
 FINAL ACADEMIC REPORT

ABSTRACT
 what is The purpose of report
and we will summarize
everything we wrote in the
report.

01

INTRODACTION
A simple introduction to
Software evaluation

03

WHAT’S ARCHITECTURAL?

What’s Architectural? in
Software evaluation

05

 REPORT CONTENTS
REPORT’S STRUCTURE

some Nomenclature that we
write it in this report

02

REPORT’S STRUCTURE

the REPORT’S STRUCTURE and
what we intoduced in this
report

04

CONCLUSIONS
Nothing but the conclusions
from our repor.

08

ACKNOWLEDGMENTA

REFERENCES
List all references for this
report.

10

BIOGRAPHIES
Biographies introdaction :
tameem hezam and Yu Ligong

B

WHY EVALUATE AN
ARCHITECTURE?

 Why Evaluate an
Architecture?

06

 WHEN CAN AN
ARCHITECTURE BE
EVALUATED?

 When Can an Architecture Be
Evaluated? and some more
information abaut
 Architecture Evaluating

07

WHO’S INVOLVED?
 also What Result Does an
Architecture Evaluation
Produce?

09

1

Software evaluation
TAMEEM HEZAM, master degree student NJUST and Yu Ligong, School of

Computer Science and Engineering in NJUST

Abstract—Evaluating software is a complex decision-making activity that necessitates the recognition of the
problem situation in which the evaluation is requested, the creation of a set of problem formulations that
represent the client’s "problems," and the construction of an evaluation model that indicates how such an
evaluation will be performed for each problem formulation.
The first two aspects of such a procedure are covered in this work, which includes a partial list of software
evaluation problem scenarios, how they are classified, and what issue formulations they permit. Furthermore,
two real-life software evaluation case studies are briefly given and discussed from this perspective (how the
problem is perceived and formulated).

Index Terms—: Software evaluation, Problem formulation, Multiple criteria methodology, Evaluating, a
Software, Architecture

F

CONTENTS

1 Introduction 1

2 What’s Architectural? 3

3 Why Evaluate an Architecture? 4

4 When Can an Architecture Be Eval-
uated? 4

5 Who’s Involved? 5

6 What Result Does an Architecture
Evaluation Produce? 6

7 For What Qualities Can We Evaluate
an Architecture? 7

8 Why Are Quality Attributes Too
Vague for Analysis? 9

• TAMEEM HEZAM, Yu Ligong are with computer
science and engninering , nanjing university of science
and technology , nanjing university of science and
technology -xiiaolingwei 200-nanjing-jiangsu ,china 0,
Nanjing, 210094, jiangsu, China, Tel.: +8613270717933,
Email: tamem20142016@njust.edu.cn, Email:
yuligong@mail.njust.edu.cn
TAMEEM HEZAM is the corresponding author.

9 What Are the Outputs of an Architec-
ture Evaluation? 10

9.1 Outputs from the ATAM,
the SAAM, and ARID 10

9.2 Outputs Only from the ATAM 11

10 What Are the Benefits and Costs of
Performing an Architecture Evaluation? 11

11 Conclusion 13

12 References 15

Acknowledgment 16

Biographies 16
TAMEEM HEZAM 16
Yu Ligong 16

1 INTRODUCTION

How can you tell if the software architecture
you’ve chosen is the proper one? How can you
be certain that it will not result in disaster but
will instead pave the path for a smooth devel-
opment and a successful product?
It’s not a simple question, and the answer will
determine a lot. The architecture of every soft-
ware system is its foundation. Almost all of

2

a system’s quality qualities will be allowed or
disallowed depending on the design. Modifi-
ability, performance, security, availability, and
dependability are all built into the architecture
from the start. A poorly designed system will
not yield any of these traits, no matter how
much tuning or sophisticated implementation
tactics are used.
To put it clearly, architecture is a gamble, a bet
on a system’s success. Wouldn’t it be good to
know if you’ve picked a winner before you put
your money down, rather than having to wait
until the system is almost finished to see if it
will match your expectations? Wouldn’t it be
nice to know whether you’re buying a system
or funding for its development that it’s getting
off on the proper foot? If you’re an architect,
wouldn’t it be nice to have a mechanism to
validate your instincts and experience so that
you can rest easy knowing that the trust you’ve
earned for your work is well-founded? There
were essentially no methods of general utility
to validate a software design until recently. The
approaches were spotty, ad hoc, and not re-
producible when they were used at all. They
weren’t especially trustworthy as a result of this.
That’s not good enough.

This is a report to evaluating software
architecture. It’s based on a set of three
techniques created by the Software Engineering
Institute and applicable to any software-
intensive system:
• ATAM (Architecture Tradeoff Analysis
Method) is a method for analyzing architecture
tradeoffs.
• SAAM (Software Architecture Analysis
Method) is a method for analyzing software
architecture.
ARID (Active Reviews for Intermediate
Designs) is an acronym for Active Reviews for
Intermediate Designs.
The methodologies as a whole have a proven
track record, having been used on dozens of
projects of different sizes and in a wide range
of sectors for years. The time has arrived to
integrate software architecture evaluation as a
normal phase in any development paradigm,
thanks to these methodologies. Evaluations
are a smart risk-mitigation strategy that is also
quite inexpensive. They pay for themselves
in terms of saved money and fewer sleepless

nights.
The concept of software architecture was
introduced in the previous part r, and this part
lays the conceptual framework for architectural
evaluation. It outlines what we mean by
software architecture and describes what
properties may (and cannot) be used to evaluate
architecture.
First, let’s clarify what we’re evaluating:
The software architecture of a program or
computing system refers to the system’s
structure or structures, which include software
components, their externally observable
attributes, and their interconnections. [Bass 98]
[Bass 98] [Bass 98]
We refer to “externally visible” qualities as
those that other components can make about
a component, such as the services it provides,
per-performance characteristics, fault handling,
shared resource utilization, and so on. The
intent of this definition is that a software
architecture must abstract some information
about the system (otherwise, there’s no point
in looking at it—we’re just looking at the
entire system) while still providing enough
information to be a basis for analysis, decision
making, and risk reduction (see the sidebar
What’s Architectural?).
The architecture defines the components
(modules, objects, processes, subsystems,
compilation units, and so on) as well as the
relationships between them (calls, sends-data-
to, synchronizes-with, utilizes, depends-on,
instantiates, and so on). Early design decisions
are required before a group of people can
collaborate to construct a software system, and
the architecture is the consequence of those
decisions. The more important the architecture
is, the larger or more dispersed the group is
(and the group doesn’t have to be extremely
huge to be important).
This is one of the architectural principles from
part 1 that you must fully grasp before you can
understand architecture evaluation:
Almost all of the system’s quality attributes are
allowed or prohibited by architectures.

