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Abstract: In the paper [Tijs, S., Torre, A. and Branzei, P.: Approximate �xed point the-
orems, Libertas Mathematica, 23(2003), 35 − 39(2003)], the authors studied some �xed point
theorems by considering weakening of the conditions in the �xed point theorems of Brouwer,
Kakutani and Banach which still guarantee the existence of approximate �xed points. Also, in
the paper [Berinde, M.: Approximate �xed point theorems, Studia Univ. BABES-BOLYAL,
MATHEMATICA, Volume L1, Number 1, pp. 11− 23(2006).], the author gave some qualitative
and quantitative approximate �xed point results on metric spaces by introducing two Lemmas,
and using some contactive-type operators used by Tijs etal.. The aim of this paper is to establish
qualitative and quantitative approximate �xed point results involving rational-type contraction
mappings in metric spaces (not necessarily complete). Our results are extensions of several others
in the literature. Some examples are provided to illustrate our results.

Keywords: Fixed point, Approximate �xed point, Rational-type contraction, qualitative re-
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1 INTRODUCTION

The famous Banach's contraction mapping principle ensures, under certain conditions, the exis-
tence and uniqueness of a �xed point. This theorem provides a technique for solving a variety
of applied problems in Mathematical Sciences and Engineering. Several authors have extended
and generalized Banach �xed point theorem in many ways:
Dass and Gupta [6] were the �rst to consider a generalization of the Banach �xed point theorem
using a contractive condition of rational-type as follows:
Let (X , d) be a complete metric space. There exists a �xed point for a mapping T : X → X , for
which there exists some α ≥ 0, β ≥ 0 with α+ β < 1, such that

d(Tx, Ty) ≤ αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βd(x, y), ∀x, y ∈ X . (1)

Furthermore, Jaggi [10] established a �xed point theorem in complete metric space using a
contractive condition of rational-type; namely: There exists a �xed point for a mapping T : X →
X , for which there exist some α, β ∈ [0, 1) with α+ β < 1, such that

d(Tx, Ty) ≤ αd(x, Tx).d(y, Ty)

d(x, y)
+ βd(x, y), ∀x, y ∈ X , x 6= y. (2)
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Using the contractive condition (2), Harjani et al. [8] extended the result of Jaggi [10] to the
partially ordered metric spaces. Contractive conditions of rational-type have been greatly em-
ployed in the �xed point as well as the coupled �xed point settings. For more details on results
pertaining to rational-type contractive conditions, we refer the reader to [5], [13] in the references
section and others in the literature.
The theory of �xed point has a lot of applications in many applied areas such as Mathematical
economics, dynamic optimization and stochastic games, functional analysis, variational calculus,
theory of integro-di�erential equations, etc[16]. However, in practice, there are many real situa-
tions where an approximate solution proved su�cient and hence, existence of �xed points is not
strictly necessary. This naturally led to the study of approximate �xed point theory.
Here, an approximate �xed point x of a function f has the property that f(x) is `near' to x
in a sense to be speci�ed[16]. In such situations, weakening the condition of the �xed point
setting, by giving up the completeness of the space, the approximate �xed point (ε−�xed point)
can still be guaranteed for several operators. In 2003, Tijs et al. [16] studied some �xed point
theorems by considering weakening of the conditions in the �xed point theorems of Brouwer [4],
Kakutani [11] and Banach [1] which still guarantee the existence of approximate �xed points.
In 2006, Berinde [2] proved approximate �xed point results by introducing two Lemmas, using
some of the operators used by Tijs et al. [16] and gave some qualitative and quantitative results
on metric spaces. Furthermore, in 2017, Mohseni Alhosseini [12] proved some approximate �xed
point theorems for cyclical contraction mappings. For further results on approximate �xed point,
we refer the reader to [3],[7],[14],[15] and others in the literature.
In this paper, we study some qualitative and quantitative results for some mappings satisfying
contractive conditions of rational-type in metric spaces. We present the following de�nitions and
Lemma which we are to use in the sequel.

