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1 The ice sheet scale model with boundary conditions as

in Fowler 2001

1.1 An ice sheet model with subtemperate sliding

We start our analysis by re-stating the ice sheet scale model with subtemperate sliding that we
derived in the companion paper (§5(a)). Let us consider a laterally uniform ice sheet with surface
elevation z = s(x, t) and bed elevation z = b(x), where z = 0 denotes sea level. Here x is the
horizontal spatial coordinate, scaled with the length of the ice sheet, z is the vertical coordinate,
and t is time scaled with the natural advective time scale of the ice sheet. The ice has thickness
h(x, t) = s − b, and extends from a divide located at x = 0 to a margin located at x = xg. The
velocity field scaled with the shear velocity is u = (u,w), while T is temperature, scaled with
the difference between the melting point and a representative surface temperature. At this large
horizontal length scale, it is justified to take the limit of small ice sheet aspect ratio, ε → 0 [that
is, the so called shallow ice approximation, 1, 2], leading to a horizontal velocity u and basal shear
stress τb

u =
1

2

[
h2 − (s− z)2] ∣∣∣∣∂s∂x

∣∣∣∣+ ub, τb = h

∣∣∣∣∂s∂x
∣∣∣∣ , (1a)

where ub = u(z = b) is the sliding velocity, which for now we regard simply as a function of basal
shear stress and basal temperature. From the expression above we compute the mass flux as

q =

∫ s

b

u dz =
h2

3
τb + ubh; (1b)

then, along-flow changes in q drive the evolution of the ice surface through the diffusion equation

∂s

∂t
+
∂q

∂x
= ḃ, (1c)

where ḃ describes mass gain by surface accumulation (if positive) or loss by melt or sublimation (if
negative). Boundary conditions for eq. (1c) at the divide and grounding line are

q = 0 on x = 0, h = −ρwρ−1b on x = xg, q = Qg(h) on x = xg, (1d)

whereby we have assumed that the ice sheet is symmetric at x = 0, and that it has a marine margin
whose location is defined by incipient flotation, eq. (1d2), and by a flux condition, eq. (1d3), where
ρ, ρw denote ice and water density, respectively, and the function Qg is given by Schoof [3].

The vertical velocity w decouples from the leading order mechanical problem and is the solution
to the local mass conservation

∂u

∂x
+
∂w

∂z
= 0 on b < z < s, (2a)

which can be integrated between the bed and the ice surface straightforwardly to compute w using
(1a1) for the horizontal velocity u along with the basal boundary condition

ub
∂b

∂x
− w = 0 on z = b. (2b)
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Lastly, omitting terms of order O(ε2), the leading order heat transport problem reads

Pe

(
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z

)
− ∂2T

∂z2
= αa(x, z, t) for b < z < s, (3a)

Pe
∂T

∂t
− ∂2T

∂z2
= 0 for z < b, (3b)

with strain heating a = (∂u/∂z)2. In the latter equations, Pe is the ice sheet scale Péclet number,
which can be seen as the ratio of the divergences of advective and diffusive heat fluxes, where the
latter is dominated by vertical diffusion at the ice sheet scale. The parameter α denotes instead the
strength of strain heating compared to the background conductive heat flux in the ice. We regard
both parameters as strictly O(1).

Boundary conditions for the heat transport problem at the surface and in the far field of the
bed are

T = −Ts on z = s, (3c)

− ∂T

∂z
→ ν as z → −∞. (3d)

In order to specify boundary conditions at the bed, z = b, it is useful to first examine the physics
of basal sliding, which we assume to be thermally controlled. In general, temperature-dependent
sliding is modelled through an explicitly temperature-dependent sliding law of the form [4, 5]

ub = γ−1F (T/δ)τb, (3e)

where γ ∼ O(1) is a non-dimensional friction coefficient, while δ � 1 is a positive parameter that
compares the range of temperatures below the melting point over which subtemperate sliding is
O(1) to the typical temperature scale of the ice sheet. The dependence of sliding on temperature
is described by the function F , which is is monotonically increasing in T subject to the constraint
that T ≤ 0 (where T = 0 is the melting point), and such that F (0) = 1. The fully temperate sliding
law is recovered when the bed attains the melting point, while significant sliding occurs within a
temperature range of δbelow the melting point, so F (T/δ) ≈ 0 when |T | � δ.

Taking the limit δ → 0 allowed us to simplify basal boundary conditions (on z = b) for the ice
sheet scale model to (see §5(c) of the companion paper for an asymptotic justification)[

∂T

∂z

]+

−
= [T ]+− = ub = 0 if T < 0, (3f)[

∂T

∂z

]+

−
+ αubτb = T = 0 if ub < γ−1τb, (3g)

T = ub − γ−1τb = 0 if m > 0, (3h)

with the basal melt rate m defined as

m =

[
∂T

∂z

]+

−
+ ατbub on z = b, (3i)

and [g(z0)]+− = g(z → z+
0 )−g(z → z−0 ). Note that boundary conditions (3f-3h), previously proposed

by Fowler [6], implicitly identify three distinct regions of the ice sheet: a cold-based region, where bed
temperature is well below the melting point and no sliding occurs; a subtemperate region, where bed

4



temperature is approximately the melting point and O(1) sliding occurs subject to the constraint
that the ice-bed contact remains in thermal balance; a temperate-based region where the basal
melt rate remains positive and fully temperate sliding occurs. We denote the cold-subtemperate
and subtemperate-temperate boundaries as x = xs and x = xt, respectively, and we demand that
at these boundaries the boundary conditions (3f), (3g), and (3g), (3h) hold simultaneously, leading
to

T (z = b) = ub = 0 at x = xs, γ−1τb = −
[
∂T

∂z

]+

−
(ατb)

−1, m = 0 at x = xt, (3j)

which fix the location of subdomain boundaries. Lastly, continuity of mass and temperature is
ensured demanding

[q]+− = [h]+− =

[
∂T

∂z

]+

−
= 0 on x = xs, xt. (3k)

1.2 Stability of the subtemperate region

1.2.1 A shallow subtemperate slab

Let us consider the ice sheet scale model of §1.1, and restrict ourselves to the subtemperate region.
We then take the limit of a short horizontal length scale within the shallow ice approximation,
which yields the slab model

∂s

∂t
+
∂q

∂x
= 0, (4a)

with mass flux (1b), and sliding velocity ub defined by the basal energy budget

−Q+ ν + ατbub = 0, (4b)

where Q = −∂T/∂z|z→b+ , and τb is given by eq. (1a2). Note that, as basal temperature is approxi-
mately at the melting point in the subtemperate region, the heat equation in the bed (3b) can be
integrated analytically, leading to −∂T/∂z = ν for z < b; this justifies the form of the basal heat
flux in the bed in eq. (4b). Regarding the heat equation in the ice, it is important to note that at
this shorter horizontal length scale the local Péclet number Peslab is large. As basal temperature is
at the melting point in the subtemperate region, then the thermal model for the ice reduces to the
Q−equation (see §3(b) of the companion paper)

∂Q

∂t
+ ub

∂Q

∂x
−Q∂ub

∂x
= 0, (4c)

which completes our slab model.

1.2.2 Linearization

We are interested in the fate of short-wavelength perturbations about the steady state of the sub-
temperate ice slab described by eqs. (4). As usual, we linearize model variables around their steady
state (denoted with ·̄) as

h = h̄+βh′, ub = ūb+βu
′
b, τb = τ̄b+βτ

′
b,

∂s

∂x
=

ds̄

dx
+β

∂h′

∂x
, Q = Q̄+βQ′, with β � 1, (5)
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where surface slope ds̄/dx = db/dx is constant, and h̄, ūb, Q̄ do not depend on x. Upon linearization,
to order O(β) we have

∂h′

∂t
+

∂

∂x

[
h̄2

3
τ ′b +

2h̄τ̄b
3
h′ + ūbh

′ + h̄u′b

]
= 0, (6a)

∂Q′

∂t
+ ūb

∂Q′

∂x
− Q̄∂u

′
b

∂x
= 0, (6b)

with basal energy budget
Q′ + α (τ̄bu

′
b + ūτ ′b) = 0, (6c)

and perturbed basal shear stress

τ ′b = −h̄∂h
′

∂x
− ds̄

dx
h′. (6d)

1.2.3 Stability analysis, σ ∼ k2

We now seek an approximation to the solution of the linear system above that holds for short
wavelength perturbations. For simplicity, assume that the domain is periodic in x with period
L ∼ O(1). A solution to the linearized model can then be found assuming separation of variables,
and using a Fourier series in x. We define

fn(t) =
1

L

∫ L

0

f ′(x, t) exp (−iknx) dx, kn =
2πn

L
, (7)

withfn = f̂n exp (σt), and σ ∈ C. To find a solution in the limit kn →∞, we apply the rescalings

ĥn = k−2
n h̃n, ûb,n = k−1

n ũb,n, τ̂b,n = k−1
n τ̃b,n, Q̂n = k−2

n Q̃n, σ = k2
nσ̃, (8)

and expand as f̃n = f̃
(0)
n +O(k−1

n ). Omitting terms of order O(k−1
n ), we find the following algebraic

leading order problem

σ̃(0)h̃(0)
n +

h̄3

3
h̃(0)
n + ih̄ũ

(0)
b,n = 0, (9a)

σ̃(0)Q̃(0)
n − iQ̄ũ

(0)
b,n = 0, (9b)

τ̄bũ
(0)
b,n + ūbτ̃

(0)
b,n = 0, (9c)

τ̃
(0)
b,n = −ih̄h̃(0)

n (9d)

The solution to the perturbed problem above reads

σ̃(0) =
h̄

τ̄b

(
− τ̄bh̄

2

3
+ ūbh̄

)
, ũ

(0)
b,n = i

ū0h̄0

τ̄b
h̃(0)
n , Q̃(0)

n = i
Q̄

σ̃(0)
ũ

(0)
b,n. (9e)

σ̃(0) is purely real, hence the its sign determines the growth or decay of perturbations. The sign
of σ̃(0) is dictated by the term in brackets in (9e1): recalling the definition of the mass flux (1b),
we understand that these terms represent the difference between the mass flux by sliding and the
mass flux by shearing. When sliding is larger than shearing (fast sliding) the system is unstable,
while it is stable in the opposite case (slow sliding). Given that σ ∼ k2

n, we conclude that the fast
sliding regime is ill-posed due to backward diffusion.

6



1.2.4 Stability analysis, σ ∼ k

The analysis above identifies the slow sliding regime as stable. We are now going to show that an-
other dominant balance is possible in the shortwavelength limit, and that this leads to an instability
with ∼ O(1) growth rate in the slow sliding regime.

By replacing the rescalings (8) with

ĥn = k−2
n h̃n, ûb,n = k−1

n ũb,n, τ̂b,n = k−1
n τ̃b,n, Q̂n = k−1

n Q̃n, σ = knσ̃, (10)

and following the same approach outlined for the σ ∼ k2
n mode, we find the leading order problem

h̄3

3
h̃(0)
n + ih̄ũ

(0)
b,n = 0, (11a)

σ̃(0)Q̃(0)
n + iūQ̃(0)

n − iQ̄ũ
(0)
b,n = 0, (11b)

Q̃(0)
n + α

(
τ̄bũ

(0)
b,n + ūbτ̃

(0)
b,n

)
= 0, (11c)

τ̃
(0)
b,n = −ih̄h̃(0)

n . (11d)

The solution to this problem is a travelling wave,

σ̃(0) = − ih̄(3αū2
b + h̄ν)

3α
(
− τ̄bh̄2

3
+ ūbh̄

) , ũ
(0)
b,n =

ih̄2

3
h̃(0)
n , Q̃(0)

n = −iα
(
− τ̄bh̄

2

3
+ ūbh̄

)
h̃(0)
n , (11e)

where the relative importance of sliding compared to shearing determines whether the wave prop-
agates upstream or downtream. Growth is determined by the O(k−1

n ) problem, which reads

h̃(0)
n σ̃(0) +

h̄3

3
h̃(1)
n + ih̄τ̄bh̃

(0)
n + ih̄ũ

(1)
b,n + iūbh̃

(0)
n = 0, (11f)

σ̃(1)Q̃(0)
n + σ̃(0)Q̃(1)

n + iūQ̃(1)
n − iQ̄ũ

(1)
b,n = 0, (11g)

Q̃(1)
n + α

(
τ̄bũ

(1)
b,n + ūbτ̃

(1)
b,n

)
= 0, (11h)

τ̃
(1)
b,n = −ih̄h̃(1)

n +

∣∣∣∣ds̄dx̄

∣∣∣∣ h̃(0)
n . (11i)

The first order correction to the eigenvalue is purely real, and reads

σ̃(1) =
ūbτ̄bQ̄h̄

[(
τ̄bh̄

2

3
− ūbh̄

)
+ h̄

3ατ̄b

(
αh̄τ̄b + 3ν

)]
3α
(
τ̄bh̄2

3
− ūbh̄

)3 . (11j)

For slow sliding τ̄bh̄
2/3 > ūbh̄, thus σ̃(1) > 0. We therefore conclude that also in the slow sliding

regime a shallow ice slab with subtemperate sliding is unstable to short wavelength perturbations,
although the growth rate of these perturbations does not depend on their wavelength.

1.3 Stability of the subtemperate-temperate boundary

We now consider the boundary between subtemperate and temperate region located at x = xt. Like
in §2.1, we are concerned with the fate of short wavelength perturbations, thus restrict ourselves to
a shallow ice slab in the vicinity of x = xt.
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1.3.1 Rescalings and linearization

Let us consider the slab model (4), along with the fully temperate sliding law (3h2) and the continuity
statements (3j2) and (3k), and rescale variables as

x∗ = k(x− xt), t∗ = kt, z∗ = z, Q∗ = Q, u∗b = ub, h∗ = h, τ ∗b = τb, (12a)

where k−1 � 1 is a short horizontal scale. In addition, we expand dependent variables about their
steady state (denoted by ·̄, and such that steady state variables to leading order depend only on
the unscaled coordinate x) as

h∗ = h̄∗ + βk−2h̃, Q∗ = Q̄∗ + βk−1Q̃, u∗b = ūb
∗ + βk−1ũb, τ ∗b = τ̄b

∗ + βk−1τb, x∗t = βk−1x′t, β � 1,
(12b)

where x′t is a perturbation of the subtemperate-temperate boundary, and steady state variables are
of the form

f̄ ∗ = f̄ |x=xt + k−1 df̄

dx

∣∣∣∣
x=xt

x∗ +O(k−2). (12c)

Lastly, we assume that perturbations are separable, so f ′ = f̃ exp (σt∗), with σ to be determined.
Equipped with these transformations, the linearized, O(β) problem reads

d

dx∗

[
−1

3
h̄3 dh̃

dx∗
+ h̄ũb

]
= 0, (13a)

σQ̃+ ū
dQ̃

dx∗
− Q̄dũb

dx∗
= 0, (13b)

with the sliding velocity given by

− Q̃+ α

(
τ̄bũb − ūbh̄

dh̃

dx∗

)
= 0 for x∗ < 0, (13c)

ũb = − h̄
γ

dh̃

dx∗
for x∗ > 0. (13d)

Expanding about the subtemperate-temperate boundary, the continuity statements (3j2) and (3k)
become [

h̃
]+

−
= 0, (13e)

−1

3
h̄3

[
dh̃

dx

]+

−

+ h̄ [ũb]
+
− = 0, (13f)

[ũb]
+
− +

[
dūb
dx

]+

−
x′t = 0, (13g)

[
Q̃
]+

−
+

[
dQ̄

dx

]+

−
x′t = 0, (13h)

where we have omitted the subscript |x=xt from steady state variables, and we have also used
continuity of the steady state surface slope at the transition point to obtain (13e). Lastly, since we
are seeking solutions with structure localized near the boundary, we demand that the eigenfunctions
remain bounded for x∗ → ±∞.
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1.3.2 Solution

We start by recognizing that mass conservation, eq. (13a), can be integrated directly and yields a
relation between the perturbed sliding velocity ũb and the perturbed surface slope, dh̃/dx∗. On the
temperate side, x∗ > 0, the sliding law (13d) gives ũb as a function of dh̃/dx∗; thus substituting the
sliding law into the integrated form of mass conservation we find

−
(

1

3
h̄3 +

h̄2

γ

)
dh̃

dx∗
= Ch on x∗ > 0, (14a)

with Ch an integration constant which we set to zero to ensure that h̃ remains bounded as x∗ → +∞.
It is then straightforward to obtain the solution for h̃, ũb, Q̃ on the temperate side,

h̃ = H+, ũb = 0, Q̃ = Q+ exp

{
− σ
ūb
x∗
}

on x∗ > 0, (14b)

where Q+ is a constant to be determined, while we set H+ = 0 without loss of generality. From
(14b3) we note immediately that a bounded Q̃ demands Re[σ(0)] > 0; it then follows that, if a
localized solution exists, it has to be unstable.

