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Detailed statistical approach 

I. Datasets 

We conducted experiments over arteries from 11 donors (r=1, 2,…,11). Five arterial samples (j=1, 

2,…,5) were taken from each artery, at different time points during the storage after the addition of 

the storage medium. The first arterial sample (j=1) was not treated with storage medium, whereas the 

arterial samples from two to five (j=2,3,4,5) were kept in the storage medium less than 1 day for j=2, 

one week for j=3, 12 weeks for j=4, and 24 weeks for j=5. Each of the 55 arterial samples, Sr,j, were 

perfused with blood before being studied with the immunofluorescent method described in the 

“Methods” section and data from different regions of interest in the micrographs were analyzed. The 

regions were divided into six logical groups corresponding to the three layers of the artery 

(Adventitia for L=1, Media for L=2, and Intima for L=3) and to the measured thrombogenic factor 

(the percentage of area covered by fibrin for T=1 and the percentage of area covered by platelets for 

T=2). We use the designation L,T
r , jm  for the count of regions in the Lth layer from the rth donor at the 

jth treating time where the Tth thrombogenic factor was measured. If the kth measurement of this type 

is L,T
k ,r , jy  (k=1,2,…, L,T

r , jm ) we can form five data samples for each combination of L and T at any time 

point. To achieve parity of the arterial samples from different donors we associated the observation 

L,T
k ,r , jy  with a degree of membership  1L,T L,T

r , jk ,r , j / m  to the set  L,T
jS  of all measurements for the 

Tth thrombogenic factor in the Lth layer at the jth treating time (such approach was successfully 

applied in [Error! Reference source not found.,Error! Reference source not found.,Error! 

Reference source not found.]). The fuzzy sample L,T
j  is from the jth treating time and contains 

only the available information for L,T
jS  (see [Error! Reference source not found.] for 
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interpretations of the term fuzzy sample). The L,T
j  contains couples of “measured values and degree 

of membership” with count 
11

1

L,T L,T
j r , j

t
n m


  : 

   1 1 2 2; ; ;    , for 1 2 5L,T L,T
j j

L,T L,T L,T L,T L,T L,T L,T
j , j , j , j , j n , j n , j

x , x , , x j , , ,        
  

      (1) 

The first 1
L,T
, jm couples in the fuzzy sample L,T

j are the measurements for the first donor 

  11 1; , for 1 2L,T L,T L,T
, jk , , j k , , jy k , , ,m   . The second 2

L,T
, jm couples in the fuzzy sample L,T

j are the 

measurements for the second donor   22 2; , for 1 2L,T L,T L,T
, jk , , j k , , jy k , , ,m   , and so on till the last 11

L,T
, jm

couples which are the measurements for the eleventh donor   1111 11; , for 1 2L,T L,T L,T
, jk , , j k , , jy k , , ,m   .The 

raw data L,T
k ,r , jy  (k=1,2,…, L,T

r , jm , r=1,2,…,11, j=1, 2,…,5, L=1,2,3, and T=1,2) are presented with the 

same designations as Supplementary data. 

In this study we focused on identifying the influence of the storage time on the thrombogenic factor 

abundance in different layers. The statistical analysis was performed six times, separately for each 

combination of L and T. Because of the identity of the approach for all L-T combinations, in this 

section we can simplify the notation by omitting the L and T indices. So, each of the five fuzzy 

samples, j , contains nj fuzzy variates of the random variable Xj  “percentage of area covered by the 

thrombogenic factor at the jth storage time”: 

      1 1 2 2; ; ;    , for 1 2 5
j jj , j , j , j , j n , j n , jx , x , , x j , , ,          (2) 

The five fuzzy sample (2) were sorted by renumbering the couples in j  so that Xj variates are in 

ascending order:  



4 

 

      1 1 2 2

1 2

; ;  ;     , for 1 2 5

where     

j j j

j

sort sort sort sort sort sort sort
, j , j , j , j n , j n , j

sort sort sort
, j , j n , j

x , x , , x j , , ,

x x x

    

  

 


   (3) 

The count of the observations, nj, in the fuzzy samples (2) depends on the layer (L), on the 

thrombogenic factor (T) and on treating time (j), which is summarised in Table 1. 

