Community-Centered Al Design: Incorporating Community Values into the Development of Al Technologies

Haiyi Zhu

Assistant Professor

Human Computer Interaction Institute

Carnegie Mellon University

My Research

Al Groups
Technologies
Organizations

Al and Communities

AI-Supported Content Moderation
 Community context: Wikipedia

• Peer Support Mental Health Community Community Context: 7 Cups

• Al-Supported Child Protection
Community context: Allegheny County in Pennsylvania

• Empowering and Enhancing Gig Workers Community context: Uber, Lyft, Upwork, Freelancer.com, etc

Research Focus

Community-centered AI Design:

 How can we better incorporate communities' values and goals into the design of AI systems?

- *NSF CHS Core Program
- *NSF EAGER on AI and Society
- *NSF Fairness in Al
- *NSF Smart and Connected Communities

Today's talk

AI-Supported Content Moderation

Community context: Wikipedia

Peer Support Mental Health Community
 Community context: 7 Cups

Al-Supported Child Protection

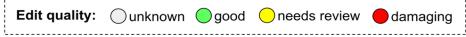
Community context: Allegheny County in Pennsylvania

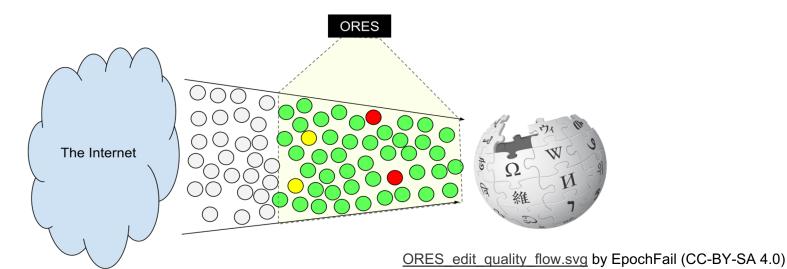
Empowering and Enhancing Gig Workers

Community context: Uber, Lyft, Upwork, Freelancer.com, etc.

Background

Wikipedia


In Wikipedia, 160,000 edits are made per day by various groups of editors. Quality control is one of the major tasks faced by the wikipedia community.



Wikipedia Logo 1.0 by by Nohat (CC-BY-SA 4.0)

Objective Revision Evaluation System (ORES) generates **predictions**

- » Edit quality (eg. damaging, goodfaith)
- » Draft and article quality

Tools that call ORES

- » Recent Changes
- » Huggle
- » ~30 more here:

https://www.mediawiki.org/wiki/ORES/Applications

Today's Talk

- 1. Understanding Wikipedia community values for quality prediction systems (Smith et al, CHI 2020)
- 2. Creating visualization systems to capture and explain the trade-offs between multiple community values (Ye et al, DIS 2021)
- 3. Conducting community workshops that allow community stakeholders to discuss and negotiate the trade-offs (Ongoing work)
- 4. Big Picture

Today's Talk

- 1. Understanding Wikipedia community values for quality prediction systems (Smith et al, CHI 2020)
 - 2. Creating visualization systems to capture and explain the trade-offs between multiple community values (Ye et al, DIS 2021)
 - 3. Conducting community workshops that allow community stakeholders to discuss and negotiate the trade-offs (Ongoing work)
 - 4. Big Picture

Interviews

Participants (16)

- ORES' Creator (1)
- Tool Developers (2)
- Wikimedia Product Teams (4)
- **Editors** (7)
- Researchers (2)

speaking.svg by MScharwies (CC BY-SA 4.0)

Interviews


Questions

- Role on Wikipedia?
- Experiences related to ORES?
 (Using, building tools, etc.)
- Opinions, ideas for the future?

speaking.svg by MScharwies (CC BY-SA 4.0)

Analysis using "Grounded Theory Method" (Charmaz 2014)

- Analyze and "code" every line of interview transcript
- Immersive group meetings to cluster codes
- **Discuss and iterate** on themes

Results

- » 2 Creator Values
- » 5 Convergent Community Values

- 1. Effort Reduction
- 2. Human Authority
- 3. Workflow Support
- 4. Positive Engagement
- 5. Community Trust

- 1. Effort Reduction
- 2. Human Authority
- 3. Workflow Support
- 4. Positive Engagement
- 5. Community Trust

1. Effort Reduction

Reduce the effort of community maintenance.