Next we move to the subtemperate side: here more algebra is required because mass and energy
conservation are coupled through the sliding law. Using the solution on the temperate side (14b),
and flux continuity across the boundary (13f), mass conservation gives

−1

3
h̄3 dh̃

dx∗
+ h̄ũb = 0 for x∗ < 0 (15a)

By combining the latter expression with the subtemperate sliding law (13c), we obtain a relation
between sliding velocity and basal heat flux on the subtemperate side,

ũb = − h̄2

3α
(
h̄2τ̄b − h̄ūb

)Q̃ for x∗ < 0, (15b)

where we recall that the term in brackets at the denominator is the difference between mass flux
by shearing and mass flux by sliding. Equipped with the relation (15b), we can integrate energy
conservation on the subtemperate side, which yields

Q̃ = Q− exp

−
[
ūb −

Q̄
(
h̄
)2

3α
(
h̄2τ̄b − h̄ūb

)]−1

σx∗

 for x∗ < 0. (15c)

Lastly, substituting (15c) back into (15b), and then into the integrated mass conservation (15a),
allows us to solve for h̃. We find

h̃ = −

[
ūb −

Q̄h̄2

3α
(
h̄2τ̄b − h̄ūb

)] Q̃
σ

+H− for x∗ < 0, (15d)

with H−, Q− integration constants to be determined.
At this stage, the only constraints yet to be satisfied are ice thickness, sliding velocity, and basal

heat flux continuity at the transition point, eqs. (13e, 13g, 13h). We will now use them to find
expressions for Q−, Q+, and σ as a function of x′t and H−. We start from continuity of the sliding
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velocity, eq. (13g). Using the relationship between ũb and Q̃ in the subtemperate region, eq. (15b),
we find a relation between Q− and x′t

Q− = −
3α
[
h̄2τ̄b − h̄ūb

]
h̄2

[
dūb
dx

]+

−
x′t, (16a)

whereas continuity of the basal heat flux, eq. (13h), relates Q+ to x′t,

Q+ = −
[

dQ̄

dx

]+

−
x′t +Q−. (16b)

Finally, continuity of ice thickness, eq. (13e), yields an expression for the eigenvalue as a function
of H− and Q−,

σ =

[
ūb −

Q̄h̄2

3α
(
h̄2τ̄b − h̄ūb

)] Q−
H−

. (16c)

It is clear from the expressions (16a-16c) that, for a given amplitude of the perturbation of the
boundary x′t and far field ice thickness H−, the sign of the real part of the eigenvalue depends on
the sign of the term in brackets in eq. (16c) and on the jump of the derivative of sliding velocity
across the boundary. As for the latter, we showed in the supplementary materials for part I (§4.4)

that
[

dūb
dx

]+
− < 0; here we consider instead the term in brackets in eq. (16c), and the related issue

of boundedness of the eigenfunctions in the far field.
As far as boundedness is concerned, the solution on the temperate side demands Re[σ̃(0)] > 0

through eq. (14b). Therefore the subtemperate eigenfunctions (15c, 15d) remain bounded provided

ūb −
Q̄h̄2

3α
(
h̄τ̄b − h̄ūb

) < 0, (16d)

which, for slow sliding (h̄2τ̄b − h̄ūb > 0), can be satisfied only if

3

(
1− ν

Q̄

)(
1− 1

γh̄

)
< 1, with

(
1− 1

γh̄

)
> 0, (16e)

while no bounded solution is available for fast sliding. Going back to the eigenvalue, satisfying the
inequalities above implies that the term in brackets in (16c) is negative, and that sign(Re[Q−]) =
sign(Re[x′t]). To satisfy Re[σ(0)] > 0 we therefore demand that

sign(Re[x′t]) = sign(Re[H−]), (16f)

which is permissible because both x′t and H− are free parameters.
In summary, our analysis confirms that in the slow sliding regime small amplitude perturbations

of the subtemperate-temperate boundary lead to localized perturbations of ice thickness, basal heat
flux, and sliding velocity. We find that these perturbations are unstable, with their growth rate
increasing as the wavelength decreases, thus this type of boundary is not viable.

2 Asymptotically reduced models for a subtemperate ice

slab

2.1 Master model

We consider the Stokes problem for an ice slab with temperature-dependent sliding. The coordinate
system is aligned with the bed, which we assume to be locally flat over the horizontal scales of interest
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and tilted of an angle µ to the horizontal; so the x− axis is parallel to the bed and pointing down-
slope, while the z−axis is perpendicular to the bed and pointing upwards. The ice-bed interface is
located at z = b, and the ice surface at z = s(x, t); h(x, t) = s− b is the ice thickness, u = (u,w) is
the velocity field, p is pressure, and T is temperature.

We introduce non-dimensional variables denoted with ∗, which relate to the dimensional ones
through the rescalings (x∗, z∗) = x/[x], z∗ = z/[z], etc. We consider scales for the ice sheet length
[x] = L, surface accumulation [ḃ], and temperature [T ] = Tsurf − Tm as known quantities, and
introduce the usual, shallow ice scale relationships [1, 2]

[w] = [ḃ], [u] = [w]ε−1, [t] = [x][u]−1, [p] = ρg[z] cos (µ), [τ ] = ε[p], [z] = (η[ḃ]L2ρ−1g−1)1/4,
(17a)

where ρ is density, g is gravity, and η is ice viscosity, which we consider as constant. We also define
the non-dimensional parameters

Pe = λ−1[z]2[t]−1, α = [τ ][u](κ[T ]/[z])−1, γ = C[u][τ ]−1, ν = qgeo(κ[T ]/[z])−1, (17b)

ε = [z][x]−1, δ = [T ]T−1
0 ,

where Pe is the Péclet number, α is the strength of strain heating compared to the background
conductive heat flux, γ is the non-dimensional friction coefficient, ν is the non-dimensional geother-
mal heat flux, ε is the aspect ratio of the ice sheet, C is the dimensional friction coefficient, qgeo
is the dimensional geothermal heat flux, and T0 is the range of temperatures below freezing where
subtemperate sliding occurs. For simplicity, we have assumed that ice and bed have the same
material properties, so λ is the thermal diffusivity, and κ is the thermal conductivity of the ice.

Dropping stars for simplicity, non-dimensional mass and momentum conservation read

∂u

∂x
+
∂w

∂z
= 0, (18a)

ε2∂τxx
∂x

+
∂τxz
∂z
− ∂p

∂x
= − tan (µ), (18b)

ε2

(
∂τzx
∂x

+
∂τzz
∂z

)
− ∂p

∂z
= 1, (18c)

on b < z < s, with the constitutive relationships given by

τxx = 2
∂u

∂x
, τzz = 2

∂w

∂z
, τxz = τzx =

∂u

∂z
+ ε2∂w

∂x
. (18d)

The boundary conditions at the ice surface, z = s, are

−(ε2τxx − p)
∂s

∂x
+ τxz = 0, (18e)

ε2

(
−τxz

∂s

∂x
+ τzz

)
− p = 0, (18f)

∂h

∂t
+ u

∂s

∂x
− w = ḃ, (18g)

while at the bottom of the ice, z = b, we have

w = 0, (18h)

ub = γ−1F (δ−1T |z=0)τb, (18i)
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with
ub = u, τb = τxz. (18j)

In the sliding law eq. (18i), δ � 1 determines the range of non-dimensional temperature values
below the melting point over which sliding is significant, while F is a positive function defined for
T ≤ 0, such that F ′ > 0, and F ∼ O(1) when T/δ O(1), with F (0) = 1 . We note that F (0) = 1
implies that the fully-temperate sliding law ub = γ−1τb is recovered when basal temperature reaches
the melting point, while the sliding velocity is less than the fully temperate sliding velocity below
the melting point.

Energy conservation in the ice and in the bed reads, respectively

Pe

(
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z

)
−
(
ε2∂

2T

∂x2
+
∂2T

∂z2

)
= αa b < z < s, (19a)

Pe
∂T

∂t
−
(
ε2∂

2T

∂x2
+
∂2T

∂z2

)
= 0 −∞ < z < b, (19b)

where the strain heating term a is defined as

a = 4ε2

(
∂u

∂x

)2

+ 4ε2

(
∂w

∂z

)2

+

(
∂u

∂z

)2

+ 2ε2∂u

∂z
wx + ε4

(
∂w

∂x

)2

. (19c)

Boundary conditions for the energy balance are

T = −1 on z = s, (19d)

[T ]+− = 0 on z = b, (19e)[
∂T

∂z

]+

−
+ αub τb = 0 on z = b (19f)

∂T

∂z
→ −ν as z → −∞. (19g)

The model has six non dimensional parameters: Pe, α, γ, ν, ε, and δ. Similarly to the companion
paper, we consider α, Pe, γ, ν ∼ O(1), while δ and ε are small. In the following, we use the smallness
of δ and ε to derive asymptotically reduced models for the subtemperate region.

We will proceed as follows: first we want to isolate the role of a shallow ice approximation in
the instability of the subtemperate region discussed in §1.2. Since there we adopted the limit of
δ = 0, for consistency we start by relaxing only the assumption of shallowness, and derive an ice
thickness scale model while keeping with the limit of δ = 0 (§2.2). The stability of the resulting
thermo-mechanical model is analyzed in §3.

We anticipate here that a Stokes model with subtemperate sliding and δ = 0 remains patho-
logical, and small but finite δ must be considered too. To this aim, in §2.3 we will consider the
distinguished limit δ ∼ ε1/2. We will see that in this limit dynamics occur over three distinct length
scale: the ice thickness scale, the ice sheet scale, and the geometric average of the two. In §2.3,
we derive leading order approximations for ice flow with subtemperate sliding that hold at each of
these scales, while we analyze their stability in §§4-5.

2.2 An ice thickness scale model with δ = 0

Let us consider an ice thickness scale ice slab with subtemperate sliding. For this flow, we want to
derive a leading order approximation that resolves the ice thickness scale in the horizontal. To this

12



aim, we introduce the following rescalings in the model (18-19)

X = ε−1x, Z = z − b, τ = ε−1t (U,W ) = (u, εw), H = h = s− b, P = p, Θ = T, (20a)

In addition, we expand dependent variables as

U = U(0) +O(ε), H = H(0) +O(ε), P = H(0) − Z + εP (1) +O(ε2), (20b)

Θ = Θ(0) +O(ε), Θb = Θb
(0) + δΘb

(1) +O(δ2)

where H(0) is a constant, and Θb denotes basal temperature, where we assume Θb
(0) = 0 as a result

of δ � 1. Then to leading order, and with an error of order O(ε), we find the Stokes problem

∂U (0)

∂X
+
∂W (0)

∂Z
= 0, (21a)

∂2U (0)

∂X2
+
∂2U (0)

∂Z2
− ∂P (1)

∂X
+ tan (µ) = 0, (21b)

∂2W (0)

∂X2
+
∂2W (0)

∂W 2
− ∂P (1)

∂Z
= 0, (21c)

on 0 < Z < H(0), with boundary conditions

∂U (0)

∂Z
+
∂W (0)

∂X
= 0 on Z = H(0), (21d)

W (0) = 0 on Z = H(0), (21e)

W (0) = 0 on Z = 0. (21f)

Note that we have Taylor expanded the stress boundary conditions (18e) about Z = H(0) to obtain
the leading order expression (21e).

At this short horizontal length scale, the leading order thermal model, again with an error of
order O(ε), is the advection problem

∂Θ(0)

∂τ
+ U (0)∂Θ(0)

∂X
+W (0)∂Θ(0)

∂Z
= 0 on 0 < Z < H(0), (21g)

where the leading order temperature profile must satisfy, with an error of order O(δ),

Θ(0) = Θb
(0) on Z = 0, (21h)

as well as the Dirichlet condition at the surface

Θ(0) = −1 on Z = H(0) (21i)

The heat equation in the bed simply demands that temperature is independent of τ up to O(ε),
with prescribed heat flux equal to the geothermal one; this, along with continuity of temperature
at the bed, yields a leading order temperature profile

Θ(0) = νZ, on Z < 0. (21j)

Given that Θb
(0) = 0, the advection problem in the ice can be reduced to an evolution equation

for the basal heat flux Q of the form (see derivation in §3(b) of the companion paper)

∂Q(0)

∂τ
+ Ub

(0)∂Q(0)

∂X
−Q(0)∂Ub

(0)

∂X
= 0, (21k)
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where the sliding velocity is implicitely defined by the basal energy budget

−Q(0) + ν + αTb
(0)Ub

(0) = 0, (21l)

where

Ub
(0) = U (0)|Z=0, Tb

(0) =

(
∂U (0)

∂Z
+
∂W (0)

∂X

)∣∣∣∣
Z=0

. (21m)

Lastly, the leading order sliding law

Ub
(0) = γ−1F (Θb

(1))Tb
(0) (21n)

constrains the first order correction of bed temperature Θb
(1); we note however that Θb

(1) does not
feed back into the leading order model, hence the sliding law is purely diagnostic when δ = 0.

