
S1 Appendix

S1 Theoretical framework

S1.1 Kolmogorov-Smirnov tests on data

In this section we wish to apply Kolmogorov-Smirnov to test the reliability of our
assumption that a negative binomial (NB) with negative clustering coefficient well
describes the human-activity data we are studying. Let us remark that this is only
hypothesis on which we built our statistical model and by no means the core of the
manuscript. Indeed, our scope is not to find the best fat-tailed distribution to fit data,
but instead to find a statistical model to give reliable estimates of the quantities we are
interested to infer. From this perspective, our choice of modeling the frequency of
frequencies with a NB is justified by their form-invariance which allows to
mathematically obtain an effective yet simple estimator for the global number of types
which explicitly depends on the scale.

We thus proceeded as follows: for each global dataset, we generated two random
sub-samples covering a fraction of 3% and 5% of all the individuals (posts, e-mails,
words) and we used maximum likelihood estimation to obtain the NB r and ξ
parameters providing the best-fit of the local empirical RSA distribution (see Figure S2
and Figure 3 of the main text). We thus generated 5000 data from the fitted
distribution and applied Kolmogorov-Smirnov to compare the original and the generated
data. We repeated the procedure 100 times for both the 3% and 5% samples. In
Tables S1 and S2 we show the statistics (average, standard deviation and range) of the
100 p-values obtained for all the four datasets, as well as the corresponding percentage
of times that the null hypothesis that the two datasets follow the same distribution is
accepted at 1% and 5% level. We then applied the very same procedure when fitting the
original data with a Zipf’ law, which have been observed and studied since decades in
computational linguistic to describe type-token relationships. In Tables S1 and S2 we
also reported the results of Kolmogorov-Smirnov for this assumption. As we can see, for
all dataset, the NB resulted compatible with data in more than 90% of the cases,
whereas the Zipf’s law was mainly rejected in the Emails, Twitter and Gutenberg
dataset, while being accepted in 60% circa of the cases for Wikipedia.

p-value Emails Twitter Wikipedia Gutenberg
statistic NB Zipf NB Zipf NB Zipf NB Zipf

mean 0.88 ∼ 0 0.85 1.1 · 10−6 0.41 0.099 0.48 0.0088
sd 0.18 ∼ 0 0.22 8.4 · 10−6 0.29 0.17 0.27 0.016

min 0.26 0 0.13 ∼ 0 0.00027 ∼ 10−6 0.00030 2.3·10−6

max 1 ∼ 0 1 0.000083 ∼1 0.82 0.998 0.080
accepted at 1% 100 0 100 0 96 66 98 20
accepted at 5% 100 0 100 0 92 41 93 3

Table S1. Kolmogorv-Smirnov Tests. Results for Kolmogorov-Smirnov test on the sub-samples
covering the 3% of the global number of individuals in the four different human-activity datasets (columns 2
to 5). We report the p-values statistics (average, standard deviation, minimal/maximal value and number of
cases in which the null hypothesis that data are compatible with the fitted NB/Zipf’s law distribution is
accepted at 1% and 5% level) among the 100 trials for each sub-sample.
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p-value Emails Twitter Wikipedia Gutenberg
statistic NB Zipf NB Zipf NB Zipf NB Zipf

mean 0.63 ∼ 0 0.90 1.3 · 10−7 0.36 0.062 0.45 0.0033
sd 0.25 ∼ 0 0.16 5.6 · 10−7 0.26 0.093 0.29 0.0091

min 0.076 0 0.10 0 0.0011 1.1 · 10−6 0.004 ∼ 0
max ∼1 ∼ 0 1 4.8 · 10−6 ∼ 1 0.45 0.98 0.066

accepted at 1% 100 0 100 0 98 60 99 6
accepted at 5% 100 0 100 0 91 35 92 2

Table S2. Kolmogorv-Smirnov Tests. Results for Kolmogorov-Smirnov test on the sub-samples
covering the 5% of the global number of individuals in the four different human-activity datasets (columns 2
to 5). We report the p-values statistics (average, standard deviation, minimal/maximal value and number of
cases in which the null hypothesis that data are compatible with the fitted NB/Zipf’s law distribution is
accepted at 1% and 5% level) among the 100 trials for each sub-sample.