`If we can leverage the manpower that we do have with more automation, these people will have less backlog and can focus on other contributions."

Developer

- 1. Effort Reduction
- 2. Human Authority
- 3. Workflow Support

4. Positi

"I think that article quality is driven to a large extent by the diversity of hundreds of users."

Researcher

Encourage positive

diverse editor groups.

engagement with

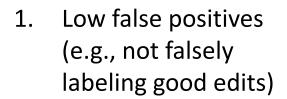
- 1. Effort Reduction
- 2. Human Authority
- 3. Workflow Support

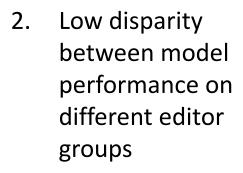
4. Positi

"I think that article quality is driven to a large extent by the diversity of hundreds of users."

Researcher

``[The current ecosystem of Wikipedia] limits the diversity of the contributors. So the ecosystem needs to change in order to be more welcoming to certain kinds of people."

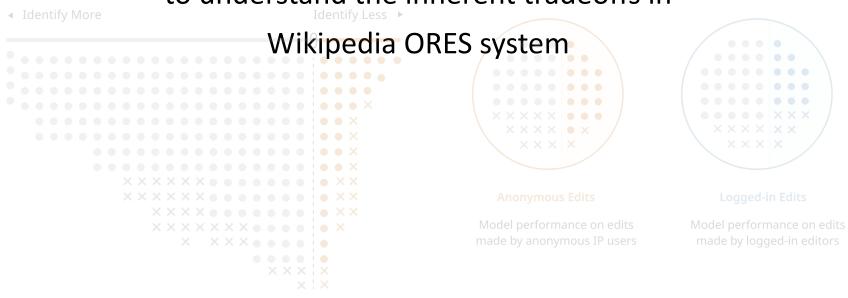



Value Tensions

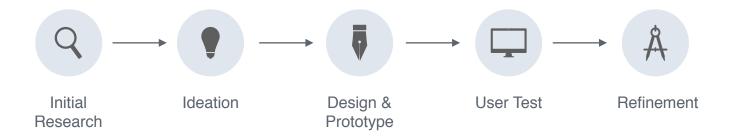
Effort Reduction

- High overall accuracy
- 2. Low false negatives (i.e., catching all the possible damaging edits)

Positive Engagement with diverse editor groups

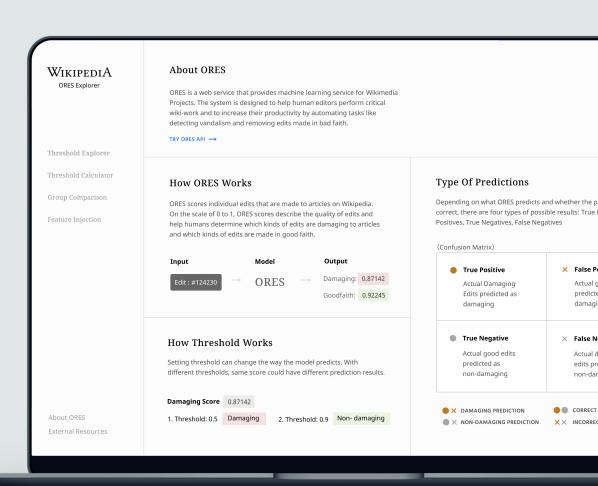


Today's Talk


- 1 Understanding Wikipedia community values for quality prediction systems (Smith et al, CHI 2020)
- 2 Creating visualization systems to capture and explain the trade-offs between multiple community values (Ye et al, DIS 2021)
 - 3 Conducting community workshops that allow community stakeholders to discuss and negotiate the trade-offs (Ongoing work)
 - 4 Big Picture