2.2.1 A faster time scale

An alternative version of the model above, which will be relevant to stability considerations in §3,
can be obtained in a similar manner as the model (21), but rescaling time to a faster timescale

T = ε−2t. (22a)

The mechanical model (21a-21f) remains unchanged, except for the kinematic boundary condi-
tion at the surface (21e) that is replaced by

∂H(1)

∂T
−W (0) = 0 on Z = H(0), (22b)

which forces the leading order velocity field to have dynamics on the fast timescale. The first
order (∼ O(ε)) correction of ice thickness H(1) is related to the pressure field through the normal
component of the dynamic condition at the surface, which at O(ε) reads

−P (1) +H(1) +
∂W (0)

∂Z
= 0 on Z = 1. (22c)

Coupling to the thermal problem now occurs at first order, where we have, up to an error of order
O(ε2),

∂Q(1)

∂T
+ Ub

(0)∂Q(0)

∂X
−Q(0)∂Ub

(0)

∂X
= 0, (22d)

while the leading order basal energy budget and the sliding law, eqs. (21l, 21n) remain unchanged,
and Q(0) is independent of the fast time scale T .

2.3 The distinguished limit δ ∼ ε1/2

Here we want to derive a model for the subtemperate ice slab that takes into account O(δ) deviations
of bed temperature from the melting point. The natural distinguished limit to consider is δ ∼ ε1/2,
which we adopt throughout the following analysis.

We anticipate here that accounting for such small deviations of bed temperature from the melting
point lead to dynamics over a fast timescale τ = t/ε; this is the timescale we will consider throughout
§2.3. Furthermore, these dynamics occur over three distinct horizontal length scales, namely the
ice thickness scale, the ice sheet scale, and a length scale intermediate between the two. In the
following we derive leading order approximations to the thermo-mechanical model (18-19) rescaled
to the fast timescale τ at each of these length scales.
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2.3.1 Ice thickness scale

The derivation of a leading order model valid at the ice thickness scale follows the derivation in
§2.2. The leading order mechanical problem is given by eqs. (21a-21f) along with the sliding law
(21n), while the leading order thermal problem is given by the advection-only model (21k), with
the basal energy budget (21l).

The advection-only outer problem (21k) ignores O(δ) deviations of basal temperature from the
melting point, Θb

(1), which are indeed required in the sliding law (21n). In order to formulate
a model for the evolution of Θb

(1), we need to resort to a thermal boundary layer near the bed.
Assuming the distinguished limit δ ∼ ε1/2, and rescaling the master model (19) as

X̃ = ε−1x, Z̃ = δ−1z, τ = ε−1t, Θ̃ = δ−1T, (Ũ , W̃ ) = (u, εδ−1w), (23a)

and also expanding near the bed as

(Ũ , W̃ ) =

(
Ub

(0) +O(δ),−∂Ub
(0)

∂X
Z̃ +O(δ2)

)
, Θ̃ = Θ̃(0) +O(δ), (23b)

we find the following leading order problem for Θ̃, correct up to an error of O(ε)

∂Θ̃(0)

∂τ
+ Ub

(0)∂Θ̃(0)

∂X̃
− ∂Ub

(0)

∂X
Z̃
∂Θ̃(0)

∂Z̃
− 1

Pe δ

∂2Θ̃(0)

∂Z̃2
= 0 for Z̃ > 0, (24a)

∂Θ̃(0)

∂τ
− 1

Pe δ

∂2Θ̃(0)

∂Z̃2
= 0 for Z̃ < 0, (24b)

with boundary conditions at the bed[
Θ̃(0)

]+

−
= 0 on Z̃ = 0, (24c)[

∂Θ̃(0)

∂Z̃

]+

−

+ αUb
(0) Tb

(0) = 0, on Z̃ = 0, (24d)

and matching conditions

−∂Θ̃(0)

∂Z̃
→ Q(0) as Z̃ → +∞, −∂Θ̃(0)

∂Z̃
→ ν as Z̃ → −∞, (24e)

and a rescaled boundary layer Péclet number

Pe δ = Pe
δ2

ε
∼ O(1).

Recalling that, through the rescalings (23a), Θb
(1) = Θ̃(0)(Z̃ = 0), it is straightforward to recognize

that the model above effectively constrains the first order deviation of bed temperature from the
melting point, which is required in the computation of the sliding velocity through the sliding law
(21n).
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2.3.2 An intermediate horizontal scale

We now consider a horizontal length scale intermediate between the ice thickness scale and the ice
sheet scale,

X = ε−1/2x. (25a)

We rescale the master model (18-19) as

z = z − b, τ = ε−1t (u,w) = (u, ε1/2w), h = h = s− b, p = p, T = T, Tb = T |z=0, (25b)

and also expand dependent variables as

u = (u,w) = u(0) +O(ε1/2), h = h(0) + ε1/2h(1) +O(ε), p = h(0) − z + ε1/2h(1) +O(ε), (25c)

T = T(0) +O(ε1/2), Tb = Tb
(0) + δTb

(1) +O(δ2)

where h(0). Over this fast time scale, the leading order mechanical model is a shallow ice model,
which however differs from the standard, ice sheet scale version in that it links the first order
correction of the ice thickness, h(1), to the leading order horizontal velocity, u(0). With an error of
order O(ε1/2), the horizontal velocity is the solution to

∂2u(0)

∂z2
= − tan (µ) +

∂h(1)

∂x
on 0 < z < h(0), (25d)

u(0) = ub
(0) on z = 0, (25e)

∂u(0)

∂z
= 0 on z = h(0), (25f)

which can be integrated straightforwardly to yield

u(0) = −1

2

(
h(0)2 −

(
h(0) − z

)2
)(∂h(1)

∂x
− tan (µ)

)
+ ub

(0), (25g)

where

ub
(0) = γ−1F (Tb

(1))tb
(0), with tb

(0) = −h(0)

(
∂h(1)

∂x
− tan(µ)

)
. (25h)

Equipped with the latter expression for the horizontal velocity, we can link the vertical velocity
to the horizontal velocity by depth-integration of the leading order mass conservation with bed
impermeability

∂u(0)

∂x
+
∂w(0)

∂z
= 0 on 0 < z < h(0), w(0) = 0 on z = 0, (25i)

which yields an expression for the vertical velocity at the surface as a function of the mass flux

w(0)|z=h(0) = −∂q
(0)

∂x
, q(0) =

∫ z=h(0)

z=0

u(0) dz + ub
(0)h(0). (25j)

Lastly, the kinematic boundary condition along with (25j) provides the desired link between ice
thickness and the mass flux through the diffusion equation

∂h(1)

∂τ
+
∂q(0)

∂x
= 0. (25k)
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The leading order thermal model, with an error of order O(ε1/2), reduces to

∂T(0)

∂τ
= 0 on −∞ < z < h(0), (25l)

where T(0) must satisfy

T(0) = −1 on z = h(0), (25m)

T(0) = Tb
(0) on z = 0, (25n)

− ∂T(0)

∂z
→ ν as z→ −∞, (25o)

where Tb
(0) = 0. In order to close the model we need an evolution equation for the first order

correction to basal temperature, Tb
(1), which is once again constrained by a basal thermal boundary

layer. To derive a leading order approximation valid at this intermediate length scale, we rescale
the full model (18-19) as

x̃ = ε−1/2x, z̃ = δ−1z, T̃ = δ−1T, (ũ, w̃) = (u, δ−1ε1/2w), (25p)

where we put δ ∼ ε1/2, and also expand as

(ũ, w̃) =
(
ub

(0) +O(z̃), O(1)
)
, T̃ = T̃(0) +O(δ) (25q)

whereby Tb
(1) = T̃(0)(z̃ = 0). The leading order problem correct up to an error of order O(ε1/2) is

∂T̃(0)

∂τ
− 1

Pe δ

∂2T̃(0)

∂z̃2
= 0 for −∞ < z̃ < 0 and 0 < z̃ < +∞, (25r)

with boundary conditions at the bed[
T̃(0)

]+

−
= 0 on z̃ = 0, (25s)[

∂T̃(0)

∂z̃

]+

−

+ α u(0)tb
(0) = 0, on z̃ = 0, (25t)

and matching conditions

∂T̃(0)

∂z̃
→ 0 as z̃→ +∞, −∂T̃

(0)

∂z̃
→ ν as z̃→ −∞. (25u)

2.3.3 Ice sheet scale

The derivation of a leading order approximation to the full model (18-19) with the fast timescale
τ = t/ε at the ice sheet scale is straightforward, and follows the derivation of the intermediate scale
model (25). Below we provide only the leading order approximation at the ice sheet scale.

Keeping with the same notation as in eqs.(17) for simplicity, the leading order horizontal velocity
is given by

u(0) = −1

2

[
h(0)2 −

(
h(0) − z

)2
](∂h(0)

∂x
− tan (µ)

)
+ ub

(0), (26a)
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with

ub
(0) = γ−1F (Tb

(1))τb
(0), with τb

(0) = −h(0)

(
∂h(0)

∂x
− tan(µ)

)
, (26b)

and leading order ice thickness independent of the fast time variable, namely

∂h(0)

∂τ
= 0. (26c)

As for the thermal problem, the outer flux Q(0) = −∂T (0)/∂z|z=0 is also independent of the fast
time variable

∂Q(0)

∂τ
= 0, (26d)

so that, once again, the thermal problem is governed by a thin (∼ δ) boundary layer near the bed.
We denote variables in the thermal boundary layer with ·̃, and rescale as

x̃ = x, z̃ = δ−1z, T̃ = δ−1T, (ũ, w̃) = (u, δ−1w), (26e)

whereby Tb
(1) = T̃ (z̃ = 0). In addition, near the bed we can expand dependent variables as

(ũ, w̃) =
(
ub

(0) +O(δ), O(1)
)
, T̃ = T̃ (0) +O(δ), (26f)

which yields the leading order boundary layer problem correct up to order O(ε)

∂T̃ (0)

∂τ
− 1

Pe δ

∂2T̃ (0)

∂z̃2
= 0 for −∞ < z̃ < 0 and 0 < z̃ < +∞, (26g)

with boundary conditions at the bed[
T̃ (0)

]+

−
= 0 on z̃ = 0, (26h)[

∂T̃ (0)

∂z̃

]+

−

+ αub
(0)τb

(0) = 0, on z̃ = 0, (26i)

and matching conditions

∂T̃ (0)

∂z̃
→ 0 as z̃ → +∞, −∂T̃

(0)

∂z̃
→ ν as z̃ → −∞. (26j)

3 Stability of the ice thickness scale problem with δ = 0

3.1 Model reformulation

In this section we are concerned with a linear stability analysis of the ice thickness scale model with
δ = 0 described by eqs. (21 - 22). To facilitate the solution of the mechanical model, we reformulate
the Stokes problem (21a-21f) in terms of a streamfunction ψ defined as

U (0) =
∂ψ

∂Z
, W (0) = − ∂ψ

∂X
, (27a)
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so that sliding velocity and basal shear stress read

Ub
(0) =

∂ψ

∂Z

∣∣∣∣
Z=0

, Tb
(0) =

∂2ψ

∂Z2

∣∣∣∣
Z=0

. (27b)

In addition, and with the objective to reduce the number of parameters, we introduce the rescalings

(Z∗, X∗, H(1)∗) = (Z,X,H(1))/H(0), (τ ∗, T ∗) = (τ, T )q(0)/(H(0))2, P ∗(1) = P (1)(H(0))2/q(0),
(27c)

ψ∗ = ψ/q(0), (Q∗(0),Q∗(1)) = (Q(0),Q(1)) γ∗ = γH(0), ν∗ = νH(0), α∗ = α(q(0)/H(0))2

where H(0) and q(0) are the leading order ice thickness and mass flux, which we recall to be indepen-
dent of X and τ . Under the latter rescalings, the subtemperate slab will have unitary ice thockness
and ice flux.

Rescaling variables as described by eqs. (27c) and dropping asterisks immediately thereafter,
the mechanical model can be reduced to the biharmonic problem [7]

∇4ψ = 0 on 0 < Z < 1, (27d)

with boundary conditions

∂2ψ

∂Z2
− ∂2ψ

∂X2
= 0 on Z = 1, (27e)

∂2ψ

∂X2
= 0 on Z = 1, (27f)

∂2ψ

∂X2
= 0 on Z = 0, (27g)

∂ψ

∂Z
=
F (Θb

(1))

γ

∂2ψ

∂Z2
on Z = 0. (27h)

For the fast timescale version of the mechanical model, eqs. (22), the condition (27f) is replaced by

∂H(1)

∂T
+
∂2ψ

∂X2
= 0 on Z = 1, (27i)

with H(1) constrained by

−P (1) +
(H(0))3

q(0)
H(1) − ∂2ψ

∂X∂Z
= 0 on Z = 1. (27j)

After rescaling and dropping asterisks, the advection-only model (21k) with the basal energy budget
(21l) remain unchanged.

3.2 An intermediate time scale, t ∼ ε−1

Here we perform a stability analysis of the model (21) reformulated as described above. For sim-
plicity, we assume a periodic domain of length L and expand dependent variables as

ψ = ψ̄ + βψ′, Tb = T̄b + βT ′b, P (1) = βP ′, Q(0) = Q̄+ βQ′, β � 1, (28a)
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Figure 1: Eigenvalue for the ice thickness scale model with δ = 0. Panel (a): intermediate time
scale, t ∼ ε−1. Panel (b): fast time scale, t ∼ ε−2. Parameters are ν = 1, α = 1, γ = 10 (Ūb = 0.231,
so we are in the slow sliding regime).

where barred quantities do not depend on X and τ ; we Fourier-transform perturbations in X as

ĝn(Z, τ) =
1

L

∫ L

0

g′(X,Z, τ) exp (−iknX) dX, kn =
2πn

L
. (28b)

where, by separation of variables, we also take ∂f̂n/∂τ = σf̂n. This yields the following O(β)
problem for ψ̂n (

∂4

∂Z4
− k2

n

)2

ψ̂n = 0 on 0 < Z < 1, (28c)

∂2ψ̂n
∂Z2

+ k2
nψ̂n = 0 on Z = 1, (28d)

ψ̂n = 0 on Z = 1, (28e)

ψ̂n = 0 on Z = 0, (28f)

where we omitted the sliding law as it does not feed back in the leading order problem for δ = 0
and the sliding velocity is set by the requirement that the melt rate remains in balance, eq. (28h)
below. The heat transport problem reads

σQ̂n + iknŪbQ̂n − iknQ̄Ûb,n = 0, (28g)

with basal energy budget

−Q̂n + α
(
ŪbT̂b,n + T̄bÛb,n

)
= 0, (28h)

and

Ûb,n =
∂ψ̂n
∂Z

∣∣∣∣∣
Z=0

, T̂b,n =
∂2ψ̂n
∂Z2

∣∣∣∣∣
Z=0

. (28i)
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3.2.1 Solution

The Fourier-transformed biharmonic equation has general solution

ψ̂n = (A+BZ) exp (−knZ) + (C +DZ) exp (knZ), (28j)

with integration constants

B = −A
2

(1− exp (2kn)) , C = −A, D =
A

2
(1− exp (−2kn)) , (28k)

where we set A = 1 in the light of the biharmonic problem being homogeneous. Then, substituting
the latter expression in the linearized version of (27b), we obtain the following expressions for the
perturbed sliding velocity and basal shear stress,

Ûb,n = −2kn + sinh (2kn), T̂b,n = −4kn sinh (kn)2. (28l)

which we use to compute Q̂n from eq. (28h). Finally, the Q−equation (28g) yields the purely
imaginary eigenvalue

σ = i

(
Q̄− αŪbT̄b

)
[2k2

n − kn sinh (2kn)]− 4αŪ2
b k

4
n sinh (kn)2

2αkn
[
T̄b + 2Ūb sinh (kn)2]− αT̄b sinh (2kn)

. (28m)

Even though the stability analysis is inconclusive with respect to the growth or decay of pertur-
bations, it is straightforward to demonstrate that, at least for slow sliding, this model is pathological,
as suggested by the plot of Im[σ] shown in panel (a) of figure 1, which displays a singularity for
kn ≈ 5.

