
DBSCOUT: A Density-based Method for Scalable
Outlier Detection in Very Large Datasets

Matteo Corain
Dipartimento di Automatica e Informatica

Politecnico di Torino
Turin, Italy

matteo.corain@studenti.polito.it

Paolo Garza
Dipartimento di Automatica e Informatica

Politecnico di Torino
Turin, Italy

paolo.garza@polito.it

Abolfazl Asudeh
Department of Computer Science
University of Illinois at Chicago

Chicago, USA
asudeh@uic.edu

Abstract—Recent technological advancements have enabled
generating and collecting huge amounts of data in a daily manner.
This data is used for different purposes that may impact us on an
unprecedented scale. Understanding the data, including detecting
its outliers, is a critical step before utilizing it.

Outlier detection has been studied well in the literature but the
existing approaches fail to scale to these very large settings. In
this paper, we propose DBSCOUT, an efficient exact algorithm
for outlier detection with a linear complexity that can run in
parallel over multiple independent machines, making it a fit for
the settings with billions of tuples. Besides the theoretical analysis,
our experiment results confirm orders of magnitude improvement
over the existing work, proving the efficiency, scalability, and
effectiveness of our approach.

Index Terms—Data mining, clustering, classification, and as-
sociation rules, parallel algorithms

I. INTRODUCTION

Detecting outliers of a dataset is a core operation across
diverse fields of research including data mining [1], net-
working [2], machine learning [3], [4], manufacturing [5],
economics [6], and signal processing [7], with different ap-
plications [8]. Generally speaking, an outlier is an instance
of data that appears to be inconsistent with the remainder of
that set of data [9]. Outlier detection [10] is regularly used
to address fraud detection, network intrusion, fault detection,
anomaly detection, data cleaning and many other real problems
where the instances deviating from the characteristics of the
rest of the data highlight interesting information. Due to
its usefulness in several domains, outlier detection is a rich
research topic that has been extensively studied in different
contexts and different algorithms have been proposed for it [9],
[11]–[20]. As discussed in [10], distributed solutions are in
demand because of the radically increasing data size. The big
data era requires efficient algorithms that can scale to very
large settings with billions of data points.

One of the domains with the need for scalability is the low-
dimensional (usually 2D or 3D) data. For example, given the
abundance of GPS-enabled devices ranging from cell phones
and activity tracking devices to vehicle tracking, big geospatial
data is becoming more and more popular. Moreover, non-
traditional models such as social media and unmanned vehicles
generate terabytes of data daily [21]. Even though the number
of dimensions is small, these datasets are horizontally large,

requiring horizontally scalable algorithms. Still, to the best
of our knowledge, there exists only one horizontally scalable
outlier detection algorithm, called DDLOF [22]. As we shall
show in our experiments, DDLOF fails to scale to very large
settings, mainly because it is not linear and uses large in-
memory data structures.

To address the need for detecting outliers in settings with a
very large number of low-dimensional tuples, in this paper, we
propose an algorithm that extracts outliers with a theoretical
linear worst-time complexity guarantee. Making a connection
to clustering, our algorithm considers the recent advancements
in this field for designing scalable approximated algorithms
for big data. In particular, we note that, while clustering
the points, DBSCAN [23] identifies the outliers as the “sub-
results” of clustering. Following the existing work in different
domains that utilized DBSCAN as a building block to identify
outliers [24]–[31], we leverage on the same definition and
semantic of outlier considered by the DBSCAN clustering.
While adopting the same definition, our goal is not clustering
as we only need to identify outliers, without the need to
identify the clusters themselves. Indeed, while clustering is
one of the several techniques that can be used to identify
outliers, the majority of the outlier detection algorithms, in-
cluding our approach, extracts only outliers without identifying
clusters [10]. This allows us to design an efficient algorithm
that, unlike scalable developments of DBSCAN, is (i) exact
and (ii) linear – hence more scalable. We note that a naı̈ve
approach based on the use of the parallel implementations of
DBSCAN on multiple servers to extract outliers has a scalabil-
ity limitation due to their time complexity. Similarly, having a
different objective, the approximated parallel implementations
of DBSCAN [32] do not correctly identify all outliers. On the
other hand, parallel implementations such as [33] that use a
single machine and single main memory in which a shared
variable containing all the input data is stored do not scale
due to the requirement to a centralized shared memory.

DBSCOUT, our scalable algorithm for detecting out-
liers, works based on grid partitioning the space into non-
overlapping fixed-size cells. At a high level, after assigning
points to their corresponding cells, depending on the number
of points that fall inside a cell and its neighboring cells,
DBSCOUT makes two rounds of linear scans over the non-

empty cells, where in the first round it identifies the center
points of the dense regions (known as core points) that will be
used in the second round to identify the outliers. Developing
the proper partitioning and carefully designing the algorithm
steps, we will prove that the algorithm conducts at most a
constant number of operations for each tuple in the dataset
during each round, making the overall complexity of the
algorithm linear. DBSCOUT is a parallel algorithm: in order
to fully scale to very large settings, we designed it to run
on multiple independent machines. We will explain how the
algorithm steps are parallelized.

In addition to theoretical analysis, we conduct comprehen-
sive experimental evaluations on real datasets of size up to 2.7
billion tuples and synthetic datasets of size up to 27 billion
tuples. We will compare our algorithm both with DDLOF [22],
a parallel version of LOF for outlier detection at scale, as
well as RP-DBSCAN [32], an advanced approximated parallel
algorithm for DBSCAN. We evaluate both the efficiency and
scalability of our algorithm, as well as the quality of its output.
Our results confirm orders of magnitude improvement on the
efficiency. In our experiments, DBSCOUT achieves up to 43x
speedup compared to DDLOF and could find the outliers of a
dataset of 27 billion tuples, in less than 2 hours.

Summary of contributions: In summary, our contributions
in this paper are as follows:
• We study the problem of outlier detection on very large

datasets with billions of tuples, an important yet under-
studied subject.

• We propose DBSCOUT, an exact algorithm for identi-
fying the outliers that runs in linear time. The linear
complexity of the algorithm makes it a fit for outlier
detection at large scale.

• We design DBSCOUT as a parallel algorithm that concur-
rently runs on multiple independent machines. The par-
allelization of our algorithm enables efficiently detecting
outliers of datasets with billions of tuples.

• In addition to theoretical analysis, we conduct compre-
hensive experiments on real-world datasets that confirm
the efficiency, scalability, and effectiveness of our ap-
proach.

In the rest of the paper, we first in § II provide the formal
terms, definitions, and theorems to formulate the problem. The
parallel outlier detection algorithm is proposed in § III. The
experiments are provided in § IV, related work is discussed in
§ V, and the paper is concluded in § VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this paper, we propose a new scalable algorithm for
identifying the set of outliers from an input dataset D =
{p1, . . . , pn} of multi-dimensional points in a d-dimensional
space Rd, where d is a small constant.

For our purposes, a point is considered an outlier if it is
not included in any “dense area”, i.e. a region that contains
a relevant number of input points. Indeed, such points are
distant and different from almost all the other points of the

input datasets and it is reasonable to mark them as outliers.
We formalize this idea by means of the following definitions.

Definition 1 (Dense region). Let D ⊆ Rd be an input dataset.
A dense region is a d-dimensional hypersphere, with center
p ∈ D and radius ε ∈ R+, which encloses at least minPts ∈
N+ input points.

The values of ε and minPts are user-specified constants.

Definition 2 (Core point). Let D ⊆ Rd be an input dataset, ε
a positive real number, and minPts a positive integer number.
A point p ∈ D is a core point if it is the center of a dense
region:

|{q ∈ D : dist(p, q) ≤ ε}| ≥ minPts

The distance between points, denoted as dist(p, q), is com-
puted by using the Euclidean distance metric.