This leads to the most basic truth regarding
architecture evaluation: if architectural decisions
determine a system’s quality attributes, then
architectural decisions can be evaluated in terms
of their impact on those attributes.

3

2 WHAT’S ARCHITECTURAL?

Sooner or later everyone asks the question:
“What’s architectural?” Some peo- ple ask out of
intellectual curiosity, but people who are eval-
uating architec- tures have a pressing need to
understand what information is in and out of
their realm of concern. Maybe you didn’t ask the
question exactly that way. Perhaps you asked it
in one of the following ways:
•What is the difference between an architecture
and a high-level design?
• Are details such as priorities of processes
architectural?
• Why should implementation considerations
such as buffer overflows be treated as architec-
tural?
• Are interfaces to components part of the archi-
tecture?
• If I have class diagrams, do I need anything
else?
• Is architecture concerned with run-time behav-
ior or static structure?
• Is the operating system part of the architec-
ture? Is the programming language?
• If I’m constrained to use a particular commer-
cial product, is that archi- tectural? If I’m free to
choose from a wide range of commercial prod-
ucts, is that architectural?
Let’s think about this in two ways.
First, consider the definition of architecture that
we quoted in part 1 of this report. Paraphras-
ing: A software architecture concerns the gross
organi- zation of a system described in terms of
its components, their externally visi- ble prop-
erties, and the relationships among them. True
enough, but it fails to explicitly address the
notion of context. If the scope of my concern is
confined to a subsystem within a system that is
part of a system of systems, then what I consider
to be architectural will be different than what
the architect of the sys- tem of systems considers
to be architectural. Therefore, context influences
what’s architectural.
Second, let’s ask, what is not architectural? It has
been said that algo- rithms are not architectural;
data structures are not architectural; details of
data flow are not architectural. Well, again these
statements are only partially true. Some prop-
erties of algorithms, such as their complexity,
might have a dra- matic effect on performance.

Some properties of data structures, such as
whether they need to support concurrent

access, directly impact performance and
reliability. Some of the details of data flow, such
as how components depend on specific message
types or which components are allowed access
to which data types, impact modifiability and
security, respectively.
So is there a principle that we can use in
determining what is architec- tural? Let’s
appeal to what architecture is used for to
formulate our principle. Our criterion for
something to be architectural is this: It must
be a component, or a relationship between
components, or a property (of components
or rela- tionships) that needs to be externally
visible in order to reason about the ability of
the system to meet its quality requirements or
to support decomposition of the system into
independently implementable pieces. Here are
some corollar- ies of this principle:
• Architecture describes what is in your system.
When you have deter- mined your context, you
have determined a boundary that describes
what is in and what is out of your system
(which might be someone else’s subsystem).
Architecture describes the part that is in.
•An architecture is an abstract depiction of your
system. The informa- tion in an architecture is
the most abstract and yet meaningful depic-
tion of that aspect of the system. Given your
architectural specification, there should not be
a need for a more abstract descrip- tion. That
is not to say that all aspects of architecture
are abstract, nor is it to say that there is an
abstraction threshold that needs to be exceeded
before a piece of design information can be
considered architectural. You shouldn’t worry
if your architecture encroaches on what others
might consider to be a more detailed design.
• What’s architectural should be critical
for reasoning about critical requirements.
The architecture bridges the gap between
requirements and the rest of the design. If
you feel that some information is critical for
reasoning about how your system will meet
its requirements then it is architectural. You,
as the architect, are the best judge. On the
other hand, if you can eliminate some details
and still compose a forceful argument through
models, simulation, walk-throughs, and so on

4

about how your architecture will satisfy key
requirements then those details do not belong.
However, if you put too much detail into your
architec- ture then it might not satisfy the next
principle.
• An architectural specification needs to be
graspable. The whole point of a gross-level
system depiction is that you can understand
it and rea- son about it. Too much detail will
defeat this purpose.
• An architecture is constraining. It imposes
requirements on all lower- level design
specifications. I like to distinguish between
when a deci- sion is made and when it is
realized. For example, I might determine
aprocess prioritization strategy, a component
redundancy strategy, or a set of encapsulation
rules when designing an architecture; but
I might not actually make priority assignments,
determine the algorithm for a redun- dant
calculation, or specify the details of an interface
until much later.
In a nutshell:
To be architectural is to be the most abstract
depiction of the system that enables reasoning
about critical requirements and constrains all
subse- quent refinements.
If it sounds like finding all those aspects of
your system that are architec- tural is difficult,
that is true. It is unlikely that you will discover
everything that is architectural up front, nor
should you try. An architectural specification
will evolve over time as you continually
apply these principles in determining what’s
architectural.

3 WHY EVALUATE AN ARCHITECTURE?

The earlier you find a problem in a software
project, the better off you are. The cost to fix an
error found during requirements or early design
phases is orders of magnitudes less to correct
than the same error found during testing. Archi-
tecture is the product of the early design phase,
and its effect on the system and the project is
profound.

An unsuitable architecture will precipitate
disaster on a project. Perfor- mance goals will

not be met. Security goals will fall by the way-
side. The cus- tomer will grow impatient be-
cause the right functionality is not available,
and the system is too hard to change to add
it. Schedules and budgets will be blown out
of the water as the team scrambles to back-
fit and hack their way through the problems.
Months or years later, changes that could have
been anticipated and planned for will be rejected
because they are too costly. Plagues and pesti-
lence cannot be too far behind.

Architecture also determines the structure
of the project: configuration control libraries,
schedules and budgets, performance goals, team
structure, documentation organization, and test-
ing and maintenance activities all are organized
around the architecture. If it changes midstream
because of some deficiency discovered late, the
entire project can be thrown into chaos. It is
much better to change the architecture before it
has been frozen into existence by the establish-
ment of downstream artifacts based on it.

Architecture evaluation is a cheap way to
avoid disaster. The methods in this report are
meant to be applied while the architecture is a
paper specification (of course, they can be ap-
plied later as well), and so they involve running
a series of simple thought experiments. They
each require assembling relevant stakeholders
for a structured session of brainstorming, pre-
sentation, and analy- sis. All told, the average
architecture evaluation adds no more than a few
days to the project schedule.

To put it another way, if you were building a
house, you wouldn’t think of proceeding with-
out carefully looking at the blueprints before
construction began. You would happily spend
the small amount of extra time because you
know it’s much better to discover a missing bed-
room while the architecture is just a blueprint,
rather than on moving day.