S1.2 Statistical model

Once it has been defined what are species and individuals of a species in each of the
four human activities considered, we can proceed in the explanation of our statistical
model from an ecological perspective.

We denote with N the total population size and with S the number of different
species populating an ecosystem.

The species abundance distribution (SAD) at a scale p depicts the number of species
in a subpopulation of size pN having exactly n individuals. In the following we will
quote as RSA the corresponding probability distribution, denoted by P (n|p).

Let us now consider the whole system, i.e. the entire population. We assume that, at
the global scale p = 1, the RSA distribution is proportional to a negative binomial with
parameters r and ξ. It reads:

P (n|1) = c(r, ξ) · P(n|r, ξ) for n ≥ 1 (1)

where P(n|r, ξ) is the well known negative binomial density function with parameters r
and ξ, i.e.

P(n|r, ξ) =

(
n+ r − 1

n

)
ξn(1− ξ)r

and where the normalizing factor c(r, ξ) takes into account the fact that each of the
existing S species at the global scale consists of at least one individual:

c(r, ξ) =

[ ∞∑
n=1

(
n+ r − 1

n

)
ξn(1− ξ)r

]−1

=
1

1− (1− ξ)r
.

Through the paper we always consider the generalized negative binomial distribution
where the binomial coefficient is expressed by means of Gamma functions, i.e.(
n+r−1
n

)
= Γ(n+r)

Γ(n+1)Γ(r) .

The reason why we chose to model the RSA distribution with a negative binomial
will be clear in few lines. For the moment, let us anticipate that the negative binomial
has two properties that are essential for the development of our estimators: it is
form-invariant (see Section S1.2) and, varying the values of ξ and r, it can describe very
well different tail behaviors, from exponential to power-law (see Section S1.3).

S1.3 Form-invariance of the RSA distribution

Zooming at a sub-scale p, i.e. considering a subpopulation of size pN , we will recover
Sp ≤ S species. Note that Sp may depend on which pN individuals we select. In other
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words, different samples of the same size may lead to different values of Sp. We wish to
derive the distribution of the local RSA P (k|p) under the hypothesis of random
sampling.

Under random sampling, it can be proven that, if the RSA at the global scale is
distributed according to (1), then the local RSA at a local scale p is again proportional
to a negative binomial, with rescaled parameter ξp and same r:

P (k|p) =

 c(r, ξ) · P(k|r, ξp) k ≥ 1

1− c(r, ξ)/c(r, ξp) k = 0
(2)

with

ξp =
pξ

1− ξ(1− p)
. (3)

The fact that the RSA maintains the same functional form at different scales will be
central in our framework. We will refer to this property as form-invariance. We remark
that form-invariance should not be confused with scale-invariance. In fact, this latter is
defined as the following property: a distribution f is said to be scale-invariant if
f(px) = g(p)f(x) where g(p) is a multiplicative scale-dependent constant. It can be
proven that power-laws are the only distributions satisfying this property. In contrast,
with form-invariant we mean a distribution which maintains the same functional form
under random sampling.

We wish now to prove that relation (2) holds.
Suppose that a species consists of n individuals among the whole population. Under

random sampling, the conditional probability that the species has k individuals at the
sub-scale p, given that it has total abundance n at the global scale, is given by a
binomial distribution of parameters n and p:

Pbinom(k|n, p) =

(
n

k

)
pk(1− p)n−k k = 0, ..., n

and Pbinom(k|n, p) = 0 if k > n. Let us now prove that the RSA at the local scale
P (k|p) is indeed distributed according to (2).

We start by noticing that, in order to compute the probability that a species has
abundance k ≥ 1 at a local scale p, we need to condition on the fact that the species has
abundance n at the whole scale p = 1, and then to sum over n, i.e.

