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1 SUPPLEMENTARY TABLES AND FIGURES

Site Period Slope (◦C) Explained Variance

M1 P1 17.04 0.917
P2 9.58 0.950
P3 7.54 0.870
P4 -21.03 0.697

M2 P1 9.51 0.991
P2 9.90 0.950
P3 21.30 0.891
P4 9.60 0.852

M3 P1 8.18 0.993
P2 11.25 0.968
P3 10.63 0.645
P4 13.22 0.839

M4 P1 9.33 0.996
P2 9.07 0.993
P3 10.47 0.888
P4 17.16 0.931

Supplementary Table 1. The slope of the mixing line at moorings M1–M4 in periods P1–P4. The first,
second, third, and fourth columns indicate mooring site, period, the slope of the mixing line, and the
proportion of the variance explained by the first principal component, respectively.
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Supplementary Figure 1. The vertical distribution of potential temperature and salinity at CTD stations
a01–a10 (A, B), b01–b07 (C, D), and c01–c05 (E, F). The vertical dotted lines in (A), (C), and (E) indicates
θ = −0.3 ◦C.
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2 APPENDIX

2.1 Three-layer quasi-geostrophic model

We consider a perturbation in a uniform zonal flow, using a quasi-geostrophic three-layer model on the
f-plane. The perturbation streamfunction, ψm (m = 1, 2, 3), can be expressed in the form of a wave,

ψm = φme
ik(x−ct) cos ly , (A1)

where t is time; c is the phase speed; x and y are the zonal and meridional coordinates, respectively; k is
the zonal wavenumber; and l−1 is the meridional scale of the basic flow and perturbation. The growth rate
and the angular frequency of the unstable mode are kci and kcr, respectively, where cr and ci are the real
and imaginary parts of c.

The quasi-geostrophic potential-vorticity equations of the perturbation are

(c− U1) [Kφ1 + F1(φ1 − φ2)] + F1(U1 − U2)φ1 = 0 (A2)

(c− U2) [Kφ2 + F2−(φ2 − φ1) + F2+(φ2 − φ3)] + [F2−(U2 − U1) + F2+(U2 − U3)]φ2 = 0 (A3)

(c− U3) [Kφ3 + F3(φ3 − φ2)] +

[
F3(U3 − U2) +

f0α

H3

]
φ3 = 0 , (A4)

where Um is the basic flow, Hm is the layer thickness, α is the bottom slope, f0 is the Coriolis parameter,
ρ0 is the Boussinesq density,

K = k2 + l2 , (A5)

F1 =
ρ0f

2
0

g∆ρ1H1
, F2− =

ρ0f
2
0

g∆ρ1H2
, F2+ =

ρ0f
2
0

g∆ρ2H2
, F3 =

ρ0f
2
0

g∆ρ2H3
, (A6)

and ∆ρ1 and ∆ρ2 are the density difference between the first and second and the second and third layers,
respectively.

We can rewrite Equations A2–A4 in the form of a generalized eigenvalue problem of matrices,

Ap = cLp , (A7)

where

p =

φ1φ2
φ3

 , (A8)

L =

K + F1 −F1 0
−F2− K + F2− + F2+ −F2+

0 −F3 K + F3

 , (A9)

and

A =

KU1 + F1U2 −F1U1 0
−F2−U2 KU2 + F2−U1 + F2+U3 −F2+U2

0 −F3U3 KU2 + F3U2

 . (A10)

Using Equation A7, we can numerically calculate the eigenvalue, c, and eigenvector, φm. When we
calculate the unstable mode induced by CDBW, we assume that U1 = U2 = 0. If we set U1 = U2, Equation
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A2 yields
c = U1 or (K + F1)φ1 = F1φ2 . (A11)

In this case, one of the three modes is neutral, and the character of the other two modes is similar to that of
the modes obtained in a two-layer model, because φ1 is proportional to φ2 (Pedlosky 1987).
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