Definition 3 (Outlier point). Let D ⊆ Rd be an input dataset,
and let C ⊆ D be the set of core points extracted using
parameters ε and minPts. A point p ∈ D is an outlier point
if it is not included in any of the dense regions:

∀q ∈ C, dist(p, q) > ε

The above definitions are coherent and largely inspired
by the ones given, in the context of cluster mining, in the
DBSCAN paper [23].

Problem statement. Given an input dataset D and the values
of parameters ε ∈ R+ and minPts ∈ N+, the outlier
detection task addressed in this paper consists in identifying
the set of outliers in D according to Definition 3.

In the following of this section, we provide some further ba-
sic definitions and concepts that are used by the proposed algo-
rithm. Similarly to some parallel implementations of density-
based clustering algorithms such as RP-DBSCAN [32], we
leverage on a cell-based grid structure to parallelize and speed
up the outlier identification process.

Definition 4 (Cell). Given Rd and a positive real number ε, an
ε-cell, or simply a cell, is a d-dimensional hypercube having
its diagonal length set to the value of ε.

Each cell C ⊆ Rd is uniquely identified by a d-dimensional
tuple of integer values, (C1, . . . , Cd) ∈ Zd, which represents
the coordinates of the vertex of the hypercube with the
minimum values, scaled by the cell side length l = ε√

d
.

Definition 5 (Grid). Let D ⊆ Rd be an input dataset. A grid is
a complete and non-overlapping partition G = {C1, . . . , Ck}
of D into ε-cells.

Clearly, the number of (non-empty) cells in the grid is O(n),
where n is the cardinality of the input dataset. That is because,
in the worst case, each point belongs to a different cell.

Cells may be classified with respect to the number and the
type of their points according to the following definitions.

Definition 6 (Dense cell). Let C ⊆ Rd be an arbitrary cell.
C is a dense cell if it contains at least minPts points.

TABLE I
SOME NOTABLE VALUES FOR kd
d Upper bound Actual kd
2 25 21
3 125 117
4 625 609
5 16807 3903
6 117649 28197
7 823543 197067
8 5764801 1278129
9 40353607 8077671

Lemma 1. Let C ⊆ Rd be a dense cell. It follows that all
points p ∈ C are core points.1

Definition 7 (Core cell). Let C ⊆ Rd be an arbitrary cell. C
is a core cell if it contains at least one core point.

Lemma 2. Let C ⊆ Rd be a core cell. It follows that no point
p ∈ C is an outlier.

The following definition deals with the concept of proximity
between cells.

Definition 8 (Neighboring cells). Given any two arbitrary
non-empty cells Ci, Cj ⊆ Rd, we say that Ci and Cj are
neighboring cells if there may exist two points, pi ∈ Ci
and pj ∈ Cj , such that dist(pi, pj) < ε, where dist is the
Euclidean distance function.

In other words, two non-empty cells are considered neigh-
boring whenever the minimum possible distance between any
couple of points in the two cells is less than ε. We denote
as N (C) the set of neighbors of a given cell C. Note that,
by definition, each cell is a neighbor of itself. Fig. 1 depicts
the shape of the neighborhood of a two-dimensional cell: the
neighbors of the central cell (0, 0) are the 21 cells that are at
least partially covered by the blue shape.

An important property deriving from Definition 8 is that the
number of neighbors for any given cell is constant once we
fix the dimensionality d of the input space, regardless of the
parameter ε. The value of such constant will be denoted as kd
in the following. A very loose bound on kd is given by the
following lemma.

Lemma 3. For any fixed number of dimensions d, an upper
bound to the value of kd is given by:

kd = O
(
2
⌈√

d
⌉
+ 1
)d

(1)

As presented in Table I, the actual value for kd is in any case
generally lower than that obtained by applying (1), especially
for higher dimensionalities. Moreover, in practice, the sparsity
of the data is likely to improve with the number of dimensions.
This means that the non-empty neighbors of each cell to be
considered by the algorithm are likely to be much less than
the theoretical limit.

1Proofs are provided in the appendix.

III. THE DBSCOUT ALGORITHM

The algorithm we propose aims at fulfilling two main
objectives: (i) achieving high scalability on big data (with a
theoretical linear time complexity guarantee) and (ii) providing
an exact result (i.e., the algorithm returns results consistently
with Definition 3, without approximation). We note that one
could execute DBSCAN to find the outliers; this, however, is
not efficient, given that DBSCAN is quadratic. Therefore, we
propose DBSCOUT: a Density-Based algorithm for Scalable
Outlier detection.

A. Overview of the algorithm

Overall, DBSCOUT has five major steps:
• Grid partitioning and point-cell assignment: the input

dataset D is processed and a grid G is created by
assigning each point to the corresponding ε-cell.

• Dense cell map construction: a cell map, distinguishing
between dense and non-dense cells, is constructed and
broadcast among executors.

• Core points identification: leveraging on the cell map
constructed at the previous step, as well as on the
properties introduced in § II, the set of core points C ⊆ D
is identified.

• Core cell map construction: a new cell map is created and
broadcast, marking as core the cells containing at least a
core point.

• Outlier point identification: all points in non-core cells are
checked and Definition 3 is evaluated to finally identify
all the outliers in the input dataset D.

Conceptually, the first steps of our algorithm are based on
the implementation of DBSCAN proposed by Gunawan et
al. [34], while improved and generalized for working with
d ≥ 2. Note that, differently from Gunawan et al. [34], our
algorithm does not involve the definition of DBSCAN-like
clusters. Note also that our algorithm is designed for achieving
horizontal scalability, whereas Gunawan et al. [34] propose a
sequential and centralized approach.

In the following, each step is described in more detail. In
doing so, we will refer to common transformations imple-
mented in the major parallel data processing environments,
such as Apache Spark [35]. A visual example is also presented.
For this purpose, the two-dimensional toy dataset reported in
Fig. 2 is used, on which we suppose to run the algorithm with
parameters ε =

√
2 and minPts = 5.

B. Grid partitioning and point-cell assignment

The grid partitioning and point-cell assignment phase aims
at processing the input dataset from secondary memory,
defining the cells that will be used in the subsequent steps.
Specifically, each input point p = (x1, . . . , xd) is assigned to
the cell described by coordinates Ci =

⌊
xi ∗

√
d
ε

⌋
.

A simple MAP transformation is needed for this purpose,
as shown in Algorithm 1. In lines 3-6, the cell coordinates are
computed according to the above formula. Each point is then

Fig. 1. 2D grid and neighborhood of cell (0, 0) Fig. 2. Overview of the example dataset Fig. 3. Results of the grid definition step

Algorithm 1 Grid definition procedure
1: function CREATE-GRID(D, d, ε)
2: G ← D.MAP(p→
3: C ← EMPTY-VECTOR(d)
4: for i in [1, d]

5: C[i]← FLOOR(p[i] ∗
√
d
ε
)

6: end for
7: return (C, p)
8:)
9: return G

10: end function

associated to its cell by mapping it on a key-value pair in the
form (cell coordinates, point) (line 7).

Lemma 4. The grid partitioning and point-cell assignment
phase runs in O(n) time complexity, where n is the size of the
input dataset, for any data dimensionality.

Example. The results of this phase for the example dataset
are shown in Fig. 3. Since ε =

√
2, all the points have been

subdivided into cells with a side length of ε√
d
=
√
2√
2
= 1.

