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A Timing of public health measures and visibility in data

A.1 Timing of the introduction of mandatory face masks

Face mask were introduced in two ways in federal states. One measure relates to public trans-
ports and shops, the other to services for which a distance of 1.5 meters cannot be guaranteed.
The points in time differ, however. An overview is in the next figure.
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Figure S1: Time line of making face masks mandatory across federal states

We found two exceptions to this general principle of two measures. Thuringia only introduced
face masks for public transports and shops. Bavaria introduced face masks for public transport
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and shops first as a recommendation (“should be worn”) on April 20. This was corrected by
making face masks mandatory (“have to be worn”) on April 27. We display the latter in the
figure. We do not believe that adding Bavaria to the treatment group (by assuming that “should
be” was already understood by the public as “have to be”) would considerably change our find-
ings.

For clarity, we present the dates for federal states in the following table. This table also displays
regions such as Jena, which introduced face masks earlier than the federal state to which they
belong.

Table S1: When face masks became compulsory in federal states and municipal districts

manda- difference
public services w/o individual tory face indaysto
federal state transport distancing NUTS3 region masks fed. state
Landkreis Rott-
Baden-Wurttemberg 27.04.2020 04.05.2020  weil 17.04.2020 10
Bavaria 27.04.2020 04.05.2020
Berlin 27.04.2020 04.05.2020
Brandenburg 27.04.2020 04.05.2020
Bremen 27.04.2020 04.05.2020
Hamburg 27.04.2020 04.05.2020
Hesse 27.04.2020 04.05.2020 Main-Kinzig-Kreis 20.04.2020 7
Mecklenburg-West Pomer.  27.04.2020 04.05.2020
Lower Saxony 27.04.2020 04.05.2020 Wolfsburg 20.04.2020
Braunschweig 25.04.2020
North Rhine-Westphalia 27.04.2020 27.04.2020
Rhineland-Palatinate 27.04.2020 03.05.2020
Saarland 27.04.2020 18.05.2020
Saxony 20.04.2020 04.05.2020
Saxony-Anhalt 22.04.2020 04.05.2020
Schleswig-Holstein 29.04.2020 29.04.2020
Thuringia 24.04.2020 - Jena 06.04.2020 18
Nordhausen 14.04.2020 10

A.2 The timing of other public health measures

As it is not enough to take only dates into account when face masks became mandatory, we
provide an overview of the timing of other public health measures. This will show that our re-
sults capture the effects of face masks and not of other public health measures. Figure S2 shows
the points in time when measures entered into force in Jena. All measures for Thuringia are
also binding for Jena.'’ As Jena introduced three regulations concerning face masks, they be-
came mandatory in three steps. April 1 saw the introduction of face masks for services where
a distance of 1.5 meters cannot be kept. On April 6, masks became mandatory for public trans-
ports, shops, food deliveries stores and offices of craftsmen and service providers. As of April

17 We are grateful to Jan Franke for many explanations related to public health measures in Jena and Thuringia.
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10, masks also became mandatory at work and in public buildings, assuming a distance of 1.5
m could not be maintained. (See also the box on the next page.) Measures of April 1 and 6 are
measures also employed by federal states subsequently (see SI Appendix, Section A.1). The
measure of April 10 was employed only by Jena (at least in this wording).

1, community facilities (excluding schools)

1.1, community facilities (excluding schools) (partial)

2, schools

30, schools (partial)

31, Kindergartens

3, public and non-public educational institutions
4, leisure facilities

4.9, cafés, bars, pubs etc.

5, cance venues, night clubs etc.

|

6, hotels and other accomodation

6.1, service for overnight-guests in hotels etc.

6.2, hotels and other accomodation closed for tourism
7, non-essential shops

35, Non-essential shops larger than 800m?

33, parcs, zoos, outdoor playgrounds

8, restaurants, bars, etc. normal in-house service

9, Events with more than 2 people

44, Events with more than 5 people

12, Events with more than 100 people

13, Events with more than 500 people

14, public festivities, institutionally supported theatres & orchestras

15, limitation of visits to medical facilities

17, Events organised by faith groups

18, Open-air gatherings/events

36, Take away service for restaurants; with distance and hygiene rules
37, Public opening of canteens and cafeterias

46, Firm canteens and cafeterias

48, take-out is forbidden for canteens

19, 14-day quarantine after returning from abroad

21, Regulation of funeral services and weddings

22, Distance and protective measures in shops

23, face mask for public transport and shops

24, face mask for services without social distancing

25, face mask at work with more than one person in room

26, hygiene regulations and restrictions for permitted gatherings

28, contact restriction to one person outside one's own household

38, Campaign "Jena zeigt Maske"

|

39, Legal enforcement by police and fines

40, clinical training measures respirators

“Ii

41, Exit lock/ curfew

T T T T T T T T
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B Closures H Bans B Contact rules B Other measures

Figure S2: Time line of public health measures in Jena. Light bars indicate measures in force only in Jena,
dark bars indicate measures in force in Thuringia (and thereby also in Jena)

Most importantly for our strategy to quantify the effect of face masks, we note that the regu-
lation closest in time, apart from the campaign “Jena zeigt Maske”, entered into force on March
25 (number 28, contact restriction). After face masks became mandatory, only exit strategies
were implemented. Measure 6.1 that restricts service for over-night guests in hotels is part of



an exit strategies that allows hotels to reopen (measure 6) provided hotels do not provide ser-
vice to over-night guests.!®

This picture proves that there are no measures relevant for public health implemented in Jena
that could affect the spread of Covid-19 around the time when face masks where introduced.
We therefore conclude that it was indeed face masks whose effect we measured in the main
text.

Due to the enormous interest in our study, both within Germany and worldwide, we reproduce
here the regulation that makes face masks mandatory in Jena. The regulation is dated March
31, 2020 and enters in force on April 1, 2020.

Box S1: The regulation concerning face masks in Jena (source: Offentliche Bekanntmachung der Stadt Jena, 31. 03. 2020, Voll-
zug des Gesetzes zur Verhiitung und Bekampfung von Infektionskrankheiten beim Menschen)

13. Jedermann hat bei Vorliegen der nachfolgend genannten Voraussetzungen einen Mund-Nasen-Schutz zu tragen.
Anerkannt ist jeder Schutz, der aufgrund seiner Beschaffenheit geeignet ist, eine Ausbreitung von Ubertragungsfahigen
Tropfchenpartikeln durch Husten, Niesen, Aussprache zu verringern, unabhangig von einer Kennzeichnung oder zerti-
fizierten Schutzkategorie (ausreichend sind daher auch aus Baumwolle selbstgeschneiderte Masken, Schals, Tuicher,
Buffs etc.)

a) Diese Verpflichtung gilt ab sofort fiir folgende Bereiche:

e Die Inanspruchnahme und Erbringung von Dienstleistungen, bei denen sich der Mindestabstand von 1,5 m
nicht durchgangig einhalten lasst.

b)  Weiterhin gilt diese Verpflichtung ab dem 06.04.2020 fur folgende Bereiche:

e die Nutzung des 6ffentlichen Personennahverkehrs im Stadtgebiet Jenas,

e  das Betreten von geodffneten Verkaufsstellen,

e das Betreten von Orten zur Abgabe von Speisen und Getranken zum Mitnehmen bzw. Ausliefern,

e das Betreten der Dienstraume von Handwerkern und Dienstleistern.

c) SchlieBlich gilt diese Verpflichtung ab dem 10.04.2020 fir folgende Bereiche:

e der Aufenthalt in geschlossenen Raumen mit mindestens einer anderen Person (insbesondere auch die
Arbeitsstatte), ausgenommen hiervon ist der private Wohnbereich oder wenn im Raum pro Person min-
destens 20 gm zur Verfligung stehen und der Mindestabstand von 1,5 m sichergestellt ist,

o generell im 6ffentlichen Raum, wo eine Unterschreitung des Mindestabstands von 1,5 m nicht dauerhaft
sichergestellt ist (dies gilt nicht bei Bewegung unter freiem Himmel, insbesondere Spazierengehen und
Sport).

A.3  When are effects of public health measures visible in the data?