Table 1: The size of the fuzzy sample nj, for the 
separate time points (j), thrombogenic factor (T) 
and layer (L) 

L 1 1 2 2 3 3 
T 1 2 1 2 1 2 
j=1 149 158 153 160 113 114 
j=2 160 162 160 162 101 101 
j=3 150 155 165 168 105 106 
j=4 212 211 111 200 124 125 
j=5 176 176 219 225 139 139 

 

II. Distribution Functions and α-quantiles  

Any approximation of the cumulative distribution function (CDF) of a random variable based on a 

random sample of variates of the random variable can be denoted as sample CDF (SCDF). The data 

in the fuzzy sample j  was used to construct three different forms of the SCDF.  

The best-known form of SCDF is the empirical CDF (ECDF). The latter disregards the membership 

degrees in the fuzzy sample (so it can be constructed if a crisp sample is given). ECDF is a step 

function which jumps with 1/nj at any variate value in the sample: 

 
   1

1

    , for  1 2 5

j

i , j

n

i
x x

j
j

F x j , , ,
n




 



        (4) 

The second form of SCDF is the fuzzy ECDF (FECDF), which is a generalization of (4). FECDF is a 

step function, which jumps with i , j  at any variate value i , jx  in the fuzzy sample: 
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 
   1

1

    , for  1 2 5

j

i , j

j

n

i , j
i

x x
j n

i , j
i

F x j , , ,










 




       (5) 

Both ECDF and FECDF do not have inverse and are not suitable to identify α-quantiles, because all 

conventional procedures usually identify those quantiles as one of the variates in the sample. Those 

SCDFs are useful in the Bootstrap procedures described below. 

The preferred form of SCDF is a fuzzy version of the invertible CDF estimator with maximum count 

of nodes (FICDFmax) which is strictly increasing in the domain [xbeg,j, xend,j]. That method constructs 

Fj(x), as a linear interpolation on a set of Rj nodes: 

  1 2  , for  1 2 5j k , j k , j jNDS z ,F | k , , ,R j , , ,               (6)  

The count of the nodes, Rj, and the values of their strictly increasing abscissas ( k , jz ) are determined 

according to [Error! Reference source not found.]. The lower and upper bound of the domain, 

where Fj(x) is strictly increasing, have been naturally selected as: 

1 2 2 10% < < =  100%  , for 1 2 5
j jbeg , j , j , j , j R , j R , j end , jx z z z z z x j , , ,          (7) 

The values of the nodes’ strictly increasing ordinates (  for 1 2k , j jF k , , ,R  ) were calculated by the 

Universal SCDF Estimator (introduced in [Error! Reference source not found.]) in a modified 

form to account for the fuzzy character of the sample j  and for the absence of right-censored data: 

1 1

1

    , for 1 2  and  1 2 5

2

j j

i , j k , j i , j k , j

j

n n

i , j i , j
i i

x z x z
k , j jn

i , j
i

F k , , ,R j , , ,

 



 
 





  

 


     (8) 
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Because the nodes in NDSj have strictly increasing abscissas, the FICDFmax function, Fj(x), can be 

constructed as: 

 

 

 

   

1

 

1
1

1

                                            Domain:   

if  0

if                 ,for 1 2

if     ,for 1 2 1

if  
1

, j

k , j k , j j

j k , j k , j
k , j k , j jk , j k , j

k , j k , j

x ,

x ,z

F x z k , , ,R

F x F F x z ,z k , , ,RF x z
z z

x






  

 

 
     








 jR , jz ,







 

     (9) 

Because the nodes in NDSj have strictly increasing ordinates, the inverse FICDFmax function, 

 1
jF  , can also be constructed in the domain [0,1]: 

 

     
1

1
1

1

                                            Domain:  0 1  

if                  ,for 1 2

if     ,for 1 2 1

k , j k , j j

k , j k , jj
k , j k , j k , j k , j j

k , j k , j

,

z F k , , ,R

z zF
z F F ,F k , , ,R

F F






 









 
        




   (10) 

Using the inverse FICDFmax function (12), any α-quantile describing the random variable Xj can be 

implicitly estimated: 

   1   , for 0 1  and 1 2 5imp
j, jq F , j , , ,                   (11) 

The implicit estimates of the median, the lower quartile, and the upper quartile of the random 

variable Xj are 0 5 imp
. , jq , 0 25 imp

. , jq , and 0 75 imp
. , jq , respectively. 