Goal

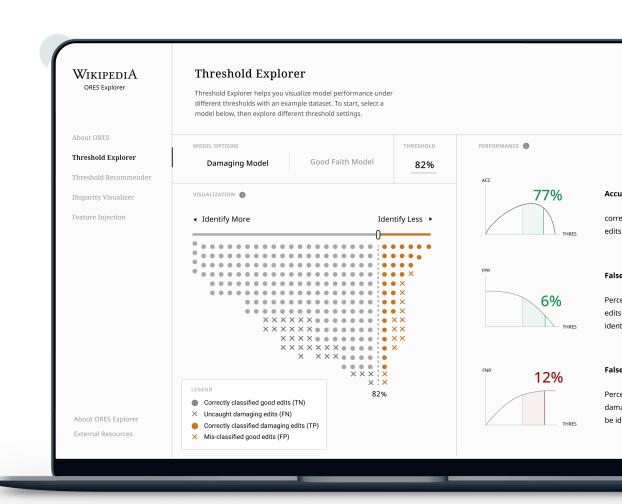
ORES Explorer: A set of visualizations to help application designers and community members to understand the inherent tradeoffs in



Iterative Design Process

About ORES

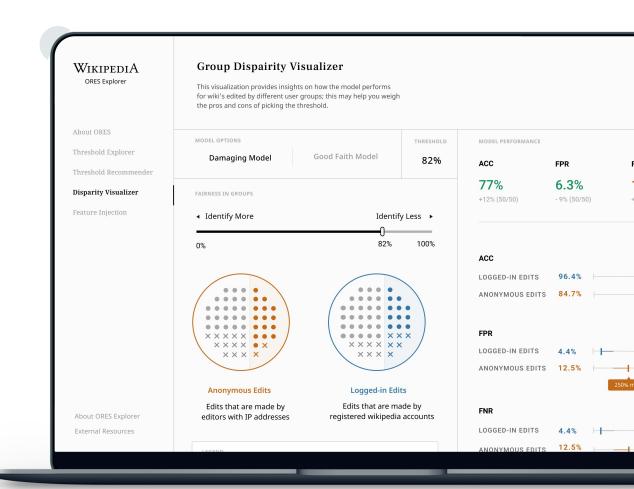
Provide basic background information on how ORES works with the necessary ML knowledge.



Haiyi Zhu, Research Overview

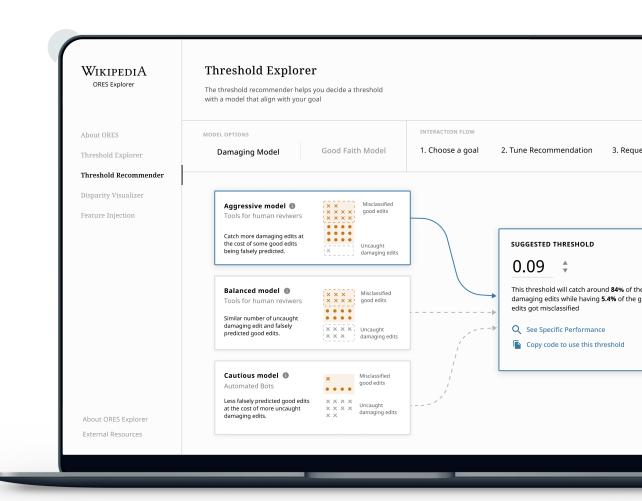
Threshold Viz

Threshold Explorer


Visualize the impact and trade-offs of setting different thresholds

Fairness Viz

Group Disparity Visualizer


Visualize ORES's performance on different groups of editors

Threshold Viz

Threshold Recommender

Recommend threshold based on users' goals and preferences

Participants Recruitment & User Test Protocol

ID	Group	Role
P1	Outside Wikipedia	Associate UX Designer, Spotify
P2	Outside Wikipedia	Product Designer, Facebook
P3	Outside Wikipedia	Digital Product Manager, CitiGroup
P4	Outside Wikipedia	Student, Harvard Graduate School of Design
P5	Outside Wikipedia	UX Designer, Amazon
W1	Wikipedia Member	Edit Reviewer, Recent Changes Tool User
W2	Wikipedia Member	Volunteer Editor, Implemented ORES at eu.wikipedia.org
W3	Wikipedia Member	Developer, Researcher, Volunteer for Wikimedia Projects
W4	Wikipedia Member	Researcher, Edit Reviewer, Recent Changes Tool User
W5	Wikipedia Member	Huggle Application Designer

Table 1: Participant Information.