To understand the origin of the singularity, we Taylor-expand the denominator of eq. (28m)
about kn = 0, leading to

2αkn
[
T̄b + 2Ūb sinh (kn)2]− αT̄b sinh (2kn) ∼ 4

(
− T̄b

3
+ Ūb

)
k3
n. (28n)

Recalling that the Stokes problem has been rescaled so as to obtain a unitary steady state ice
thickness, we recognize that the term in brackets is the difference between the mass flux by sliding,
Ūb, and the mass flux by internal deformation, T̄b/3, which is negative for slow sliding. Consider
now a short wavelength limit, kn → +∞. For kn → +∞ the denominator of eq. (28m) diverges to
positive infinity,

2αkn
[
T̄b + 2Ūb sinh (kn)2]− αT̄b sinh (2kn) ∼ 4knŪb sinh (kn)2, (28o)

thus implying the existence of a zero for some finite kn in the denominator of eq. (28m), at least for
slow sliding. As for the numerator of eq. (28m), recalling that in a steady state Q̄− αŪb = ν is a
positive quantity and that sinh(kn) is strictly positive for kn > 0, and also noting that the first term
vanishes for kn → 0, we conclude that the numerator behaves as ∼ −k4

n with negative derivative
for kn → 0 and diverges exponentially to negative infinity for kn → +∞, so it does not have zeros
for kn > 0. As a result, we expect that at least for slow sliding σ becomes infinite for some finite
kn, meaning that perturbations of the system would propagate at infinite wavespeed. This insight
is confirmed by the solution shown in panel (a) of figure 1, and generalizes to the entire slow sliding
regime.
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3.3 A fast time scale, t ∼ ε−2

The stability analysis for the intermediate time scale suggests that the ice thickness scale model
with δ = 0 might be well behaved in the fast sliding regime. In this section we are going to show
that this is not the case, and that an instability exists at the fast timescale T = tε−2 that renders
the model pathological regardless of whether sliding is slow or fast.

We intend to perform a stability analysis of the ice thickness scale model with δ = 0 and fast
time scale described in §2.2.1. Recalling that Q(0) is independent of T and X, we expand dependent
variables about their steady state as

ψ = ψ̄ + βψ′, Tb = T̄b + βT ′b, P (1) = βP ′, Q(1) = βQ′, H(1) = βH ′, β � 1, (29a)

where barred quantities are independent of X and T ; we also Fourier-transform perturbed variables
in X (assuming once again a periodic domain) as

ĝn(Z, T ) =
1

L

∫ L

0

g′(X,Z, T ) exp (−iknX) dX, kn =
2πn

L
. (29b)

where, by separation of variables, we take ∂ĝn/∂T = σĝn.
Then to O(β) we obtain eqs. (28c-28d, 28f), whereas eq. (28e) is replaced by the kinematic

boundary condition

σĤn + iknψ̂n = 0 on Z = 1, (29c)

with the perturbation of the ice thickness constrained by

−P̂n +
H̄3

q̄
Ĥn − ikn

∂ψ̂n
∂Z

= 0 on Z = 1, (29d)

where H̄ = H(0), q̄ = q(0). The thermal problem is

σQ̂n − iknQ(0)Ûb,n = 0, (29e)

with basal energy budget
ŪbT̂b,n + T̄bÛb,n = 0, (29f)

and

Ûb,n =
∂ψ̂n
∂Z

∣∣∣∣∣
Z=0

, T̂b,n =
∂2ψ̂n
∂Z2

∣∣∣∣∣
Z=0

. (29g)

3.3.1 Solution

The general solution of the perturbed biharmonic equation is eq. (28j). Enforcing boundary condi-
tions (28d,28f, 29c) leads to integration constants

B = −A
2

[1− exp (2kn)] +
(1 + kn)iσĤn exp (kn)

2kn
, C = −A,

D =
A

2
[1− exp (−2kn)] +

(1− kn)iσĤn exp (−kn)

2kn
,

(30a)
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where we set A = 1 in the light of the biharmonic problem being homogeneous. With an expres-
sion for the stream function, we compute pressure from momentum conservation in the horizontal
direction, which at O(β) reads

−k2
n

∂ψ̂n

∂Ẑ
+
∂ψ̂n
∂Z3

− iknP̂n = 0. (30b)

Differentiating the solution, we get

P̂n = 2
[
ikn(sinh (kn(−2 + Z))− sinh (knZ)) + σĤn(cosh (kn − knZ) + kn sinh (kn − knZ))

]
,

(30c)
which we substitute into eq. (29d) to find the perturbation of the free surface

Ĥn =
q(0)

(H(0))3

[
4ik2

n cosh (kn)

−1 + 2k2
nσ

]
. (30d)

Last, the basal energy budget eq. (29f) yields a real eigenvalue of the form

σ = − Ūb [1− cosh (2kn)]− T̄b + T̄b(2kn)−1 sinh (2kn)

T̄b + 2k2
n

(
−2Ū + T̄b

)
+ T̄b cosh (2kn)− 2knŪb sinh (2kn)

, (30e)

whereby Q̂n can be computed straightforwardly from eq. (29e). The behaviour of σ as a function
of kn is illustrated in panel (b) of figure 1.

To understand the properties of the model we first consider short and long wavelength limits of
eq. (30e). We start from the limit of small kn, where we expect that the stability features of the
Stokes problem correspond to those of the shallow ice problem. Taylor-expanding eq. (30e) about
kn = 0, we find

σ ∼ T̄−1
b

(
− T̄b

3
+ Ūb

)
k2
n +O(k4

n) as kn → 0. (30f)

Recalling that the we rescaled the ice thickness scale problem so as to obtain a unitary steady state
ice thickness and ice flux, we recognize that the term in brackets in the expression above is the
difference between the mass flux by sliding, Ūb, and the mass flux by internal deformation, T̄b/3.
Therefore the ice thickness scale model is stable to long wavelength perturbations for slow sliding
and unstable otherwise, consistently with the limiting behaviour for short wavelength perturbations
that we identified in the shallow-ice subtemperate slab model (see §1.2).

Short wavelength perturbations, corresponding to the limiting case kn →∞, are neutrally stable
with this scaling,

σ ∼ − 1

kn
as kn → +∞, (30g)

thus confirming that extensional stresses provide damping of perturbations, and backward diffusion
is no longer an issue. Nonetheless, we are now going to show that the model remains pathological,
regardless of the stabilizing effect of extensional stresses: in fact, we will find that the eigenvalue
becomes infinite for O(1) wavelength, so no well-behaved solution exists.

This is straightforward to appreciate by looking at the denominator of eq. (30e): for kn = 0 it
takes the positive value 2T̄b, whereas for large kn it diverges to negative infinity as ∼ −kn sinh (2kn).
It thus follows that the denominator of eq. (30e) must have a zero for some finite value of kn, so
we expect σ to become infinite as a result. This is consistent with the plot of σ shown in panel (b)
of figure 1, which displays a singularity for kn ≈ 4. Note that our argument does not depend on
whether sliding is slow or fast, and the singular behaviour persists in both regimes.
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4 Stability of the ice thickness scale problem with δ ∼ ε1/2

4.1 Stability analysis

In this section we are concerned with a linear stability analysis of the ice thickness scale model with
finite δ described in §2.3.1. To facilitate the solution of the mechanical model, we proceed like in
§3.1; replacing the rescalings (27c) with

(Z∗, Ẑ∗) = (Z, Z̃)/H(0), (X∗, X̂∗) = (X, X̃)/H(0), τ ∗ = τq(0)/(H(0))2, (31)

ψ∗ = ψ/q(0), (Θ̂∗
(0)
,Q∗(0)) = (Θ̃(0),Q(0)) γ∗ = γH(0), ν∗ = νH(0), α∗ = α(q(0)/H(0))2

and dropping both asterisks and superscripts for simplicity, we obtain the mechanical model (27d-
27h) while the thermal model (24) remains unchanged under rescalings.

4.1.1 Steady state and linearization

In the usual linear stability framework, we consider small amplitude perturbations about the steady
state, so we expand dependent variables as g = ḡ + βg′, where ḡ is independent of τ . To O(1) we
find the spatially-uniform steady state

Ūb =
3F̄

γ + 3F̄
, ¯̃Θ =

{
Θbed − Q̄Z̃ for Z̃ > 0

Θbed − νẐ for Z̃ < 0
, Q̄ = ν + αT̄bŪb, T̄b = 3(1− Ūb), (32a)

where F̄ = F (Θbed). Assuming once again a periodic domain of length L, we Fourier-transform the
perturbations in X as

ĝ(Z, τ) =
1

L

∫ L

0

g′(X,Z, τ) exp (−iknX) dX, kn =
2πn

L
(32b)

The linearized, O(β) mechanical problem is given by eqs. (28c- 28f), with sliding law

Ûb,n = γ−1
(
F̄ T̂b,n + T̄bF̃

′ ˆ̃Θn|Z̃=0

)
, (32c)

where F ′ = dF/dΘ|Θ̄ is a strictly positive function. Lastly, the linearized thermal problem is

dQ̂n
dτ

+ ikn

(
ŪbQ̂n − Q̄Ûb,n

)
= 0, (33a)

∂ ˆ̃Θn

∂τ
+ ikn

(
Ūb

ˆ̃Θn + Q̄Ûb,nZ̃
)
− 1

Pe δ

∂2 ˆ̃Θn

∂Z̃2
= 0 for Z̃ > 0, (33b)

∂ ˆ̃Θn

∂τ
− 1

Pe δ

∂2 ˆ̃Θn

∂Z̃2
= 0 for Z̃ < 0 (33c)
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with boundary and matching conditions[
ˆ̃Θn

]+

−
= 0 on Z̃ = 0, (33d)[

∂ ˆ̃Θn

∂Z̃

]+

−

+ α
(
ŪbT̂b,n + T̄bÛb,n

)
= 0 on Z̃ = 0, (33e)

− ∂ ˆ̃Θn

∂Z̃
→ Q̂n as Z̃ → +∞, (33f)

∂ ˆ̃Θn

∂Z̃
→ 0 as Z̃ → −∞. (33g)

4.1.2 Solution

The perturbed biharmonic problem has solution (28j-28k), with perturbed sliding velocity and basal
shear stress (28l). For the thermal problem (33) we seek a separable solution of the form(

Q̂n, ˆ̃Θn

)
=
(
q̂n, ϑ̂n

)
exp (στ), σ ∈ C. (34a)

Direct integration of (33b-33c) with the separable ansatz above and boundary conditions (33d,
33f-33g) yields the perturbed temperature field

ϑ̂n =

ϑ0 exp
[
−Z̃Pe 1/2

δ

(
iknŪb + σ

)1/2
]
− q̂nZ̃ for Z̃ > 0

ϑ0 exp
[
Z̃Pe

1/2
δ σ1/2

]
for Z̃ < 0

(34b)

while the perturbed outer flux and perturbed basal temperature are given by the Q−equation (eq.
33a) and the sliding law (eq. 32c), respectively,

q̂n =
iknQ̄ [−2kn + sinh (2kn)]

iknŪb + σ
, ϑ0 =

−2kn
[
F̄ (1− cosh (2kn)) + γ

]
+ γ sinh (2kn)

T̄bF ′
(34c)

and boundedness of the temperature solution (34b) demands

Re[σ1/2] > 0, Re[(iknŪb + σ)1/2] > 0. (34d)

Lastly, the basal energy budget (33e) yields an expression for the eigenvalue, σ, of the form

a0 − a1

(
y2 + iknŪb

) [
y +

(
y2 + iknŪb

)1/2
]

+ a2

(
y2 + iknŪb

)
= 0, with y = σ1/2, (34e)

with coefficients

a0 = 2iknQ̄ [kn − cosh(kn) sinh(kn)] ,

a1 = Pe
1/2
δ

[
−2kn

(
F̄ + γ

)
+ 2F̄ kn cosh(2kn) + γ sinh(2kn)

τ̄bF ′

]
,

a2 = −2knα
[
τ̄b + 2Ūb sinh(kn)2

]
+ ατ̄b sinh(2kn).

(34f)
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Figure 2: Real (panel a) and imaginary (panel b) part of the roots of eq. (34h) as a function of
the wavenumber kn for γ = 5 (Ūb = 0.273). The insets display a zoom for kn → 0. Parameters are
ν = 1, α = 1, Θbed = −0.5, Pe δ = 1. The temperature-dependent sliding law is F = exp(Θ).

4.1.3 The roots of the dispersion relation

In order to complete the stability analysis, we need to solve eq. (34e) subject to the constraints
(34d). We start by considering eq. (34e) in isolation and rearrange as

a0 +
(
y2 + iknŪb

)
(−a1y + a2) = a1

(
y2 + iknŪb

)3/2
. (34g)

Squaring each side separately leads to the fifth degree polynomial in y

b0 + b1y + b2y
2 + b3y

3 + b4y
4 + b5y

5 = 0, (34h)

b0 = a2
0 + 2iknŪba0a2 + k2

nŪ
2
b

(
−a2

2 + iknŪba
2
1

)
, b1 = −2iknŪb(a0 + iknŪba2),

b2 = 2
[
a0a2 + iknŪb

(
a2

2 − iknŪba2
1

)]
, b3 = −2a1

(
a0 + 2iknŪba2

)
, b4 = a2

2−iknŪba2
1, b5 = −2a1a2,

whose roots can be computed numerically.
Figure 2 displays solutions of eq. (34h) for a representative case. As expected for a fifth degree

polynomial, we identify at most five distinct solutions. We note however that in the limits of
kn � 1 and kn � 1 the number of distinct solutions reduces substantially: in the kn � 1 limit, it is
apparent that there are two solutions y1,2 each with multiplicity m1,2 = 2 and such that y2 = −y1

(the yellow and red curves, and green and purple curves, respectively), while the third solution y3

has multiplicity m3 = 1 (the blue curve). The same pattern repeats for kn → 0 (see insets).
One consideration regarding the roots of eq. (34h) is that not all of them are necessarily solutions

of the dispersion relation, eq. (34e). The motivation is twofold: on the one hand we might have
introduced spurious solutions by squaring the two sides of eq. (34g) separately. On the other hand
some solutions may not satisfy the boundedness constraints given by eq. (34d). Practically, we
compute y from eq. (34h), then we check a posteriori that the computed y also satisfies eq. (34e)
and the constraint eq. (34d1); then compute σ through the definition eq. (34e2), accounting for the
multivaluedness of the square root of a complex number; last, we enforce the constraint eq. (34d2).