C. Dense cell map construction

After assigning the points to the grid-cells, the dense cells
are identified and their information is broadcast to all execu-
tors. For this purpose, it is necessary to count the number
of points belonging to each cell through a word count-like
pattern, based on the combination of transformations MAP and
REDUCEBYKEY. This is shown in lines 3-4 of Algorithm 2.
A final MAP is used to decide the cell type based on the points
count np and the value of minPts (lines 5-8).

Algorithm 2 Dense cell map construction procedure
1: function BUILD-DENSE-CELL-MAP(G,minPts)
2: cellMap← G
3: .MAP((C, p)→ (C, 1))
4: .REDUCEBYKEY((v1, v2)→ v1 + v2)
5: .MAP((C, np)→
6: if np ≥ minPts return (C, dense)
7: else return (C, other)
8:)
9: return BROADCAST(cellMap)

10: end function

Lemma 5. The dense cell map construction phase runs in
O(n) time complexity, where n is the size of the input dataset,
for any data dimensionality.

D. Core points identification

Based on Definition 2, a point is core whenever its ε-
neighborhood contains at least minPts points. Some points,
however, can be directly labeled as core points, without
computing their ε-neighborhood. Indeed, based on Lemma 1,
for each cell one of the following two situations can verify:
• If the cell is dense, no additional processing is needed.

According to Lemma 1, all the points in the dense cells
are core points.

• If the cell is non-dense, actual ε-neighborhoods must be
identified. To do so, it is required to compute the distance
of each point inside the cell to all the points in the
neighboring cells (including the cell itself). If the point
has at least minPts neighbors, it is labeled as core.

The implementation of the core points identification phase,
presented in Algorithm 3, is more complex due to the necessity
of computing the distances between points belonging to dif-
ferent cells, whenever those are not dense. To accomplish this
goal, the adopted strategy is to emit the points to be checked
as tuples in the form (neighbor cell, point) so that, by means
of a JOIN operation with the original dataset, it is possible
to create pairs of points for which the distance can be easily
computed. Overall, this phase contains the following steps:

1) Identification of core points from dense cells (Cd): ex-
ploiting the contents of the dense cell map, the core
points belonging to dense cells are identified through a
FILTER transformation (line 3).

2) Emission of the points to check: to identify the core
points belonging to non-dense cells, the first step is
to emit all the points from non-dense cells on their
neighbor cells, so that the required comparisons can be
performed. To this purpose, a FLATMAP transformation
is used (line 6). Specifically, for each point p belonging
to a non-dense cell C (identified by using the informa-
tion contained in the cell map, line 5), a number of pairs
in the form (N, (C, p)) is emitted, one for each neighbor
cell N of C (lines 7-11).

Algorithm 3 Core points identification procedure
1: function FIND-CORE-POINTS(G, ε,minPts, cellMap)
2: Cd ← G
3: .FILTER((C, p)→ cellMap.CELLTYPE(C) = dense)

4: pointsToCheck ← G
5: .FILTER((C, p)→ cellMap.CELLTYPE(C) 6= dense)
6: .FLATMAP((C, p)→
7: tuples← EMPTY-LIST
8: neighbors← cellMap.NEIGHBORS(C)
9: for N in neighbors

10: tuples.APPEND((N, (C, p)))
11: end for
12: return tuples
13:)

14: Cnd ← G
15: .JOIN(pointsToCheck)
16: .MAP((N, (q, (C, p)))→
17: if dist(p, q) < ε return ((C, p), 1)
18: else return ((C, p), 0)
19:)
20: .REDUCEBYKEY((v1, v2)→ v1 + v2)
21: .FILTER(((C, p), nn)→ nn ≥ minPts)
22: .MAP(((C, p), nn)→ (C, p))

23: return Cd.UNION(Cnd)
24: end function

3) Identification of core points from non-dense cells (Cnd):
the points to be checked are joined by key (line 15)
through a JOIN transformation with the original dataset,
thus originating pairs in the form (N, (q, (C, p))). The
distance between the points p and q is computed and
used, through a MAP transformation (line 16), for pro-
ducing pairs having as key the tuple (C, p) and as
value an integer, either 1 (if the distance between p
and q is at most ε, line 17) or 0 (otherwise, line 18).
Finally, a succession of a REDUCEBYKEY and FILTER
transformations is used to compute the total number of
neighbors nn of each point (line 20) and select only
those having at least minPts (line 21).

The overall set of core points is then produced by applying
a UNION transformation to the results of Step 3 with the points
belonging to dense cells as identified during Step 1 (line 24).

Lemma 6. The core points identification phase runs in O(n)
time complexity, where n is the size of the input dataset, for
any data dimensionality.

Example. To illustrate the core points identification phase for
the example dataset, let us consider the two example cells with
coordinates C1 = (0, 0) and C2 = (1,−1).

Since C1 is dense, all of its points are immediately marked
as core. As for C2, the cell is not dense as it contains two
points only. Consequently, it is necessary to check, for both
of them, the distance with all the points in the neighboring
cells. The results are as follows:
• As shown in Fig. 4, point p1 = (1.1,−0.3) happens to

have nine neighbors (those pointed by a green arrow), a

Algorithm 4 Core cell map construction procedure
1: function BUILD-CORE-CELL-MAP(Cnd, cellMap)
2: Cnd.FOREACH((C, p)→
3: cellMap.CELLTYPE(C)← core
4:)
5: return BROADCAST(cellMap)
6: end function

value which is greater than minPts. Thus, the point is
marked as core.

• Conversely (see Fig. 5), point p2 = (1.9,−0.9) happens
to have only two points within its ε-neighborhood, which
means that the point is not core. In fact, although several
points are included in the neighboring cells of C2, many
of them (those pointed by a red arrow) do not effectively
lie in the ε-neighborhood of p2.

All the other cells and points are processed as described
above, yielding the result shown in Fig. 6, in which the ε-
neighborhoods of the identified core points are also drawn.

E. Core cell map construction

Having identified the core points in the dataset, it is now
possible to build a new cell map to be broadcast to all
executors, stating for each cell whether it is core or not. Given
that we already computed the dense cell map, and that a dense
cell is always a core cell, it is enough to update the previous
cell map with the information on core points belonging to
non-dense cells (Cnd); specifically, a FOREACH transformation
is used to consider all such points and update the cell map
accordingly. This is described in Algorithm 4.

Lemma 7. The core cell map construction phase runs in O(n)
time complexity, where n is the size of the input dataset, for
any data dimensionality.

F. Outliers identification

Conceptually, the outliers identification phase is similar to
the core points identification phase. In this case, no further
processing is needed for the core cells: following Lemma 2,
core cells cannot indeed contain any outlier. As for the non-
core cells, distances between each point inside the cell and
the core points in the neighboring cells must be computed.
The considered point is an outlier if and only if none of those
distances is lower than ε (i.e., the point does not fall within
the ε-neighborhood of any core point).

The pseudocode of the outliers identification step is shown
in Algorithm 5. This is structured in three steps:

1) Identification of outliers from non-core cells with no
core neighbors (Oncn): the updated cell map is used
to identify the non-core cells (line 3) having no neigh-
boring core cell (line 4). All the points belonging to
these cells are outliers, since they are surely not in the
neighborhood of a core point.

2) Emission of the points to check: similarly to the core
points identification phase, in this case the points belong-
ing to non-core cells are emitted on all their neighboring

Fig. 4. Neighbor check for point p1 Fig. 5. Neighbor check for point p2 Fig. 6. Results of the core points identification step

Fig. 7. Neighbor check for point p3 Fig. 8. Neighbor check for point p4 Fig. 9. Results of the outliers identification step

core cells in order to compute the required distances.
This is again achieved through a FLATMAP transforma-
tion (lines 7-14).