De�nition 1.01[2] Let (X , d) be a metric space. Let T : X → X , ε > 0, x ∈ X . Then x is an
ε−�xed point (approximate �xed point) of T if d(Tx, x) < ε.

Remark 1.02[2] We denote the set of all ε−�xed points of T, for a given ε, by Fε(T ) = {x ∈ X |x
is an ε−�xed point of T}.

Lemma 1.03[2] Let (X , d) be a metric space, T : X → X such that T is asymptotic regular i.e.,
d(Tn(x), Tn+1(x))→ 0 as n→∞, ∀x ∈ X . Then, for ε > 0, Fε(T ) 6= ∅.

The following example shows that the set of ε−�xed points is indeed larger than the set of
�xed points.
Example 1:04. Let X ⊆ R be endowed with the usual metric. Suppose X = (0, 12 ]. Let T be
de�ned by T : X → X such that Tx = x

4 ,∀x ∈ X .
The �xed point of T is 0 /∈ X . On the other hand, take 0 < ε < 1

2 and select y ∈ X , such that
y < 1

4ε.

d(Ty, y) = |y
4
− y|

= |−3
4
y|

≤ 3

4
|y|

<
3

4
|1
4
ε|

=
3ε

16
< ε.

Hence, T has an approximate �xed point in X , implying that Fε(T ) 6= ∅ in X whereas T does
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not have a �xed point in X .

2 MAIN RESULTS

This section consists of two subsections, namely: The qualitative and the quantitative results.
We �rst deal with the qualitative aspect as follow.

A. QUALITATIVE RESULTS:

Theorem 2.01 : Let (X , d) be a metric space, T : X → X a self-map on X such that for some
α, β ≥ 0, α+ β < 1, ∀x, y ∈ X ,

d(Tx, Ty) ≤ αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βd(x, y). (3)

Then, T has an ε−�xed point.
Proof : Let ε > 0 and x ∈ X .

d(Tnx, Tn+1x) = d(T (Tn−1x), T (Tnx))

≤ αd(Tnx, T (Tnx))[1 + d(Tn−1x, T (Tn−1x))]

[1 + d(Tn−1x, Tnx)]
+ βd(Tn−1x, Tnx)

≤ αd(Tnx, Tn+1x))[1 + d(Tn−1x, Tnx))]

[1 + d(Tn−1x, Tnx)]
+ βd(Tn−1x, Tnx)

= αd(Tnx, Tn+1x) + βd(Tn−1x, Tnx)

≤ β

1− α
d(Tn−1x, Tnx)

...

≤
( β

1− α
)n
d(x, Tx).

But
( β
1−α

)
< 1, therefore

lim
n→∞

d(Tnx, Tn+1x) = 0, ∀x ∈ X .

By Lemma 1.03, it follows that Fε(T ) 6= ∅, ∀ε > 0.

Example 2:02 Let X ⊆ R be endowed with the usual metric. Suppose X = (0,∞]. Let T be
de�ned as Tx = x

2 ,∀x ∈ (0,∞].
Certainly, T does not have a �xed point in (0,∞].
Let α = 1

2 , β = 1
5 . Choose x = 1

2 , y = 1
4 ∈ X . Let T satisfy the conditions of Theorem 2.01. Then,

d

(
T (

1

2
), T (

1

4
)

)
= d

(
1

4
,
1

8

)
=

∣∣∣∣14 − 1

8

∣∣∣∣ = 1

8
,

d(y, Ty) = d

(
1

4
,
1

8

)
=

1

8
,

d(x, Tx) = d

(
1

2
,
1

4

)
=

1

4
,
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d(x, y) = d

(
1

2
,
1

4

)
=

1

4
.

Therefore,

1

8
≤

1
2(

1
8)[1 +

1
4 ]

1 + 1
4

+
1

5
(1 +

1

4
)

=
1
16(

5
4)

5
4

+
1

5
(
5

4
)

=
1

16
+

1

4
=

5

16
.

Hence, T has an approximate �xed point in X .