Solutions of eq. (34e) subject to the constraints (34d) are displayed in figure 3 for three rep-
resentative values of the sliding velocity (columns). The absolute value of Re[σ] as a function of
kn is displayed in the uppermost row, while the absolute value of Im[σ] is in the lowermost row.
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Axes are logarithmic, with colours marking different solutions; Re[σ], Im[σ] > 0 (Re[σ], Im[σ] < 0)
are denoted denoted by solid (dashed) lines. To validate our numerical results, as well as to bet-
ter understand the physics behind the behavior of the system, in §§4.2.1-4.2.2 we will present an
asymptotic analysis for all the roots of eq. (34h). Asymptotic approximations of the solutions of
the dispersion relation are displayed in light black in figure 3.

Key conclusions from our analysis are that:

1. At least one solution exists for all wavenumbers kn, but more than one is possible for some
kn.

2. The system in unconditionally unstable for all wavenumbers, extending to kn →∞. We will
show by means of asymptotic analysis that this mode is damped in the sense of Re[σ]→ 0 as

k
−1/2
n for kn →∞, and therefore this unstable solution is well-posed.

3. Stability in the kn → 0 limit depends on the relative importance of sliding vs shearing. For
slow sliding (panels a-b of fig. 3), we find an instability that extends to kn → 0 with O(1)
growth rate, while the growth rate Re[σ] → 0 for kn → 0 when sliding is fast (panels e-f of
fig. 3).

A caveat to our analysis concerns the separation of variables approach adopted to solve the
linear problem (33). This approach yields at most 5 distinct solutions; therefore the corresponding
eigenfunctions fail to span the space of all possible initial conditions, which is by definition infinite-
dimensional. For further insight on the stability of the system, we refer the reader to §(5) of the
main text, where we present results from the numerical solution of the corresponding nonlinear
problem.

4.2 Approximation

In this section we are concerned with an asymptotic analysis of the roots of the dispersion relation
eq. (34e), with the goal to (i) derive asymptotic approximations for the eigenvalue σ in the short
(kn →∞) and long (kn → 0) wavelength limits, and (ii) confirm the numerical results presented in
§4.1.3.

For the short wavelength limit, we will use the asymptotic approximation developed in §4.2.1 as
a basis to derive a reduced non-linear PDE model that elucidates the physical processes governing
the damping of the growth rate as kn →∞. The interested reader is referred to §4.3.

4.2.1 Short wavelength asymptotics

We consider the limit kn → ∞, and seek a leading order approximation to the solution given by
eqs. (28l, 34b-34c). Expanding in kn, we find

T̂b,n ∼ −2kn exp (2kn) +O(kn), (35a)

Ûb,n ∼ exp (2kn) +O(kn), (35b)[
d ˆ̃Θn

dẐ

]+

−

∼ −ϑ0Pe
1/2
δ

[(
iknŪb + σ

)1/2
+ σ1/2

]
− iknQ̄ exp (2kn)

iknŪb + σ
+O

(
k2
n

iknŪb + σ

)
, (35c)

ϑ0 ∼
γ + 2knF̄

T̄bF ′
exp (2kn) +O(kn). (35d)
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Figure 3: Numerical solution of the dispersion relation (34e) with boundedness constraints (34d)
as a function of the wavenumber kn. First (second) row displays |Re[σ]|, (|Im[σ]|), while columns
from left to right illustrate Ūb = (0.273, 0.5, 0.652). Axes are logarithmic, with colours marking
different solutions; Re[σ], Im[σ] > 0 (Re[σ], Im[σ] < 0) are denoted denoted by solid (dashed)
lines. Triangular shapes and numbers associated with them denote rise and run of the line best
approximating the numerical solution (e.g. a rise of -1 and a run of 2 means σ ∼ k

−1/2
n - note that

axes are logarithmic). The star in panels (a-b) marks σ0,max, whose behavior as a function of Ūb
is illustrated in figure 5 Parameters are ν = 1, α = 1, Θbed = −0.5, Pe δ = 1. The temperature
dependent sliding law is F = exp(Θ).
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Substituting into eq. (33e) and dividing by exp (2kn) leads to(
γ + 2knF̄

T̄bF ′

)
Pe

1/2
δ

(
iknŪb + σ

) [(
iknŪb + σ

)1/2
+ σ1/2

]
+ iknQ̄+α

(
−T̄b + 2knŪb

) (
iknŪb + σ

)
= 0,

(35e)
which holds to leading order provided σ is not exponentially small.

In the remainder of this section we describe the two different scalings that capture the behaviour
of the eigenvalue σ in the limit of kn →∞. We anticipate that, after enforcing the constraints (34d),

we will find one solution with multiplicity 2, which takes the form σ ∼ knσ
(0) + k

−1/2
n σ(1) and has

positive growth rate ∼ k
−1/2
n . This is consistent with numerical results presented in figure 3 (red

and yellow curves for kn →∞), which we will discuss in more detail below.

Case 1: σ ∼ knσ
(0) + k

−1/2
n σ(1)

To find approximations for the eigenvalue, we expand σ ∼ knσ
(0) + k

−1/2
n σ(1). To leading order eq.

(35e) reduces to (
iŪb + σ(0)

) [(
iŪb + σ(0)

)1/2
+
(
σ(0)
)1/2
]

= 0, (36a)

with purely imaginary solution σ(0) = −iŪb. The growth rate features at O(kn), with the dispersion
relation at this order reading

Q̄ ±
2Pe

1/2
δ F̄

(
−iŪb

)1/2
σ(1)

T̄bF ′
= 0, (36b)

where ± accounts for the two branches of
(
σ(0)
)1/2

. The solution is

σ(1) = ± T̄bF
′Q̄

2Pe
1/2
δ F̄

√
2Ūb

(1 + i) . (36c)

Note that the term (σ(0))1/2 features also at second order (obtained expanding σ as σ ∼ knσ
(0) +

k
−1/2
n σ(1) + k−1

n σ(2)), hence this scaling accounts effectively for 4 out of the 5 solutions of the
polynomial arising from eq. (34g). These solutions are denoted by case 1 throughout figure 4.

Next we enforce the boundedness constraints (34d). With the current scaling, these reduce to

Re[σ1/2] ∼ Re
[(
σ(0)
)1/2
]

= ±
√
Ūb/2, (36d)

Re[(iknŪb + σ)1/2] ∼ Re
[(
σ(1)
)1/2
]

=



(
T̄bF

′Q̄
2Pe

1/2
δ F̄

√
2Ūb

)1/2

sin (π/8) if
(
σ(0)
)1/2

= (1− i)
√
Ūb/2,

−

(
T̄bF

′Q̄
2Pe

1/2
δ F̄

√
2Ūb

)1/2

cos (π/8) if
(
σ(0)
)1/2

= −(1− i)
√
Ūb/2.

(36e)

Since boundedness demands that Re[σ1/2] > 0 and Re[(iknŪb + σ)1/2] > 0 at the same time, we
discard (36e2). Accounting for the multiplicity arising at second order in σ, we conclude that this
scaling yields two solutions of eq. (34e) in the short wavelength limit, of the form

σ ∼ −iŪbkn +
T̄bF

′Q̄
2Pe

1/2
δ F̄

√
2Ūb

(1 + i) +O(k−1
n ), (36f)
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Figure 4: Same as figure 3, but without enforcing the boundedness constraints 34d. Axes are log-
arithmic, with colours marking different solutions; Re[σ], Im[σ] > 0 (Re[σ], Im[σ] < 0) are denoted
denoted by solid (dashed) lines. The labels denoting case numbers match the various cases described
in §§4.2.1-4.2.2.

both of which are linearly unstable.
These results are consistent with numerical solutions of the dispersion relation eq. (34e) with

boundedness constraints 34d (figure 3). For large kn, we find numerically two eigenvalues (red and
yellow curves), which in log-log space appear to have linear Re[σ] and Im[σ], with slope −1/2 (uppr
row), and 1 (lower row), respectively. Both solutions are unstable (solid |Re[σ]|), as predicted by
the asymptotics.

Case 2: σ ∼ k2
nσ

(0) + knσ
(1)

The former scaling accounts for 4 out of the 5 solutions of the polynomial eq. (34h). We will now
show that the missing root has multiplicity m = 1 as expected, and behaves as σ ∼ k2

n; we will also
find that this root does not satisfy the boundedness constraints (34d), hence it does not influence
the dynamics.

Consider the expansions (35), and expand the eigenvalue as σ ∼ k2
nσ

(0) + knσ
(1). In addition,

assume (iknŪb + σ)1/2 ∼ −kn(σ(0))1/2 +O(k
1/2
n ), which implies we are selecting the negative branch

of (iknŪb + σ)1/2. To leading order, eq. (35e) reduces to

−2α +
iPe

1/2
δ F̄

T̄bF ′ (σ(0))
1/2

= 0, (37a)

with solution

σ(0) = −Pe δ
(

F̄

2αT̄bF ′

)2

, (37b)

whereby we conclude that this mode is unconditionally stable. This solution is labelled as case 2
in figure 4; we see that the numerics recover the asymptotic behaviour both as far as the sign of
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the growth rate is concerned (dashed line denotes |Re[σ]| < 0), and in terms of dependence on kn
(see the slope of the curve in log-log coordinates).

Since (σ(0))1/2 is purely imaginary, to verify that this scaling satisfies the boundedness constraints
(34d) we need to expand to higher order. From (35e) we find

αT̄b +
Pe

1/2
δ Ūb

[
2iγσ(0) + F̄

(
Ūb − 2iσ(1)

)]
4T̄bF ′ (σ(0))

3/2
= 0, (37c)

with solution

σ(1) = −iŪb
2
− Pe δ

(
F̄

2αT̄bF ′

)2(
γ

F̄
+
T̄b
Ūb

)
. (37d)

An approximation of the boundedness constraints valid for kn →∞ and σ ∼ k2
nσ

(0) + knσ
(1) is

Re[σ1/2] ∼ Re

[
σ(1)

2 (σ(0))
1/2

]
= −αT̄bŪbF

′

2Pe
1/2
δ F̄

, (37e)

Re[(iknŪb + σ)1/2] ∼ Re

[
σ(1) + iŪb

2 (σ(0))
1/2

]
=
αT̄bŪbF

′

2Pe
1/2
δ F̄

, (37f)

where αT̄bŪbF
′/(2F̄ ) > 0. Then we conclude that (34d1) is not satisfied, therefore this mode is

never a solution to eq. (34e). This is consistent with the numerical results of figure 3, where this
mode does not appear.

4.2.2 Long wavelength asymptotics

We now move to the long wavelength limit, kn → 0, and seek a leading order approximation to the
solution of the linearized model, eqs. (28l, 34b-34c). Expanding in kn, we find

T̂b,n ∼ −4k3
n +O(k5

n), (38a)

Ûb,n ∼
4

3
k3
n +O(k5

n), (38b)[
−d ˆ̃Θn

dẐ

]+

−

∼ −ϑ0Pe
1/2
δ

[
σ1/2 + (iknŪb + σ)1/2

]
− 4iQ̄

3(iknŪb + σ)
k4
n +O

(
k5
n(iknŪb + σ)1/2

)
(38c)

ϑ0 ∼
4
(
3F̄ + γ

)
3τ̄bF ′

k3
n +O(k5

n). (38d)

Substituting into eq. (35e) and dividing by k3
n, we find

−ϑ0Pe
1/2
δ

[
σ1/2 + (iknŪb + σ)1/2

] (
iknŪb + σ

)
− 4iQ̄

3kn
= −α

(
iknŪb + σ

)(
−4Ūb +

4

3
T̄b

)
, (38e)

where we have omitted terms of O(k2
n(iknŪb + σ)).

In the remainder of this section we describe the two different scalings that capture the behavior
of the system in the limit of kn → 0. We anticipate that the number of actual solution to the
dispersion relation after enforcing the constraints (34d) depends on the value of Ūb (see figure 3),
and that the case Ūb = 1/2 has to be treated separately.
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Case 3: σ ∼ σ(0) +O(kn)

We first seek a solution with constant growth rate, thus we pose σ ∼ σ(0) + O(kn). The leading
order dispersion relation (33e) reduces to

−
2Pe

1/2
δ

(
3F̄ + γ

)
3τ̄bF ′

(
σ(0)
)1/2

+
α

3

(
−3Ūb + T̄b

)
= 0, (39a)

with unstable solution

σ(0) =

[
ατ̄bF

′ (−3Ūb + T̄b
)

2Pe
1/2
δ (3F̄ + γ)

]2

, (39b)

marked as case 3 in figure 4.
The leading order solution above is sufficient to enforce the constraints (34d). An approximation

of those constraints is

Re[σ1/2] ∼ Re
[(
σ(0)
)1/2
]
, Re[(iknŪb + σ)1/2] ∼ Re

[(
σ(0)
)1/2
]
, for kn → 0, σ ∼ σ(0) (39c)

with (
σ(0)
)1/2

=
ατ̄bF

′

2Pe
1/2
δ

(
3F̄ + γ

) (−3Ūb + T̄b
)
. (39d)

Both constraints are satisfied provided −3Ūb + T̄b > 0, or alternatively Ūb < 1/2. This scaling
therefore accounts for one of the five possible solutions of the polynomial arising from eq. (34g) in
the long wavelength limit, and it yields an unstable mode in this limit when sliding is slow, i.e.,
Ūb < 1/2.

Numerical results after enforcing the boundedness constraints (figure 3) are consistent with the
asymptotics: a mode with constant real part σ0,max for kn → 0 is present for slow sliding (red curve
in panel a), and absent for fast sliding (panel e). Panel (a) of figure (5) confirms that σ0,max → 0
as Ūb → 1/2, as predicted by the asymptotics.

Physically, the instability can be understood as a feedback between frictional heating and the
net heat flux into the ice: a prescribed, O(1) perturbation of the basal shear stress will produce
an O(1) perturbation of the sliding velocity and of basal temperature that are in anti-phase with
respect to the perturbed basal shear stress. With this prescribed perturbation of basal temperature,
and σ real to leading order, boundedness of the temperature field then demands that the net heat
flux into the ice is minimum where the bed is warmest, which further warms the bed, leading to
growth of the perturbations.

Our argument so far disregards the basal energy budget; we are now going to show that it is
precisely the requirement of a basal energy budget in balance that renders this mode not viable for
fast sliding. To this aim, it is important to recall that a basal energy budget in balance (along with
a bounded boundary layer temperature field) is possible only if the net heat flux into the ice is in
anti-phase with respect to the perturbed frictional heating; the mismatch in amplitude between the
two will then determine the growth rate. With perturbed basal shear stress and sliding velocity in
anti-phase, and with their relative importance depending on whether sliding is slow (perturbations
of the sliding velocity dominate in the frictional heating term) or fast (perturbations of the basal
shear stress dominate), it is obvious that only one regime will be viable. It is straightforward to
show that frictional heating is anti-phase with respect to the net heat flux into the ice for slow
sliding, while it is in phase for fast sliding. This explains why this unstable mode is a solution to
the linear problem for slow sliding, but it is not for fast sliding.
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Figure 5: σ0 and kend as a function of Ūb. Parameters as in figure 2

Case 4: σ ∼ knσ
(0) + k

3/2
n σ(1)

Numerical results illustrate the existence of a second branch of the dispersion relation for kn � 1
(yellow curve in panels a-b of figure 3). We now seek an approximation for this branch by putting

σ ∼ knσ
(0) + k

3/2
n σ(1). To leading order the dispersion relation reads

α
(
−3Ūb + T̄b

) (
iŪb + σ(0)

)
− iQ̄ = 0, (40a)

with solution

σ(0) = −iŪb +
iQ̄

α
(
−3Ūb + T̄b

) (40b)

Growth features at O(k
1/2
n ), where we have a balance between ice and bed basal heat fluxes,

α
(
−3Ūb + T̄b

)
σ(1) −

(3F̄ + γ)
(
iŪb + σ(0)

)
T̄bF ′

[
±
(
iŪb + σ(0)

)1/2 ±
(
σ(0)
)1/2
]

= 0 (40c)

from which the first order correction σ1
(1) can be computed straighforwardly. In the expression

above, the ± signs identify the two different branches of the square root; we thus understand
that this scaling yields 4 distinct solutions of the polynomial arising from eq. (34g) before the
boundedness constraints are enforced. These solutions are marked with case 4 in figure 4.