Alternatively, the α-quantiles describing the random variable. Xj can be explicitly estimated without 

constructing an inverse SCDF function. Instead, the explicit method calculates exp
, jq  as a linear 

interpolation on the set of (2nj – 1) nodes: 

  1 2 2 1  , for  1 2 5j k , j k , j jqNDS ,q | k , , , n j , , ,              (12) 
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The values of the increasing nodes’ ordinates (qk,j  ) are:  

 

 
1 2

2 2 1

when 1 3 2 1
    , for 1 2 5

2 when 2 4 2 2

sort
jk / , j

k , j
sort sort
k / , j k / , j j

x k , , , n
q j , , ,

x x / k , , , n





   
  





   (13) 

The values of the strictly increasing nodes’ abscissas (αk,j) in qNDSj are: 

 
 

   

   

1 2

1 2
1 1

2

1 1

0 5 when 1 3 2 1

    , for 1 2 5

when 2 4 2 2

j

j

nk /
sort sort sort
i , j i , j jk / , j

i i
k , j

nk /
sort sort
i , j i , j j

i i

. / k , , , n

j , , ,

/ k , , , n

  


 




 

 

 
   

  


 


 

 






     (14) 

Because the nodes in qNDSj have strictly increasing abscissas, the explicit α-quantile describing the 

random variable Xj, exp
, jq , can be calculated for any α in the domain 1 j, j n , j,    : 

1
1 1

1

                                           Domain:  2 1 2  

if                  ,for 1 2

j j

j

n n
sort sort sort sort
, j j , j j , jn , j

i i

sort
k , j k , j j

exp sort sort
, j k , j k , jsort

k , j
k

,

x k , , ,n

q x x
x



    

 



 





 
  
 

 

 


 



   1
1

if     ,for 1 2 1k , j k , j k , j j
, j k , j

, k , , ,n    
 





    


     (15) 

The explicit estimates of the median, the lower quartile, and the upper quartile of the random 

variable Xj are 0 5 exp
. , jq , 0 25 exp

. , jq , and 0 75 exp
. , jq , respectively. 

If there are no ties in the variates of 
j

sort , then for imp exp
, j , jq q  1  

j, j n , j,      . 

 

III. Significance of Qualitative Differences at Measured Times 

We investigated qualitatively the influence of the storage medium treating time over the kth quartile 

of the thrombogenic factor abundance (i.e., for the lower quartile k=1, for the median k= 2, and for 
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the upper quartile k=3). We compared the kth quantiles of the five random variables X1, X2,…,X5 on 

the three quartiles (for k=1,2,3) for each of the six combinations of layer and thrombogenic factor 

(L=1,2,3 and T=1,2). 

The true
k , jP  (for j=1,2,…,5) designation was used for the kth quartile of the random variable. Xj  

“percentage of area covered with the thrombogenic factor at the jth treating time”. As true
k , jP is a 

descriptor of the Xj distribution in the general population, it is an unknown non-random value. Using 

the fuzzy samples 1 2 3 4 5  and , , , ,      we can derive an estimate, 0 25
exp

k , j . k , jE q  for true
k , jP . The 

estimate Ek,j is a random variate because it depends on the random data in j . We can order the five 

estimates Ek,j (for j=1,2,…,5) in descending order that contains 10 different comparisons 

 where k , jb k , jsE E jb js  . We tested the null hypothesis 0
jb , js
,kH  (that the kth quartiles of Xjb and Xjs 

are the equal) against the alternative hypothesis H1 (that the kth quartile of Xjb is greater than the kth 

quartile Xjs): 

10 :    against  : jb , js true true true true
k , jb k , js k , jb k , js,kH P P H P P        (16) 

Four different Bootstrap one-tailed tests were used to analyze the kth quartile differences over the fuzzy 

samples  and jb js  , all of which solve the formulated problem by using the test statistics k quartile
jb js ,r 
  

(the difference of the kth quartile estimates from the two fuzzy samples): 

0 25 0 25
k quartile exp exp

k , jb k , jbjb js ,r . k , jb . k , jsE E q q 
             (17) 

The algorithm to estimate the p-values of the four Bootstrap one-tailed tests of (17) is described in [6]. 