Theorem 2.03 : Let (X , d) be a metric space, T : X → X a self-map on X such that for some
α, β ∈ [0, 1), α+ β < 1, we have

d(Tx, Ty) ≤ αd(x, Tx).d(y, Ty)

d(x, y)
+ βd(x, y), (4)

∀x, y ∈ X , where d(x, y) > 0. Then T has an ε−�xed point.
Proof : Let ε > 0 and x ∈ X . If there is n ∈ N such that d(Tn−1x, Tnx) = 0, then Tn−1x is a
�xed point of T and thus an ε−�xed point. Suppose now that for all n ∈ N, d(Tn−1x, Tnx) 6= 0,
then,

d(Tnx, Tn+1x) = d(T (Tn−1x), T (Tnx))

≤ αd(Tn−1x, T (Tn−1x)).d(Tnx, T (Tnx))

d(Tn−1x, Tnx)
+ βd(Tn−1x, Tnx)

=
αd(Tn−1x, Tnx).d(Tnx, Tn+1x)

d(Tn−1x, Tnx)
+ βd(Tn−1x, Tnx)

= αd(Tnx, Tn+1x) + βd(Tn−1x, Tnx)

≤ β

1− α
d(Tn−1x, Tnx)

...

≤
( β

1− α
)n
d(x, Tx).

But α, β ∈ [0, 1) with α+ β < 1, then ( β
1−α) ∈ [0, 1). Thus, lim

n→∞
d(Tnx, Tn+1x) = 0. By Lemma

1.03, it follows that Fε(T ) 6= ∅, ∀ε > 0.

Theorem 2.04 : Let (X , d) be a metric space, T : X → X a self-map on X such that for some
α ≥ 0, β ∈ [0, 1), and ∀x, y ∈ X , such that d(y, Ty) + d(x, y) > 0, we have

d(Tx, Ty) ≤ αd(x, Tx)d(x, Ty)d(y, Ty)

d(y, Ty) + d(x, y)
+ βd(x, y). (5)

Then, T has an ε−�xed point ∀ε > 0.
Proof : Let ε > 0 and x ∈ X . If there is n ∈ N such that d(Tn−1x, Tnx) = 0, then Tn−1x is a
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�xed point of T and thus an ε−�xed point. Suppose now that for all n ∈ N, d(Tn−1x, Tnx) 6= 0,
then,

d(Tn+1x, Tnx) = d(T (Tn)x, T (Tn−1x))

≤ αd(Tnx, T (Tnx))d(Tnx, T (Tn−1x))d(Tn−1x, T (Tn−1x))

d(Tn−1x, T (Tn−1x)) + d(Tnx, Tn−1x)
+ βd(Tnx, Tn−1x)

=
αd(Tnx, Tn+1x)d(Tnx, Tnx)d(Tn−1x, Tnx)

d(Tn−1x, Tnx) + d(Tnx, Tn−1x)
+ βd(Tnx, Tn−1x)

≤ βd(Tnx, Tn−1x)

≤
...

≤ βnd(Tx, x).

But β ∈ [0, 1), then, lim
n→∞

d(Tn+1x, Tnx) = 0. By Lemma 1.03, it follows that Fε(T ) 6= ∅, ∀ε > 0.

In what follows, we have a theorem which is a generalization of Theorem 2.04. Meanwhile, the
following de�nition is to be used in the sequel.

De�nition 2.05: Consider a function ψ : R+ → R+. ψ is called a comparison function if it
satis�es the conditions:
(i)ψ is monotone increasing, and
(ii)ψn(t) converges to 0 as n→∞,∀t ∈ R+.

Theorem 2.06: Let (X , d) be a metric space and let T : X → X be a self-map on X such that
for some α ≥ 0 and ψ, a comparison function satisfying ψ(t) < t, ∀t > 0, we have

d(Tx, Ty) ≤ αd(x, Tx)d(x, Ty)d(y, Ty)

d(y, Ty) + d(x, y)
+ ψ(d(x, y)). (6)

∀x, y ∈ X such that d(y, Ty) + d(x, y) 6= 0. Then, Fε(T ) 6= ∅, ∀ε > 0.