P (k|p) =
∑
n≥k

Pbinom(k|n, p)P (n|1)

=
∑
n≥k

(
n

k

)
pk(1− p)n−k · c(ξ, r)

(
n+ r − 1

n

)
ξn(1− ξ)r

= c(ξ, r)

(
k + r − 1

k

)(
pξ

1− ξ(1− p)

)k (
1− ξ

1− ξ(1− p)

)r

= c(ξ, r)

(
k + r − 1

k

)
ξkp (1− ξp)r

= c(ξ, r) · P(k|r, ξp),

with ξp given in (3). For k = 0 we have

P (0|p) = 1−
∑
k≥1

Psub(k|p) = 1− c(ξ, r)
∑
k≥1

P(k|r, ξp) = 1− c(ξ, r)

c(ξp, r)
.
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Our method proceeds as follows: after fitting the parameters ξ̂p∗ and r̂ from the
empirical RSA observed at a local scale p∗, we upscale them so to obtain an estimation
of the global parameter ξ̂ at p = 1 by inverting (3). The formula reads explicitly:

ξ =
ξp∗

p∗ + ξp∗(1− p∗)
. (4)

Note that this form-invariance holds between any two scales q ≤ p. Indeed, from

ξp =
pξ

1− ξ(1− p)
and ξq =

qξ

1− ξ(1− q)

we obtain

ξq =
qξ

1− ξ(1− q)
=

q
ξp

p+ξp(1−p)

1− ξp
p+ξp(1−p) (1− q)

=
qξp

p+ ξp(1− p)− ξp(1− q)

=
qξp

p− ξp(p− q)
=

q
pξp

1− ξp(1− q
p )
.

With the same argument, for any q ≥ p it holds

ξq =
ξp

p
q + ξp(1− p

q )
. (5)

Hence what really matters is the relative ratio of the two scales.

S1.4 Power-law tails of P(n|r, ξ) with r ∈ (−1, 0)
A negative binomial density function with parameters ξ and r > 0 results to capture
very well empirical RSA patterns in tropical forests [Tovo et al.(2017)Tovo, Suweis,
Formentin, Favretti, Volkov, Banavar et al.,Tovo et al.(2019)Tovo, Formentin, Suweis,
Stivanello, Azaele, and Maritan]. The observed RSAs in the analyzed human-activity
databases, although displaying a similar universal character, do show a different
behavior, characterized by heavy tails (see Figure S2 and Figure 3 of the main text).
These heavy tails of the observed RSAs cannot be captured by a standard negative
binomial distribution with r ∈ R+. Nevertheless, they can be accommodated when
allowing the clustering parameter r to take negative values, r ∈ (−1, 0), thus enabling
us to adapt and generalize the theoretical work of [Tovo et al.(2017)Tovo, Suweis,
Formentin, Favretti, Volkov, Banavar et al.] to portray regular statistics of human
activities and to use information on local scales to predict hidden features of the human
dynamics at the global scale.

We wish now to show that the extension of the parameter region reflects in a
power-law behavior of the RSA distribution tail with an exponential cut-off, which well
describes the observed patterns in human activities. We point our that both the
parameters intervene in the shape of the RSA patterns, being r responsible for the
power-law tail with exponent α = 1− r and ξ for the position of the exponential
truncation of the distribution. Note that, although this section is purely theoretical, the
predicted exponent α = 1− r matches very well our findings when we empirically fit the
data (see also Figure 3 of the main text).

We start by considering our truncated negative binomial distribution of parameters r
and ξ at the global scale (henceforth we will write P (n) for P (n|1), thus omitting the
explicit dependence on the scale p = 1):

P (n) = c(r, ξ)

(
n+ r − 1

n

)
ξn(1− ξ)r, (6)
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The following theorem holds true [Walraevens et al.(2012)Walraevens, Demoor,
Maertens, and Bruneel,Flajolet and Sedgewick(2008)].

Theorem S1.1 Let Y (z) be the generating function of a discrete random variable
having probability mass function P (·) with dominant singularity RY . Let
β ∈ R \ {0, 1, 2, ...}. If for z → RY

Y (z) ∼ cY (1− z/RY )
β
, (7)

then the distribution P (n) satisfies

P (n) ∼
cY n

−β−1R−nY
Γ(−β)

for n→∞, (8)

where Γ(·) is the Gamma function.

We wish to apply this theorem to our truncated negative binomial distribution. Let us
first recall that a singularity of a complex function is a point in the complex plane
where the function is not analytic. Examples are poles, square-root branch points and
branch cuts.

We now start by examining the probability generating function:

Y (z) =

∞∑
n=0

P (n)zn, (9)

where P (n) is given in (6). Observe that, since we wish to investigate the singularities
of Y (z), the normalizing factor c(r, ξ) does not play any significant role. Moreover, the
tail of a truncated negative binomial is exactly the same of a standard negative
binomial, hence we simply disregard of the truncation and conduct the analysis for a
standard negative binomial.