3) Identification of outliers from non-core cells with at least
one core neighbor (Ocn): the points to be checked are
joined by key through a JOIN transformation (line 16)
with the set of core points. Each point to be checked is
associated with an outlier flag of , true if the distance
with the considered core point is at least ε (line 18) or
false otherwise (line 19), through a MAP transformation.
Results are then recombined through a REDUCEBYKEY
transformation, implementing a boolean AND operation
(the overall outlier flag gets false whenever at least one
of the previous comparison generated a negative result,
line 21). Actual outliers are finally selected through a
FILTER transformation (line 22).

The entire set of outliers is obtained by applying a UNION
transformation to the results of Step 1 and 3 (line 24).

Lemma 8. The outliers identification phase runs in O(n) time
complexity, where n is the size of the input dataset, for any
data dimensionality.

Example. To illustrate the outliers identification phase on the
toy dataset, the example cell with coordinates C3 = (0,−2)
has been chosen. Since this cell is not core, in order to identify
the actual outliers we need to check the distance from all of
its points to all of the core points in the neighboring cells:

• As shown in Fig. 7, point p3 = (0.7,−1.5) includes one

core point within its ε-neighborhood, which is a sufficient
condition not to classify it as an outlier.

• Point p4 = (0.3,−1.8), instead, happens to have all the
core points in the neighboring cells at a distance greater
than ε (see Fig. 8). Thus, it is classified as an outlier.

The same procedure is applied for every non-core cell in
the dataset. The final result is shown in Fig. 9.

G. Practical optimizations

In the algorithm described above, an important contribution
to the overall running time is given by the expensive JOIN
operations among large data chunks. In the following para-
graphs, we present some practical optimizations specifically
targeted to speed up joins, without altering the overall logic
of the algorithm.

1) Broadcast join: In some cases, the number of the points
to check is small enough to collect them in a local map.
The broadcast join optimization allows to eliminate the costly
JOIN transformation by constructing and broadcasting to all
executors such structure, which can be exploited to implement
the join operation by means of a FLATMAP transformation.

This optimization performs best for higher values of ε:
indeed, in this case more cells are dense and less points need to
be emitted for distance computation. However, its application
may generate out-of-memory errors at runtime.

2) Grouping before joining: Experimentally, we noted that
the performances of the JOIN transformation as implemented
in Spark decrease almost linearly with the size of the data

Algorithm 5 Outliers identification procedure
1: function FIND-OUTLIERS(G, ε, cellMap)
2: Oncn ← G
3: .FILTER((C, p)→ cellMap.CELLTYPE(C) 6= core)
4: .FILTER((C, p)→ cellMap.CORENEIGHBORS(C) 6= ∅)

5: pointsToCheck ← G
6: .FILTER((C, p)→ cellMap.CELLTYPE(C) 6= core)
7: .FLATMAP((C, p)→
8: tuples← EMPTY-LIST
9: neighbors← cellMap.CORENEIGHBORS(C)

10: for N in neighbors
11: tuples.APPEND((N, (C, p)))
12: end for
13: return tuples
14:)

15: Ocn ← G
16: .JOIN(pointsToCheck)
17: .MAP((N, (q, (C, p)))→
18: if dist(p, q) ≥ ε return ((C, p), true)
19: else return ((C, p), false)
20:)
21: .REDUCEBYKEY((v1, v2)→ v1 AND v2)
22: .FILTER(((C, p), of)→ of = true)
23: .MAP(((C, p), of)→ (C, p))

24: return Oncn.UNION(Ocn)
25: end function

to be joined. The purpose of this optimization, therefore, is to
consistently reduce the cardinality of one of the join operands.
This is achieved by applying, immediately before the join, a
GROUPBYKEY transformation.

In practice, doing so allows to obtain speedups up to 500%
for certain datasets and low values of ε, while not severely
affecting performances with high ε. Moreover, it allows to
reduce the average number of comparisons for each point.
Indeed, distance computations may be avoided when:
• The number of the point’s neighbors reaches minPts

during the core points identification phase;
• The point is discovered to have a neighboring core point

during the outliers identification phase.

IV. EXPERIMENTS

We performed comprehensive experiments to evaluate (i)
the performance and scalability, in terms of execution time, of
DBSCOUT in the big data scenario on a set of benchmark
datasets and (ii) the quality of the identified outliers with
respect to the state of the art outlier detection algorithms.

A. Experimental setting

1) Algorithms: We implemented DBSCOUT using the Java
Spark APIs [35]. All the experiments have been performed
using the grouping before join optimization. The source code
is available at https://github.com/mattecora/dbscout.

Since the same set of outliers extracted by DBSCOUT can
theoretically be mined also using DBSCAN, for the perfor-
mance experiments we considered also a baseline approach
based on RP-DBSCAN [32]. RP-DBSCAN is, to the best of

our knowledge, the state of the art approximated horizontally
scalable version of DBSCAN. We used the publicly available
implementation of RP-DBSCAN provided by its authors.
As competitor, we also considered DDLOF [22], a parallel
version of the LOF (Local Outlier Factor) outlier detection
algorithm [14].

2) Datasets: The performance experiments have been per-
formed using two publicly available real-world datasets: Geo-
life [36] and OpenStreetMap [37].

Geolife is a collection of GPS trajectories consisting in
24,876,978 three-dimensional points (latitude, longitude, al-
titude in feet) for a total of 703.8 MB. Although the dataset
contains points from different areas of the world, a very high
concentration of tracks has been registered around the city of
Beijing, which makes the dataset heavily skewed.

OpenStreetMap is a set of 2,770,238,904 latitude-longitude
GPS points collected by OpenStreetMap contributors. The
total size of the dataset is 51.5 GB. OpenStreetMap is
presumably the largest, real-world, low-dimensional dataset
used in literature for testing outlier detection and clustering
algorithms. In fact, the performances of both DDLOF [38] and
RP-DBSCAN [32] are benchmarked by running the algorithms
on this dataset. To make for a more complete evaluation, how-
ever, we also tested DBSCOUT on larger synthetic datasets,
which we created by duplicating (up to a factor of 10) the
points in such dataset. Small random noise is applied to each
point replica to avoid creating too many overlaps.

To compare the quality of the outliers extracted by DB-
SCOUT with those mined by state of the art outlier detec-
tion algorithms such as Local Outlier Factor [14], we used
some small (4,000-10,000 points), synthetic, two-dimensional
datasets, as well as some well-known benchmark datasets. For
all of them, the exact labels were known upfront.

3) Testing environment: The performance experiments have
been executed on the servers of the SmartData@Polito cluster
located at Politecnico di Torino, Italy. Each server runs Hadoop
3.0.0. The Spark version is 2.4.0, running on Scala 2.11.12,
and the JVM version is 1.8.0 181. A specific Yarn queue has
been dedicated to the execution of our experiments, to which
a total of 100 CPU vcores and 800 GB of main memory were
statically assigned. Two allocation schemes of such dedicated
resources have been defined:

• Configuration #1: This configuration uses 100 executors,
each consisting of a single CPU core and 8 GB of RAM.

• Configuration #2: This configuration uses 50 executors,
each consisting of two CPU cores and 16 GB of RAM.

All tests on the smaller Geolife dataset were performed
using the first configuration, while both configurations were
tested on the larger OpenStreetMap dataset. Note that, on
OpenStreetMap, jobs using RP-DBSCAN could not run in
the first configuration due to memory limitations. Indeed,
RP-DBSCAN requires more memory than DBSCOUT, which
instead returns consistent results independently of the used
configuration. For the same reason, we also used configuration
#2 for all tests using the DDLOF algorithm.