Imagine a public health measure is implemented on a certain day and that it is effective. When
should we see the effects in the data? This delay between measure and statistical visibility de-
pends on the usual incubation period and on the reporting delay. The incubation period is well-
studied and has a median of 5.2 days and 95% of all delays lie in the range of around 2 to 12
days. They seem to be approximately log-normally distributed (1, 2). The reporting delay is not
as well-studied. It consists of a delay due to diagnosis, testing and reporting of the test: A per-
son with symptoms needs to decide to go to a general practitioner in order to obtain a diagno-
sis. With typical symptoms, a test is undertaken, and the result needs to be reported to the
authorities. Formally, let D, denote a random variable that describes the incubation period. Let
Dr denote a second random variable that describes the delay between perceptible symptoms
and reporting to authorities of a positive SARS-CoV2 test. We are interested in the distributional

18 Note that measures 6 and 6.1 were implemented in Jena only (hence the light color). The corresponding meas-
ure 6.2 in Thuringia (dark red) closed hotels for tourism only.
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properties of the overall delay defined as D = Di+Dgr. We will take the median of D as our meas-
ure for how long it takes before effects of public health measures are visible in the data.

Luckily, (3) provides information on the date of reporting and on the day of first symptoms (for
around 80% of all reported Covid-19 cases). The difference between these two dates gives a
vector of realizations of the random variable Dk. In total, we have 119,917 observations.

Findings for incubation. (1) and (2) describe the delay between infection and symptoms, i.e. the
incubation period, by a lognormal distribution. To be precise about parameters in what follows,
a lognormal distribution of a random variable X has the density f(x)=
1 (—(l"x_zmz) . : :

Tomox € 20 for x > 0, where o is the dispersion parameter and u the scale parameter.

The mean, median and variance are given by

2
- 2 2
EX=e""Z,m=et VarX = [e7 —1]e?*".

(2) report m=5.1 and that 95% of all cases lie between 2.2 and 11.5 days. The latter reads, more
formally f21;'5f(x)dx = .95. We numerically compute the parameters o from this equation
and obtain 6=0.4149. The scale parameter is given by pu=In 5.1= 1.63.

Relative frequency
.05
1

o T T T T T T
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Dr (in days)
Notes: 0 < Dr < 50, Reporting day(Meldedatum)< 6.5.2020

Figure S3: Histogram of delay between first symptoms and reporting
Findings for reporting. For illustration purposes, we plot a histogram of realizations of Dr in
Figure S3. The mean, median (50% percentile), variance and standard deviation of Dr are re-

ported in the next table.

Table S2: Descriptive statistics for the reporting delay Dz

Mean Median Variance Standard deviation
6.80 6 30.92 5.56

Note: In the RKI data set (downloaded on June 7, 2020), there are
119,917 observations with information on day of infection (until
reporting day May 6, 2020). We focus on 118,618 with Dg>0.



Merging the two. We consider the duration between infection and reporting as one random
variable. We call it total delay D and it consists of the sum of incubation and reporting delay, D
= Dy + Dg. Obviously, the mean is ED = ED, + EDr and the variance reads VarD = VarD, + VarDg if
we are willing to assume independence between the two random variables. As we do not be-
lieve that diagnosis or reporting lags are influenced by the length of the incubation period, we
believe that this is a weak assumption.

As we need more information than the first two moments for our analysis, we now derive the
distribution of D, i.e. the distribution of a sum of two random variables. We denote it by Fp(d),
i.e. Fp(8)=Prob(D<d). We ask what the probability is that D<d where Jis some constant. We
continue to assume that D, and Dg are independent random variables. The corresponding den-
sities are f(d1) and g(dr), respectively. This probability is given by

Prob(D; +Dg < 8) = [} | [ F(6)9(8r)d6z | d;,

having the usual interpretation: when we are interested in values below or equal to 8, we let
run from 0 to & and g from 0 to - d such that the sum of the two is always smaller or equal to
0. Integrating over the joint density (which is a product given independence) gives the desired
probability. This integral gives us the distribution Fp(d) we were looking for.
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Figure S4: Density of the total delay D

If we needed a density f, (&), we could compute the derivative of this expression with respect
to 8. This would give the usual convolution expression,



fp(8) =2 = L (B[00 £(5)g(6p)dBr| 8, = J;° £(6)g(8p)d +

Iy [0 F(8)9(8r)d8R| d6; = [ f(6)g(5 — 6)d8;.

Keeping in mind that we work with the assumption that f(3)) is the density of the exponential
distribution and that g(dr) is the density corresponding to the histogram in Figure S3 above, we
can easily compute the density numerically. Figure S4 provides a visual impression.

Our data imply a mean of 11.7 days and a median of 10.5 days. This provides a basis for studies
(e.g., ref. 4) that need to assume a certain delay between infection and visibility in the data. *°
Our findings show that a delay of two to three weeks is too large. The percentiles of the total
delay are in the following table.

Table S3: Percentiles of total delay D

1 2.5 5 10 25 50 75 80 20 95 97,5 929
342 4.09 4.78 5.70 7.65 10.52 1430 1541 1874 22.22 26.29 34.23

A.4  Visibility in data Il — Conceptual background

Conceptional background. We now present a standard SIR model. Let the (expected) number
of individuals in the state of being susceptible at a point in time t be denoted by S(t), the num-
ber of infectious individuals is /(t) and the number of removed is R(t).?° The number of suscep-
tible falls according to S(t) = —rI(t)S(t), where r is a constant and rI(t) can be called the
individual infection rate. Denoting the sum of individual recovery and death rate by a constant
a, the number of infectious individuals changes according to I(t) = rI(t)S(t) — al(t). Finally,
the number of removed (recovered or death) individuals rises over time according to R(t) =
al(t). The number of individuals that have ever been infectious between the beginning of the
epidemic in 0 and some point in time t amounts to V¢ (t) = fot rI(x)S(x)dx. This number

is the theoretical counterpart to the number of Covid-19 cases reported by health authorities
worldwide. This model is used for our conceptional discussion in the main part of the paper.

We could also wish to inquire into the long-run effects of face masks. In this case, we would
have to solve the underlying SIR model for the long-run, i.e. for when the epidemic is over.
There are two issues. First, the future course of the epidemic is unknown given uncertainty
about the availability of pharmaceutical solutions. Second, the long-run number of susceptible
individuals depends on model parameters and can be larger than zero (8, 9). The SIR model
therefore does not automatically end with herd immunity.?! If the outflow from I(t) is larger
than the inflow, the epidemic ends. To judge these long-run effects of face masks one would
have to ignore potential pharmaceutical solutions and structurally estimate parameters of a
much more elaborated SIR model. We therefore present the effects of masks by the measure
proposed above in equation (1).

19 We are grateful to Christof Kuhbandner for discussions of this point.

20 More elaborate models designed for Covid-19 exist (e.g., ref. 5-7). The simple model employed here is, however,
sufficient for our interpretation purposes.

21 In this case, any public health intervention would only delay the epidemic but not reduce the long-run total
number of infections. See e.g. (5, 6) for a discussion.



B Synthetic control method: Design, implementation and inference
This SI Appendix section provides further information on the design and implementation of the
synthetic control method (SCM) to estimate the effect of face masks on the spread of Covid-
19. We also explain how robustness tests can be used to conduct statistical inference.

Design. SCM is designed to run comparative case studies based on a data driven process. We
have chosen SCM as the main vehicle for our empirical analysis here as the approach offers
several attractive features relevant for our data settings. First, the scope of SCM to “estimate
the effects of <...> interventions that are implemented at an aggregate level affecting a small
number of large units (such as cities, regions, or countries)” (10, p. 3) clearly matches with our
empirical setup. Compared to standard regression analyses used to identify treatment effects
of a policy intervention (thereafter treatment), such as difference-in-difference (DiD) estima-
tion, SCM is performs well when only one or very few units receive the treatment in focus (11,
12). Second, the method is flexible, transparent in terms of presenting the model fit and coun-
terfactual of interest; it relies on relatively few requirements and has thus become a widely
utilized tool in the policy evaluation literature (13) and for causal analyses in related disciplines
(see, e.g., ref. 14, for an overview of SCM in health economics, 15, for a biomedical applica-
tion).2?

This section shall not serve the purpose of providing a formal description of the SCM approach
(seeref. 10, 11, 17 for methodical details). The key idea of SCM is to establish a counterfactual
that mimics a situation in which the treatment ceteris paribus would not have taken place. This
is obtained by creating a synthetic control group out of the donor pool of control units (which
have not received the treatment) and by comparing the outcomes of treated units and the
synthetic control after the start of the treatment. Using a minimum distance approach, SCM
selects weights for control units in the synthetic control group by relating treated and control
units through a set of predictor variables measured prior to the start of the treatment. Weights
for control regions are restricted to non-negative numbers and sum up to one in order to pre-
clude extrapolation outside the support of the data.