4 WHEN CAN AN ARCHITECTURE BE
EVALUATED?
The classical application of architecture evalu-
ation occurs when the architec- ture has been
specified but before implementation has begun.
Users of iterative or incremental life-cycle mod-
els can evaluate the architectural decisions made
during the most recent cycle. However, one of

5

the appealing aspects of archi- tecture evalua-
tion is that it can be applied at any stage of an
architecture’s life- time, and there are two useful
variations from the classical: early and late.

Early. Evaluation need not wait until an ar-
chitecture is fully specified. It can be used at
any stage in the architecture creation process to
examine those archi- tectural decisions already
made and choose among architectural options
that are pending. That is, it is equally adept
at evaluating architectural decisions that have
already been made and those that are being
considered.
Of course, the completeness and fidelity of the
evaluation will be a direct function of the com-
pleteness and fidelity of the architectural de-
scription brought to the table by the architect.
And in practice, the expense and logistical bur-
den of convening a full-blown evaluation is sel-
dom undertaken when unwarranted by the state
of the architecture. It is just not going to be very
rewarding to assemble a dozen or two stake-
holders and analysts to evaluate the architect’s
early back-of-the-napkin sketches, even though
such sketches will in fact reveal a number of
significant architecture paths chosen and paths
not taken.
Some organizations recommend what they call
a discovery review, which is a very early mini-
evaluation whose purpose is as much to iron
out and prior- itize troublesome requirements
as analyzing whatever “proto-architecture”

may have been crafted by that point. For
a discovery review, the stakeholder group is
smaller but must include people empowered
to make requirements decisions. The purpose
of this meeting is to raise any concerns that
the archi- tect may have about the feasibility of
any architecture to meet the combined quality
and behavioral requirements that are being
levied while there is still time to relax the most
troubling or least important ones. The output
of a discov- ery review is a much stronger set
of requirements and an initial approach to sat-
isfying them. That approach, when fleshed out,
can be the subject of a full evaluation later.
We do not cover discovery reviews in detail
because they are a straightfor- ward variation
of an architecture evaluation. If you hold a
discovery review, make sure to
• Hold it before the requirements are frozen and

when the architect has a good idea about how
to approach the problem
• Include in the stakeholder group someone
empowered to make require- ments decisions
• Include a prioritized set of requirements in
the output, in case there is no apparent way to
meet all of them
Finally, in a discovery review, remember the
words of the gifted aircraft designer Willy
Messerschmitt, himself no stranger to the
burden of require- ments, who said:
You can have any combination of features the
Air Ministry desires, so long as you do not also
require that the resulting airplane fly.

Late. The second variation takes place when
not only the architecture is nailed down but
the implementation is complete as well. This
case occurs when an organization inherits some
sort of legacy system. Perhaps it has been pur-
chased on the open market, or perhaps it is
being excavated from the organiza- tion’s own
archives. The techniques for evaluating a legacy
architecture are the same as those for one that is
newborn. An evaluation is a useful thing to do
because it will help the new owners understand
the legacy system, and let them know whether
the system can be counted on to meet its quality
and behavioral requirements.
In general, when can an architectural evaluation
be held? As soon as there is enough of an archi-
tecture to justify it. Different organizations may
measure that justification differently, but a good
rule of thumb is this: Hold an evalua- tion when
development teams start to make decisions that
depend on the archi- tecture and the cost of
undoing those decisions would outweigh the
cost of holding an evaluation.

5 WHO’S INVOLVED?
There are two groups of people involved in an
architecture evaluation.
1.Evaluation team. These are the people who
will conduct the evaluation and perform the
analysis. The team members and their precise
roles will be defined later, but for now simply
realize that they represent one of the classes of
participants.

6

2.Stakeholders. Stakeholders are people who
have a vested interest in the architecture and
the system that will be built from it. The
three evaluation methods in this report all use
stakeholders to articulate the specific require-
ments that are levied on the architecture, above
and beyond the require- ments that state what
functionality the system is supposed to exhibit.
Some, but not all, of the stakeholders will be
members of the development team: coders,
integrators, testers, maintainers, and so forth.
A special kind of stakeholder is a project
decision maker. These are people who are
interested in the outcome of the evaluation
and have the power to make decisions that
affect the future of the project. They include the
architect, the designers of components, and the
project’s management. Management will have
to make decisions about how to respond to the
issues raised by the evaluation. In some settings
(particularly government acquisitions), the
customer or sponsor may be a project decision
maker as well.
Whereas an arbitrary stakeholder says what he
or she wants to be true about the architecture,
a decision maker has the power to expend
resources to make it true. So a project manager
might say (as a stakeholder), “I would like the
architecture to be reusable on a related project
that I’m managing,” but as a decision maker he
or she might say, “I see that the changes you’ve
identified as necessary to reuse this architecture
on my other project are too expensive, and
I won’t pay for them.” Another differ- ence is
that a project decision maker has the power to
speak authoritatively for the project, and some
of the steps of the ATAM method, for example,
ask them to do precisely that. A garden-variety
stakeholder, on the other hand, can only hope to
influence (but not control) the project. For more
on stakeholders, see the sidebar Stakeholders
on page 63 in part 3.
The client for an architecture evaluation will
usually be a project decision maker, with a
vested interest in the outcome of the evaluation
and holding some power over the project.
Sometimes the evaluation team is drawn from
the project staff, in which case they are also
stakeholders. This is not recommended because
they will lack the objectivity to view the
architecture in a dispassionate way.

6 WHAT RESULT DOES AN ARCHITEC-
TURE EVALUATION PRODUCE?
content of which vary according to the method
used. Primarily, though, an architecture eval-
uation produces information. In particular, it
produces answers to two kinds of questions.
1.Is this architecture suitable for the system for
which it was designed?
2.Which of two or more competing architectures
is the most suitable one for the system at hand?
Suitability for a given task, then, is what we
seek to investigate. We say that an architecture
is suitable if it meets two criteria.
1.The system that results from it will meet its
quality goals. That is, the sys- tem will run
predictably and fast enough to meet its perfor-
mance (timing) requirements. It will be modifi-
able in planned ways. It will meet its secu- rity
constraints. It will provide the required behav-
ioral function. Not every quality property of a
system is a direct result of its architecture, but
many are, and for those that are, the architecture
is suitable if it provides the blueprint for build-
ing a system that achieves those properties.
2.The system can be built using the resources at
hand: the staff, the budget, the legacy software
(if any), and the time allotted before delivery.
That is, the architecture is buildable.
This concept of suitability will set the stage for
all of the material that fol- lows. It has a cou-
ple of important implications. First, suitability
is only relevant in the context of specific (and
specifically articulated) goals for the architec-
ture and the system it spawns. An architecture
designed with high-speed perfor- mance as the
primary design goal might lead to a system
that runs like the wind but requires hordes of
programmers working for months to make any
kind of modification to it. If modifiability were
more important than performance for that sys-
tem, then that architecture would be unsuitable
for that system (but might be just the ticket for
another one).
In Alice in Wonderland, Alice encounters the
Cheshire Cat and asks for directions. The cat
responds that it depends upon where she wishes
to go. Alice says she doesn’t know, whereupon
the cat tells her it doesn’t matter which way she