Since we aim at finding the lowest-norm singularity of the probability generating
function Y (z), we proceed with the computation by replacing the term P (n) in (9) with
its definition (6):

Y (z) =

∞∑
n=0

(
n+ r − 1

n

)
ξn(1− ξ)rzn

=

∞∑
n=0

(
n+ r − 1

n

)
(zξ)n(1− zξ)r · (1− ξ)r

(1− zξ)r

=
(1− ξ)r

(1− zξ)r
·
∞∑
n=0

(
n+ r − 1

n

)
(zξ)n(1− zξ)r.

For zξ < 1, i.e. for z < 1
ξ , the sum converges to 1 as we are summing over N the

marginals of a standard negative binomial of parameters r and zξ.
Thus we are left with

Y (z) =
(1− ξ)r

(1− zξ)r
= cY (1− zξ)−r.

It turns out that Y (z) has a singularity at z = 1/ξ.
We now wish to express Y (z) as in (7) to apply the theorem. In our case:

Y (z) = cY (1− zξ)−r = cY (1− z/RY )β ,

where we set β = −r and RY = 1
ξ . Thus, Theorem (S1.1) provides a characterization of

the tails of the (truncated) negative binomial:

P (n) ∼ cY n
r−1ξn

Γ(−β)
=

cY n
r−1en ln(ξ)

Γ(−β)
, n >> 1. (10)
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S1.5 Estimator for the total number of species and SAC

We proceed now in the description of our procedure. Recall that our method only uses
the information available at a sub-sample covering a fraction p∗ of the entire system.
Therefore, we only have information on the abundances of the Sp∗ species present
within the surveyed area. We now wish to determine the relationship between the total
number of species S in the entire population, i.e. at p = 1, and the number of observed
species at the sub-scale p∗.

Note that the probability that a species among the existing S has null abundance at
scale p∗ corresponds to the fraction of unsurveyed species. Hence we obtain

P (k = 0|p∗) ' S − Sp∗
S

. (11)

Arranging the latter equation, we get a formula to predict the total number of species:

Ŝ
eq (11)

=
Sp∗

1− P (k = 0|p∗)

eq (2)
= Sp∗

1− (1− ξ̂)r̂

1− (1− ξ̂p∗)r̂

eq (4)
= Sp∗

1−

(
1− ξ̂p∗

p∗ + ξ̂p∗(1− p∗)

)r̂
1− (1− ξ̂p∗)r̂

.

(12)

Thus we derived a formula to estimate the total number of species of a community given
a sample at scale p∗.

Let us note that we can do more. Indeed, for any q ∈ (p∗, 1) we can apply the same
chain of equations as above with some slight modifications to estimate Ŝq:

Ŝq = Sp∗

1−

(
1− ξ̂p∗

p∗

q + ξ̂p∗(1− p∗

q )

)r̂
1− (1− ξ̂p∗)r̂

= Sp∗

1−

 p∗
(

1− ξ̂p∗
)

p∗ + ξ̂p∗ (q − p∗)

r̂

1− (1− ξ̂p∗)r̂
. (13)

Hence we obtained an explicit formula for the species-accumulation curve for every
q ≤ 1 from the local up to the global scale.

Moreover we can express the RSA distribution at the global scale by plugging the
estimated parameters ξ̂ and r̂ into (1).

S1.6 Popularity and abundance variation through scales

Note that until now we studied the abundance distribution of the observed species at
the local scale, but only to estimate the number of unseen species, disregarding of their
abundances. However, abundance information may of relevance in some contexts. For
example, if one is interested in measuring the popularity of hashtags in Twitter, one
naive way to do that is to count the number of times it has been posted. A second
novelty we introduced in our work is indeed a method to estimate the variation of
popularity in social networks. Let us first recall our previous findings using a more
detailed notation which turns out to be essential in the following.