Proof : Let ε > 0 and x ∈ X . If there is n ∈ N such that d(Tn−1x, Tnx) = 0, then Tn−1x is a
�xed point of T and thus an ε−�xed point. Suppose now that for all n ∈ N, d(Tn−1x, Tnx) 6= 0,
then,

d(Tn+1x, Tnx) = d(T (Tnx), T (Tn−1x))

≤ αd(Tnx, T (Tnx))d(Tnx, T (Tn−1x))d(Tn−1x, T (Tn−1x))

d(Tn−1x, T (Tn−1x)) + d(Tnx, Tn−1x)
+ ψ(d(Tnx, Tn−1x))

=
αd(Tnx, Tn+1x)d(Tnx, Tnx)d(Tn−1x, Tnx)

d(Tn−1x, Tnx) + d(Tnx, Tn−1x)
+ ψ(d(Tnx, Tn−1x))

= ψ(d(Tnx, Tn−1x))

≤
...

≤ ψn(d(Tx, x)).

But ψ is a comparison function, ψn(d(Tx, x))→ 0 as n→∞. Hence,

lim
n→∞

d(Tn+1x, Tnx) = 0, ∀x ∈ X .

Then, Fε(T ) 6= ∅, ∀ε > 0.
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B. QUANTITATIVE RESULTS FOR MAPPINGS IN METRIC SPACES

In this subsection, we will obtain quantitative results for some of the operators we have studied
in the previous subsection.

Theorem 2.07 : Let (X , d) be a metric space and T : X → X a mapping satisfying all the
conditions of Theorem 2.01. Then, for each ε > 0, the diameter of Fε(T ) is not larger than

6ε+ 4(α− β − αβ)ε+ 4(1 + α− αβ)ε2

2(1− β)
.

Proof : Let x, y ∈ Fε(T ). By triangle inequality and condition (3),

d(x, y) ≤ d(x, Tx) + d(Tx, Ty) + d(Ty, y)

≤ 2ε+ d(Tx, Ty)

≤ 2ε+
αd(y, Ty)[1 + d(x, Tx)]

1 + d(x, y)
+ βd(x, y)

≤ 2ε+
αε(1 + ε)

1 + d(x, y)
+ βd(x, y)

(1− β)[d(x, y)]2 + (1− β − 2ε)d(x, y) ≤ 2ε+ αε+ αε2

[
d(x, y)

]2
+

(
1− β − 2ε

1− β

)
d(x, y) ≤ 2ε+ αε+ αε2

1− β
.

Completing the square, we have[
d(x, y) +

1− β − 2ε

2(1− β)

]2
≤ 2ε+ αε+ αε2

1− β
+

(
1− β − 2ε

2(1− β)

)2

.

Then, it follows that

d(x, y) ≤ β + 2ε− 1

2(1− β)
+

1

2(1− β)
√

1 + 4(1 + α− β − αβ)ε+ 4(1 + α− αβ)ε2 + β2 − 2β

<
1

2(1− β)

(
β + 2ε− 1 + 1 + 4(1 + α− β − αβ)ε+ 4(1 + α− αβ)ε2 + β2 − 2β

)
.

Hence,

d(x, y) ≤ β + 2ε+ 4(1 + α− β − αβ)ε+ 4(1 + α− αβ)ε2 + β2 − 2β

2(1− β)

=
6ε+ 4(α− β − αβ)ε+ 4(1 + α− αβ)ε2 + β2 − β

2(1− β)

<
6ε+ 4(α− β − αβ)ε+ 4(1 + α− αβ)ε2

2(1− β)
.

Example 2.08. Let X = (0, 12 ] be endowed with the usual metric. Let T : X → X be de�ned by
Tx = x

3 ,∀x ∈ X . We want to prove that the conditions of Theorem 2.07 are satis�ed. Consider
the contractive condition (3) such that α = 1

4 , β = 1
5 and ε = 1

2 . Choose x = 1
2 , y = 1

4 ∈ X .

d(x, Tx) = |1
2
− 1

6
| = 1

3
<

1

2
.