To construct a suitable synthetic control group for our comparative case study of Jena, we need
to find structurally similar regions in terms of their Covid-19 development before mandatory
masks were introduced in Jena. Moreover, we need to make sure that face masks did not be-
come mandatory in those regions during the treatment period. Such a control group would
then most likely have had the same behavior as Jena in the absence of the mask obligation. We
can then use this group to ‘synthesize’ Jena and conduct causal inference on the treatment
effects of introducing face masks.

Synthetization means constructing a synthetic control group as weighted average of all regions
in the donor pool of controls in which masks did not become compulsory earlier on. Regional
weights are chosen in order to minimize a pre-treatment prediction error function for a set of
predictor variables observed for Jena and the donor pool of control regions. Historical realiza-
tions of the outcome variable (cumulative number of Covid-19 cases; cumulative incidence
rate) prior to the start of the treatment and several other regional characteristics (demography,

225CM is employed by (16) to estimate the effect of the shelter-in-place order for California in the development
of Covid-19. The authors find inter alia that around 1600 deaths from Covid-19 were avoided by this measure
during the first four weeks.



health care system) comprise the set of predictors. The implementation of the SCM approach
makes sure that the essential requirements are met.

Requirements and implementation. The effective use of SCM relies on certain contextual re-
guirements (see ref. 10, 18, 19). These requirements, also listed in the Method and Data section
in the main text, include that

(i) a donor pool of controls is available, i.e. not all regions receive the treatment during
the period of the study,

(ii) data is available for a sufficiently long time period before and after the start of the
treatment,

(iii) predictor values of the treated region are not extreme relative to those of controls,
i.e. the treated region lies in the convex hull of control regions,

(iv) spillover effects of the treatment on controls are absent and

(v) there are no early anticipation effects, possibly related to concurrent policy inter-
ventions in the treated region.

In the empirical implementation of the SCM analysis, we ensure that these requirements are
met as well as possible given the data at hand. The implementation is organized as follows. As
baseline analysis, we focus on the single treatment case for the city of Jena. Our choice of Jena
as essential comparative case study for the identification of treatment effects of mandatory
face masks was made for several reasons, which can be directly linked to the aforementioned
requirements. First, as shown in Figure 5 in the main text, Jena was the pioneer region for in-
troducing face masks in public transport and sales shops on April 6. This results in a lead time
of 18 days relative to mandatory face masks in the surrounding federal state Thuringia on April
24. By April 29, all German regions had introduced face masks. Referring to requirement i), a
sufficiently long lag between the start of the treatment in Jena vis-a-vis control regions is im-
portant for effect identification as it ensures that a donor pool of controls without policy inter-
vention is available.

Concerning the second requirement, our data sample for the daily development of (cumulative)
Covid-19 cases throughout the period January 28 and May 11, 2020 allows us to operate with
a sufficiently long pre- and treatment period. While we set the treatment period to the first 20
days after the introduction of face masks, the pre-treatment period covers the 14 days prior to
the start of the treatment. The latter time window ensures that the highly dynamic nature of
regional Covid-19 trajectories is properly captured for the construction of the synthetic control
group. This helps to increase the fit between Jena and its synthetic control group in the pre-
treatment period.

The synthetic control group is constructed by using the number of cumulative Covid-19 cases
(measured one and seven days before the start of the treatment) and the number of newly
registered Covid-19 cases (in the last seven days prior to the start of the treatment) as auto-
regressive predictor variables. As outlined above, the chosen lag structure will ensure that the
highly dynamic Covid-19 development is properly captured. We use cross-validation tests to
check the sensitivity of the SCM results when we impose a longer lag structure. The autoregres-
sive predictors are complemented by cross-sectional data on the region’s demographic and



basic health care structure to control for confounding factors at the regional level. A list of
variables together with summary statistics is given in SI Appendix, Section C.

With regard to the choice of predictor variables, SCM requires that values of predictor variables
for the treated region are not extreme relative to those of controls, i.e. the treated region “lies
in the convex hull” of control regions. As we show in greater detail in SI Appendix, Section C,
Jena is in various ways a representative German city suitable for studying the Covid-19 devel-
opment: On April 5, which is one day before face masks became compulsory in Jena, the cumu-
lative number of registered Covid-19 cases in Jena was 144. This is very close to the median of
155 registered cases per region in Germany. Similarly, the cumulative number of Covid-19 inci-
dences per 100,000 inhabitants was 126.9 in Jena compared to a mean value of 119.3 in Ger-
many (compare Figure S6 in Sl Appendix, Section C.2).

In order to preclude direct spillover effects (see requirement (iv)) from the treatment on non-
treated control regions, we eliminate the immediate geographical neighbors of Jena from the
donor pool. We also exclude those regions for which anticipation effects may have taken place
because face masks became compulsory in quick succession to Jena (see Figure 5).

A further requirement for the effective use of SCM is that the timing of the introduction of face
masks in Jena is not affected by concurrent public health intervention related to the Covid-19
spread. To support this requirement (v) from above, we have looked at all regulations (totaling
almost 50) that were implemented in Jena between the beginning of March 2020 and end of
April.22 We have also looked at all regulations in Thuringia as these become automatically bind-
ing in Jena. A graphical illustration of the timing of the various measures and related discussion
can be found in SI Appendix, Section A.1. As all other measures are more than 10 days away
from masks becoming mandatory, we can be certain that we measure the effects of face masks.

In the implementation of our SCM analysis, we also run a series of sensitivity checks and pla-
cebo tests that will help to investigate the robustness of the results and check to what extent
the underlying requirements of SCM are met. The results are reported in the main text. Im-
portant sensitivity checks are:

1. We account for early anticipation effects in Jena. Specifically, we take the announcement
that face masks will become compulsory one week before their de facto introduction as an
alternative start of the treatment period.?*

2. We apply cross-validation tests to check for sensitivities related to changes in historical val-
ues in the outcome variables used as predictors. We also test for the sensitivity of the re-
sults when changing the composition of regions in the donor pool for computing the syn-
thetic control group.

3. Significant public health measures that were introduced in Jena but not (or only slightly
delayed) in the federal state of Thuringia or other German regions will be tested for their

2 The first public health measure in Germany to mitigate the spread of Covid-19 dates from March 10 in North-
Rhine Westphalia and prohibited meetings with more than 1000 participants. This measure was also implemented
by many other federal states, including Thuringia one day after. See (20) for more background.

24 We use March 30 as the day of the announcement when several local media reports covered the introduction
of face masks on April 6. The general decree by the local administration in Jena was published on March 31.
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intervening effect on the introduction of face masks by means of placebo-in-time tests and
complementary difference-in-difference regressions.

We also run SCM analysis for a different outcome variable (cumulative incidence rate) and by
disaggregating the data into specific age groups. A final important robustness test, which can
also be used to conduct statistical inference in the SCM framework are placebo-in-space tests.
We conduct such tests by estimating placebo treatment effects for each control region in which
masks did not become compulsory early on. These placebo treatment effects treat each region
in the donor pool of controls as treated region for the treatment period that applies for Jena.
Using SCM, a synthetic control group is constructed for each control region (based on the same
set of predictor variables as for Jena), and outcome differences between the region and its
synthetic control measure the size of the placebo treatment effect. How these tests are em-
ployed to calculate p-values for assessing the significance of the estimated treatment effects is
described below.

Inference. The implementation of comprehensive placebo-in-space tests allows us to conduct
statistical inference on the basis of permutation tests as suggested by (18) and applied, for
example, by (21) or (22). Statistical significance is established by comparing the difference of
outcomes between the treated region and its synthetic control group and the differences
among donor regions and their respective synthetic control groups. For a significant treatment
effect, we expect that the estimated placebo treatments for control regions are small (or even
reversed) relative to those for the treated region. We calculate time-specific significance levels
for the test of the hypothesis that mandatory face masks did not significantly reduce the num-
ber of reported Covid-19 cases for each day after the treatment.