7

walks. So
If the sponsor of a system cannot tell you what
any of the quality goals are for the system, then
any architecture will do.
An overarching part of an architecture evalua-
tion is to capture and priori- tize specific goals
that the architecture must meet in order to be
considered
suitable. In a perfect world, these would all
be captured in a requirements doc- ument, but
this notion fails for two reasons: (1) Complete
and up-to-date requirements documents don’t
always exist, and (2) requirements documents
express the requirements for a system. There are
additional requirements levied on an architec-
ture besides just enabling the system’s require-
ments to be met. (Buildability is an example.)
The second implication of evaluating for suit-
ability is that the answer that comes out of the
evaluation is not going to be the sort of scalar
result you may be used to when evaluating
other kinds of software artifacts. Unlike code
met- rics, for example, in which the answer
might be 7.2 and anything over 6.5 is deemed
unacceptable, an architecture evaluation is go-
ing to produce a more thoughtful result.
We are not interested in precisely characterizing
any quality attribute (using measures such as
mean time to failure or end-to-end average la-
tency). That would be pointless at an early stage
of design because the actual parameters that de-
termine these values (such as the actual execu-
tion time of a component) are often implemen-
tation dependent. What we are interested in do-
ing—in the spirit of a risk-mitigation activity—is
learning where an attribute of interest is affected
by architectural design decisions, so that we can
reason carefully about those decisions, model
them more completely in subsequent analyses,
and devote more of our design, analysis, and
prototyping energies to such decisions.
An architectural evaluation will tell you that
the architecture has been found suitable with
respect to one set of goals and problematic
with respect to another set of goals. Sometimes
the goals will be in conflict with each other,
or at the very least, some goals will be more
important than other ones. And so the manager
of the project will have a decision to make if
the architecture evalu- ates well in some areas
and not so well in others. Can the manager live

with the areas of weakness? Can the architec-
ture be strengthened in those areas? Or is it
time for a wholesale restart? The evaluation will
help reveal where an architec- ture is weak, but
weighing the cost against benefit to the project
of strengthen- ing the architecture is solely a
function of project context and is in the realm
of management. So
An architecture evaluation doesn’t tell you
“yes” or “no,” “good” or “bad,” or “6.75 out of
10.” It tells you where you are at risk.
Architecture evaluation can be applied to a
single architecture or to a group of competing
architectures. In the latter case, it can reveal
the strengths and weaknesses of each one. Of
course, you can bet that no architecture will
evaluate better than all others in all areas. In-
stead, one will outperform others in some areas
but underperform in other areas. The evalua-
tion will first identify what the areas of inter-
est are and then highlight the strengths and
weaknesses of each architecture in those areas.
Management must decide which (if any) of

the competing architectures should be se-
lected or improved or whether none of the
candidates is acceptable and a new architecture
should be designed.1

7 FOR WHAT QUALITIES CAN WE
EVALUATE AN ARCHITECTURE?
In this section, we say more precisely what
suitability means. It isn’t quite true that we can
tell from looking at an architecture whether the
ensuing system will meet all of its quality goals.
For one thing, an implementation might diverge
from the architectural plan in ways that subvert
the quality plans. But for another, architecture
does not strictly determine all of a system’s
qualities.
Usability is a good example. Usability is the
measure of a user’s ability to utilize a system
effectively. Usability is an important quality goal
for many sys- tems, but usability is largely a
function of the user interface. In modern sys-
tems design, particular aspects of the user inter-
face tend to be encapsulated within small areas
of the architecture. Getting data to and from the
user interface and making it flow around the

8

system so that the necessary work is done to
support the user is certainly an architectural is-
sue, as is the ability to change the user interface
should that be required. However, many aspects
of the user inter- face—whether the user sees
red or blue backgrounds, a radio button or a
dialog box—are by and large not architectural
since those decisions are generally con- fined to
a limited area of the system.
But other quality attributes lie squarely in the
realm of architecture. For instance, the ATAM
concentrates on evaluating an architecture for
suitability in terms of imbuing a system with
the following quality attributes. (Definitions are
based on Bass et al. [Bass 98])
• Performance: Performance refers to the re-
sponsiveness of the system—the time required
to respond to stimuli (events) or the number
of events pro- cessed in some interval of time.
Performance qualities are often expressed by the
number of transactions per unit time or by the
amount of time it takes to complete a transac-
tion with the system. Performance measures are
often cited using benchmarks, which are specific
transaction sets or work- load conditions under
which the performance is measured.
• Reliability: Reliability is the ability of the sys-
tem to keep operating over time. Reliability is
usually measured by mean time to failure.
• Availability: Availability is the proportion of
time the system is up and running. It is mea-
sured by the length of time between failures as
well as how quickly the system is able to resume
operation in the event of failure.
• Security: Security is a measure of the system’s
ability to resist unautho- rized attempts at usage
and denial of service while still providing its ser-
vices to legitimate users. Security is categorized
in terms of the types of threats that might be
made to the system.
• Modifiability: Modifiability is the ability to
make changes to a system quickly and cost effec-
tively. It is measured by using specific changes
as benchmarks and recording how expensive
those changes are to make.
• Portability: Portability is the ability of the
system to run under different computing en-
vironments. These environments can be hard-
ware, software, or a combination of the two.
A system is portable to the extent that all of
the assumptions about any particular comput-

ing environment are confined to one component
(or at worst, a small number of easily changed
compo- nents). If porting to a new system re-
quires change, then portability is sim- ply a
special kind of modifiability.
• Functionality: Functionality is the ability of
the system to do the work for which it was
intended. Performing a task requires that many
or most of the system’s components work in a
coordinated manner to complete the job.
• Variability: Variability is how well the archi-
tecture can be expanded or modified to pro-
duce new architectures that differ in specific,
preplanned ways. Variability mechanisms may
be run-time (such as negotiating on the fly pro-
tocols), compile-time (such as setting compila-
tion parameters to bind certain variables), build-
time (such as including or excluding various
components or choosing different versions of
a component), or code-time mechanisms (such
as coding a device driver for a new device).
Variability is important when the architecture
is going to serve as the foundation for a whole
family of related products, as in a product line.
• Subsetability: This is the ability to support
the production of a subset of the system. While
this may seem like an odd property of an ar-
chitecture, it is actually one of the most useful
and most overlooked. Subsetability can spell the
difference between being able to deliver nothing
when schedules slip versus being able to de-
liver a substantial part of the product. Subset-
ability also enables incremental development,
a powerful development paradigm in which a
minimal system is made to run early on and
functions are added to it over time until the
whole system is ready. Subsetability is a special
kind of variability, mentioned above.
• Conceptual integrity: Conceptual integrity is
the underlying theme or vision that unifies the
design of the system at all levels. The architec-
ture should do similar things in similar ways.
Conceptual integrity is exempli- fied in an ar-
chitecture that exhibits consistency, has a small
number of data

and control mechanisms, and uses a small
number of patterns throughout to get the job
done.
By contrast, the SAAM concentrates on
modifiability in its various forms (such as
portability, subsetability, and variability) and