Fig. 10. OpenStreetMap: Scalability with respect to the input points

TABLE II
AVERAGE RUNNING TIME (SECONDS) OF THE TESTED ALGORITHMS

Dataset DBSCOUT RP-DBSCAN DDLOF
Geolife 40.0 44.0 -

OpenStreetMap (1%) 104.6 214.8 788.0
OpenStreetMap (25%) 205.0 713.4 8993.0
OpenStreetMap (50%) 302.0 820.0 -
OpenStreetMap (75%) 434.6 1070.0 -

OpenStreetMap 747.0 1129.4 -
OpenStreetMap (200%) 1382.2 14362.2 -
OpenStreetMap (500%) 3367.6 - -
OpenStreetMap (1000%) 6835.4 - -

4) Evaluation metrics: To measure the efficiency of the
outlier detection algorithms, we used the elapsed execution
time (in seconds) as reported by the Spark web interface. All
the tests were run five times so to derive general trends which
do not depend on the specific load factor of the cluster at any
given moment. The average and standard deviation were used
as aggregate values for each series of tests.

To measure the quality of the extracted outliers, we used
the F1-score metric, computed for the outlier class.

B. Efficiency

We performed a set of experiments on OpenStreetMap and
Geolife to evaluate the efficiency of DBSCOUT, the baseline
approach based on RP-DBSCAN, and the parallel version of
LOF (DDLOF). For DBSCOUT and RP-DBSCAN we used a
parameter setting similar to [32]. Specifically, we set minPts
to 100, while the values for ε were chosen in the neighborhood
of the ones used in such paper. As for RP-DBSCAN, the
approximation parameter was fixed to ρ = 0.01 in all runs,
as suggested by the authors. Also for the DDLOF algorithm,
we used the parameter setting suggested by the implementation
provided by its authors (specifically, we set k = 6) [22].

1) Scalability with respect to the number of points: First,
we empirically evaluated the scalability of the considered
algorithms with respect to the number of input points. To
this purpose, we used Geolife and OpenStreetMap, as well
as some random samples and enlarged versions of the latter.
The parameter ε was set to 102 for Geolife and to 106 for
OpenStreetMap, as those correspond to one of the central
values used in the tests with variable ε (see next).

As for the Geolife dataset, DBSCOUT and RP-DBSCAN
performed almost equally in terms of execution time: 44.0
seconds (on average) for RP-DBSCAN, 40.0 seconds for DB-
SCOUT (see Table II). However, we recall that the approach
based on RP-DBSCAN is approximated. Hence, although the
execution time of both algorithms is similar, the quality of
the extracted outliers is different, as we will show in § IV-C2.
In spite of the small dataset size, the DDLOF algorithm on
the other hand was not capable of producing a result within 4
hours. We believe that to be related to the data distribution of
analyzed data, and in particular to the significant skewness of
the dataset.

Fig. 10 and Table II report the results of the tests run on the
OpenStreetMap dataset samples. Missing values are to indicate
that the algorithm either raised out of memory exceptions or
did not terminate within 4 hours while running on the spec-
ified dataset. Independently of the used cluster configuration,
DBSCOUT scales linearly with respect to the number of input
points and it is always faster than the approximated approach
based on RP-DBSCAN (up to 10 times on the 200% version
of OpenStreetMap). Also, RP-DBSCAN was not able to run
on the two largest versions of OpenStreetMap. DDLOF scales
up to 25% of the original size of OpenStreetMap. Nonetheless,
on the 25% dataset sample, DBSCOUT achieves up to a 43x
speedup compared to DDLOF (see Table II).

2) Scalability with respect to ε: A second set of tests was
run to compare the performances of the considered DBSCAN-
like algorithms when varying the value of the parameter ε
(minPts was set to 100 in all tests). Fig. 11 and 12 report
the results of the execution time of DBSCOUT and the RP-
DBSCAN based approach on the Geolife and OpenStreetMap
datasets, respectively.

As for Geolife, no general trend may be derived from
the comparison between DBSCOUT and RP-DBSCAN (see
Fig. 11). Depending on the specific ε, either DBSCOUT or
RP-DBSCAN happens to be slightly faster than the other.
Indeed, due to the significant skewness, with this selection
of parameters most points fall within very few cells (in the
case with ε = 200, 40% of points are assigned to the most
populous one). This facilitates the work of RP-DBSCAN
(which summarizes points at the cell level), but instead impacts
on the performance of DBSCOUT, since these very dense cells
participate in several join operations with their neighbors.

On the larger OpenStreetMap, both algorithms show a
decreasing running time for increasing values of ε, which is
somehow expected due to the reduction in the number of cells.
DBSCOUT results to be faster than RP-DBSCAN in almost
all tests, and the time difference between the two algorithms
is more evident for the lower ε values (see Fig. 12). Indeed,
for the lowest value of ε, RP-DBSCAN is 4.5 times slower
than DBSCOUT.

3) Scalability with respect to the number of partitions: The
final set of performance tests was aimed at characterizing the
scalability of DBSCOUT with respect to the number of data
partitions (i.e., the number of partitions of the Spark’s RDDs).
In this case, the assumption to test is that, by dividing the input

Fig. 11. Geolife: Scalability with respect to ε Fig. 12. OpenStreetMap: Scalability with respect
to ε

Fig. 13. OpenStreetMap: Scalability with respect
to the number of partitions

data in smaller chunks, the overall running time decreases due
to the faster processing of such partitions (if the recombination
cost does not improve significantly). Those experiments were
performed using OpenStreetMap, with parameters set to ε =
106 and minPts = 100. Fig. 13 reports the obtained results.

For DBSCOUT, the impact of the number of partitions
is consistent with the expected one. Specifically, the initial
increase in the number of partitions allows to reduce the execu-
tion time of DBSCOUT. Then, a plateau is reached and further
splitting of the input data does not provide any additional
benefits. Differently, the increase in the number of partitions
hampers RP-DBSCAN, whose running time increases almost
linearly. Hence, DBSCOUT suits better than RP-DBSCAN the
horizontal scalabilty paradigm. We do not report the results for
DDLOF because it has been implemented in MapReduce and
hence the same partition concept is not applicable.

C. Outlier detection quality

In this section we show the good quality of the outliers
identified by DBSCOUT.

1) Comparison with state of the art outlier detection
algorithms: We evaluated the quality of the outliers ex-
tracted by DBSCOUT with respect to the ones mined by
the following state-of-the-art algorithms: Local Outlier Factor
(LOF) [14], Isolation Forest (IF) [15], and One-Class SVM
(OC-SVM) [39], as implemented in scikit-learn [40]. We
compared the class labels (outlier/non-outlier) obtained by
running the two algorithms with the actual ones and computed
the resulting F1-score.

For the selection of DBSCOUT parameters, we adopted
an approach that is usually used for DBSCAN. Specifically,
we fixed the value of minPts, then drawn the graph of the
distance to the minPts-th neighbor against the number of
points. The value of ε was then chosen in the uppermost
part of the elbow zone of such graph. For LOF, IF and OC-
SVM the parameters were chosen by applying a grid search
and selecting the ones yielding the best results. Moreover,
we manually set the contamination factor ν to the actual
proportion of outliers in each dataset.