Definition S1.2 For every s = 1, ..., S, we indicate with np
∗

s , n
1−p∗
s the abundance of

species s in the observed (resp. unobserved) fraction p∗ (resp. 1− p∗) of the population.
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• First, let us introduce the statistics:

Sp∗ =

S∑
s=1

1{np∗
s >0}

whose expected value can be computed as follows:

E [Sp∗ ] = E

[
S∑
s=1

1{np∗
s >0}

]
=

S∑
s=1

E
[
1{np∗

s >0}

]
=

S∑
s=1

P
(
np

∗

s > 0
)

= S · P (k > 0|p∗) = S · [1− P (k = 0|p∗)] .

• Arranging the latter equation, we can isolate the quantity we are interested to
estimate:

S =
E [Sp∗ ]

1− P (k = 0|p∗)
. (14)

• An estimator of S can be thus obtained by replacing the mean E [Sp∗ ] by the
observable Sp∗ :

Ŝ =
Sp∗

1− P (k = 0|p∗)
(15)

With no surprise, we recover the same result as in (12). We wish to stress that
this new formulation allows us to push further our investigation, as we are going
to show.

We wish now to apply the same procedure to different statistics.
Recall that we are sampling Sp∗ species at scale p∗ from a pool consisting of N
individuals belonging to S different species. If a species s is not observed in the sample
at scale p∗, we say that s is a “new” species. The meaning of this definition can be
easily explained. If you imagine to further sample your population, you can either pick
individuals belonging to species already observed or you can discover indeed “new”
species.

Let us then consider the following statistics for the new species:

Snew

1−p∗ =

S∑
s=1

1{np∗
s =0,n1−p∗

s >0}. (16)

The following chain of equality turns out to be meaningful in the following:

Snew

1−p∗ =

S∑
s=1

1{np∗
s =0,n1−p∗

s >0} =

S∑
s=1

1{np∗
s =0,n1

s>0}

=

S∑
s=1

1{np∗
s =0} =

S∑
s=1

(
1− 1{np∗

s >0}

)
= S − Sp∗ .

We can recover an estimator for the “new” species from estimator (15) for S.
This remark seems trivial, and the chain of equation above appears redundant.

Nevertheless, it is crucial for the development of our work. We stress that the statistics
Snew

1−p∗ uses both the information at the sample scale p∗ and the information contained
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in the unseen fraction of the population 1− p∗. In contrast, the statistics for Sp∗ only
consider the observed individuals.

Given now the statistics (16) representing the number of species unobserved in the
sample of size p∗N but present in the remaining population of size (1− p∗)N . We wish
to recover an estimator for the new species Snew

1−p∗ . We thus compute the expected value
of the corresponding statistics:

E
[
Snew

1−p∗
]

= E
S∑
s=1

1{np∗
s =0,n1−p∗

s >0} = S · P
(
np

∗

s = 0, n1−p∗
s > 0

)
= S · P

(
np

∗

s = 0, n1
s > 0

)
= S · P

(
np

∗

s = 0
)

︸ ︷︷ ︸
P (k = 0|p∗)

.

The expected value turns out to be a product of two factors: P (k = 0|p∗) = P(np
∗

s = 0),
which can be computed via (2), and S, a quantity we can estimate via (15). Hence we
derive the following estimator:

Ŝnew

1−p∗ =
Sp∗

1− P (k = 0|p∗)
· P (k = 0|p∗).

This procedure captures the techniques which allows us to derive other useful estimators.
In particular, this turning point leads us to new statistics that consider also the

popularity.
Let us start from the statistics:

Snew

1−p∗(l) =

S∑
s=1

1{np∗
s =0,n1−p∗

s =l}. (17)

Note that if we get an expression for Snew
1−p∗(l), than we can easily extend the result to

Snew

1−p∗(≥ L) =

·∑
l=L

Snew

1−p∗(l).

Moreover, results from the previous section can be included here, simply noticing that:

Snew

1−p∗ = Snew

1−p(≥ 1) =

·∑
l=1

Snew

1−p∗(l).

We proceed as before by computing the expected value:

E
[
Snew

1−p∗(l)
]

= E
[∑S

s=1 1{np∗
s =0,n1−p∗

s =l}

]
= S · P

(
np

∗

s = 0, n1−p∗
s = l

)
= S · P

(
np

∗

s = 0, n1
s = l

)
= S · P

(
np

∗

s = 0|n1
s = l

)
︸ ︷︷ ︸
Binomial(n1

s, p
∗)

P
(
n1
s = l

)︸ ︷︷ ︸
P (l|1)

,

where in the third equality we used the following relation:

P
(
np

∗

s = x, n1−p∗
s = y

)
= P

(
np

∗

s = x, n1
s = x+ y

)
.