The (pseudo) p-values reported in the main text are derived from a ranking of the actual treat-
ment effect within the distribution of placebo treatment. We follow the suggestion in (23) and
compute adjusted p-values taking the pre-treatment match quality of the placebo treatments
into account. The refined procedure draws inference only from donors with a good fit in the
pre-treatment period. Specifically, we do not include placebo effects in the pool for inference
if the match quality of the control region, measured in terms of the pre-treatment root mean
squared prediction error (RMSPE), is greater than 20 times the match quality of the treated
unit. Further, we adjust p-values by dividing all underlying effects with the corresponding pre-
treatment match quality.?> We finally use the set of p-values to compute confidence intervals
for treatment effects to visualize the significance and precision of the estimated effects (25).

Multiple treatment analysis. Although the case study of Jena can be framed in a clear identifi-
cation strategy, the Covid-19 spread in a single municipality may still be driven by certain par-
ticularities and random events. This may prevent a straightforward generalization of estimated
effects. We therefore also test for treatment effects in regions that introduced face masks after
Jena but still before they became compulsory all across Germany. To do so, we extend the sin-
gle treatment approach to the analysis of multiple treated units by considering all regions in
the treated group that introduced face masks by April 22. This results in a total of 32 regions,
of which 8 are larger cities (kreisfreie Stddte).

All other regions apart from those located in Thuringia (April 24) and Schleswig-Holstein (April
29) introduced face masks on April 27. We employ this staggered introduction to study the

25 We conduct all estimations in STATA using “Synth” and “Synth Runner” packages (23, 24). Data and estimation
files are available on the journal’s web page.



effects of mandatory masks up to May 11, which gives us a time window of 20 days to measure
treatment effects. We end our analysis on May 11 to avoid a potential underestimation of treat-
ment effects since by that day all control regions had had face masks in use for 14 days. This
cut-off date is important as we expect that differences in the epidemic spread between treated
and control regions would disappear afterwards if we assume a median incubation period of
5.2 days (see ref. 1, 2) and a similar reporting lag. This overall time lag between the infection
with SARS-CoV-2 and registration in the data is also crucial for the interpretation of our results
and we discuss it in detail in SI Appendix, Section A.3.

SCM and difference-in-difference estimation. We use SCM and DiD regressions as complemen-
tary estimation approaches to identify the treatment effects of face masks. The choice of SCM
as our main vehicle of analysis results from the different requirements of both estimators. Re-
gression approaches such as DiD usually perform poorly when the treatment group is very
small. Moreover, the identification of treatment effects in the DiD approach strongly relies on
the validity of the parallel trend assumption. A parallel trend in the outcome variable between
the treated and control units ascertained in the pre-treatment period is assumed to hold in the
treatment period in the counterfactual case without the intervention. For establishing the
treatment effect by SCM, the parallel trend assumption need not to imposed (11, 14, 17). This
is due to the construction of the SCM, in which common trends between the treated and similar
control regions are favorable for finding an appropriate counterfactual trajectory. While DiD
accordingly associates equal weights to all control regions, SCM replaces equal weights by op-
timal weights. Optimal weights minimize the distance between treated and control regions in
terms of pre-intervention characteristics including lagged outcome values.

However, DiD estimation also has certain advantages over SCM. These particularly relate to the
estimation of dynamic treatment effects. We accordingly use DiD regressions in order to check
the robustness of our empirical results against the potential presence of effects stemming from
latent policy interventions or other events that may affect the outcome variable (see SI Appen-
dix, Section F for a detailed description of these robustness tests).

C Data description and additional SCM estimation results for Jena

C.1 Summary statistics for outcome and predictor variables

The Robert Koch Institute (RKI) collects data on registered Covid-19 cases from local health
authorities in the individual municipal districts (NUTS3 regions) in Germany and provides up-
dates to this database on a daily basis (available via API). We use the cumulative number of
registered Covid-19 cases in each municipal district as main outcome variable.? As an alterna-
tive outcome variable, we also employ the cumulative incidence rate, i.e. the number of cumu-
lative Covid-19 cases per 100,000 inhabitants. Summary statistics for these two outcome vari-
ables together with information on the daily number of newly registered Covid-19 cases are
shown in Panel A of Table S4.

26 We are aware of the existence of hidden infections. As it appears plausible to assume that they are proportional
to observed infections across regions, we do not believe that they affect our results. We chose the date of report-
ing (as opposed to date of infections) because not all reported infections include information about the date of
infection.



Table S4: Summary Statistics of Covid-19 indicators (outcome variables) and predictors characterizing
the regional demographic structure and basic health care system

Mean S.D. Min. Max.
PANEL A: Data on registered Covid-19 cases
[1] Newly registered cases per day 3.91 1024 O 310
[2] Cumulative number of cases 147.70 32712 0 6066
[3] Cum. cases [2] per 100,000 inhabitants 73.50 12038 O 1542.69
PANEL B: Regional demographic structure and local health care system
Population density (inhabitants/km?) 534.79 702.40 36.13 4,686.17
Population share of highly educated” individuals (in %) 13.07 6.20 5.59 42.93
Share of females in population (in %) 50.59 0.64 48.39 52.74
Average age of females in population (in years) 45.86 2.11 40.70 52.12
Average age of males in population (in years) 43.17 1.83 38.80 48.20

Old-age dependency ratio (persons aged 65 years and 34.34 5.46 22.40 53.98
above per 100 of population aged 15-64 years)

Young-age dependency ratio (persons aged 14 years 20.54 1.44 15.08  24.68
and below per 100 of population aged 15-64 years)

Physicians per 10,000 of population 14.58 4.41 7.33 30.48
Pharmacies per 100,000 of population 27.01 4.90 18.15 51.68
Settlement type (categorial variable®) 2.59 1.04 1 4

Notes: * = International Standard Classification of Education (ISCED) Level 6 and above; $ = included categories
are 1) larger cities (kreisfreie GrofSstéddte), 2) urban districts (stddtische Kreise), 3) rural districts (Idndliche Kreise
mit Verdichtungsansdtzen), 4) sparsely populated rural districts (diinn besiedelte Iéndliche Kreise).

The variables presented in Table S4 are also used as predictor variables in the SCM approach.
Selection of the latter has been guided by their ability to describe the regional number and
dynamics of reported Covid-19 cases in the treatment period. Obviously, past values of (newly)
registered Covid-19 cases are important for predicting regional trajectories of Covid-19 cases
over time in an autoregressive manner. In addition, we argue that a region’s demographic struc-
ture, such as the overall population density and age structure, and its basic health care system,
such as the regional endowment with physicians and pharmacies per population, are important
factors for characterizing the local context of Covid-19. These latter regional predictor variables
are only available as annual averages and are obtained from the INKAR online database of the
Federal Institute for Research on Building, Urban Affairs and Spatial Development (26). We use
the latest year available in the database, which is 2017. Despite this time lag, we argue that
regional demographic structures only gradually vary over time such that they can be used to
proxy regional differences during the spread of Covid-19 in early 2020.

C.2 Trajectories of cumulative Covid-19 cases and box plots for predictor variables

As outlined in the main text and in SI Appendix, Section B, one requirement of SCM is that
predictor values of the treated region are not extreme relative to those of controls. This SI Ap-
pendix section goes beyond descriptive statistics by visualizing the overlap in variable values
for Jena and the donor pool. We do so for both outcome and predictor variables. First, Figure
S5 plots the cumulative number of Covid-19 cases for Jena and the (daily) 2nd to 4th quintile of



the control regions. As Jena lies well within the control regions, its infection dynamics was not
extreme relative to the donor pool in the pre-treatment period.
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Figure S5: Overlap of cumulative Covid-19 cases between Jena and the donor pool of control regions
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Figure S6: Box plots for the regional distribution of predictor variables (donor pool of controls and Jena).
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Box plots in Figure S6 lend additional support for perceiving Jena as an “average region” in
Germany. Infection level and dynamics prior to the treatment period on April 5 were very close
to the median value of the donor pool (as shown for the cumulative number, the cumulative
incidence rate and the number of new Covid-19 cases). Other predictor values (as summarized
in Panel B of Table S4) also display a sufficient overlap between Jena and the control regions.
Only the share of highly educated individuals is exceptional, probably reflecting the status of
Jena as a university town with roughly 18,000 students out of approximately 108,000 inhabit-
ants.

To test whether this exception drives our results, we have performed cross-validation tests that
sequentially exclude individual variables from the set of predictors. As shown in SI Appendix,
Section C.7, the results for the different SCM specifications do not show structural differences
and identify similar treatment effects. Our results are therefore not driven by this one excep-
tion.