Table III reports the obtained results (the score of the best
algorithm in each case is reported in bold-face). We see that
DBSCOUT performs generally better or at least on par with

TABLE III
F1-SCORE COMPARISON

Dataset Algorithm Parameters F1-score

Blobs

DBSCOUT ε = 0.54,minPts = 5 0.95960
LOF K = 106, ν = 0.01 0.95000
IF ν = 0.01 0.79000

OC-SVM ν = 0.01 0.74747

Blobs-vd

DBSCOUT ε = 0.92,minPts = 5 0.88889
LOF K = 203, ν = 0.01 0.87000
IF ν = 0.01 0.64000

OC-SVM ν = 0.01 0.74372

Circles

DBSCOUT ε = 0.0216,minPts = 5 0.87912
LOF K = 10, ν = 0.01 0.82000
IF ν = 0.01 0.11000

OC-SVM ν = 0.01 0.24000

Moons

DBSCOUT ε = 0.0206,minPts = 5 0.96410
LOF K = 20, ν = 0.01 0.94000
IF ν = 0.01 0.35000

OC-SVM ν = 0.01 0.60301

Cluto-t4-8k

DBSCOUT ε = 6.86,minPts = 10 0.85695
LOF K = 65, ν = 0.1 0.86061
IF ν = 0.1 0.63427

OC-SVM ν = 0.1 0.53419

Cluto-t5-8k

DBSCOUT ε = 4.2,minPts = 10 0.89609
LOF K = 77, ν = 0.15 0.93838
IF ν = 0.15 0.45049

OC-SVM ν = 0.15 0.27091

Cluto-t7-10k

DBSCOUT ε = 9.0,minPts = 10 0.91906
LOF K = 63, ν = 0.08 0.91332
IF ν = 0.08 0.35678

OC-SVM ν = 0.08 0.32160

Cluto-t8-8k

DBSCOUT ε = 11.52,minPts = 10 0.82173
LOF K = 16, ν = 0.04 0.89269
IF ν = 0.04 0.41058

OC-SVM ν = 0.04 0.36392

Cure-t2-4k

DBSCOUT ε = 0.064,minPts = 10 0.94792
LOF K = 27, ν = 0.05 0.88293
IF ν = 0.05 0.32195

OC-SVM ν = 0.05 0.15981

LOF on most of the considered datasets and consistently better
than IF and OC-SVM. Clearly, performances are better for the
datasets with clusters characterized by a homogeneous density,
such as Blobs and Moons. Nevertheless, good quality scores
are obtained also for the other datasets. Plus, we recall that,
differently from LOF, results for DBSCOUT were obtained
without requiring any domain knowledge for parameter esti-
mation (e.g., DBSCOUT does not need to know an estimate
of the actual proportion of outliers in the dataset) and using a
very simple technique to decide the value of the parameters.

TABLE IV
RP-DBSCAN DETECTION ACCURACY ON GEOLIFE

ε DBSCOUT RP-DBSCAN TP FP FN
25 25652 30297 25632 4665 20
50 14829 17143 14829 2314 0
100 6750 8536 6750 1786 0
200 2498 3096 2498 598 0

TABLE V
RP-DBSCAN DETECTION ACCURACY ON OPENSTREETMAP
ε DBSCOUT RP-DBSCAN TP FP FN

250000 5343651 6594305 5343151 1251154 500
500000 2198398 2612656 2198224 414432 174

1000000 1084141 1225326 1083932 141394 209
2000000 506386 547805 505966 41839 420

2) Comparison with RP-DBSCAN: We finally compared
the outliers extracted by DBSCOUT with those extracted using
RP-DBSCAN. Specifically, since RP-DBSCAN is an approxi-
mated implementation of DBSCAN, we compared the outliers
extracted by RP-DBSCAN with the ones identified through
DBSCOUT, which instead extracts outliers consistently with
Definition 3. Indeed, while the errors in the result could be
negligible for the clustering problem, they could be relevant
for the outlier detection problem. In all tests RP-DBSCAN’s
approximation parameter ρ was set to the standard value 0.01.

In Tables IV and V, the outliers detected by RP-DBSCAN
on Geolife and OpenStreetMap for varying values of the
parameter ε are split in three categories: true positives (i.e.,
actual outliers), false positives (i.e., actual non-outlier points
erroneously marked as outliers by RP-DBSCAN) and false
negatives (i.e., actual outliers erroneously marked as non-
outlier points by RP-DBSCAN). As a general trend, RP-
DBSCAN shows a tendency in identifying a superset of the
actual outliers. In fact, it is characterized by a consistent
proportion of false positives (from 7% to 19% of the output
size depending on ε) and a small percentage of false negatives
(around 0.01%).

These results prove that not only the approach based on
RP-DBSCAN is on average slower than DBSCOUT (§ IV-B),
but, more importantly, this shows a degradation in terms of
quality of the identified outliers.

V. RELATED WORK

Outlier detection algorithms: The outlier detection task has
been extensively studied and several algorithms have been
proposed in the past [10]. Both supervised and unsupervised
outlier detection algorithms have been proposed but, due to
the frequent lack of labeled data, unsupervised approaches are
usually preferred. Some unsupervised approaches (e.g., [15],
[39]) build models of the “normal” data and compute outlier
scores in comparison to the inferred normal model, while other
algorithms calculate the outlier score of each point without
building models (e.g., [14]). Clustering algorithms, such as
DBSCAN, have also been used, with good results, to identify
outliers. Our algorithm extracts the same outliers of DBSCAN
scaling linearly. Hence, it can be used to analyze large datasets.

In the last years, a relevant effort has been focused on the
human-in-the-loop outlier detection problem [41] and outlier

interpretation [42] to improve the quality of the outlier iden-
tification process. Even if these approaches are effective, our
approach is focused on a completely unsupervised approach
that does not involve the human intervention.

Horizontally scalable outlier detection algorithms: Al-
though outlier discovery in the big data context is an important
activity, to the best of our knowledge only one horizontally
scalable outlier detection algorithm, called DDLOF [22], has
been proposed so far. DDLOF is a parallel, MapReduce-
based implementation of the sequential Local Outlier Factor
algorithm [14]. Similarly to DBSCOUT, DDLOF aims at
discovering outliers from big datasets by using horizontally
scalable frameworks. The main differences are given by the
efficiency of the two algorithms and the type of mined outliers.
We proved that the complexity of DBSCOUT is linear with
respect to the number of points (see § III) whereas this property
is not proved to be satisfied by DDLOF [22], [38]. Also
the experimental results empirically show that DBSCOUT
scales linearly with respect to the number of points and it
is more efficient than DDLOF. The other difference between
DBSCOUT and DDLOF is related to the type of discovered
outliers. To the best of our knowledge, DBSCOUT is the first
horizontal scalable algorithm that extracts outliers compliant
with Definition 3, i.e., complaint with the definition used also
by the authors of DBSCAN.

Horizontally scalable implementations of DBSCAN: The
naı̈ve approach that can be used to discover the same set
of outliers extracted by DBSCOUT consists in using one of
the several, exact or approximated, parallel implementations
of DBSCAN [32], [43]–[52] based on Apache Hadoop or
Apache Spark. However, this does not scale as well as
DBSCOUT because all the implementations of DBSCAN,
including the approximated ones, require an additional step
for the identification of clusters that is not linear with respect
to the number of points. Hence, DBSCOUT, which has been
specifically designed for discovering outliers, is the only
algorithm that discovers the outliers of interest in linear time
using a horizontally scalable approach. Moreover, DBSCOUT
is exact whereas the most efficient DBSCAN implementations
are approximated [32], and the introduced approximations
affect the quality of the identified outliers (see § IV-C2).

Fast centralized implementations of DBSCAN: In [34], a
fast centralized version of DBSCAN is proposed. The first
steps of DBSCOUT leverage on the properties and definitions
introduced in [34]. However, DBSCOUT is horizontally scal-
able and hence we showed how the core points identification
step can be implemented in a parallel (scale-out) manner.
Moreover, the solution in [34] addresses two-dimensional data
only while our algorithm generalizes to dimensions greater
than two. Finally, we proposed a specific step, based on new
definitions and properties, to directly identify outliers without
the need for the definition of the complete clusters. Leveraging
on this new step, DBSCOUT scales linearly.