Also,

d(y, Ty) = |1
4
− 1

8
| = 1

8
<

1

2
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Thus, x, y ∈ Fε(T ).

d(x, y) = d(
1

2
,
1

4
)

=
1

4

<
6ε+ 4(α− β)ε+ 4(1 + α− αβ)ε2 + β2 − β

2(1− β)

=
6(12) + 4(14 −

1
5)

1
2 + 4(1 + 1

4 −
1
20)

1
4 + 1

25 −
1
5

2(1− 1
5)

=
3 + 26

20 −
4
25

2(45)

=
207

80
,

hence, the result.

Theorem 2.09 : Let the conditions of Theorem 2.03 be satis�ed. Then, for each ε > 0, the

diameter of Fε(T ) is not larger than

(
α+ 2

1−β

)
ε.

Proof : Let x, y ∈ Fε(T ). By triangle inequality and condition (4),

d(x, y) ≤ d(x, Tx) + d(Ty, y) + d(Tx, Ty)

≤ 2ε+ d(Tx, Ty)

≤ 2ε+
αd(x, Tx)d(y, Ty)

d(x, y)
+ βd(x, y)

[d(x, y)]2 ≤ 2εd(x, y) + αd(x, Tx)d(y, Ty) + β[d(x, y)]2

(1− β)[d(x, y)]2 ≤ 2εd(x, y) + αε2

[d(x, y)]2 − 2εd(x, y)

1− β
≤ αε2

1− β
.

Completing the square, we have[
d(x, y)− ε

1− β

]2
≤ αε2

1− β
+

(
ε

1− β

)2

.
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Hence,

d(x, y) ≤ ε

1− β
+

√
αε2 + ε2(1− αβ)

(1− β)2

=
ε

1− β
+

ε

1− β
√

1 + α− αβ

=
ε

1− β

(
1 +

√
1 + α− αβ

)
<

ε

1− β

(
1 + 1 + α− αβ

)
= ε

(
2 + α(1− β)

1− β

)
=

(
α+

2

1− β

)
ε

which completes the proof.

Theorem 2.10 : Let (X , d) be a metric space and T : X → X satisfy the conditions of Theorem
2.04. Then, for each ε > 0, the diameter of Fε(T ) is not larger than

1

2(1− β)
[ε(β + 1) + ε2(α+ 10) + ε3(6α− 2αβ) + ε4α2].

Proof : Let x, y ∈ Fε(T ). By triangle inequality and condition (5),

d(x, y) ≤ d(x, Tx) + d(Tx, Ty) + d(Ty, y)

≤ 2ε+ d(Tx, Ty)

≤ 2ε+
αd(x, Tx)d(x, Ty)d(y, Ty)

d(y, Ty) + d(x, y)
+ βd(x, y).

Also, by triangle inequality,

d(x, y) ≤ 2ε+
αd(x, Tx)[d(x, y) + d(y, Ty)]d(y, Ty)

d(y, Ty) + d(x, y)
+ βd(x, y)

≤ 2ε+
[αd(x, Tx)d(x, y) + αd(x, Tx)d(y, Ty)]d(y, Ty)

d(y, Ty) + d(x, y)
+ βd(x, y)

≤ 2ε+
[εαd(x, y) + αε2]ε

ε+ d(x, y)
+ βd(x, y)

(1− β)d(x, y) ≤ 2ε+
ε2αd(x, y) + αε3

ε+ d(x, y)

(1− β)d(x, y) ≤ 2ε(ε+ d(x, y)) + ε2αd(x, y) + αε3

ε+ d(x, y)

(1− β)[d(x, y)]2 + ε(1− β)d(x, y) ≤ 2ε(ε+ d(x, y)) + ε2αd(x, y) + αε3

= 2ε2 + 2εd(x, y) + ε2αd(x, y) + αε3

(1− β)[d(x, y)]2 + ε(1− β)d(x, y)− 2εd(x, y)− ε2αd(x, y) ≤ 2ε2 + αε3
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(1− β)[d(x, y)]2 + [ε(1− β)− 2ε− αε2]d(x, y) ≤ 2ε2 + αε3

[d(x, y)]2 +
[−εβ − ε− αε2]d(x, y)

1− β
≤ 2ε2 + αε3

1− β
.