As for the constraints (34d), an approximation valid in the long wavelength limit with this
scaling is

Re[σ1/2] ∼ Re
[(
σ(0)
)1/2
]

= ± 1

21/2

∣∣∣∣∣−Ūb +
Q̄

α
(
−3Ūb + T̄b

)∣∣∣∣∣
1/2

, (40d)

Re[(iknŪb + σ)1/2] ∼ Re
[(
iŪb + σ(0)

)1/2
]

= ± 1

21/2

∣∣∣∣∣ Q̄
α
(
−3Ūb + T̄b

)∣∣∣∣∣
1/2

, (40e)

so we have one solution of eq. (34e) that derives from the positive branches of both σ1/2 and
(σ + iknŪb)

1/2.
Physically, this mode corresponds to a travelling wave such that O(1) changes in frictional

heating (either through basal shear stress or sliding velocity) cause O(1) changes in the outer flux,

Q′. This is accommodated by a small (∼ O(k
1/2
n )) perturbation of basal temperature which can be

stable or unstable. Regardless of the parameter regime, the asymptotics predict that this branch is
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damped, in the sense of Re[σ] → 0 for kn → 0. This is confirmed by numerical results (panels a,f
of figure 3), which also illustrate that this mode is unstable for Ūb > 1/2 and stable otherwise.

A last consideration is that this branch of the dispersion relation spans a finite bandwidth, at
least in certain parameter regimes. This is illustrated in panels (a-b) of figure 3, where the end
of the branch at kn = kend is marked with a star. We find numerically (panel b of figure 5) that
kend → 0 as Ūb → 1/2; this also corresponds to a transition from stability (Ūb < 1/2) to instability
(Ūb > 1/2) of this branch.

Case 5: long wavelength limit for Ūb = 1/2

The scalings for cases 1 and 2 no longer work when T̄b = 3Ūb (or equivalently Ūb = 1/2), as a result
of the perturbation of frictional heating becoming small (∼ O(k5

n)). For brevity, here we discuss
only the scaling that explains the numerical results presented in figure 3 (panels c-d), which we can

approximate by expanding σ ∼ k
2/3
n σ(0).

Substituting into the dispersion relation, to leading order we find

−iQ̄+

[
−2(3F̄ + γ)

T̄bF ′
(
σ(0)
)3/2
]

= 0, (41a)

with solutions

σ1
(0) =

(
T̄bF

′Q̄
2(3F̄ + γ)

)2/3
(1 +

√
3i)

2
if
(
σ(0)
)1/2

= Σ−,

σ2
(0) =

(
T̄bF

′Q̄
2(3F̄ + γ)

)2/3
(1−

√
3i)

2
, σ3

(0) = −
(

T̄bF
′Q̄

2(3F̄ + γ)

)2/3

if
(
σ(0)
)1/2

= Σ+,

(41b)

where Σ+ and Σ− indicate respectively the positive and negative branch of
(
σ(0)
)1/2

. These three
solutions are marked as case 5 in figure 4 (panels c-d).

As far as the boundedness constraints (34d) are concerned, we recognize that in this limit

Re[σ1/2] ∼ Re
[(
σ(0)
)1/2
]
, Re[(iknŪb + σ)1/2] ∼ Re

[(
σ(0)
)1/2
]
. (41c)

Selecting branches of the square root consistently with (41b), we find

(
σ(0)

1

)1/2
= −

(
T̄bF

′Q̄
2(3F̄ + γ)

)1/3
(
√

3 + i)

2
,
(
σ(0)

2

)1/2
=

(
T̄bF

′Q̄
2(3F̄ + γ)

)1/3
(
√

3− i)
2

, (41d)

so we discard σ1. As for σ3,
(
σ3

(0)
)1/2

is purely imaginary, so we expand to higher order to find

σ3
(1) = −5iŪb/6. An approximation of the boundedness constraints in this case is

Re[σ1/2] ∼ Re

[
σ(1)

2 (σ(0))
1/2

]
= − 5Ūb

12|σ3
(0)|1/2

, (41e)

Re[(iknŪb + σ)1/2] ∼ Re

[
σ(1) + iŪb

2 (σ(0))
1/2

]
∼ Ūb

12|σ3
(0)|1/2

, (41f)

whereby we conclude that σ3 is not a solution either. We are therefore left with σ2, consistently
with our numerical results (3, panels c-d) that illustrate Re[σ], Im[σ] ∼ k

2/3
n , with Re[σ] > 0 and

Im[σ] < 0.

34



4.3 A non-linear model in the short wavelength limit, kn → +∞
In this section we seek to derive a leading order version of the ice thickness scale model with finite
δ described in §2.3.1 that holds in the limit of a short horizontal length scale.

In order to streamline notation, take (x, z) as the ice thickness scale horizontal and vertical
coordinates, t as the fast time scale considered in model of §2.3.1, (u,w) as the ice thickness scale
velocity field, p as the first order pressure fiels, Q as the outer basal heat flux, Z as the boundary
layer vertical coordinate, and θ as the boundary layer temperature. Then the leading order problem
at the ice thickness scale can be rewritten as

∇2u−∇p+ i =0, (42a)

∇ · u =0 (42b)

for 0 < z < 1, with u = (u,w) and ∇ = (x, z), and

w =
∂u

∂z
+
∂w

∂x
=0 on z = 1, (42c)

w =0 on z = 0, (42d)

u =γ−1F (Pe
−1/2
δ θ)

(
∂u

∂z
+
∂w

∂x

)
on z = Z = 0, (42e)

as well as

∂θ

∂t
+ ub

∂θ

∂x
− ∂ub
∂x

Z
∂θ

∂Z
− Pe −1

δ

∂2θ

∂Z2
=0 for Z > 0, (42f)

∂θ

∂t
− Pe −1

δ

∂2θ

∂Z2
=0 for Z < 0, (42g)

and

− ∂θ
∂Z
→Q as Z →∞ (42h)

− ∂θ
∂Z
→ν as Z → −∞ (42i)[

− ∂θ
∂Z

]+

−
=αubτb on Z = 0, (42j)

[θ]+− =0 on Z = 0, (42k)

where

ub = u|z=0, τb =

(
∂u

∂z
+
∂w

∂x

)∣∣∣∣
z=0

. (42l)

and
∂Q

∂t
+ ub

∂Q

∂x
= Q

∂ub
∂x

. (42m)

As usual, [·]+− denotes the difference between limiting values taken as Z = 0 is approached from
above and below.

Let k−1 be a length scale, with k � 1. Based on the results of the stability analysis, rescale the
problem as

x = k−1x̃, z = k−1z̃, t = k−1T = k1/2t̃, u = ũ, p = k−1/2p̃, ub = ũb, τb = τ̃b
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θ = θ̃, Z = k−1/2Z̃, Q = Q̃. (43a)

Note that we have multiply-scaled time variables T and t̃, and will treat the problem as a multiple
scales expansion.

In addition, expand as

ũ = ũ
(0)
b i + k−1z̃i + k−3/2ũ(1) + o(k−3/2), ũb = ũ

(0)
b + k−3/2u

(1)
b ,

τ̃b = τ̃
(0)
b + k−1/2τ̃

(1)
b , θ̃ = θ̃(0) + k−1/2θ̃(1), Q̃ = Q̃(0) + k−3/2Q̃(1), (43b)

with ũ
(0)
b , τ̃

(0)
b and θ̃(0) dependent on t̃ only (that is, independent of x̃, Z̃ and T ).

We develop expansions only to the order required to construct a closed model for the zeroth-order
flux Q(0) as a function of the inner and outer time variables, T and t̃. We have

∇̃2ũ(1) − ∇̃p̃ =0, (44a)

∇̃ · ũ(1) =0 (44b)

for 0 < z̃, with ũ(1) = (ũ(1), w̃(1)) and ∇̃ = (x̃, z̃), and

w̃(1) =0 on z̃ = 0, (44c)

ũ
(0)
b +O(k−3/2) =γ−1F

[
Pe
−1/2
δ

(
θ̃(0) + k−1/2θ̃(1)

)](
τ̃

(0)
b + k−1/2τ̃

(1)
b

)
on z̃ = Z̃ = 0 (44d)

where

τ̃
(0)
b = 1, τ̃

(1)
b =

(
∂ũ(1)

∂z̃
+
∂w̃(1)

∂z̃

)∣∣∣∣
z̃=0

, ũ
(1)
b = ũ(1)

∣∣
z̃=0

. (44e)

The rescaling renders the flow problem in the form of a boundary layer, occupying a half space
domain, and the appropriate boundary conditions as z̃ →∞ are that ũ(1) → 0.

In addition,

∂θ̃(1)

∂T
+ ũ

(0)
b

∂θ̃(1)

∂x̃
− Pe −1

δ

∂2θ̃(1)

∂Z̃2
=O(k3/2) for Z̃ > 0, (44f)

∂θ̃(1)

∂T
− Pe −1

δ

∂2θ̃(1)

∂Z̃2
=O(k3/2) for Z̃ < 0, (44g)

and

−∂θ̃
(1)

∂Z̃
→Q̃ as Z̃ →∞ (44h)

−∂θ̃
(1)

∂Z̃
→ν as Z̃ → −∞ (44i)[

−∂θ̃
(1)

∂Z̃

]+

−

=αũ
(0)
b τ̃

(0)
b +O(k−1/2) on Z̃ = 0, (44j)

and

∂Q̃(0)

∂T
+k−3/2∂Q̃

(0)

∂t̃
+k−3/2∂Q̃

(1)

∂T
+
(
ũ

(0)
b + k−3/2u

(1)
b

)(∂Q̃(0)

∂x̃
+ k−3/2∂Q̃

(1)

∂x̃

)
= k−3/2Q̃(0)∂ũ

(1)
b

∂x̃
+o(k3/2).

(44k)
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Clearly, ũ
(0)
b and θ̃(0) are related through

u
(0)
b = F

[
Pe
−1/2
δ θ̃(0)

]
;

we will later be able to relate ũ
(0)
b to Q̃(0). In addition, we obtain (44a)–(44c) with(

∂ũ(1)

∂z̃
+
∂w̃(1)

∂z̃

)
=− c

(
ũ

(0)
b , θ̃(0)

)
θ̃(1) on z̃ = Z̃ = 0. (45a)

where

c(ũ
(0)
b , θ̃(0)) =

Pe
−1/2
δ F ′

(
Pe
−1/2
δ θ̃(0)

)
F
(
Pe
−1/2
δ θ̃(0)

) . (45b)

As before, ũ(1) → 0 as z̃ →∞.
Meanwhile, the temperature problem in the ice (Z̃ > 0) has the simple linear-in-Z̃ solution

θ̃(1)(x̃, Z̃, T, t̃) = θ̃
(1)
0 (x̃, T, t̃)− Q̃(0)(x̃, T, t̃)Z̃, (45c)

where θ0 = θ̃(1)
∣∣∣
Z̃=0

and the flux Q̃(0) satisfy the standard first-order linear advection problem

∂θ̃
(1)
0

∂T
+ ũ

(0)
b

∂θ̃
(1)
0

∂x̃
=0. (45d)

∂Q̃(0)

∂T
+ ũ

(0)
b

∂Q̃(0)

∂x̃
=0. (45e)

where ũ
(0)
b depends on t̃ only, so that

θ̃
(1)
0 (x̃, T, t̃) =θ0(x̃− ũ(0)

b (t̃)T, t̃), (45f)

Q̃(0)(x̃, T, t̃) =Q0(x̃− ũ(0)
b (t̃)T, t̃) (45g)

where θ0 and Q0 are functions to be determined. That this works (in the sense of the diffusion term
in (44f) being irrelevant) is the result of such a solution being compatible with the one-dimensional
diffusion problem (44g) in the bed. The temperature θ0 at the ice-bed interface Z̃ = 0 is in fact
determined by

∂θ̃(1)

∂t̃
− Pe −1

δ

∂2θ̃(1)

∂Z̃2
=0 for Z̃ < 0, (45h)

−∂θ̃
(1)

∂Z̃
→ν as Z̃ → −∞, (45i)

Q̃(0) =αũ
(0)
b − lim

Z̃→0−

∂θ̃(1)

∂Z̃
, (45j)

θ̃
(1)
0 = lim

Z̃→0−
θ̃(1) (45k)

and θ
(1)
0 feeds back into the determination of the perturbed velocity field u

(1)
b through (45a) above.

Recall once more that ũ
(0)
b is independent of the inner variables x̃ and T .

37



For simplicity, assume that the domain is periodic in x̃ with period L. A large-T solution for
θ̃(1) can then be found using a Fourier series in x̃, defining

f̂n(Z̃, T, τ̃) =
1

L

∫ L

0

f̃(x̃, Z̃, T, τ̃) exp(−iknX)dx̃, kn =
2πn

L
.

Then

θ̂
(1)
0 =− νZ̃, (45l)

θ̂(1)
n =− Q̂0,n

(1− i)
√
|kn|û(0)

b /2
exp

√ |kn|û(0)
b

2
(1− i)Z̃ − iknû(0)

b T

 , n 6= 0 (45m)

where Q̂0,n = a−1
∫ a

0
Q0(x̃, τ̃) exp(−iknx̃)dx̃ is the Fourier transform of the travelling wave far field

flux pattern. To satisfy the flux boundary condition at Z̃ = 0 with n = 0, we further require the
energy balance constraint

ν =
1

L

∫ L

0

Q0(x̃, τ̃)dx̃− αũ(0)
b (τ̃), (45n)

to be satisfied, which defines ũ
(0)
b in terms of the flux.