Finally, we acknowledge the recent introduction of a fast
DBSCAN algorithm that exploits CPU-level parallelism [33].
This work, which shares some basic ideas with our research,

is not however truly comparable to our results, since it targets
parallelism on a single machine instead of the scale-out
approach used by DBSCOUT.

VI. CONCLUSIONS

In this paper, we studied the problem of outlier detection
at scale for very large settings with billions of tuples. We
proposed a parallel exact algorithm that has a linear time
complexity and can run in a distributed manner on multiple
machines. Our experimental results confirm the efficiency,
scalability, and effectiveness of our proposal and show its
applicability on very large real 2D and 3D GPS datasets.

REFERENCES

[1] R. Bansal, N. Gaur, and S. N. Singh, “Outlier detection: applications and
techniques in data mining,” in 2016 6th International Conference-Cloud
System and Big Data Engineering (Confluence), 2016, pp. 373–377.

[2] Y. Zhang, N. Meratnia, and P. Havinga, “Outlier detection techniques
for wireless sensor networks: A survey,” IEEE communications surveys
& tutorials, vol. 12, no. 2, pp. 159–170, 2010.

[3] H. J. Escalante, “A comparison of outlier detection algorithms for
machine learning,” in Proceedings of the International Conference on
Communications in Computing, 2005, pp. 228–237.

[4] W. Li, W. Mo, X. Zhang, J. J. Squiers, Y. Lu, E. W. Sellke, W. Fan, J. M.
DiMaio, and J. E. Thatcher, “Outlier detection and removal improves
accuracy of machine learning approach to multispectral burn diagnostic
imaging,” Journal of biomedical optics, vol. 20, no. 12, p. 121305, 2015.

[5] K. Y. Chan, C. Kwong, and T. C. Fogarty, “Modeling manufacturing
processes using a genetic programming-based fuzzy regression with
detection of outliers,” Information Sciences, vol. 180, no. 4, pp. 506–
518, 2010.

[6] N. S. Balke and T. B. Fomby, “Large shocks, small shocks, and
economic fluctuations: outliers in macroeconomic time series,” Journal
of Applied Econometrics, vol. 9, no. 2, pp. 181–200, 1994.

[7] J. J. Lehtomaki, J. Vartiainen, M. Juntti, and H. Saarnisaari, “CFAR
outlier detection with forward methods,” IEEE Transactions on Signal
Processing, vol. 55, no. 9, pp. 4702–4706, 2007.

[8] K. Singh and S. Upadhyaya, “Outlier detection: applications and tech-
niques,” International Journal of Computer Science Issues (IJCSI),
vol. 9, no. 1, p. 307, 2012.

[9] A. Zimek and P. Filzmoser, “There and back again: Outlier detection
between statistical reasoning and data mining algorithms,” Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8,
no. 6, p. e1280, 2018.

[10] A. Boukerche, L. Zheng, and O. Alfandi, “Outlier detection: Methods,
models, and classification,” ACM Computing Surveys, vol. 53, no. 3,
Jun. 2020.

[11] E. M. Knorr, R. T. Ng, and V. Tucakov, “Distance-based outliers:
algorithms and applications,” The VLDB Journal, vol. 8, no. 3-4, pp.
237–253, 2000.

[12] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” in Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, 2000, pp.
427–438.

[13] F. Angiulli and C. Pizzuti, “Fast outlier detection in high dimensional
spaces,” in European conference on principles of data mining and
knowledge discovery. Springer, 2002, pp. 15–27.

[14] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: identifying
density-based local outliers,” in Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, 2000, pp. 93–104.

[15] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in Proceedings
of the 8th IEEE International Conference on Data Mining (ICDM 2008),
2008, pp. 413–422.

[16] ——, “Isolation-based anomaly detection,” ACM Transactions on
Knowledge Discovery from Data (TKDD), vol. 6, no. 1, pp. 1–39, 2012.

[17] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek, “Outlier detection
in axis-parallel subspaces of high dimensional data,” in Pacific-Asia
Conference on Knowledge Discovery and Data Mining, 2009, pp. 831–
838.

[18] ——, “Outlier detection in arbitrarily oriented subspaces,” in 2012 IEEE
12th international conference on data mining, 2012, pp. 379–388.

[19] H. Fanaee-T and J. Gama, “Tensor-based anomaly detection: An inter-
disciplinary survey,” Knowledge-Based Systems, vol. 98, pp. 130–147,
2016.

[20] A. Zimek, E. Schubert, and H.-P. Kriegel, “A survey on unsupervised
outlier detection in high-dimensional numerical data,” Statistical Analy-
sis and Data Mining: The ASA Data Science Journal, vol. 5, no. 5, pp.
363–387, 2012.

[21] C. Yang, M. Yu, F. Hu, Y. Jiang, and Y. Li, “Utilizing cloud computing
to address big geospatial data challenges,” Computers, Environment and
Urban Systems, vol. 61, pp. 120–128, 2017.

[22] Y. Yan, L. Cao, C. Kulhman, and E. Rundensteiner, “Distributed local
outlier detection in big data,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’17, 2017, p. 1225–1234.

[23] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), 1996, pp. 226–231.

[24] R. Ranjith, J. J. Athanesious, and V. Vaidehi, “Anomaly detection using
DBSCAN clustering technique for traffic video surveillance,” in Seventh
International Conference on Advanced Computing, 2015, pp. 1–6.

[25] M. Çelik, F. Dadaşer-Çelik, and A. Ş. Dokuz, “Anomaly detection in
temperature data using DBSCAN algorithm,” in 2011 international sym-
posium on innovations in intelligent systems and applications. IEEE,
2011, pp. 91–95.

[26] A. V. Chernov, I. K. Savvas, and M. A. Butakova, “Detection of point
anomalies in railway intelligent control system using fast clustering
techniques,” in International Conference on Intelligent Information
Technologies for Industry. Springer, 2018, pp. 267–276.

[27] I. Khan, A. Capozzoli, S. P. Corgnati, and T. Cerquitelli, “Fault detection
analysis of building energy consumption using data mining techniques,”
Energy Procedia, vol. 42, pp. 557–566, 2013.

[28] K. Sheridan, T. G. Puranik, E. Mangortey, O. J. Pinon-Fischer, M. Kirby,
and D. N. Mavris, “An application of DBSCAN clustering for flight
anomaly detection during the approach phase,” in AIAA Scitech 2020
Forum, 2020, p. 1851.

[29] Z. Chen and Y. F. Li, “Anomaly detection based on enhanced DBSCAN
algorithm,” Procedia Engineering, vol. 15, pp. 178–182, 2011.

[30] T. M. Thang and J. Kim, “The anomaly detection by using DBSCAN
clustering with multiple parameters,” in 2011 International Conference
on Information Science and Applications. IEEE, 2011, pp. 1–5.

[31] P. Parveen, M. Lee, A. Henslee, M. Dugan, and B. Ford, “Partition-
aware scalable outlier detection using unsupervised learning,” in 2018
IEEE International Conference on Information Reuse and Integration
(IRI). IEEE, 2018, pp. 186–192.

[32] H. Song and J.-G. Lee, “RP-DBSCAN: A superfast parallel DBSCAN
algorithm based on random partitioning,” in Proceedings of the 2018
International Conference on Management of Data, 2018, p. 1173–1187.