Evaluation

- ORES Explorer improved participants' understanding of the trade-offs in setting different ORES model thresholds and the associated impacts.
- Although Group Disparity Visualizer helped surface the ORES model's performance disparity in different editor groups, most participants accepted the disparity as a natural occurrence and were not concerned about fairness implications in the system.

Today's Talk

- 1 Understanding Wikipedia community values for quality prediction systems (Smith et al, CHI 2020)
- 2 Creating visualization systems to capture and explain the trade-offs between multiple community goals (Ye et al, DIS 2021)
- 3 Conducting community workshops that allow community stakeholders to discuss and negotiate the trade-offs (Ongoing work)
 - 4 Big Picture

Goal

Combining visualization and community deliberation workshops to explain the tensions to the community members and resolve the tensions between the community goals in the ORES systems.

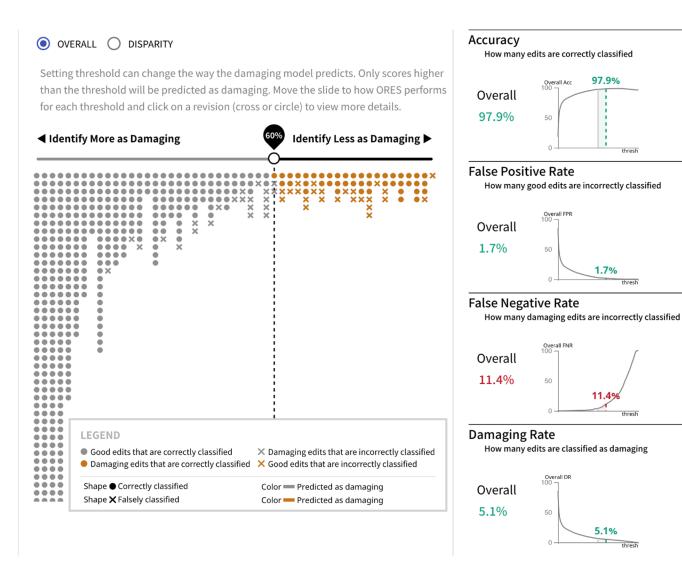
- **Dutch** Community
- **English** Community

Deliberation Protocol

- 1. Complete a **presurvey** (10 minutes)
- Explore the ORES explorer interface and create 1 model card (20 minutes)
- Group Discussion (40 minutes) and proposal writing (10 minutes)
- 4. Complete a **postsurvey** (10 minutes)

WIKIPEDIA

ORES Explorer


LeijieWang

About ORES

Explore the Model

Choose Your Modelcard

Your Modelcard History

Newcomer

95.7%

Experienced

99.8% Anonymous

91.3%

Newcomer

3.9%

0.0% Anonymous

8.7%

Newcomer

7.0%

Experienced

41.8%

Anonymous

9.0%

Newcomer

14.4%

Experienced

0.3% Anonymous

20.0%

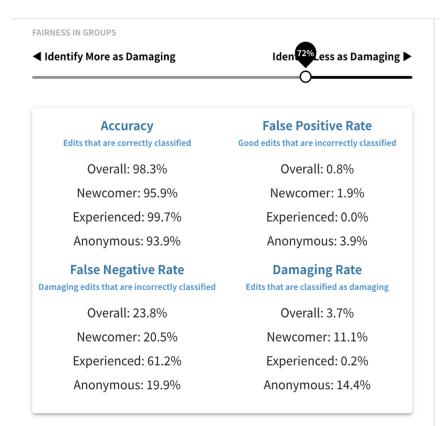
Experienced

WIKIPEDIA

ORES Explorer

LeijieWang

About ORES


Explore the Model

Choose Your Modelcard

Your Modelcard History

Choose Your Model Card

This section helps you examine the model performance of a given threshold in a model card, and it also provides you a place to write down your rationale for your choice of models.

EXPLANATION

Why Do You Choose This Model?

Write down your rationale and then click the "Save" button. Then you could share your model cards with others simply by the generated link or wikitext!

