.6% 

Depth (m) 74.5% 41.8% 

Mean Chlorophyll (mg/m-3) 2.6% 10.7% 

Mean Salinity (PSU) 13.6% 6.3% 

Substrate Type 0.3% 1.7% 
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Figure S1. Map of the 48,810 Pycnopodia helianthoides surveys gathered for this study 
spanning 1967-2020. Colors indicate the 12 regional designations assigned to the data.  
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Figure S2. Notable events and phase definitions for both the sea star wasting disease 
epidemic and sunflower sea star populations. 
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Figure S3. Comparison of the date SSWD was first observed in Pisaster ochraceus and 

Pycnopodia helianthoides for each site in the MARINe database (Multi-Agency Rocky Intertidal 
Network). 
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Figure S4. Regional densities of Pycnopodia helianthoides populations from 2017-2019 

with lines representing modeled linear trends in density over time in each region. *British 
Columbia and Washington exclude the Salish Sea. 
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Figure S5. Relationship between Latitude (m) and 90th Percentile of Temperature (˚C) of 
observed Pycnopodia helianthoides used in the Maxent species distribution models (both pre- 
and post-outbreak models). The R2 and p-value of a linear model between the two variables are 

reported. Latitude is reported in North American Albers Conic Equal Area. 
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