The only modification was the substitution of the fuzzy mean value formula with the procedure (11)-

(14) for explicit (0.25k)-quantile estimation from a fuzzy sample. The four tests differ: a) in the type 

of the generated synthetic fuzzy sample – the generated synthetic fuzzy samples can be either “quasi-

equal information samples” (the sum of membership degree of any synthetic sample is very similar to 

the sum in the original sample), or “equal-size samples” (the count of observations of any synthetic 
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sample equals the count in the original sample); b) in the sample distribution used in the synthetic 

fuzzy sample generation – the sample distribution for the synthetic fuzzy sample generation can either 

be ECDF (the observations in the original fuzzy sample have equal chance to be drawn with 

replacement into the synthetic fuzzy sample), or FECDF (the observations in the original fuzzy sample 

have a chance proportional to their degree of membership to be drawn with replacement into the 

synthetic fuzzy sample). Each of the four p-values is compared to the predetermined significance level 

α (we use α =0.05) and the hypothesis 0
jb , js
,kH is rejected if at least two of those p-values are less than 

α. We use the designation Clhyp,k for the cluster of the four fuzzy kth-quartile one-sided Bootstrap tests. 

Although each of those tests can operate on its own, it is more informative to use their results as a 

cluster providing complementary information for the solution of problem (16). In that way, we can 

avoid making random significance claims due to an odd low p-value in a single hypothesis test. Instead, 

the significance claims are based on evidence that at least half of the tests in Clhyp,k have identified 

significant difference in the population kth-quartile values of the random variable Xjb and Xjs. The 

adopted cluster approach to hypothesis testing is proposed and demonstrated in [7]. The performance 

of the Clhyp,k cluster of four fuzzy bootstrap tests is compared with the results of a bootstrap test 

performed using the above described algorithm on modified crisp samples 

   1 2;1 ;1 ;1    , for 1 2 5L,T
j

L,T L,T L,T L,T
j ,crisp , j , j n , j

x , x , , x j , , ,      
  

  . The latter samples are derived as special 

cases of (1) where all degrees of membership are artificially set to unity  1L,T
k ,r , j ,crisp  . When 

operating on the crisp samples L,T
j ,crisp , all the fuzzy bootstrap tests in Clhyp,k degenerate to a single crisp 

bootstrap test as shown in [6]. 

The problem (16) was solved for each of the ten couples (Xjb, Xjs) which satisfy the conditions: 

1)  ,jb js 2) ,k , jb k , jsE E  3) 1 2 3 4 5 ,jb , , , , and  4) 1 2 3 4 5js , , , , (in the rare case when condition 

2 cannot be met because Ek,jb=Ek,js we considered additional condition jb<js). Generally, there was no 
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statistically significant order of the kth quartiles of the random variable Xj (for j=1,2,…,5). Instead, the 

ten statistical comparisons between 1 ,true
k ,P  2 ,true

k ,P 3 ,true
k ,P  4 ,true

k ,P  and 5
true

k ,P  often formed a non-transitive 

relation. 