9

functionality. The ARID method provides
insights about the suitability of a portion of
the architecture to be used by developers to
complete their tasks.
If some other quality than the ones mentioned
above is important to you, the methods still
apply. The ATAM, for example, is structured
in steps, some of which are dependent upon
the quality being investigated, and others
of which are not. Early steps of the ATAM
allow you to define new quality attributes by
explicitly describing the properties of interest.
The ATAM can easily accom- modate new
quality-dependent analysis. When we introduce
the method, you’ll see where to do this. For
now, though, the qualities in the list above
form the basis for the methods’ capabilities,
and they also cover most of what people tend
to be concerned about when evaluating an
architecture.

8 WHY ARE QUALITY ATTRIBUTES TOO
VAGUE FOR ANALYSIS?

Quality attributes form the basis for architec-
tural evaluation, but simply nam- ing the at-
tributes by themselves is not a sufficient basis
on which to judge an architecture for suitability.
Often, requirements statements like the follow-
ing are written:
• “The system shall be robust.”
• “The system shall be highly modifiable.”
• “The system shall be secure from unautho-
rized break-in.”
• “The system shall exhibit acceptable perfor-
mance.”
Without elaboration, each of these statements is
subject to interpretation and misunderstanding.
What you might think of as robust, your cus-
tomer might consider barely adequate—or vice
versa. Perhaps the system can easily adopt a
new database but cannot adapt to a new operat-
ing system. Is that sys- tem maintainable or not?
Perhaps the system uses passwords for security,
which prevents a whole class of unauthorized
users from breaking in, but has no virus pro-
tection mechanisms. Is that system secure from
intrusion or not?
The point here is that quality attributes are not

absolute quantities; they exist in the context of
specific goals. In particular:
•A system is modifiable (or not) with respect

to a specific kind of change.
• A system is secure (or not) with respect to a
specific kind of threat.
• A system is reliable (or not) with respect to a
specific kind of fault occurrence.
• A system performs well (or not) with respect
to specific performance criteria.
• A system is suitable (or not) for a product
line with respect to a specific set or range of
envisioned products in the product line (that is,
with respect to a specific product line scope).
• An architecture is buildable (or not) with re-
spect to specific time and bud- get constraints.
If this doesn’t seem reasonable, consider that
no system can ever be, for example, completely
reliable under all circumstances. (Think power
failure, tornado, or disgruntled system operator
with a sledgehammer.) Given that, it is incum-
bent upon the architect to understand under
exactly what circumstances the system should
be reliable in order to be deemed acceptable.
In a perfect world, the quality requirements for
a system would be com- pletely and unambigu-
ously specified in a requirements document.
Most of us do not live in such a world. Require-
ments documents are not written, or are written
poorly, or are not finished when it is time to
begin the architecture. Also, architectures have
goals of their own that are not enumerated in
a requirements document for the system: They
must be built using resources at hand, they
should exhibit conceptual integrity, and so on.
And so the first job of an architecture evalua-
tion is to elicit the specific quality goals against
which the architecture will be judged.
If all of these goals are specifically, unambigu-
ously articulated, that’s wonderful. Otherwise,
we ask the stakeholders to help us write them
down dur- ing an evaluation. The mechanism
we use is the scenario. A scenario is a short
statement describing an interaction of one of
the stakeholders with the system. A user would
describe using the system to perform some task;
these scenarios would very much resemble use
cases in object-oriented parlance. A maintenance
stakeholder would describe making a change
to the system, such as upgrading the operat-
ing system in a particular way or adding a

10

specific new function. A developer’s scenario
might involve using the architecture to build the
system or predict its performance. A customer’s
scenario might describe the architecture reused
for a second product in a product line or might
assert that the system is build able given certain
resources.
Each scenario, then, is associated with a particu-
lar stakeholder (although different stakeholders
might well be interested in the same scenario).
Each scenario also addresses a particular quality,
but in specific terms. Scenarios are discussed
more fully in part 3.

9 WHAT ARE THE OUTPUTS OF AN AR-
CHITECTURE EVALUATION?
9.1 Outputs from the ATAM, the SAAM, and
ARID
An architecture evaluation results in informa-
tion and insights about the archi- tecture. The
ATAM, the SAAM, and the ARID method all
produce the outputs described below.

Prioritized Statement of Quality Attribute
Requirements
An architecture evaluation can proceed only if
the criteria for suitability are known. Thus, elic-
itation of quality attribute requirements against
which the architecture is evaluated constitutes a
major portion of the work. But no archi- tecture
can meet an unbounded list of quality attributes,
and so the methods use a consensus-based pri-
oritization. Having a prioritized statement of the
quality attributes serves as an excellent docu-
mentation record to accompany any archi- tec-
ture and guide it through its evolution. All three
methods produce this in the form of a set of
quality attribute scenarios.

Mapping of Approaches to Quality At-
tributes
The answers to the analysis questions produce
a mapping that shows how the architectural
approaches achieve (or fail to achieve) the de-
sired quality attributes. This mapping makes a
splendid rationale for the architecture. Ratio-
nale is something that every architect should
record, and most wish they had time to con-
struct. The mapping of approaches to attributes
can constitute the bulk of such a description.

Risks and Nonrisks
Risks are potentially problematic architectural
decisions. Nonrisks are good decisions that rely
on assumptions that are frequently implicit in
the architec- ture. Both should be understood
and explicitly recorded.2
Documenting of risks and nonrisks consists of
• An architectural decision (or a decision that
has not been made)
• A specific quality attribute response that is
being addressed by that deci- sion along with
the consequences of the predicted level of the
response .