C.3 Control regions, SCM weights and pre-treatment predictor balance

This SI Appendix section provides details on the composition of the synthetic control group
used to identify treatment effects of face masks in Figure 1 in the main text. Balancing proper-
ties of the SCM approach together with the root mean square percentage error (RMSPE) as a
measure for the quality of the pre-treatment fit between Jena and its synthetic control group
are also reported.

The donor pool used to construct the synthetic control group includes all other German NUTS3
regions except for the two immediate neighboring regions of Jena (Weimarer Land, Saale-
Holzland-Kreis) and the regions Nordhausen and Rottweil. The latter two introduced face masks
in rapid succession to Jena on April 14 and April 17, respectively.

Table S5: Composition of synthetic control group for Jena with associated SCM weights

Introduction of face masks (Panel A in Figure 1)

ID NUTS 3 region Weight
13003 Rostock 0.326
6411 Darmstadt 0.311
3453 Cloppenburg 0.118
7211 Trier 0.117
6611 Kassel 0.082
5370 Heinsberg 0.046

Notes: Donor pools corresponds to SCM estimation in Panel
A of Figure 1. Sample weights are chosen to minimize the
RMSPE ten days prior to the start of the treatment.



Table S6: Pre-treatment predictor balance and RMSPE for SCM in Figure 1

Treatment: Introduction Announcement
Jena Synthetic Jena Synthetic
o0 seven doys before st of westment, meragey 1295 1292 93 927
Number of newly registered Covid-19 cases (last 3.7 38 5 5.2
seven days before start of the treatment, average)
Population density (Population/km?) 968.1 1074.3 968.1 947.9
Share of highly educated population (in %) 38.4 22.8 38.4 26.3
Share of females in population (in %) 50.1 50.1 50.1 50.1
Average age of female population (in years) 435 43.7 435 43.9
Average age of male population (in years) 40.5 40.6 40.5 40.8
Old-age dependency ratio (in %) 32.1 29.3 32.1 29.8
Young-age dependency ratio (in %) 20.3 19.6 20.3 195
Physicians per 10,000 of population 20.5 19.8 20.5 20.8
Pharmacies per 100,000 of population 28.8 28.7 28.8 28.6
Settlement type (categorial variable) 1 1.3 1 1.9
RMSPE (pre-treatment) 3.145 4.796

C.4 SCM results by age groups

We refined our Jena analysis also for different age groups. We looked at inhabitants aged 15 to
34, 35 to 60 and above 60. We again studied the treatment effect for the implementation date
for masks on April 6 and for the announcement of masks on March 30.

Predictor variables are chosen as for the baseline specification shown in Figure 1 in the main
text. Results visible in the next figure are also discussed in the main text. Regions in the syn-
thetic control groups corresponding to the three age groups are listed in Table S7.
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Figure S7: Treatment effects for introduction and announcement of face masks in Jena by age groups

Table S7: SCM weights for control regions used to construct synthetic Jena for three age groups

Age Group 15-34 years Age Group 35-59 years Age Group 60 years and above

ID NUTS 3 region Weight ID NUTS 3 region Weight ID NUTS 3 region Weight
1001  Flensburg 0.323 6411 Darmstadt 0.528 6411 Darmstadt 0.522
7211  Trier 0.207 16055 Weimar 0.16 16055 Weimar 0.244
13003 Rostock 0.184 14511 Chemnitz 015 7316 Neustadtad. g
WeinstraRe
5370 Heinsberg 0.142 8221 Baden-Baden 0.07 9562 Erlangen 0.06
3453 Cloppenburg 0.107 6434 Erzci?taunus' 0.062 3356 Osterholz 0.056
6413 f/lf;?n”b“h M 0.038 8435 Bodenseekreis 0.029 5515 Miinster 0.027
5370 Heinsberg 0.001 9188 Starnberg 0.022

Notes: Sample weights are chosen to minimize the RMSPE ten days prior to the start of the treatment.



C.5 Effects on cumulative number of infections per 100,000 inhabitants

One might be concerned that absolute infection numbers are not appropriate as regions differ
in size measured by number of inhabitants. We checked our results by re-estimating effects for
incidence, i.e. infections normalized by the size of the population. Our outcome variable is then
given by cumulative reported infections divided by population size and multiplied by 100,000.
Predictor variables are chosen as for the baseline specification shown in Figure 1.
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Figure S8: Treatment effects for introduction of face masks on cumulative incidence rate

Table S8: SCM weights for control regions used to construct synthetic Jena (cumulative incidence rate)

ID NUTS 3 region Weight
6411 Darmstadt 0.46
15003 Magdeburg 0.171
5370 Heinsberg 0.133
13003 Rostock 0.093
5515 Minster 0.066
11000 Berlin 0.035
12052 Cottbus 0.032
6611 Kassel 0.011

Note: Synthetic control group corresponds to SCM estimation in Figure
S8. Sample weights are chosen to minimize the RMSPE ten days prior to
the start of the treatment.



Table S9: SCM weights for control regions used to construct synthetic Jena (cumulative incidence rate;
by age groups)

Age Group 15-34 years Age Group 35-59 years Age Group 60 years and above
ID NUTS 3 region Weight ID NUTS 3 region Weight ID NUTS 3 region Weight
5370 Heinsberg 0.377 6411 Darmstadt 0.419 6411 Darmstadt 0.448
13003 Rostock 0.288 14511 Chemnitz 0.184 14612 Dresden 0.313
1001  Flensburg 0.14 14612 Dresden 0.154 9188 Starnberg 0.071
6611  Kassel 0.138 8221 Heidelberg 0.138 16054 Suhl 0.069
11000 Berlin 0.058 9188 Starnberg 0.088 5515 Minster 0.06
5370 Heinsberg 0.016 8221 Heidelberg 0.039

Notes: Donor pools corresponds to SCM estimations in Figure S8. Sample weights are chosen to minimize the
RMSPE ten days prior to the start of the treatment.

C.6 Announcement and mobility
C.6.1 Google trends and announcement effects

To understand the role of a potential announcement effect or the effect of the information
campaign in Jena for masks, we looked at search intensities in the internet. Time series are
displayed in the next figure, results are discussed in the main text.
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Figure S9: Online search for face masks and purchase options according to Google Trends

Notes: Online search for keywords (in German) as shown in the legend as Face Mask (“Mund-Nasen-Schutz”),
Buy Face Mask (“Mundschutz kaufen”) and Buy mask (“Maske kaufen”); alternative keywords show similar peaks
but with a lower number of hits; based on data from Google Trends (27).

C.6.2 Mobility trends across German federal states

Figure S10 shows overall mobility patterns across German federal states between Feb 17 and
May 18, 2020 based on Google (28). The data track the frequency of visits to different places
covered in Google maps on a daily basis compared to a baseline. The latter is set as median
value for the corresponding weekday during Jan 3 and Feb 6, 2020. To arrive at a compact
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measure of regional mobility, we aggregated data over the different place categories: retail and
recreation, groceries and pharmacies, parks, transit stations and workplaces. Given the high
volatility of daily data, Figure S10 displays weekly averages. The mobility trends show a clear
common pattern: With public health measures taken across all federal states to restrict profes-
sional and social contacts (RSC), mobility sharply declined in mid-March. It stayed low for most
of the following weeks and only gradually increased from mid-April onwards when first actions
to lift RSC and to re-open the economy have been taken (see ref. 20 for details).

Importantly, during the timing of the mandatory introduction of face masks in Jena on April 6,
no significant change in mobility patterns across federal states can be observed, which poten-
tially confounds our empirical estimates. Although mobility data are increasingly used to study
the effects of public health measures, the inspection of the Google data urges us to use such
data only very carefully in comparative studies at the countries/regional level given a the gen-
erally high volatility and significant outliers. This is also recognized by (28).?’
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Figure S10: Trend in mobility patterns across German federal states (Feb 17 to May 18, 2020) from (28).

27 For details see (29).



C.7 Cross validation and additional placebo-in-time test

The cross-validation and additional placebo-in-time tests reported in Figure S11 check the ro-
bustness of the estimated treatment effects for alterations to our benchmark SCM specifica-
tion. The cross-validation tests in Panel A modify the lag structure of the included time-varying
predictor variables. The additional placebo-in-time test in Panel B checks for anticipation ef-
fects 20 days before the start of the actual treatment on April 6 (equally split into a pre- and
treatment period from March 26 onwards).