SAVE

WIKIPEDIA

ORES Explorer

Performance

THE PERFORMANCE OF THE CHOSEN MODEL

THRESHOLD 72% BY LeijieWang

Accuracy

Edits that are correctly classified

Overall: 98.3%

Newcomer: 95.9%

Experienced: 99.7%

Anonymous: 93.9%

False Negative Rate

Damaging edits that are incorrectly classified

Overall: 23.8%

Newcomer: 20.5%

Experienced: 61.2%

Anonymous: 19.9%

False Positive Rate

Good edits that are incorrectly classified

Overall: 0.8%

Newcomer: 1.9%

Experienced: 0.0%

Anonymous: 3.9%

Damaging Rate

Edits that are classified as damaging

Overall: 3.7%

Newcomer: 11.1%

Experienced: 0.2%

Anonymous: 14.4%

Explanation

THE REASON WHY THIS MODEL WAS CHOSEN BY LEIJIEWANG

I like this model because it has a relatively lower false positive rate and the accuracy is not so bad for each group.

SHARE

CHOOSE ANOTHER

Group Discussion: Which model you think is producing the best outcomes and would recommend for the community to use.

What is your definition of good outcomes in Wikipedia?
What are the pros and cons of different models?
If you're going to develop a model for the English/Dutch Wiki, which one would your group collectively choose?

Writing a group proposal about your collectively chosen model.

If you agree on a model, please write down your rationale. If you are not able to agree upon a model, please also share your reasons.

What are the high-level principles (values) that the ORES developers (or any future AI system builders at Wiki) should consider to better benefit the English/Dutch Wikipedia?

Summary

- 1. Contribute to a broader understanding of **human values related to Al-supported governance** in online communities.
- 2. Design novel approach (visualizations and deliberation workshops) that facilitates greater **community control** and **community agency** in Al design.
- 3. The work has direct implications on the improvement of Wikipedia's ORES, as well as broader implications on the design of content moderation systems for other communities such as Reddit and Twitch.

Today's Talk

- 1 Understanding Wikipedia community values for quality prediction systems (Smith et al, CHI 2020)
- 2 Creating visualization systems to capture and explain the trade-offs between multiple community goals (Ye et al, DIS 2021)
- 3 Conducting community workshops that allow community stakeholders to discuss and negotiate the trade-offs (Ongoing work)
- **→** 4 Big Picture

Big Picture: Apply AI to Address Communities' Problems

Goals

Work closely with multiple online and offline communities and solve their problems

Reflect on and position our insights

Framework for community-centered AI Design

Generate a set of best practices, methods and metrics, and create and publish a set of resources as components of a framework to support replication in community-centered AI work

41

Acknowledgements

Participants in the studies!

Aaron Halfaker; Ronald and Ciell (Dutch Wikipedia)

Estelle Smith, Ethan Ye, Hong Shen, Anna Yuan, Shaurya Gaur, Bowen Yu, Leijie Wang, Steven Wu, Mark Snyder, Jodi Forlizzi, Raghav Karumur, Loren Terveen

Grouplens Lab@UMN and HCII@CMU

Papers

C. Estelle Smith, Bowen Yu, Anjali Srivastava, Aaron Halfaker, Loren Terveen, and Haiyi Zhu. 2020. Keeping Community in the Loop: Understanding Wikipedia Stakeholder Values for Machine Learning-Based Systems. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (CHI '20). ACM, New York, NY, USA, 1-14. (Link)

Bowen Yu, Ye Yuan, Loren Terveen, Zhiwei Steven Wu, Jodi Forlizzi, and Haiyi Zhu. 2020. Keeping Designers in the Loop: Communicating Inherent Algorithmic Trade-offs Across Multiple Objectives. In Proceedings of the 2020 on Designing Interactive Systems Conference (DIS'20). ACM, New York, NY, USA. (Link)

Zining Ethan Ye, Xinran Yuan, Shaurya Gaur, Aaron Halfaker, Jodi Forlizzi, and Haiyi Zhu. 2021. Wikipedia ORES Explorer: Visualizing Trade-offs For Designing Applications With Machine Learning API. In Designing Interactive Systems Conference 2021 (**DIS '21**), June 28-July 2, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.