 

IV. Significance of Quantitative Time Trends 

We also investigated quantitively the influence of the storage medium treating time over the kth 

quartile of the thrombogenic factor concentration (i.e., for the lower quartile k=1, for the median k= 

2, and for the upper quartile k=3). The information in 2 3 4 5  and , , ,     was utilised to identify the 

trends for the median (Q2), the lower quartile (Q1), and the upper quartile (Q3) of the thrombogenic 

factor abundance. For each of the three quartiles we constructed a linear regression with the time as 

independent variable: 

0 1    , for 1 2 3k k , k , kQ b b t k , ,           (18) 

The kth regression (18) was trained on a fuzzy sample Ck containing four triplets in the form (time, 

quartile, degree of membership): 

  1 2 3 4   , for 1 2 3k i k ,i k ,iC t ,Q , | i , , , k , ,         (19) 

In (19), the times in weeks are t1=0, t2=1, t3=12, and t4=24, whereas the quartiles in % are 

0 25 1     ,for 1 2 3 4 and 1 2 3exp
k ,i . k ,iQ q i , , , k , ,            (20) 

The degrees of membership reflect the precision of the quartile values at each of the four time points: 

 20 25 0 125 1 0 25 0 125 11    ,for 1 2 3 4 and 1 2 3exp exp
k ,i . k . ,i . k . ,i/ q q i , , , k , ,           (21) 
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The values of the regression coefficients 0 1and k , k ,b b  were estimated to minimise the weighted least 

square, WLSk, of the residuals, ek,i  (the difference between the measured and the predicted kth quartile 

value at time ti from the training set): 

     
4 42 2

1 2 1 2
1 1

k k , k , k ,i k ,i k ,i k ,i k , k , i
i i

WLS b ,b e Q b b t 
 

          (22) 

The solution of the optimization problem (22), the goodness-of-fit measures of (18), and the p-value 

of the analytical t-test for the significance of the single regression slope bk,1 were calculated using the 

analytical Algorithm 1 from [8]. However, the classical regression assumptions for this analytical 

solution hardly hold and the results of the t-test about the significance of the estimated slope are 

unreliable. On the other hand, the structure of the problem (4 samples from which we derive the 4 

regressand values and their precision) is suitable for fuzzy Bootstrap procedure to identify the 

distribution of the slope. We can use that distribution to find (100-100α )%-confidence interval for the 

slope (usually 95%-confidence interval). Even more important is that the identified distribution can 

provide the probabilities (P- and P0+) for the slope to be negative and non-negative (if the estimate 

bk,1<0) or the probabilities (P+ and P0-) for the slope to be positive and non-positive (if the estimate 

bk,1>0). Such probabilities are a much better tool to determine the significance of the identified slope 

sign, than the p-value of any statistical test, because at the latter we can calculate only the probability 

for being wrong if we reject the null hypothesis, but never the probability of being right when accepting 

the alternative one. We adopted the conservative policy to assume negativity/positivity of the slope 

only when the probability for the non-negativity/non-positivity) is less than the preselected 

significance level, α (usually α = 0.05). Four different fuzzy Bootstrap procedures were applied for 

fuzzy sample generation which differ: a) in the type of the generated synthetic fuzzy sample, and b) in 

the sample distribution used in the synthetic fuzzy sample generation (as explained in III). We utilized 

the following Bootstrap procedure to determine the significance of the slope: 

1) Select quartile (k=1,2,3), layer (L=1,2,3), and thrombogenic factor (T=1,2) 



12 

 

2) From L and T form 2 3 4 5   , , ,     according to (1) and (2) 

3) Select the count of the pseudo-realities, N (usually N=10000) 

4) Select the significance level, α= 0.05 

5) Repeat the following for each type of fuzzy Bootstrap procedure (FL=1,2,3,4) 

A) Repeat for each pseudo-reality (r=1,2,…,N)  

a) Generate four synthetic fuzzy samples, 52 3 4    sym,r sym,r sym,r sym,r, , ,    , by drawing with 

replacement (according to FL) from the fuzzy samples 2 3 4 5  , , ,     

b) Estimate the synthetic explicit quantile values in the Right-Hand-Sides of formulae (20) 

and (21) using the synthetic fuzzy samples and the procedure (12)-(15) 

c) Form the synthetic training data   1 2 3 4  sym,r sym,r sym,r
ik k kC t ,Q , | i , , ,   

d) Solve the regression (18) using synthetic training data sym,r
kC  using the analytical 