• A rationale for the positive or negative
effect that decision has on meeting the quality
attribute requirement
An example of a risk is
The rules for writing business logic modules
in the second tier of your three-tier client-
server style are not clearly articulated (a
decision that has not been made). This could
result in replication of functionality, thereby
compromising modifiability of the third tier (a
quality attribute response and its consequences).
Unarticulated rules for writing the business
logic can result in unintended and undesired
coupling of components (rationale for the
negative effect).
An example of a nonrisk is
Assuming message arrival rates of once per
second, a processing time of less than 30
milliseconds, and the existence of one higher
priority process (the architectural decisions), a
one-second soft deadline seems reasonable (the
quality attribute response and its consequences)
since the arrival rate is bounded and the
preemptive effects of higher priority processes
are known and can be accommodated (the
rationale).
For a nonrisk to remain a nonrisk the
assumptions must not change (or at least
if they change, the designation of nonrisk will
need to be rejustified). For example, if the
message arrival rate, the processing time, or the
number of higher priority processes changes in
the example above, the designation of nonrisk
could change.

11

9.2 Outputs Only from the ATAM

In addition to the preceding information, the
ATAM produces an additional set of results
described below.

Catalog of Architectural Approaches Used
Every architect adopts certain design strategies
and approaches to solve the problems at hand.
Sometimes these approaches are well known
and part of the common knowledge of the field;
sometimes they are unique and innovative to
the system being built. In either case, they are
the key to understanding whether the architec-
ture will meet its goals and requirements. The
ATAM includes a step in which the approaches
used are catalogued, and this catalog can later
serve as an introduction to the architecture for
people who need to familiarize themselves with
it, such as future architects and maintainers for
the system.

Approach- and Quality-Attribute-Specific
Analysis Questions
The ATAM poses analysis questions that are
based on the attributes being sought and the
approaches selected by the architect. As the ar-
chitecture evolves, these questions can be used
in future mini-evaluations to make sure that the
evolution is not taking the architecture in the
wrong direction.

Sensitivity Points and Tradeoff Points
We term key architectural decisions sensitivity
points and tradeoff points. A sensitivity point
is a property of one or more components
(and/or component relationships) that is critical
for achieving a particular quality attribute
response. For example:
• The level of confidentiality in a virtual private
network might be sensitive to the number of
bits of encryption.
• The latency for processing an important
message might be sensitive to the priority of the
lowest priority process involved in handling the
message.
• The average number of person-days of
effort it takes to maintain a system might be
sensitive to the degree of encapsulation of its
communication protocols and file formats.
Sensitivity points tell a designer or analyst
where to focus attention when trying to
understand the achievement of a quality
goal. They serve as yellow flags: “Use

caution when changing this property of
the architecture.” Particular values of sensitivity
points may become risks when realized in an
architecture. Consider the examples above. A
particular value in the encryption level—say,
32-bit encryption—may present a risk in
the architecture. Or having a very low priority
process in a pipeline that processes an important
message may become a risk in the architecture.
A tradeoff point is a property that affects more
than one attribute and is a sensitivity point for
more than one attribute. For example, changing
the level of encryption could have a significant
impact on both security and performance.
Increasing the level of encryption improves the
predicted security but requires more processing
time. If the processing of a confidential message
has a hard real-time latency requirement then
the level of encryption could be a tradeoff point.
Tradeoff points are the most critical decisions
that one can make in an architecture, which is
why we focus on them so carefully.
Finally, it is not uncommon for an architect to
answer an elicitation ques- tion by saying, “We
haven’t made that decision yet.” In this case
you cannot point to a component or property in
the architecture and call it out as a sensitiv- ity
point because the component or property might
not exist yet. However, it is important to flag
key decisions that have been made as well as
key decisions that have not yet been made.

10 WHAT ARE THE BENEFITS AND
COSTS OF PERFORMING AN ARCHITEC-
TURE EVALUATION?

The main, and obvious, benefit of architecture
evaluation is, of course, that it uncovers prob-
lems that if left undiscovered would be orders
of magnitude more expensive to correct later. In
short, architecture evaluation produces bet- ter
architectures. Even if the evaluation uncovers no
problems that warrant attention, it will increase
everyone’s level of confidence in the architec-
ture.
But there are other benefits as well. Some of
them are hard to measure, but they all contribute
to a successful project and a more mature orga-
nization. You may not experience all of these on

12

every evaluation, but the following is a list of
the benefits we’ve often observed.

Puts Stakeholders in the Same Room
An architecture evaluation is often the first
time that many of the stakeholders have ever
met each other; sometimes it’s the first time
the architect has met them. A group dynamic
emerges in which stakeholders see each other as
all wanting the same thing: a successful system.
Whereas before, their goals may have been in
conflict with each other (and in fact, still may
be), now they are able to explain their goals and
motivations so that they begin to understand
each other. In this atmosphere, compromises can
be brokered or innovative solutions proposed
in the face of greater understanding. It is al-
most always the case that stakeholders trade
phone numbers and e-mail addresses and open
channels of communication that last beyond the
evaluation itself.

Forces an Articulation of Specific Quality
Goals
The role of the stakeholders is to articulate the
quality goals that the architec- ture should meet
in order to be deemed successful. These goals
are often not captured in any requirements doc-
ument, or at least not captured in an unambig-
uous fashion beyond vague platitudes about
reliability and modifiability. Sce- narios provide
explicit quality benchmarks.

Results in the Prioritization of Conflicting
Goals
Conflicts that might arise among the goals ex-
pressed by the different stake- holders will be
aired. Each method includes a step in which
the goals are prior- itized by the group. If the
architect cannot satisfy all of the conflicting
goals, he or she will receive clear and explicit
guidance about which ones are considered most
important. (Of course, project management can
step in and veto or adjust the group-derived
priorities—perhaps they perceive some stake-
holders and their goals as “more equal” than
others—but not unless the conflicting goals are
aired.)

Forces a Clear Explication of the Architecture

The architect is compelled to make a group of
people not privy to the architec- ture’s creation
understand it, in detail, in an unambiguous way.
Among other things, this will serve as a dress re-

hearsal for explaining it to the other design- ers,
component developers, and testers. The project
benefits by forcing this explication early.

Improves the Quality of Architectural Docu-
mentation
Often, an evaluation will call for documentation
that has not yet been prepared. For example, an
inquiry along performance lines will reveal the
need for docu- mentation that shows how the
architecture handles the interaction of run-time
tasks or processes. If the evaluation requires
it, then it’s an odds-on bet that somebody on
the project team (in this case, the performance
engineer) will need it also. Again, the project
benefits because it enters development better
prepared.

Uncovers Opportunities for Cross-Project
Reuse
Stakeholders and the evaluation team come
from outside the development project, but of-
ten work on or are familiar with other projects
within the same parent organization. As such,
both are in a good position either to spot compo-
nents that can be reused on other projects or
to know of components (or other assets) that
already exist and perhaps could be imported
into the current project.