Let us note now the following facts:
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• From the sampling binomial distribution, it holds that
P
(
np

∗

s = 0|n1
s = l

)
= (1− p∗)l;

• P
(
n1
s = l

)
= P (l|1) is given by (1);

• S is unknown and we thus need an estimator for it.

Again, we can use the results of the previous subsection to define Ŝ =
Sp∗

1− P (k = 0|p∗)
and hence to obtain

Ŝnew

1−p∗(l) = Ŝ · (1− p∗)l · P (l|1) =
Sp∗

1− P (k = 0|p∗)
· (1− p∗)l · P (l|1), (18)

which is the estimator for the new species with abundance l.
Thus, as a first partial result, we obtained an estimator for the popularity of the new

species.
Let us now consider the statistics:

S1−p∗(l→ k) =

S∑
s=1

1{np∗
s =l,n1−p∗

s =k}, (19)

which represents the number of species having contemporarily abundance l at the
observed scale p∗ and abundance k at the unobserved scale 1− p∗. Note that we can
compute the number of species having an abundance that lies within a population
interval by summing up on different values of l and k. We proceed by computing the
expected value of the statistics (19):

E [S1−p∗(l→ k)] = E
[∑S

s=1 1{np∗
s =l,n1−p∗

s =k}

]
= S · P

(
np

∗

s = l, n1−p∗
s = k

)
= S · P

(
np

∗

s = l, n1
s = k + l

)
= S · P

(
np

∗

s = l|n1
s = k + l

)
︸ ︷︷ ︸
Binomial(n1

s, p
∗)

P
(
n1
s = k + l

)︸ ︷︷ ︸
P (k + l|1)

.

Now we have the following:

• From the sampling binomial distribution, it holds that

P
(
np

∗

s = l|n1
s = k + l

)
=

(
k + l

l

)
p∗l(1− p∗)k;

• P
(
n1
s = k + l

)
= P (k + l|1) = c(r, ξ)

(
k + l + r − 1

k + l

)
ξk+l(1− ξ)r;

• S is unknown. However, we can estimate it via Ŝ =
Sp∗

1− P (k = 0|p∗)
.

Hence we obtained

Ŝ1−p∗(l→ k) = Ŝ · P
(
np

∗

s = l|n1
s = k + l

)
· P (k + l|1)

=
Sp∗

1− P (0|p∗)
·
(
k + l

l

)
p∗l(1− p∗)k · c(r, ξ̂)

(
k + l + r̂ − 1

k + l

)
ξ̂k+l(1− ξ̂)r̂.

Estimator Ŝ1−p∗(l→ k) above gives the number of species with abundance l at the
observed scale p∗ and abundance k at the unobserved scale 1− p∗. Note that this
estimator is independent of the number of species with abundance l at scale p∗; indeed,
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we are using the sample at scale p∗ only to estimate the parameters ξp∗ and r, which we

need to predict Ŝ. Hence we are only using partial information at the local scale.
We wish now to take into account the information about the number of species with
abundance l at the surveyed scale, Sp∗(l). In particular, we are looking for an estimator
of the species with abundance k in the unobserved fraction 1− p∗ of the population,
given that they have abundance l in the sample at the observed scale p∗.

We thus define Sp∗(l) :=
∑S
s=1 1{np∗

s =l}.

In the following we will need to use quantities of the type P(n1−p∗
s = k|np

∗

s = l).
Using Bayes’ theorem, we obtain

P(n1−p∗
s = k|np∗s = l) = P(n1

s − np
∗

s = k|np∗s = l)

= P(n1
s − l = k|np∗s = l)

= P(n1
s = k + l|np∗s = l)

=
P(np

∗

s = l|n1
s = k + l)P(n1

s = k + l)

P(np
∗
s = l)

.

Note that we all the probabilities appearing in the latter formula are known, since:

• P
(
np

∗

s = l|n1
s = k + l

)
=

(
k + l

l

)
p∗l(1− p∗)k is the sampling binomial

distribution;

• P
(
n1
s = k + l

)
= P (k + l|1) = c(r, ξ)

(
k + l + r − 1

k + l

)
ξk+l(1− ξ)r is the global

truncated negative binomial distribution of parameters r and ξ as in (1);

• P
(
np

∗

s = l
)

= P (l|p∗) = c(r, ξ)

(
l + r − 1

l

)
ξ∗lp (1− ξp∗)r is again a truncated

negative binomial with rescaled parameter ξp as in (2).