In Panel A the baseline specification for the synthetic control uses both the number of cumula-
tive Covid-19 cases (measured one and seven days before the start of the treatment) and the
number of newly registered Covid-19 cases (in the last seven days prior to the start of the treat-
ment) as predictor variables. The alternative specifications lag both of these variables simulta-
neously by 1, 3 and 7 days.

Panel B displays pseudo-treatment effects for Jena over a period of 20 days before the intro-
duction of face masks. This period is equally split into a pre- and pseudo post-treatment period.

Panel A: Cross-validation for changes in predictors Panel B: Placebo-in-time test (20 days in advance)
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Figure S11: Cross-validation test for changes in time-varying predictor variables and placebo-in-time test

Figure S12 shows the results for an additional cross-validation test, which sequentially excludes
time-constant predictors from the full set of predictor variables. The estimated trajectories for
the respective synthetic control groups excluding a certain predictor follow a very similar trend
and all identify a reduction in the number of cumulative Covid-19 cases in Jena vis-a-vis the
synthetic Jena that widens over time. Excluding population density implies larger outcome dif-
ference than for other excluded variables. Most importantly, however, excluding the share of
skilled individuals, the variable by which Jena seems exceptional according to Figure S6, does



not affect our main finding in any essential way. We therefore argue that using the full set of
predictors is the most reasonable approach to identify reliable treatment effects.
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Figure S12: Cross-validation test for changes in the set of time-constant predictors

C.8 Changes in donor pool for synthetic Jena

A further robustness check changes the donor pool from which synthetic Jena is constructed
(see main text for detailed definition). Infection dynamics in the various synthetic groups are
shown in the next figure. Again, predictor variables are chosen as for baseline specification
shown in Figure 1.
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Figure S13: Treatment effects for changes in donor pool used to construct synthetic Jena

Table S10: Weights for control regions used to construct synthetic Jena for various donor pools

Only Thuringia Excluding Thuringia Only larger cities
ID NUTS 3 region Weight ID NUTS 3 region Weight ID NUTS 3 region Weight
16076 Greiz 0.533 13003 Rostock 0.318 6411 Darmstadt 0.504
16051 Erfurt 0.467 6411  Darmstadt 0.302 13003 Rostock 0.304
7211 Trier 0.129 5113 Essen 0.192
3453  Cloppenburg 0.122
6611 Kassel 0.083
5370 Heinsberg 0.046

Only East Germany
ID NUTS 3 region Weight ID

Only West Germany
NUTS 3 region Weight

16051 Erfurt 0.865 6411
14612 Dresden 0.124 3402
11000 Berlin 0.011 6611
7211
4012
5370

Darmstadt 0.242

Emden 0.198
Kassel 0.169
Trier 0.168

Bremerhaven 0.167
Heinsberg 0.057

Note: Donor pools corresponds to SCM estimations in Figure S13. Sample weights are chosen to minimize the
RMSPE ten days prior to the start of the treatment.



C.9 Place-in-space tests for other major cities in Thuringia

The placebo-in-space tests for other cities and larger regions in Thuringia uses the same set of
predictors as for Jena (see Figure 1). The reported regions cover all kreisfreie Stédte plus Gotha
(Landkreis). The cities Weimar, Suhl and Eisenach have been aggregated since the absolute
number of reported Covid-19 is low in these cities, which made it hard to find a suitable control
group. None of these regions shows a reduction in the number of Covid-19 cases as in Jena.
This confirms that latent macro-effects, for example infection dynamics or other interdepend-
encies in Thuringia as a whole, are not behind the measured treatment effects for Jena.
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Figure S14: Placebo tests for the effect of face masks in other cities in Thuringia on April 6.

As a side note, the cumulative number of Covid-19 cases in Gotha relative to its synthetic con-
trol group stands out here. Local newspapers report?® that there were outbreaks in two hospi-
tals and three retirement homes. The fast rise in Gotha can therefore best be explained by a
bad realization of an otherwise normal stochastic process. One could relate the outbreaks to
issues with compliance but — to the best of our knowledge — data are not available in this re-
spect.

2 See e.g. (30).



Table S11: SCM weights for control regions in synthetic control groups (other cities in Thuringia)

Erfurt Gera
ID NUTS 3 region Weight ID NUTS 3 region Weight
13003 Rostock 0.28 15001 Dessau-Rof3lau 0.501
16055 Weimar 0.244 16054 Suhl 0.222
3356 Osterholz 0.212 7318 Speyer 0.162
7313 Landauinder Pfalz 0.154 8231 Pforzheim 0.061
6413 Offenbach am Main 0.078 7311 Frankenthal (Pfalz) 0.046
5370 Heinsberg 0.029 8211 Baden-Baden 0.005
5515 Miinster 0.004 9662 Schweinfurt 0.003
14521 Erzgebirgskreis 0.001
Weimar/Suhl/Eisenach Gotha
ID NUTS 3 region Weight ID NUTS 3 region Weight
15001 Dessau-Roflau 0.263 15081 Altmarkkreis 0.23
12052 Cottbus 0.236 16077 Altenburger Land 0.164
13004 Schwerin 0.202 15086 Jerichower 0.161
9361 Amberg 0.177 3402 Emden 0.111
14626 Gorlitz 0.069 16071 Weimarer Land 0.108
9363 Weiden i.d. Opf. 0.036 16074 Saale-Holzland-Kreis 0.063
14521 Erzgebirgskreis 0.008 16061 Eichsfeld 0.058
9184 Miinchen 0.005 16070 Ilm-Kreis 0.055
6411 Darmstadt 0.005 3453 Cloppenburg 0.027
15003 Magdeburg 0.017
4012 Bremerhaven 0.007

Note: Donor pools corresponds to SCM estimations in Figure S14. Sample weights are
chosen to minimize the RMSPE ten days prior to the start of the treatment.

D Single and multiple treatment analyses

D.1 Single treatment analysis in other German cities and regions

In addition to Jena, we estimated treatment effects in Nordhausen (Thuringia, April 14), Rott-
weil (Baden Wirttemberg, April 17), Main-Kinzig-Kreis (Hessia, April 20), and Wolfsburg (Lower
Saxony, April 20).
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Figure S15: Treatment effects for introduction of face masks in other cities

Notes: Vertical dashed lines (in red color) indicate the introduction of mandatory face masks in each region.

We ignore Braunschweig here as the introduction of face masks became effective only two days
in advance of its federal state. Predictor variables are chosen as for overall specification shown
in Figure 1. As the figure shows, the result is 2:1:1. Rottweil and Wolfsburg display a positive
effect of mandatory mask wearing, just as Jena. The results in Nordhausen are very small or
unclear. In the region of Main-Kinzig, it even seems to be the case that masks increased the
number of cases relative to the synthetic control group. As all of these regions introduced
masks after Jena, the time period available to identify effects is smaller than for Jena. The ef-
fects of mandatory face masks could also be underestimated as announcement effects and
learning from Jena might have induced individuals to wear masks already before they became
mandatory. Finally, the average pre-treatment RMSPE for these four regions (7.150) is larger
than for the case of Jena (3.145). For instance, in the case of the region of Main-Kinzig it is more
than three times as high (9.719), which indicates a lower pre-treatment fit. The obtained treat-
ment effects should then be interpreted with some care as the pre-treatment estimation error
could also translate into the treatment period. In order to minimize the influence of a poor pre-
treatment fit for some individual regions, in the main text, we therefore compare the results
for Jena with SCM estimates for multiple treated units.