The temperature perturbation θ̃(1) at the interface Z̃ = 0, which determines the perturbed ice
velocity through (45a), can therefore be found linearly in terms of the flux Q̃(0); in terms of Fourier
coefficients

θ̂
(1)
0,n = − Q̂

(0)
n

(1− i)
√
|kn|û(0)

b /2
. (45o)

We can finally use this to relate the velocity perturbation ũ
(1)
b to the flux Q̃(0). By using the

same Fourier transform convention as above, we can show that

û
(1)
b,n = −

τ̂
(1)
b,n

2|kn|
=
c1

(
ũ

(0)
b , θ̃(0)

)
2

|kn|−1θ̂
(1)
0,n =

c1

(
ũ

(0)
b , θ̃(0)

)
√

2ũ
(0)
b

Q̂
(0)
n

(1− i)|kn|3/2
(45p)

so the velocity pattern ũ
(1)
b is related to the flux Q̃(0) through a convolution integral

ũ
(1)
b (x̃, t̃) =

1

L

∫ L

0

G(x̃− x̃′)Q̃(0)(x̃′, T, t̃)dx̃′ (45q)

where

G(x) =
c1

(
ũ

(0)
b , θ̃(0)

)
√

2ũ
(0)
b

∞∑
n=−∞,n6==0

1

(1− i)|kn|3/2

The model thus far is purely linear and consists of the diffusive propagation of a travelling wave
heat flux signal into the bed. Temperature in the bed has a simple travelling-wave-in-x̃ solution
that attenuates and gathers a phase shift as Z̃ becomes more negative (i.e., with distance below
the bed). This results in an interface temperature θ̃(1) that is phase shifted relative to the imposed
flux (in fact, for a single Fourier mode, temperature lags flux by 1/4 of a cycle). The sliding law,
having to maintain a constant leading order sliding velocity, therefore results in basal shear stress
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perturbation τ̃
(1)
b , and a sliding velocity perturbation ũ

(1)
b that is similarly phase shifted. In fact,

the sliding velocity lags flux by 1/4 of a cycle, so, again for a single mode, ũ
(1)
b,x is positive where

Q̃
(1)
0 has a maximum. This is key to driving the instability at the slow time scale.

Growth occurs at the slow time scale associated with t̃, and is driven by the effect of that velocity
perturbation on the flux Q(0). Taking the Q-equation (44k) at O(k−3/2),

∂Q̃(1)

∂T
+ ũ

(0)
b

∂Q̃(1)

∂x̃
+

[
∂Q̃(0)

∂t̃
+ ũ

(1)
b

∂Q̃(0)

∂x̃
− Q̃(0)∂ũ

(1)
b

∂x̃

]
= 0. (45r)

Q̃(1) satisfies the same linear advection problem as Q̃(0), but with an inhomogeneous term. In
the usual manner of multiple scales problems, we can close the problem for Q̃(0) by demanding that
the inhomogeneous term should not lead to secular growth of the first order correction Q̃(1).

This is easy to do; the natural first step is to switch to characteristic coordinates defined through

σ = x̃− ũ(0)
b T, τ = T, (45s)

so that
∂Q̃(1)

∂τ
+

[
∂Q̃(0)

∂t̃
+ ũ

(1)
b

∂Q̃(0)

∂σ
− Q̃(0)∂ũ

(1)
b

∂σ

]
= 0, (45t)

treating Q̃(0), Q̃(1) and ũ
(1)
b as functions of τ , σ and t̃ instead of x̃, T and t̃ to avoid more excessive

notation.
Recall that Q̃(0) and hence, through the solution of the bed temperature and ice flow problems,

ũ
(1)
b are functions of σ but not τ . Keeping Q̃(1) bounded then requires that the inhomogeneous term

in (45t) should vanish, so

∂Q̃(0)

∂t̃
+ ũ

(1)
b

∂Q̃(0)

∂σ
− Q̃(0)∂ũ

(1)
b

∂σ
= 0. (45u)

This closes the nonlinear problem for the evolution of Q̃(0) on the slow time scale. Growth of
perturbations away from the trivial solution Q̃(0) = constant is caused by the third term, which is
proportional to the divergence of the perturbed basal velocity. As discussed before, this is positive
where Q̃(0) has a maximum, thus driving growth for small perturbations in Q̃(0). Numerical solutions
of eqs. (42) demonstrates that perturbations grow unboundedly till portions of the bed freeze, at
which point the simple advection-diffusion model in the ice, eq. (42f), fails because ub is no longer
O(1). For further detail, the reader is referred to §5 of the main text.

5 Stability at longer length scales with δ ∼ ε1/2

5.1 Stability of the intermediate scale model

5.1.1 Linearized model

We are concerned with the stability of the model (25g-25u) to small amplitude perturbations. To
this aim, assume a periodic domain of length L, and we expand dependent variables as

h(0) = h̄, h(1) = βh′, ub
(0) = ūb + βu′b, tb

(0) = t̄b + βt′b, T̃(0) = ¯̃T + βT̃′, β � 1 (46a)
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where barred quantities are independent of x, τ , while we Fourier-transform perturbed variables in
x as

ĝn =
1

L

∫ L

0

g′ exp (−ikx) dx, k =
2πn

L
(46b)

and we also assume separation of variable, so that ∂ĝn/∂τ = σĝn. Substituting into the governing
equations and linearizing, we find the following O(β) problem

σĥn + iknh̄nÛb,n + k2
n

h̄3
n

3
ĥn = 0, (46c)

with
Ûb,n = γ−1

(
F̄ t̂b,n + t̄bF

′ ˆ̃Tn
)
, t̂b,n = −iknh̄ĥn, (46d)

and F ′ = dF/dT|T̄ for evaluated on z = 0. The heat equation simplifies to

σ ˆ̃Tn − Pe −1
δ

d2 ˆ̃Tn
dz̃2

= 0, for −∞ < z̃ < +∞, (46e)

with boundary conditions

dˆ̃Tn
dz̃
→ 0 as z̃→ ±∞, (46f)[

dˆ̃Tn
dz̃

]+

−

+ α
(
t̄bÛb,n + Ūbt̂b,n

)
= 0 on z̃ = 0. (46g)

5.1.2 Solution

The heat equation (46e) can be integrated straightforwardly along with (46f) yielding

ˆ̃Tn =

{
T0 exp (−z̃Pe 1/2

δ σ1/2) for z̃ > 0

T0 exp (z̃Pe
1/2
δ σ1/2) for z̃ < 0

(47a)

where boundedness of temperature in the far field (z̃ → ±∞) is ensured provided Re[σ1/2] > 0,
while from eqs. (46c- 46d) we get

T0 =

[
h̄2k2

n

(
3F̄ + h̄γ

)
+ 3γσ

3knh̄t̄bF ′

]
iĥn, Ûb,n =

(
h̄3k2

n + 3σ

3h̄kn

)
iĥn. (47b)

Lastly, the basal energy budget (46g) yields a polynomial expression for the eigenvalue

a0 + a1y + a2y
2 + a3y

3 = 0, with y = σ1/2, Re[σ1/2] > 0, (47c)

with coefficients

a0 = αk2
nF
′h̄2t̄b

(
3Ūb − h̄t̄b

)
, a1 = 2Pe

1/2
δ k2

nh̄
2
(
γh̄ + 3F̄

)
, a2 = −3αF ′t̄2b , a3 = 6Pe

1/2
δ γ.

(47d)
A typical solution is illustrated in figure 6 for slow sliding (panels a-b) and fast sliding (panels

c-d); rows illustrate the absolute value of the growth rate (first row) and of the phase speed (second
row), with solid (dashed) lines labelling | · | > 0 (| · | < 0). To validate these results, in §5.1.3 we
derive asymptotic approximations of the solution in the short and long wavelength limit, which are
reported as thin black lines in figure 6. Key findings from our analysis are that:
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slow sliding fast sliding

Figure 6: Numerical solution of the dispersion relation (47c) as a function of the wavenumber k.
Upper (lower) row displays |Re[σ]|, (|Im[σ]|), with solid (dashed) line denoting Re[σ], Im[σ] > 0
(Re[σ], Im[σ] < 0). Columns from left to right illustrate Ūb = (0.273, 0.652), that is γ = (5, 1).
Triangular shapes and numbers associated with them denote rise and run of the line best approx-
imating the numerical solution (e.g. a rise of 2 and a run of 1 means σ ∼ k2 - note that axes are
logarithmic). Parameters are ν = 1, α = 1, Pe δ = 1, Θbed = −0.5. The temperature dependent
sliding law is F = exp(Θ).
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1. A solution exists for all wavenumber, but the number of solution changes depending on whether
sliding is slow or fast.

2. The system is unconditionally unstable in the long wavelength limit (kn → 0, red curve
labelled case 3 ), while its stability in the short wavelength limit (kn → ∞) depends on the
shearing to sliding ratio: for slow sliding it is unstable (panels a-b, red curve labelled case 1 ),
for fast sliding it is unconditionally stable (panels c-d, curves labelled case 2 ).

3. There is no wavelength selection. In the slow sliding regime the system is unstable for all
wavelengths from the ice thickness (kn →∞) to the ice sheet scale (kn → 0).

5.1.3 Short wavelength asymptotics

We consider a short wavelength limit, kn → ∞, and seek a leading order approximation for the
solution given by eqs. (46d2, 47a-47c).

Case 1: σ ∼ σ(0)

To derive a reduced version of the linearized model (46c-46g) we rescale as

σ∗ = σ, Û∗b,n = k−1
n Ûb,n, ĥ∗n = ĥn, T̂∗b,n = k−1

n T̂b,n,
dˆ̃T∗n
dz

= k−1
n

dˆ̃Tn
dz

, ˆ̃T∗n = k−1
n

ˆ̃Tn (48a)

Dropping asterisks immediately, and expanding σ ∼ σ(0) +O(k), it is straightforward to show that
the solution of the thermal problem, eq. (47a), remains unchanged. The leading order mechanical
model is

ih̄Ûb,n +
h̄3

3
ĥn = 0, (48b)

Ûb,n = γ−1
(
F̄ t̂b,n + t̄bF

′T0

)
, (48c)

t̂b,n = −ih̄ĥn, (48d)

− 2Pe
1/2
δ T0

√
σ(0) + α

(
t̄bÛb,n + Ūbt̂b,n

)
= 0, (48e)

which can be solved straightforwardly to yield

σ(0) =
9α2t̄2bF

′2 (−Ūbh̄ + t̄bh
2/3
)2

4Pe
1/2
δ h̄

(
3F̄ + h̄γ

)2 , Ûb =
ih̄2ĥn

3
, T0 =

3F̄ + h̄γ

2F ′t̄b
ih̄ĥn. (48f)

We note that this is a solution provided −Ūbh̄ + T̄bh
2/3 ≥ 0, that is for slow sliding; otherwise we

would have Re[
√
σ(0)] < 0, and temperature would be unbounded in the far field. We also note that,

after putting h̄ = 1 without loss of generality, the expression above is identical to eq. (39b), which
holds in the long wavelength limit of the ice thickness scale problem for the slow sliding regime.

Case 2: σ ∼ k2σ(0) +O(k)

To derive a reduced version of the linearized model (46c-46g) we rescale as

σ∗ = k−2
n σ, Û∗b,n = k−1Ûb,n, ĥ∗n = ĥn, T̂∗b,n = k−1

n T̂b,n,
dˆ̃T∗n
dz

= k−2
n

dˆ̃Tn
dz

, ˆ̃T∗n = k−1
n

ˆ̃Tn (49a)
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Dropping asterisks immediately, and expanding σ ∼ σ(0) + O(k), we find that ˆ̃T = 0 to leading
order, while mass conservation (46c) remains unchanged, with sliding velocity and basal shear stress
reading

Ûb,n = γ−1F̄ t̂b,n, (49b)

t̂b,n = −ih̄ĥn. (49c)

The solution is straightforward and reads

σ(0) = −
Pe

1/2
δ

(
3h̄2F̄ + γh̄3

)
3γ

, (49d)

which is purely real and always negative. Expanding to O(kn) we find that this solution has
multiplicity 2 and actually gives rise to a stable complex conjugate pair, consistently with the
numerical results in figure 6.

5.1.4 Long wavelength asymptotics

We consider a long wavelength limit, kn → 0, and seek a leading order approximation for the
solution given by eqs. (46d2, 47a-47c).

Case 3: σ ∼ σ(0) +O(kn)

We start by taking the limit of kn → 0 within the model (46c-46g), while keeping all dependent
variables strictly of O(1), and expanding σ ∼ σ(0) +O(kn). We find that the thermal model remains
unchanged, with solution (47a), while the leading order mechanical model reads

ĥn = t̂b,n = 0, (50a)

Ûb,n = γ−1t̄bF
′T0, (50b)

− 2Pe
1/2
δ T0

√
σ(0) + αt̄bÛb,n = 0, (50c)

with solution

σ(0) =

(
αF ′t̄b

2Pe
1/2
δ γ

)2

, (50d)

and perturbed sliding velocity in phase with a prescribed perturbation of basal temperature T0,
according to the sliding law.

The eigenvalue is positive, with Re[
√
σ] > 0, thus we conclude that the system is unconditionally

unstable in this limit. We anticipate that a stability analysis of the ice sheet scale model with
δ ∼ ε1/2 yields exactly the same result (see §5.2), thus confirming that this unstable mode persists
all the way to the ice sheet scale.

Case 4: σ ∼ k2
nσ

(0) +O(k3
n)

To derive a second reduced version of the linearized model (46c-46g) we rescale as

σ∗ = k−2
n σ, Û∗b,n = k−1

n Ûb,n, ĥ∗n = ĥn, T̂∗b,n = k−1
n T̂b,n ,

dˆ̃T∗n
dz

= k−2
n

dˆ̃Tn
dz

, ˆ̃T∗n = k−1
n

ˆ̃Tn. (51a)
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Dropping asterisks immediately, it is straightforward to show that the heat equation admits a

constant solution ˆ̃T = T0; mass conservation and the sliding law, eqs. (46c,46d) remain unchanged,
while the leading order basal energy budget reads

Ūbt̂b,n + t̄bÛb,n = 0. (51b)

The solution to this version of the linearized problem is

σ(0) = h̄

(
h̄Ūb − h̄2t̄b/3

)
t̄b

, Ûb,n =
ih̄Ūbĥn

t̄b
, T0 =

ih̄ĥn
(
γŪb + F̄ t̄b

)
F ′t̄2b

, (51c)

where the growth rate is positive (σ(0) > 0) if h̄Ūb − h̄2T̄b/3 > 0, which identifies the fast sliding
regime, and negative otherwise. We note that this version of the reduced model corresponds to the
short wavelength limit of the shallow slab with subtemperate sliding, with growth rate given by eq.
(9e).

5.2 Stability of the ice sheet scale model

Here we analyze the stability properties of the ice sheet scale model (26). Recalling that the ice
thickness is independent of the fast time scale to leading oder, and so is the basal shear stress, we
expand dependent variables as

h(0) = h̄, ub
(0) = ūb + βu′b, τb

(0) = τ̄b, T̃ (0) = ¯̃T + βT̃ ′, β � 1 (52a)

where barred quantities are independent of x, τ . Assuming as usual a periodic domain with length
L, we Fourier-transform perturbed variables in x as

ĝn =
1

L

∫ L

0

g′ exp (−iknx) dx, kn =
2πn

L
(52b)

and we also assume separation of variable, so that ∂ĝn/∂τ = σĝn. Substituting into the governing
equations and linearizing, we find to O(β)

σ ˆ̃Tn − Pe −1
δ

d2 ˆ̃Tn
dz̃2

= 0, for −∞ < z̃ < +∞, (52c)

with boundary conditions

d ˆ̃Tn
dz̃
→ 0 as z̃ → ±∞, (52d)[

d ˆ̃Tn
dz̃

]+

−

+ ατ̄bûb,n = 0 on z̃ = 0. (52e)

and sliding law

ûb,n = γ−1τ̄bF
′ ˆ̃Tn|z̃=0, (52f)

with F ′ = dF/dT̃ | ¯̃T evaluated on z̃ = 0.
The linear problem above can be solved straightforwardly: the heat equation has solution

ˆ̃Tn =

{
T0 exp (−z̃Pe 1/2

δ σ1/2) for z̃ > 0

T0 exp (z̃Pe
1/2
δ σ1/2) for z̃ < 0

(52g)
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where boundedness of temperature in the far field (z̃ → ±∞) is ensured provided Re[σ1/2] > 0.
The basal energy budget and the sliding law then yield the eigenvalue

σ =

(
αF ′τ̄b

2Pe
1/2
δ γ

)2

, (52h)

while the perturbed sliding velocity can be computed from eq. (52f) for any prescribed basal
temperature perturbation T0.