Let us now retrace the same steps as for Ŝ1−p∗(l→ k) for the conditional estimator

Ŝ1−p∗(k|l). We start from the statistics

S1−p∗(k|l) =

S∑
s=1

1{np∗
s =l}1{n1−p∗

s =k,np∗
s =l} =

Sp∗ (l)∑
s=1

1{n1−p∗
s =k|np∗

s =l}.

We proceed by computing the expected value

E [S1−p∗(k|l)] = Sp∗(l) · P
(
n1−p∗
s = k|np

∗

s = l
)

= Sp∗(l) ·
P
(
np

∗

s = l|n1
s = k + l

)
P
(
n1
s = k + l

)
P
(
np

∗
s = l

) .

Note that empirically P
(
np

∗

s = l
)

= Sp∗(l)/S, so that we can recover E [S1−p∗(l→ k)] .
Let us now insert into the above formula the probabilities computed by using the

fitted parameters:

Ŝ1−p∗(k|l) = Sp∗(l) ·

(
k + l

l

)
p∗l(1− p∗)k ·

(
k + l + r̂ − 1

k + l

)
ξ̂k+l(1− ξ̂)r̂(

l + r̂ − 1

l

)
ξ̂lp∗(1− ξ̂p∗)r̂

,

where the terms c(r, ξ̂) in the numerator has cancelled out with the one at the
denominator.

Estimator Ŝ1−p(k|l) is theoretically unbiased.
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Note that, again, we can pass from punctual estimation to cumulative ones, by
summing up over all l and k values above some fixed thresholds L and K, respectively:

Ŝ1−p∗(≥ K| ≥ L) =
∑
l≥L

∑
k≥K

Ŝ1−p∗(k|l) (20)

Estimator (20) is the one we are going to test in our databases.

S2 Additional results and figures

In this section we collect some additional results not presented in the main text.

Figure S1. Best-fit and predicted patterns from a local sample scale
p∗ = 5%. Empirical RSA curves at global scale (p = 1) and local scale (p∗ = 5%) are
shown. In each panel, coloured lines over the local RSAs represent the distribution
obtained via a best-fit of the empirical pattern with a negative binomial having
r ∈ (−1, 0). Lines over the global RSA distributions represent our prediction for the
RSAs at the global scales obtained via our upscaling equations for both the parameters
and the biodiversity. In each panel, insets showing the corresponding global cumulative
RSA (both empirical and predicted) are added.

S2.1 Upscaling results from sample scale p∗ = 3%

In the main text we showed the results we obtained with our upscaling method when
sampling a fraction p∗ = 5% of the four databases. We performed the same tests also
for a local scale p∗ = 3%, with similar results.

First of all, as shown in Figure S2, also for the case p∗ = 3% we observe the
form-invariance property of the empirical RSAs for all the considered human activity
datasets.
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Figure S2. Universality and form-invariance of the empirical RSAs.
Empirical RSA curves at the global scale (p = 1) and the local scale (p∗ = 3%) are
shown. RSA is scale-free in all the four datasets analyzed, with a power-law form
maintained through the different human activities and scales. RSA form-invariance
property is at the core of our theoretical framework.

Moreover, as for p∗ = 5%, we tested the reliability of estimator (12) in predicting the
total number of species in the different networks when only a random portion of them is
extracted. Table S3 displays the relative percentage error we obtained for the different
databases together with the total dataset composition and the values of the parameters
fitted from the empirical RSAs at p∗ = 3%.

S2.2 Upscaling results for popularity change

In the main text we exhibited in Table 2 the results for the predictions of popularity
(via the conditional estimator 20) in the unsurveyed fraction 1− p∗ = 0.95 of the
population for a fixed value of the local popularity threshold L = 10. In Table S4 we
show the results obtained for different values of L and K.