[33] Y. Wang, Y. Gu, and J. Shun, “Theoretically-efficient and practical paral-
lel DBSCAN,” in Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, 2020, p. 2555–2571.

[34] A. Gunawan and M. de Berg, “A faster algorithm for DBSCAN,” 2013.
[35] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,

X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache Spark: A unified engine
for big data processing,” Commun. ACM, vol. 59, no. 11, p. 56–65, 2016.

[36] Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li, Geolife
GPS trajectory dataset, Geolife GPS trajectories 1.3 ed.,
August 2012. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/geolife-gps-trajectory-dataset-user-guide/

[37] OpenStreetMap contributors, Bulk GPS point data, April 2012.
[Online]. Available: https://blog.openstreetmap.org/2012/04/01/bulk-
gps-point-data

[38] Y. Yan, L. Cao, and E. A. Rundensteiner, “Distributed top-N local outlier
detection in big data,” in 2017 IEEE International Conference on Big
Data, BigData 2017. IEEE, 2017, pp. 827–836.

[39] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C.
Platt, “Support vector method for novelty detection,” in Proceedings of
the 12th International Conference on Neural Information Processing
Systems. The MIT Press, 1999, pp. 582–588.

[40] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[41] C. Chai, L. Cao, G. Li, J. Li, Y. Luo, and S. Madden, “Human-in-the-
loop outlier detection,” in ACM SIGMOD 2020, 2020, p. 19–33.

[42] X. H. Dang, B. Micenková, I. Assent, and R. T. Ng, “Local outlier
detection with interpretation,” in ECMLPKDD 2013, 2013, p. 304–320.

[43] G. Luo, X. Luo, T. F. Gooch, L. Tian, and K. Qin, “A parallel DBSCAN
algorithm based on Spark,” in 2016 IEEE International Conferences
on Big Data and Cloud Computing (BDCloud), Social Computing and
Networking (SocialCom), Sustainable Computing and Communications
(SustainCom)(BDCloud-SocialCom-SustainCom). IEEE, 2016, pp.
548–553.

[44] D. Han, A. Agrawal, W.-K. Liao, and A. Choudhary, “A novel scalable
DBSCAN algorithm with Spark,” in 2016 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). IEEE,
2016, pp. 1393–1402.

[45] Y. Yu, J. Zhao, X. Wang, Q. Wang, and Y. Zhang, “Cludoop: an
efficient distributed density-based clustering for big data using Hadoop,”
International Journal of Distributed Sensor Networks, vol. 11, no. 6, p.
579391, 2015.

[46] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan, “MR-DBSCAN: a
scalable MapReduce-based DBSCAN algorithm for heavily skewed
data,” Frontiers of Computer Science, vol. 8, no. 1, pp. 83–99, 2014.

[47] M. M. A. Patwary, N. Satish, N. Sundaram, F. Manne, S. Habib,
and P. Dubey, “Pardicle: Parallel approximate density-based clustering,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2014, pp. 560–571.

[48] X. Xu, J. Jäger, and H.-P. Kriegel, “A fast parallel clustering algo-
rithm for large spatial databases,” in High Performance Data Mining.
Springer, 1999, pp. 263–290.

[49] I. Cordova and T.-S. Moh, “DBSCAN on resilient distributed datasets,”
in 2015 International Conference on High Performance Computing &
Simulation (HPCS). IEEE, 2015, pp. 531–540.

[50] B.-R. Dai and I.-C. Lin, “Efficient map/reduce-based DBSCAN algo-
rithm with optimized data partition,” in 2012 IEEE Fifth international
conference on cloud computing. IEEE, 2012, pp. 59–66.

[51] A. Lulli, M. Dell’Amico, P. Michiardi, and L. Ricci, “NG-DBSCAN:
scalable density-based clustering for arbitrary data,” Proceedings of the
VLDB Endowment, vol. 10, no. 3, pp. 157–168, 2016.

[52] E. Januzaj, H.-P. Kriegel, and M. Pfeifle, “Scalable density-based
distributed clustering,” in European Conference on Principles of Data
Mining and Knowledge Discovery. Springer, 2004, pp. 231–244.

APPENDIX

Proof of Lemma 1. Following the definition of ε-cell, the
distance between any given points pi, pj ∈ C is at most ε.
Since C is dense, any point p ∈ C will have at least minPts
neighboring points with a distance that is at most ε (all the
points within the cell). Hence, by the definition of core point,
it follows that all points in C are core points.

Proof of Lemma 2. From the definition of ε-cell, the distance
between any points pi, pj ∈ C is at most ε. Since C is core,
there exists at least a point p∗ ∈ C that is core. All the other
points in C will be neighbors of that point. Hence, according
to the definition of outlier, they are not outliers because they
fall within the ε-neighborhood of a core point.

Proof of Lemma 3. Consider a cell C, identified by
(c1, . . . , cd) ∈ Zd. A necessary condition for a cell C ′ to be
neighbor of C is that its coordinates c′i = ci+j (where j ∈ Z)
satisfy the following inequality along any fixed dimension i:

ε

(
ci√
d
− 1

)
≤ ε√

d
(ci + j) ≤ ε

(
ci√
d
+ 1

)
Simplifying the above expression, we obtain that −

√
d ≤

j ≤
√
d.

Possible values for j are therefore those between −
⌈√

d
⌉

and
⌈√

d
⌉

, which identify 2
⌈√

d
⌉
+1 different cells. In other

words, all the possible neighbors of C are contained within a
hypercube made up of 2

⌈√
d
⌉
+ 1 cells along each of the d

directions. Hence, their total number is
(
2
⌈√

d
⌉
+ 1
)d

.

Proof of Lemma 4. The algorithm considers all points once,
computing the cell coordinates by applying a single floating-
point operation to all its components. Therefore, its complexity
is O(n).

Proof of Lemma 5. The algorithm considers every points twice
(once for the mapping, once for the reducing), plus it performs
a single pass over all cells for deciding their type. Hence, its
complexity is O(n).

Proof of Lemma 6. The function considers all the cells C.
If C is dense, its processing is negligible. Otherwise, all the
points within the cell, which are at most minPts − 1, must
be compared to each point in the neighboring cells N of C.
The number of comparisons we need to perform is therefore:∑

C

∑
p∈C

∑
N∈N (C)

∑
q∈N

1

Operating the same substitution as in Gunawan [34], we
note that N ∈ N (C) ⇔ C ∈ N (N). As a consequence, we
can write:∑

C

∑
p∈C

∑
N∈N (C)

∑
q∈N

1 =
∑
N

∑
q∈N

∑
C∈N (N)

∑
p∈C

1

Given that |C| = O(minPts) and |N (N)| = kd, we have:∑
N

∑
q∈N

∑
C∈N (N)

∑
p∈C

1 =
∑
N

∑
q∈N

O(minPts ∗ kd)

Finally, since
∑
N

∑
q∈N 1 = n, we obtain:∑

N

∑
q∈N

O(minPts ∗ kd) = O(n ∗minPts ∗ kd)

Given that minPts and kd are constants (specifically, we
suppose kd � n), the overall worst-case complexity of this
phase is O(n).

Proof of Lemma 7. The algorithm considers all the core points
in non-dense cells once to update the cell map, which can be
done in O(1) time. Since |Cnd| = O(n), the overall complexity
is O(n).

Proof of Lemma 8. The algorithm passes over the cells. If
the cell is core, then no operation needs to be performed.
Otherwise, all the points in the cell (at most minPts−1, since
a non-core cell is certainly not dense) need to be compared
to all the points in the neighboring core cells (at most kd).
Thus, the overall complexity is equivalent to the one for the
core points identification phase: O(n).