Table S12: SCM weights for control regions in synthetic control groups (other treated NUTS3 regions)

Nordhausen Rottweil
ID NUTS 3 region Weight ID NUTS 3 region Weight
16069 Hildburghausen 0.228 8327  Tuttlingen 0.324
6636 Werra-Meillner-Kreis 0.209 5966 Olpe 0.216
16064 Unstrut-Hainich-Kreis 0.168 8136  Ostalbkreis 0.2
16054 Suhl 0.109 16071 Weimarer Land 0.063
3402 Emden 0.093 14521 Erzgebirgskreis 0.06
12073 Uckermark 0.071 3102  Salzgitter 0.043
12053 Frankfurt (Oder) 0.07 16061 Eichsfeld 0.035
3354 Lichow-Dannenberg 0.051 9187  Rosenheim 0.031
9279 Dingolfing-Landau 0.025
3455  Friesland 0.003
Main-Kinzig-Kreis Wolfsburg
ID NUTS 3 region Weight ID NUTS 3 region Weight
8136 Ostalbkreis 0.193 8212  Karlsruhe 0.357
1062 Stormarn 0.168 8221  Heidelberg 0.189
5966 Olpe 0.113 8211 Baden-Baden 0.158
6433 GroR-Gerau 0.105 10046 St. Wendel 0.128
9473 Coburg 0.092 14511 Chemnitz 0.071
5562 Recklinghausen 0.063 5117  Miulheim an der Ruhr 0.059
7313 Landau in der Pfalz 0.059 5315  Koéln 0.028
9171 Altrotting 0.056 15003 Magdeburg 0.007
7338 Rhein-Pfalz-Kreis 0.047 9663  Wirzburg 0.004
6437 Odenwaldkreis 0.041
8236 Enzkreis 0.041
3159 Gottingen 0.023

Notes: Donor pools corresponds to SCM estimations in Figure S15. Sample weights are chosen to
minimize the RMSPE ten days prior to the start of the treatment.

D.2 Growth rates and summary of single and multiple treatment effects

Jena has 142 registered cases on April 6 compared to an estimated number of 143 cases in the
synthetic control group. On April 26 Jena counts 158 cases and the synthetic control group re-
ports 205 (again estimated) cases. The daily growth rate in Jena is denoted by Axjena and can be
computed from 142 [1+AXena]?’ = 158. The daily growth rate in the control group is denoted by
Xcontrol and can be computed from 143 [1+AXcontrol]?° = 205. Hence, the introduction of the face
mask is associated with a decrease in the number of infections of (AXcontrol — AXjena) percentage
points per day. Analogously, we also calculate differences in the daily growth rates for our SCM
analysis including multiple treated units. The results are summarized in the following table.



Table S13: Summary of treatment effects of face mask introduction in Germany

Single Multiple Multiple
Treatment treatments treatments
(Jena) (all districts) (larger cities)

Difference between treated region(s) and
synthetic control group(s)

Absolute change in cumulative number of

Covid-19 cases over 20 days -46.9 7.0 -28.4
Percentage change in cumulative number of

-22.99 -2.69 -8.99
Covid-19 cases over 20 days 9% 6% 8.9%
Percentage change in newly registered 0 0 0
Covid-19 cases over 20 days 75.6% 15.7% >1.2%
Differ?nce in daily grovyth rates of Covid-19 1.28% 0.13% 0.46%
cases in percentage points
Reduction in daily growth rates of Covid-19 70.6% 14.0% 47 3%

cases (in percent)

All indicators in this table are compiled in an Excel-file available as supporting information on
the webpage of the journal.

E A brief survey of research on public health measures against Covid-19

E.1 General overview

Consolidated scientific knowledge on Covid-19 and public health measures taken to fight its
epidemic spread, though rapidly evolving, is still limited. Our approach is in line with various
studies that have already tried to better understand the effect of public health measures on
the spread of Covid-19 (5, 6, 31-37). However, these earlier studies all take an aggregate ap-
proach in the sense that they look at implementation dates for a certain measure and search
for subsequent changes in the national incidence. There are some prior analyses that take a
regional focus (7) but no attention is paid to the effect of policy measures.?®

There are also many cross-country analyses, both in a structural SIR (susceptible, infectious and
removed) sense (39) and with an econometric focus on forecasting the future development of
the Covid-19 pandemic (40). Others draw parallels between earlier pandemics and Covid-19
(41). These studies do not explicitly take public health measures into account. Some studies
discuss potential effects of public health measures and survey general findings (42—-44) but do
not provide direct statistical evidence on specific measures.

The synthetic control method (SCM) has been applied by (16) to estimate the effect of the shel-
ter-in-place order for California, USA, in the development of Covid-19. The authors find inter
alia that around 1600 deaths from Covid-19 were avoided by this measure during the first four
weeks. (45) use SCM to study the case of Sweden as one of the few countries without a lock
down. The results indicate that the infection dynamics in the synthetic control group (con-
structed from a donor pool of other European countries) does not systematically differ from

2 In a short note, (38) apply panel methods based on time dummies to understand the relative importance of
various public health measures. They employ data at the federal state level and not at the regional level. As a
detailed model description is not available, an appreciation of results is difficult at this point.
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the actual dynamics in Sweden. Based on Google mobility data, the authors further find that
Swedes adjusted their activities in similar ways as in the synthetic control group even without
a mandated lock down.

E.2 Evidence for face masks

At present, more and more clinical evidence is being presented. While final conclusive results
have not been reached (see ref. 46 for a review), research shows that face masks catch infec-
tious particles that occur when speaking, coughing, or sneezing. This reduces the risk of infect-
ing another person (47, 48). The effects of face masks have been systematically surveyed by
(49) and (50). (50) mainly present evidence on the effect of face masks during non-Covid epi-
demics (influenza and SARS). (51) reports that they “did not find any studies that investigated
the effectiveness of face mask use in limiting the spread of COVID-19 among those who are not
medically diagnosed with COVID-19 to support current public health recommendations”.

In addition to medical aspects (like transmission characteristics of Covid-19 and filtering capa-
bilities of masks), (49) survey evidence on mask efficiency and on the effect of a population.
They first stress that “no randomized control trials on the use of masks <...> has been published”.
The study which is “the most relevant paper” for (49) is one that analyzed “exhaled breath and
coughs of children and adults with acute respiratory illness” (52, p. 676), i.e. used a clinical set-
ting. Concerning the effect of masks on community transmissions, the survey needs to rely on
pre-Covid-19 studies.

Only very recently, first non-clinical observational studies on the effectiveness of face masks
have been published. The work that is most closely related to our approach is (53), who esti-
mate the effects of public health measures on the spread of Covid-19 in the three pandemic
epicenters Wuhan, Italy, and New York City over the period January 23 to May 9, 2020. The
authors find sizable effects for the introduction of face masks, indicating that this public health
measure alone reduced the number of infections by over 78,000 in Italy from April 6 to May 9
and by over 66,000 in New York City from April 17 to May 9.

The authors adopt an empirical identification strategy that utilizes the successive implementa-
tion of individual public health measures and estimate linear time trends for the period before
the introduction of face masks in Italy and New York City. The difference between these trends
and actual Covid-19 cases is interpreted as the mitigating effect of mandated face covering.
Although the authors argue that their trend projections are reasonable considering the excel-
lent linear correlation for the data prior to the onset of mandated face covering, a limitation is
that their study does not employ a strict control group approach and conducts inference on in
a “before-after” comparison, which may not suffice to rule out all confounding factors.3°

(54) use household data for 335 families in Beijing with at least one confirmed Covid-19 case to
study factors that influence disease transmission within families. The authors track the rate of
secondary transmissions over the two weeks of follow-up from onset of the primary case within
the family. Findings suggest that transmission was significantly reduced by frequent use of chlo-
rine or ethanol-based disinfectant in households and family members (including the primary
case) wearing a face mask at home before the primary case developed the illness. The authors
motivate their findings for wearing face masks early one by the fact that the viral load is highest

30 Although the authors compare their findings for Italy and New York City with global Covid-19 trends in the world
and in the United States, the lack of a suitable comparison groups cannot rule out that some unobserved factors
in Italy and New York City other than the introduction of face masks drove the estimated trend reversal.

A-30



in the 2 days before symptom onset and on the first day of symptoms, and up to 44% of trans-
mission is during the pre-symptomatic period.

Finally, (55) use a simulation study to assess the role of face masks on the epidemic spread with
or without other public health measures being simultaneously in place. Their findings indicate
that face masks can effectively mitigate the epidemic spread if they are used by the public all
the time (not just from when symptoms first appear). The simulated effects are the greatest
when the adoption rate of wearing face masks in the public is 100 percent and when it is com-
bined with an early lock-down situation. When interpreting their simulation results, the authors
stress that accurate experimental evidence for potential control interventions would be needed
to fully evaluate the effect of face masks.

E.3 The economic costs of public health measures

We provide a short overview of studies that quantify economic costs of public health measures
and a first rough estimate of the cost of face masks. For the case of school and child-care center
closures, (56) estimate that 8.4 percent of total working hours will be lost, corresponding to
11.7 million employed persons in short-time-work. Beyond this short-term effect, intergenera-
tional mobility and gender equality in the workplace is likely negatively affected. The macroe-
conomic impact of this public health measure is considered large.