We conclude by noting that i) the eigenvalue is positive with Re[σ1/2] > 0, thus the system is
unconditionally unstable; ii) the eigenvalue is independent of the wavenumber, so there is no cut-off
and all wavelengths in the ice sheet scale model are unstable.

6 The discrete ice thickness scale subtemperate slab with

δ ∼ ε1/2

In this section we formulate a discrete version of the ice thickness scale model with subtemperate
sliding and finite δ described in §2.3.1.

6.1 Model reformulation

To facilitate the solution of the mechanical model, we reformulate the Stokes problem (21) in terms
of streamfunction ψ defined as

U (0) =
∂ψ

∂Z
, W (0) = − ∂ψ

∂X
, (53a)

and vorticity

ω =
∂2ψ

∂X2
+
∂2ψ

∂Z2
, (53b)

and apply the rescalings (31). Then, following Batchelor [7] and dropping asterisks for simplicity,
the Stokes problem can be rewritten in terms of vorticity and streamfunction as

∇2ψ = ω, (54a)

∇2ω = 0, (54b)

on 0 < Z < 1, 0 < X < L, where L is the length of the subtemperate slab. Boundary conditions at
the surface and at the base are

ψ = 1, ω = 0 on Z = 1, (54c)

ψ = 0 on Z = 0, (54d)

ω =
γ

F (Θb
(1))

∂ψ

∂Z
on Z = 0, (54e)

where F (θ) = exp (Θ), while we apply periodic boundary conditions on vertical domain boundaries,[
∂ψ

∂X

]+

−
=

[
∂ω

∂X

]+

−
= [ψ]+− = [ω]+− = 0 on X = 0, L. (54f)
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The leading order model for the thermal boundary layer (24) with the outer problem (21k)
remain unchanged under rescaling, while periodicity of the domain implies[

∂Q(0)

∂X

]+

−
=

[
∂Θ̃(0)

∂X̃

]+

−

= 0 on X, X̃ = 0, L. (55)

6.2 Discretization

Model variables are stream function, ψ, vorticity ω, boundary layer temperature Θ̃, and outer heat
flux Q, where we have dropped superscripts for simplicity. We discretize our model using finite
volumes and a backward Euler’s method; we label time steps with the superscript i, which we take
to assume only integer values, and we will use a constant time step ∆τ throughout.

For the mechanical problem the computational domain is the strip 0 < X < L, and 0 < Z < 1,
where we define a regular, two-dimensional, rectilinear grid locally refined near the ice-bed interface
(in the vertical direction). The grid has Nh grid points in the horizontal and Nv grid points in the
vertical, with ψ and ω defined at cell centres. The ice-bed contact, Z = 0, and the ice surface Z = 1
are cell boundaries, and so are inflow and outflow boundaries, located at X = 0, L.

We label ψ−grid points by indices α = 1, 2, . . . , Nh and β = 1, 2, . . . , Nv, so that α = 1/2, Nh +
1/2 are the inflow and outflow boundaries, respectively, while β = 1/2, N i

v + 1/2 are the ice-bed
interface and the ice surface. Lastly, we introduce the indexes 1 ≤ j ≤ Nh, 1 ≤ k ≤ N i

v, where the
indices j, k are restricted to integer values; the spacing between ψ−grid points is ∆X, ∆Zk, with
the position of grid points given by

Zβ =

[(
β − 1

2

)
1

N i
v

]m
, Xα =

(
α− 1

2

)
Lh
Nh

, (56a)

where m ≥ 1, and m = 1 denotes an evenly spaced grid.
For the thermal problem, we treat inner and outer problems separately. For the inner temper-

ature field, our computational domain is the strip 0 < X < L, and −Lv < Z < Lv (with Lv > 1),
where we define a regular, two-dimensional, rectilinear grid locally refined near the ice-bed interface
(in the vertical direction). The grid has Nh grid points in the horizontal and N b

v +N i
v+1 grid points

in the vertical, with Θ̃ defined at cell centres. Note that the Θ̃−grid is horizontally staggered with
respect to the ψ−grid, so that Θ̃−nodes are located on ψ cell boundaries. Accordingly, the ice-bed
contact, and inflow and outflow boundaries.

We label Θ−grid points by indices α = 1/2, 3/2, . . . , Nh−1/2 and γ = −N b
v ,−N b

v +1, . . . , N i
v, so

that α = 1/2, Nh − 1/2 are the inflow and outflow boundaries, respectively, and γ = 1/2, N i
v + 1/2

are the ice-bed interface and the top of the boundary layer. The spacing between Θ̃−grid points is
∆X̃ = ∆X, ∆Z̃l, where we take the integer indices 1 ≤ j ≤ Nh, 1 ≤ l ≤ N i

v + N b
v + 1. Then the

position of grid points is given by

Zγ =


[(
γ − 1

2

)
Lv
N i
v

]m
for 1 ≤ γ ≤ N i

v + 1

−
∣∣∣∣(γ − 1

2

)
Lv
N b
v

∣∣∣∣m for −N b
v ≤ γ < 1

, Xα =

(
α− 1

2

)
Lh
Nh

. (56b)

Lastly, for the thermal outer problem, we restrict ourselves to a one-dimensional grid co-located
with the the Θ̃−grid. Horizontal grid spacing will be ∆X, and grid points will be labelled by
α = 1/2, 3/2, . . . , Nh − 1/2.
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6.2.1 Mechanical problem

For the biharmonic problem (54a-54b) we use a second-order centered scheme both in the horizontal
and in the vertical, so in discrete form we get

ψij+1,k − 2ψij,k + ψij−1,k

∆X2
+

1

∆Zk

[
2
(
ψij,k+1 − ψij,k

)
∆Zk+1 + ∆Zk

−
2
(
ψij,k − ψij,k−1

)
∆Zk + ∆Zk−1

]
= ωj,k, (57a)

ωij+1,k − 2ωij,k + ωij−1,k

∆X2
+

1

∆Zk

[
2
(
ωij,k+1 − ωij,k

)
∆Zk+1 + ∆Zk

−
2
(
ωij,k − ωij,k−1

)
∆Zk + ∆Zk−1

]
= 0. (57b)

Regarding boundary condition, for j = 1, Nh the equations above require ω and ψ at the fictitious
grid points α = j − 1 = 0 and α = j + 1 = Nh + 1. Given that our domain is periodic in X, we
simply put

ψi0,k = ψiNh,k
, ωi0,k = ωiNh,k

, (57c)

which, along with the finite volume discretization and the centered scheme for ψ and ω, automati-
cally ensure that both the normal flux and the two variables remains continuous. At the ice surface,
β = k + 1/2 = Nv + 1/2, boundary conditions (54c) apply, so we put

2
(
ψij,k+1 − ψij,k

)
∆Zk+1 + ∆Zk

=2

(
∆Z2

k−1 + 4∆Zk∆Zk−1 + 3∆Z2
k

)
∆Zk(∆Zk + ∆Zk−1)(2∆Zk + ∆Zk−1)

+ 2
∆Z2

kψ
i
j,k−1 − (∆Zk−1 + 2∆Zk)

2ψij,k
∆Zk(∆Zk + ∆Zk−1)(2∆Zk + ∆Zk−1)

for k = Nv (57d)

2
(
ωij,k+1 − ωij,k

)
∆Zk+1 + ∆Zk

= 2
∆Z2

kω
i
j,k−1 − (∆Zk−1 + 2∆Zk)

2ωij,k
∆Zk(∆Zk + ∆Zk−1)(2∆Zk + ∆Zk−1)

for k = Nv, (57e)

where we have used a second-order accurate polynomial extrapolation on the boundary to compute
fluxes there. Similarly, to satisfy the boundary conditions (54d-54e) at the bed, β = k− 1/2 = 1/2,
we put

2
(
ψij,k − ψij,k−1

)
∆Zk + ∆Zk−1

= −2
∆Z2

kψ
i
j,k+1 − (∆Zk+1 + 2∆Zk)

2ψij,k
∆Zk(∆Zk + ∆Zk+1)(2∆Zk + ∆Zk+1)

for k = 1, (57f)

2
(
ωij,k − ωij,k−1

)
∆Zk + ∆Zk−1

=− 2

(
∆Z2

k+1 + 4∆Zk∆Zk+1 + 3∆Z2
k

)
ωij,k−1/2

∆Zk(∆Zk + ∆Zk+1)(2∆Zk + ∆Zk+1)

− 2
∆Z2

kω
i
j,k+1 − (∆Zk+1 + 2∆Zk)

2ωij,k
∆Zk(∆Zk + ∆Zk+1)(2∆Zk + ∆Zk+1)

for k = 1, (57g)

with

ωij,1/2 =
γ

F (Θi
bed,j)

2
(
ψij,k − ψij,k−1

)
∆Zk + ∆Zk−1

, for k = 1, (57h)

where Θi
bed,j = (Θi

bed,j+1/2 +Θi
bed,j−1/2)/2 is constrained by the basal energy budget of the bed (24a).

For simplicity, we treat this along with the thermal problem in the next section.

6.2.2 Thermal problem

Next we look at the thermal problem in the boundary layer near the bed. Energy conservation is
discretized with a second-order centered scheme for both advective and diffusive fluxes; for the ice,
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1 ≤ j ≤ Nh and N b
v + 1 ≤ l ≤ N i

v +N b
v + 1, we have

Θ̃i
j−1/2,l − Θ̃i−1

j−1/2,l

∆τ
+
U i
j

(
Θ̃i
j+1/2,l + Θ̃i

j−1/2,l

)
− U i

j−1

(
Θ̃j−1/2,l + Θ̃i

j−3/2,l

)
2∆X̃

+

1

∆Z̃l

[
W i
j−1/2,l+1/2

Θ̃i
j−1/2,l+1∆Z̃l + Θ̃i

j−1/2,l∆Z̃l+1

∆Z̃l+1 + ∆Z̃l
−

W i
j−1/2,l−1/2

Θ̃i
j−1/2,l∆Z̃l−1 + Θ̃i

j−1/2,l−1∆Z̃l

∆Z̃l + ∆Z̃l−1

]
−

1

Pe δ∆Z̃l

2
(

Θ̃i
j−1/2,l+1 − Θ̃i

j−1/2,l

)
∆Z̃l+1 + ∆Z̃l

−
2
(

Θ̃i
j−1/2,l − Θ̃i

j−1/2,l−1

)
∆Z̃l + ∆Z̃l−1

 =0,

(58a)

while for the bed, that is 1 ≤ j ≤ Nh and 1 ≤ l ≤ N b
v , we have

Θ̃i
j−1/2,l − Θ̃i−1

j−1/2,l

∆τ
− 1

Pe δ∆Z̃l

2
(

Θ̃i
j−1/2,l+1 − Θ̃i

j−1/2,l

)
∆Z̃l+1 + ∆Z̃l

−
2
(

Θ̃i
j−1/2,l − Θ̃i

j−1/2,l−1

)
∆Z̃l + ∆Z̃l−1

 = 0. (58b)

Recalling the definitions (23b), horizontal and vertical velocities are computed in terms of stream
function and vorticity as

U i
j =

F (Θ̃i
j,1/2)

γ
ωij,1/2, (58c)

W i
j−1/2,l+1/2 =

Uj − Uj−1

∆X̃
Z̃l+1/2. (58d)

Regarding boundary conditions, we start from the top of the boundary layer, l = N b
v +N i

v + 1.
Here the matching condition (24e1) couples the boundary layer problem to the advection-only outer
problem for Qij−1/2 through

−
2
(

Θ̃i
j−1/2,l+1 − Θ̃i

j−1/2,l

)
∆Z̃l+1 + ∆Z̃l

= Qij−1/2 for l = N b
v +N i

v + 1, (58e)

which we then use to compute temperature at the fictitious grid point l = N b
v +N i

v + 2, as required
by the advective heat flux, through linear extrapolation,

Θ̃i
j−1/2,Nb

v+N i
v+2 = Θ̃i

j−1/2,Nb
v+N i

v+1 +Qij−1/2∆Z̃Nb
v+N i

v+1. (58f)

Note that this is consistent with the structure of the underlying continuum problem, which is such
that the temperature profile should become linear at sufficient distance from the bed. Numerical re-
sults show that a boundary layer height Lv = 3 is typically sufficient to recover a linear temperature
profile.

The outer heat flux Qij−1/2 evolves according to the Q−equation, which in discrete form reads

Qij−1/2 −Q
i−1
j−1/2

∆τ
+
U i
j

(
Qij+1/2 +Qij−1/2

)
− U i

j−1

(
Qij−1/2 +Qij−3/2

)
2∆X

−Qij−1/2

U i
j − U i

j−1

∆X
= 0, (58g)
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with periodic boundary conditions
Qi−1/2 = QiNh−1/2. (58h)

At the bed, γ = l−N b
v−1/2 = 1/2, continuity of basal temperature is enforced through one-sided

approximations of the vertical heat fluxes,

2
(

Θ̃i
j−1/2,l+1 − Θ̃i

j−1/2,l

)
∆Z̃l+1 + ∆Z̃l

=
Θi
bed,j−1/2 − Θ̃i

j−1/2,l

∆Z̃l
for l = N b

v ,

2
(

Θ̃i
j−1/2,l − Θ̃i

j−1/2,l−1

)
∆Z̃l + ∆Z̃l−1

=
Θ̃i
j−1/2,l −Θi

bed,j−1/2

∆Z̃l
for l = N b

v + 1,

(58i)

where basal temperature Θbed,j−1/2 is constrained by the basal energy budget

Θ̃i
j−1/2,Nb

v+1
−Θi

bed,j−1/2

∆Z̃Nb
v+1

−
Θi
bed,j−1/2 − Θ̃i

j−1/2,Nb
v

∆Z̃Nb
v

+ α

(
U i
j + U i

j−1

2

)(
ωij,1/2 + ωij−1,1/2

2

)
= 0 (58j)

and the basal shear stress ωij−1,1/2 is given by eq. (57h).
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A Supplementary Figures
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Figure 7: Results from the numerical stability analysis of the ice sheet scale model with subtem-
perate sliding presented in §(3(b)) of the main text. Along rows: ice thickness, sliding velocity, and
basal heat flux perturbation associated with the fastest growing eigenvalue for γ = 1.7 (left column)
and γ = 0.7 (right column). The subtemperate region is shaded, and insets show a zoom near the
subtemperate-temperate boundary. Parameters are α = 0.4, ν = 0.5, Pe = 7.5, TS = −1, q0 = 5.
The number of computational grid points is Nh = 320, NT = 320× 320 for each subdomain. Note
that the divide (not shown) is located at x = 0.
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