Completing the square, we have[
d(x, y) +

−εβ − ε− αε2

2(1− β)

]2
≤ 2ε2 + αε3

1− β
+

[
−εβ − ε− αε2

2(1− β)

]2
Implying that,

d(x, y) ≤ εβ + ε+ αε2

2(1− β)
+

√
2ε2 + αε3

1− β
+

[
−εβ − ε− αε2

2(1− β)

]2
=

εβ + ε+ αε2

2(1− β)
+

√
2ε2 + αε3

1− β
+

(−εβ − ε− αε2)2
4(1− β)2

=
εβ + ε+ αε2

2(1− β)
+

√
4(1− β)(2ε2 + αε3) + (−εβ − ε− αε2)2

4(1− β)2

=
1

2(1− β)

[
εβ + ε+ αε2 +

√
4(1− β)(2ε2 + αε3) + (−εβ − ε− αε2)2

]
<

1

2(1− β)

[
εβ + ε+ αε2 + 4(1− β)(2ε2 + αε3) + (−εβ − ε− αε2)2

]
=

1

2(1− β)
[εβ + ε+ αε2 + ε2β2 + 9ε2 + 6αε3 + α2ε4 − 6ε2β − 2αβε3]

≤ 1

2(1− β)
[ε(β + 1) + ε2(α+ 10) + ε3(6α− 2αβ) + ε4α2].

Theorem 2.11 : Let (X , d) be a metric space and T : X → X satisfy the conditions of Theorem
2.06. Then, for each ε > 0, the diameter of Fε(T ) is indeterminate.
Proof : x, y ∈ Fε(T ). By triangle inequality and condition (6),

d(x, y) ≤ d(x, Tx) + d(Tx, Ty) + d(Ty, y)

≤ ε+ d(Tx, Ty) + ε

= 2ε+ d(Tx, Ty)

≤ 2ε+
αd(x, Tx)d(x, Ty)d(y, Ty)

d(y, Ty) + d(x, y)
+ ψ(d(x, y)).

Also, by triangle inequality,

d(x, y) ≤ 2ε+
αd(x, Tx)[d(x, y) + d(y, Ty)]d(y, Ty)

d(y, Ty) + d(x, y)
+ ψ(d(x, y)).

Since ψ(t) < t,∀t > 0, then,

d(x, y) < 2ε+
αd(x, Tx)[d(x, y) + d(y, Ty)]d(y, Ty)

d(y, Ty) + d(x, y)
+ d(x, y)

≤ 2ε+
αε[d(x, y) + ε]ε

ε+ d(x, y)
+ d(x, y).

It implies that

−αε[d(x, y) + ε]ε

ε+ d(x, y)
≤ 2ε
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−αε[d(x, y) + ε]ε ≤ 2ε2 + 2εd(x, y)

−αε2d(x, y)− αε3 ≤ 2ε2 + 2εd(x, y)

(−αε2 − 2ε)d(x, y) ≤ 2ε2 + αε3

(−αε− 2)d(x, y) ≤ 2ε+ αε2

(αε+ 2)d(x, y) ≥ −2ε− αε2

d(x, y) ≥ −2ε− αε
2

αε+ 2
.

3 CONCLUSION

We have proved qualitative and quantitative results involving contractive conditions of rational
type. It is interesting to note that apart from a quantitative result involving a comparison
function, the value of ε is directly proportional to the diameter estimate of the set containing the
ε−�xed points in all the cases considered in this paper. When ε approaches zero, we approach
the more restricted �xed point setting.
The theory of ε−�xed points is therefore not less important than that of �xed points as several
results given in the latter can be formulated in a weaker setting to guarantee existence of the
ε−�xed points.
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