S2.3 Local Analysis

We also tested how estimator (12) performs on different spatial sub-scales. In this case,
due to the huge amount of data, we chose to work with a smaller datasets for a
systematic analysis. In particular, we considered as global four samples of the original
datasets each covering a fraction p∗ = 5% of the total amount of data (see Figure S3).

We then randomly sub-sampled the reduced 5% databases at different sub-scales p∗∗

ranging from 10% to 90% and applied our framework to predict the number of species
observed at p∗ (here considered as p = 1).

In Figure S3, bottom panels, we displayed the relative percentage error graphs

June 9, 2021 12/15



Emails Twitter Wikipedia Gutenberg
Species 752, 299 6, 972, 453 673, 872 554, 193

Individuals 6, 914, 872 34, 696, 973 29, 606, 116 126, 289, 661
r −0.788 −0.828 −0.549 −0.422
ξp∗ 0.9997 0.9976 0.9987 0.9994

Relative Error -2.74% 4.41% 8.22% -3.52%

Table S3. Predicted relative errors. Upscaling results for the number of species of
the four analysed datasets from a local sample covering a fraction p∗ = 3% of the global
database. For each database, we display the number of species (users, hashtags, words)
and individuals (sent mails, posts, occurrences) at the global scale, together with the
fitted RSA distribution parameters at the sampled scale and the relative percentage
error between the true number of species and the one predicted by our framework.

Table S4. Percentage errors for popularity change predictions in Twitter
database. For L = 10, 40, 55 (first column) and different values of K(second column),
we estimated, from ten different Twitter samples (at p = 5%), the number of species
having abundance at least K at the unobserved scale 1− p∗ = 95% given that they have
abundance at least L at the sampled scale p∗ (see estimator 4 of the main text). The
average true number of species S1−p∗(≥ K| ≥ L) and the average one predicted by our
method among the ten sub-samples are displayed in the third and fourth columns,
respectively. Finally, in the last two columns, we inserted the mean and the variance of
the relative error obtained among the ten predictions.

L K S1−p∗(≥ K| ≥ L) Ŝ1−p∗(≥ K| ≥ L) Relative Error Variance
10 77 14, 266 14, 274.38 −0.0029 0.0012
10 115 14, 113 14, 105.65 0.0534 0.0151
10 154 13, 551 13, 544.76 0.2457 0.0428
10 192 12, 509 12, 584.32 0.4679 0.0731
10 231 11, 305 11, 366.66 0.5372 0.0965
40 362 3, 749 3, 748.99 −0.0001 ≈ 0
40 543 3, 742 3, 741.96 0.0393 0.0058
40 724 3, 591 3, 578.83 −0.0715 0.0668
40 905 3, 096 3, 091.45 0.0368 0.0660
40 1, 086 2, 600 2, 582.75 −0.5634 0.0370
55 504 2, 673 2, 673.00 ≈ 0 ≈ 0
55 756 2, 672 2, 670.96 −0.0141 0.0013
55 1, 008 2, 569 2, 567.71 −0.0978 0.0565
55 1, 260 2, 195 2, 199.11 0.0023 0.0557
55 1, 512 1, 806 1, 820.01 0.1286 0.2070
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between the true number of species, S∗, and the one predicted from the local
information at the different sub-scales p∗∗. We see that, for all datasets and sub-scales,
our method always led to an error below 5%. Moreover, it displays an intuitive
decreasing behavior as the available information increases, a desirable property for an
estimator. We performed the same analysis also starting from a sample at the scale
p∗ = 3%, obtaining comparable results (see Figure S4).

Figure S3. Relative percentage errors at different sub-scales from p∗ = 5%.
Starting from a sample at p∗ = 5% of each human activity database, we sub-sampled it
at different spatial sub-scales p∗∗ ∈ {10%, . . . , 90%} of p∗ and computed the relative
percentage error between the number of predicted species, Ŝ∗, and the true number of
species, S∗, observed in the sample at p∗, here considered as the global scale (p∗ = 1).
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Figure S4. Relative percentage errors at different sub-scales from p∗ = 3%.
Starting from a sample at p∗ = 3% of each human activity database, we sub-sampled it
at different spatial sub-scales p∗∗ ∈ {10%, . . . , 90%} of p∗ and computed the relative
percentage error between the number of predicted species, Ŝ∗, and the true number of
species, S∗, observed in the sample at p∗, here considered as the global scale (p∗ = 1).
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