Results in Improved Architecture Practices
Organizations that practice architecture evalu-
ation as a standard part of their development
process report an improvement in the quality
of the architectures that are evaluated. As de-
velopment organizations learn to anticipate the
kinds of questions that will be asked, the kinds
of issues that will be raised, and the kinds of
documentation that will be required for evalu-
ations, they naturally preposition themselves to
maximize their performance on the evaluations.
Architecture evaluations result in better archi-
tectures not only after the fact but before the
fact as well. Over time, an organization devel-
ops a culture that pro- motes good architectural
design.

Now, not all of these benefits may resonate
with you. If your organization is small, maybe
all of the stakeholders know each other and
talk regularly. Per- haps your organization is
very mature when it comes to working out the
requirements for a system, and by the time the
finishing touches are put on the architecture the
requirements are no longer an issue because

13

everyone is com- pletely clear what they are. If
so, congratulations. But many of the organiza-
tions in which we have carried out architecture
evaluations are not quite so sophisticated, and
there have always been requirements issues that
were raised (and resolved) when the architec-
ture was put on the table.

There are also benefits to future projects in
the same organization. A criti- cal part of the
ATAM consists of probing the architecture using
a set of quality- specific analysis questions, and
neither the method nor the list of questions is a
secret. The architect is perfectly free to arm her-
or himself before the evalua- tion by making
sure that the architecture is up to snuff with
respect to the rele- vant questions. This is rather
like scoring well on a test whose questions
you’ve already seen, but in this case it isn’t
cheating: it’s professionalism.
The costs of architecture evaluation are all per-
sonnel costs and opportunity costs related to
those personnel participating in the evaluation
instead of some- thing else. They’re easy enough
to calculate. An example using the cost of an
ATAM-based evaluation is shown in Table 2.1.
The left-most column names the phases of the
ATAM (which will be described in subsequent
chapters). The other columns split the cost
among the participant groups. Similar tables can
easily be constructed for other methods.
Table 1 shows figures for what we would con-
sider a medium-size evalu- ation effort. While
70 person-days sounds like a substantial sum,
in actuality it may not be so daunting. For one
reason, the calendar time added to the project is
minimal. The schedule should not be impacted
by the preparation at all, nor the follow-up.
These activities can be carried out behind the
scenes, as it were. The middle phases consume
actual project days, usually three or so. Second,
the project normally does not have to pay for all
70 staff days. Many of the

stakeholders work for other cost centers, if
not other organizations, than the development
group. Stakeholders by definition have a vested
interest in the system, and they are often more
than willing to contribute their time to help
produce a quality product.
It is certainly easy to imagine larger and smaller
efforts than the one char- acterized by Table 1.
As we will see, all of the methods are flexible,

struc- tured to iteratively spiral down into as
much detail as the evaluators and evaluation
client feel is warranted. Cursory evaluations can
be done in a day; excruciatingly detailed eval-
uations could take weeks. However, the num-
bers in Table 2. represent what we would call
nominal applications of the ATAM. For smaller
projects, Table 2 shows how those numbers can
be halved.
If your group evaluates many systems in the
same domain or with the same architectural
goals, then there is another way that the cost of
evaluation can be reduced. Collect and record
the scenarios used in each evaluation. Over
time, you will find that the scenario sets will
begin to resemble each other. After you have
performed several of these almost-alike evalu-
ations, you can produce a “canonical” set of
scenarios based on past experience. At this
point, the scenarios have in essence graduated
to become a checklist, and you can dis- pense
with the bulk of the scenario-generation part
of the exercise. This saves about a day. Since
scenario generation is the primary duty of the
stakeholders, the bulk of their time can also be
done away with, lowering the cost still further.

You still may want to have a few key stake-
holders, including the customer, to validate the
applicability of your checklist to the new sys-
tem.) The team size can be reduced, since no
one is needed to record scenarios. The architect’s
preparation time should be minimal since the
checklist will be publicly avail- able even when
he or she begins the architecture task.

Table 3 shows the cost of a medium-size
checklist-based evaluation using the ATAM,
which comes in at about 4/7 of the cost of the
scenario-based evaluation of Table 2.

11 CONCLUSION

In this report, we presented a (partial) list of
software evaluation problem situations identi-
fied on an empirical basis, using the concepts of
problem situation and problem formulation pre-
sented in the IUSWARE approach.

A primary objective of such a description
was to highlight the great variety of situations
under which a software evaluation may oc-
cur and how completely different evaluation
models can be de- fined. In order to provide

14

TABLE 1
Approximate Cost of a Medium-Size ATAM-Based Evaluation

Participant Group
ATAM Phase

Evaluation Team
(assume 5 members)

Project Decision Makers (assume architect,
project manager, customer)

Other
Stakeholders
(assume 8)

Phase 0: 1 person-day by 1 person-day 0
Preparation team leader
Phase 1: 5 person-days 3 person-days 0
Initial
evaluation
(1 day)
Phase 2: 15 person-days 9 person-days + 16 person-days

(most
Complete 2 person-days to stakeholders

present
evaluation prepare only for 2 days)
(3 days)
Phase 3: 15 person-days 3 person-days to read 0
Follow-up and respond to report
TOTAL 36 person-days 18 person-days 16 person-days

TABLE 2
Approximate Cost of a Small ATAM-Based evaluation

Participant Group
ATAM Phase

Evaluation team
(assume 2 members)

Project Decision Makers (assume
architect, project manager)

Other Stakeholders
(assume 3)

Phase 0: 1 person-day by 1 person-day 0
Preparation team leader
Phase 1: 2 person-days 2 person-days 0
Initial
evaluation
(1 day)
Phase 2: 4 person-days 4 person-days + 6 person-days
Complete 2 person-days to
evaluation prepare
(2 days)
Phase 3: 8 person-days 2 person-days to read 0
Follow-up and respond to report
TOTAL 15 person-days 11 person-days 6 person-days

TABLE 3
Approximate Cost of a Medium-Size Checklist-based ATAM-Based

Participant Evaluation Team Project Decision Makers (assume Other
Stakeholders

Group (assume 4 architect, project (assume the
customer

ATAM Phase members) manager, customer) validates the
checklist)

Phase 0: Preparation 1 person-day by team
leader

1 person-day 0

Phase 1: Initial evaluation (1
day)

4 person-days 3 person-days 0

Phase 2: Complete evaluation
(2 days)

8 person-days 6 person-days 2 person-days

Phase 3: Follow-up 12 person-days 3 person-days to read and
respond to report

0

TOTAL 25 person-days 13 person-days 2 person-days

15

empirical evidence to our claim, two real case
studies are briefly re- ported, illustrating such
differences.