Algorithm 1 from [6] and identify 1
sym,r
,kb  

B) Form the synthetic crisp sample  1 1 2sym sym,r
k ,kB b | r , , ,N    

C) Find the (α/2)-quantile and the (1-α/2)-quantile of the b1,k distribution (b1,k,α/2 and b1,k,1-α/2) 

using the sample sym
kB  by applying procedure (12)-(15) , setting 1 1 , for 1 2sym,r

,k r , , ,N     

D) Declare the (100-100α)%-confidence interval for the slope to be: b1,k,α/2 <b1,k< b1,k,1-α/2 

E) If b1,k <0, then: 

a) set the direct probability  0
1 0sym,r
,kP # b / N    

b) if 0P   , declare the slope b1,k as significantly negative according to procedure FL 

c) if 0P   , declare the slope b1,k as insignificant according to procedure FL 
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F) If b1,k >0, then: 

a) set the direct probability  0
1 0sym,r
,kP # b / N    

b) if 0P   , declare the slope b1,k as significantly positive according to procedure FL 

c) if 0P   , declare the slope b1,k as insignificant according to procedure FL 

6) If at least three of the four fuzzy Bootstrap procedures has declared the slope insignificant 

then declare the slope insignificant 

7) If at least two of the four fuzzy Bootstrap procedures has declared the slope significant then: 

A) If b1,k <0, then declare the slope b1,k as significantly negative 

B) If b1,k >0, then declare the slope b1,k as significantly positive 

 

We use the designation Clsign,k for the cluster of the four fuzzy kth-quartile Bootstrap procedures. 

Although each of those procedures can operate on its own, it is more informative to use their results 

as a cluster providing complementary information for significance of the slope sign. That is another 

example of successful application of the cluster approach. 

 

 

 

  



14 

 

References 

1. Nikolova N, Panayotov P, Panayotova D, Ivanova S, Tenekedjiev K. Using fuzzy sets in 

surgical treatment selection and homogenizing stratification of patients with significant 

chronic ischemic mitral regurgitation. Int J Comput Intell Syst. 2019; 12: 1075–1090. doi: 

10.2991/ijcis.d.190923.002. 

2. Farkas ÁZ, Farkas VJ, Gubucz I, Szabó L, Bálint K, Tenekedjiev K, et al. Neutrophil 

extracellular traps in thrombi retrieved during interventional treatment of ischemic arterial 

diseases. Thromb Res. 2019; 175: 46–52. doi: 10.1016/j.thromres.2019.01.006. 

3. Hisada Y, Grover SP, Maqsood A, Houston R, Ay C, Noubouossie DF, et al. Neutrophils and 

neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic 

tumors. Haematologica. 2020; 105: 218–225. doi: 10.3324/haematol.2019.217083.  

4. Nikolova N, Chai S, Ivanova SD, Kolev K, Tenekedjiev K. Bootstrap Kuiper testing of the 

identity of 1D continuous distributions using fuzzy samples. Int J Comput Intell Syst. 2015; 

8: 63–75. doi: 10.1080/18756891.2015.1129592. 

5. Nikolova N, Toneva D, Tsonev Y, Burgess B, Tenekedjiev K. Novel methods to construct 

empirical CDF for continuous random variables using censor data. 2020 IEEE 10th Int Conf 

Intell Syst IS 2020 - Proc. 2020: 61–68. doi: 10.1109/IS48319.2020.9199954.  

6. Nikolova N, Mihaylova N, Tenekedjiev K. Bootstrap tests for mean value differences over 

fuzzy samples. IFAC-PapersOnLine. 2015; 48: 7–14. doi: 10.1016/j.ifacol.2015.12.048. 

7. Tenekedjiev K, Nikolova N, Rodriguez RM, Hirota K. Bootstrap testing of central tendency 

nullity over paired fuzzy samples. Int J Fuzzy Syst. 2021; Forthcoming. 

8. Nikolova N, Rodriguez RM, Symes M, Toneva D, Kolev K, Tenekedjiev K, Outlier detection 

algorithms over fuzzy data with weighted least squares, International Journal of Fuzzy 

Systems, 2021; doi: 10.1007/s40815-020-01049-8 

 