Substantial GDP impacts of closures of stores, restaurants and other business outlets are found
by (57) under various degrees of easing restrictions. Costs of face masks are neglected when
assessing overall economic consequences of all measures. Economic effects of several inter-
ventions are examined by (58) for New Zealand. While a moderate decline in GDP of 0.7 percent
is estimated for the ban of mass gatherings and closure of public venues, restricting domestic
travel may induce a large reduction of up to 6 percent. Economic effects of social-distances
policies are investigated by (59) and (60). The advantageousness of testing from the macroeco-
nomic point of view is highlighted by (61) and (62). Finally, several papers examine macroeco-
nomic effects of a general lockdown (cf. ref. 63—65).

We conduct a simple back-of-the-envelope calculation in order to understand the cost burden
from wearing face masks for private household. Each person may need two face masks a day.
In September 2020, two simple single use masks certainly cost less than 1 € in Germany. This
translates to expenditures of less than 30 € per month. According to (66), the average monthly
disposable income per one-person household was 2112€ in 2017 in Germany. Monthly per cap-
ita expenditures for face masks should therefore account for less than 1.4% of the average
disposable income. We can do similar calculations for larger households. They have to spend a
larger share of their disposable income.3! Of course, the monthly expenditures may be reduced
if fabric masks are used. Washing and using them again is possible. We conclude that in relation
to other public health measures and their consequences (among which part-time work or un-
employment), the cost burden of face masks may be low for private households.

31 Two-person households had an average monthly disposable income of 3919 € in 2017 (66). They may need four
masks per day, which translates to expenditures of less than 1.5% of the average disposable income for simple
face masks. Expenditures for a four person household (average monthly disposable income of 5483 € in 2017, 8
masks may be needed per day) should account for less than 2.5% of the average disposable income.
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F Difference-in-difference estimates for timing of treatment effects
One difficulty in the empirical identification of treatment effects of face masks relates to the
fact that Jena has introduced several public health measures to fight the local spread of Covid-
19 in rapid procession over time. An overview is given in Figure S2 above. We emphasized that
some of these measures in Jena (light colors) deviate from their general introduction at the
federal state level (dark colors). These anticipated measures may be taken as a signal for the
severity of the pandemic and, accordingly, may have induced behavioral changes of the local
population even before face masks became compulsory. To test for the strength of such dy-
namic treatment effects over time, we complement our SCM approach by conducting incre-
mental difference-in-difference (IDiD) estimation (67; see ref. 68 for a general discussion of the
use of difference-in-difference estimation to identify causal effects of Covid-19 policies).

In order to test for the presence of anticipation effects stemming from (unobserved) public
health measures taken prior to the introduction of face masks, we define a baseline treatment
dummy, which takes a value of one for Jena from March 14 onwards and is zero before that
day. This captures the start of public health measures taken in Jena (compare with Figure S2).
We include this treatment dummy in a fixed effect (FE) regression model, which uses the (log-
transformed) cumulative number of Covid-19 cases as outcome variable. Starting from this
baseline treatment specification, we run a series of regressions where each adds a second
treatment dummy to the model. The latter takes a value of one for Jena from day m onwards
and is zero before that day. We allow m to vary between March 15 and April 25. The sample as
a whole ends on May 6.

Hence, the main idea of the proposed IDiD approach is to see whether we observe a general
treatment effect with the start of public health measures on March 14. On top, we can identify
additional effects, which relate to (unobserved) public measures introduced during the time
interval. Again, as outlined in SI Appendix, Section A.3, for the correct interpretation of the
obtained results, we need to account for the time lag resulting from an incubation period and
a reporting lag to health authorities.

Formally the m-th equation for a total of m=(1,...,M) regressions takes the following form,
covid;y = B X Acovid;,_; +y X base;; + 8y, X add]t + Dyeeraay + Ui + Prer) + €1t

where covid; ; denotes the (log-transformed) cumulative number of registered Covid-19 cases
in municipal districtiatday twithi = 1,..., Nandt = 1, ..., T. Acovid; ; is the number of newly
registered Covid-19 cases at day t-1. base; ; refers to the baseline treatment dummy and add{,’}
is the additional treatment dummy from day m onwards. Further, y; are region-fixed effects at
the level of municipal districts, Dyyeeraqy is @ set of binary dummies for the different days of
the week and W) are time-fixed effects for each with k=1,...,K calendar week in the sample
period. e; ; denotes the model’s i.i.d. error term. We are mostly interested in estimating y and
O0m, Which sum up to the overall treatment effect of public health measures in Jena taken from
March 14 onwards.

We estimate the FE-based IDiD model by means of weighted least square (WLS), where weights
are generated from a first step Probit regression with base; ; as the outcome variable. We es-
timate the Probit model as a cross-sectional specification for March 14 and include values of
newly registered Covid-19 cases before March 14 as well as the set of structural regional char-
acteristics (shown in Table S4 in SI Appendix, Section C.1) as regressors. Hence, in analogy to
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our SCM approach, the main idea for this two-step approach is to give those control regions a
larger sample weight that have similar characteristics to Jena before the baseline treatment
starts (68). This may mitigate the problem of DiD estimation to result in a poor performance
potentially linked to the problem of heteroscedasticity if there are very few (or even only one)
treatment group (see ref. 69 for a general discussion of inference in DiD models with few
treated units). The resulting two-step estimator is known as conditional difference-in-differ-
ence estimator (70). Estimated effects are shown in Figure S16.
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Figure S16: Estimated effects from incremental difference-in-difference (IDiD) model

Notes: We calculate point estimates and standard errors for the total treatment effect (y + §,,) on the basis of
the Delta method. In Panel A and Panel B solid lines indicate 95% confidence intervals for reported point estimates.
Standard errors in the FE-model are clustered at the municipal district level. In Panel C markers indicate the start
of a specific public health measures; bars indicate the range of expected effects taking an incubation period and
reporting delay into account.

The figure shows the second-step IDiD regression results for the total treatment effect (y +
Om) in Panel A and the add-on treatment effect (6,,) in Panel B. Panel C shows the expected
timing of effects for different public health measures if we consider a total delay D of 19 days
for the incubation period and an associated reporting lag. As shown in Table S3 in SI Appendix,
Section A.3, this covers more than 90% of cases associated with a specific date (i.e. timing of



public health measure). Estimations are based on a sample of 20 regions (19 controls with pos-
itive sample weights plus Jena) during the sample period January 28 until May 6 (with a total
number of 1,980 observations).

We find that the total treatment effect for public health measures in Jena relative to the control
group only becomes significant roughly two weeks after the introduction of face masks on April
6. This strongly overlaps with expected effects stemming from the announcement and intro-
duction of compulsory face masks in Jena (as shown in Panel C). In terms of the magnitude of
the effect, we find a reduction in the cumulative number of Covid-19 cases by roughly 20%.
Both findings are in line with our baseline SCM approach.

While Panel B of Figure S16 shows that we find marginally significant add-on effects from early
April on, their magnitude is not sufficient to translate into a significant reduction in the number
of Covid-19 cases vis-a-vis the set of control regions. Only from April 13 onwards, thus roughly
one week after the introduction of face masks, the add-on treatment effect becomes gradually
stronger in magnitude and statistically significant. If we resort to the total delay D as estimated
in SI Appendix, Section A.3, this result further supports our SCM findings that the relative re-
duction in the cumulative Covid-19 cases is mainly attributable to the announcement/introduc-
tion of face masks.

Table S14: Control regions included in the IDiD estimation

ID NUTS3 region
2000 Hamburg
3101 Braunschweig
3102 Salzgitter
3103 Wolfsburg
5315 K6In

5515 Mdinster
6411 Darmstadt
6412 Frankfurt am Main
7315 Mainz

8111 Stuttgart
8212 Karlsruhe
8221 Heidelberg
8222 Mannheim
9161 Ingolstadt
9562 Erlangen
14511 Chemnitz
14612 Dresden
14713 Leipzig

16051 Erfurt

Notes: Selection of regions is based on Probit regression with the base-
line treatment dummy in Jena on March 14 as outcome variable (see
text in this SI Appendix section for details). In the FE-specification re-
ported in Figure S16, we have set sample weights for selected control
regions equal to one; alternative specifications with changing weights
deliver very similar results and are not explicitly reported here (regres-
sion outputs are in the zip-file on the Journal’s web page).
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