Further on, we emphasised the lack of any
formal aid in identifying the problem situation
and the associated problem formulations. Al-
though it is not possible to provide a complete
answer to such a problem, we introduced some
elements (as essential components of any pro-
cedure that may be established). This is also
one of our main re- search directions for the
future. Another interest- ing research issue are
the side effects of evolutive choice sets, i.e., sets
of alternatives that change dynamically during
the decision making process.

A more general problem concerns the fusion
of different knowledge basis for the construction
of the problem formulation and the relevant
evalua- tion model. As already mentioned in the
paper at least three different sources of knowl-
edge are combined: the intuitive knowledge of
the actors concerned, the domain knowledge on
the problem situation and the analyst’s method-
ological knowl- edge. The study of the formal
properties of such knowledge and the precise
way by which it might be possible to combine
them represents a future research challenge.

12 REFERENCES

1) Basili, V.R., 1995. Applying the GQM
paradigm in the experience factory. In:
Fenton, N., Whitty, R., Iizuka, Y. (Eds.),
Software Quality Assurance and Mea-
surement. Thomson Computer Press,
London, pp. 23–37.

2) Beroggi, G., 1999. Decision modeling in
policy management. In: An Introduction
to the Analytic Concepts. Kluwer Aca-
demic, Dordrecht.

3) Blin, M.-J., Tsouki‘as, A., 2001. Mul-
ticriteria methodology contribution to
software quality evaluations. Software
Quality Journal 9, 113–132.

4) Boloix, G., Robillard, N.P., 1995. A soft-
ware evaluation framework. IEEE Com-
puter 28, 17–26.

5) Bouyssou, D., Marchant, Th., Perny, P.,
Pirlot, M., Tsouki‘as, A., Vincke, Ph.,
2000. Evaluation and Decision Mod-

els: A Critical Perspective. Kluwer Aca-
demic, Dordrecht

6) Cardenas-Garcia, S., Zelkowitz, V., 1991.
A management tool for evaluation of
software designs. IEEE Transactions on
Software Engineering 17, 961–971.

7) Giakoumakis, E.A., Xylomenos, G.,
1996. Evaluation and selection criteria
for software requirements specification
standards. Software Engineering Jour-
nal 11, 307–319.

8) ISO/IEC 9126-1, 1996. Information Tech-
nology––Software quality characteris-
tics and sub-characteristics.

9) Kitchenham, B., 1987. Towards a con-
structive quality model Part 1: Soft-
ware quality modeling, measurement
and prediction. Software Engineering
Journal, 105–112.

10) Kontio, A., 1996. A case study in ap-
plying a systematic method for COTS
selection. Proceedings of the IEEE Inter-
national Conference on Software Engi-
neering, 201–209.

11) LeBlank, L., Jelassi, T., 1994. An em-
pirical assessment of choice models for
software selection: A comparison of the
LWA and MAUT technique . Revue des
syst‘emes de decision 3, 115–126.

12) Meskens, N., 1994. A knowledge-based
system for measuring the quality of ex-
isting software. Revue des Syst‘emes de
Decision 3, 201–220.

13) Morisio, M., Tsouki‘as, A., 1997.
IusWare, A methodology for the
evaluation and selection of software
products. IEE Proceedings on Software
Engineering 144, 162–174.

14) Mosley, V., 1992. How to assess tools
efficiently and quanti- tavely. IEEE-
Software 9, 29–32.

15) Park, K., Lim, C., 1999. A structured
methodology for comparative evalua-
tion of user interface designs using us-
ability criteria and measures. Interna-
tional Journal of Industrial Ergonomics
23, 379–389.

16) Paschetta, E., Tsouki‘as, A., 2000. A real
world MCDA application: Evaluating
software. Journal of Multi-Criteria De-
cision Analysis 9, 205–226.

16

17) Poston, R.M., Sexton, M.P., 1992. Eval-
uating and selecting testing tools. IEEE
Software 9, 33–42.

18) Roy, B., 1996. Multi-criteria Methodol-
ogy for Decision Aiding.

19) Kluwer Academic, Dordrecht.
20) Shepperd, M.J., Schofield, C., 1997. Es-

timating software project effort using
analogies. IEEE Transactions on Soft-
ware Engineering 23, 736–743.

21) Stamelos, I., Vlahava , I., Refanidis, I.,
Tsouki‘as, A., 2000. Knowledge based
evaluation of software systems: A case
study. Information and Software Tech-
nology 42, 333– 345.

22) Tsouki‘as, A., 1997. Sur la g´e
´eralisation des concepts de con-
cordance et discordance en aide
multicrit‘re ‘a la d´ecision, M´emoire
HDR, Universit´e Paris Dauphine,
appeared also as Document du
LAMSADE. no. 117.

23) Vincke, Ph., 1992. Multicriteria Decision
Aid. John Wiley, New York.

24) Vlahavas, I., Stamelos, I., Refanidis, I.,
Tsouki‘as, A., 1999. ESSE: An expert
system for software evaluation. Knowl-
edge Based Systems 12, 183–197.

25) Zahedi, F., 1990. A method for quanti-
tative evaluation of expert systems. Eu-
ropean Journal of Operational Research
48, 136–147.

ACKNOWLEDGMENT

I want to express my sincere gratitude to those
people who had helped me. I would like to
thank the course teacher , professor Yu Ligong
for helping me to pass the course and under-
stand the material .

TAMEEM HEZAM master degree
student in nanjing university of sci-
ence and Technology

Yu Ligong Software engineering, multimedia information
processing, distributed systems and service computing.

Served as the head coach of the school’s ACM/ICPC
training team, and a large number of students won Asian
and national awards

China Cryptography Society (CACR) members, IEEE
members, ACM members;

Experts in the evaluation of correspondence from the
National Natural Science Foundation of China;

National University Student Information Security
Competition Network Evaluation Expert.

W
RI

TT
EN

 B
Y

TA
M

EE
M

 H
EZ

AM
 .

PR
O

FE
SS

O
R

 Y
U

 L
IG

O
N

G

	Software evaluation
	Introduction
	What's Architectural?
	 Why Evaluate an Architecture?
	 When Can an Architecture Be Evaluated?
	Who's Involved?
	What Result Does an Architecture Evaluation Produce?
	 For What Qualities Can We Evaluate an Architecture?
	Why Are Quality Attributes Too Vague for Analysis?
	What Are the Outputs of an Architecture Evaluation?
	 Outputs from the ATAM, the SAAM, and ARID
	Outputs Only from the ATAM

	What Are the Benefits and Costs of Performing an Architecture Evaluation?
	Conclusion
	References
	Acknowledgment
	Biographies
	TAMEEM HEZAM
	Yu Ligong

