Adsorption-induced active vanadium species facilitate excellent performance in low-temperature catalytic NO_x abatement

Zhihua Lian¹, Jie Wei², Wenpo Shan¹, Yunbo Yu^{1, 3, 4}, Petar M. Radjenovic², Hua

Zhang², Guangzhi He³, Fudong Liu⁵, Jian-Feng Li², *, Zhong-Qun Tian² and Hong

He^{1, 3, 4}*

1. Center for Excellence in Regional Atmospheric Environment and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

 State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen 361005, China

 State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

4. University of Chinese Academy of Sciences, Beijing 100049, China.

5. Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL 32816, United States.

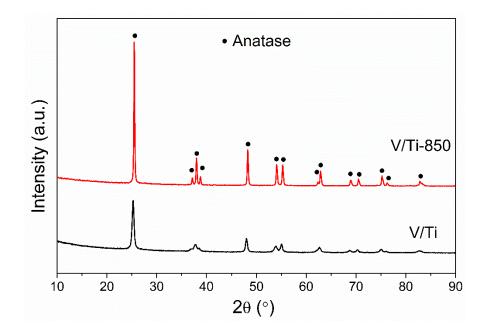


Fig. S1 XRD profiles of V/Ti and V/Ti-850.

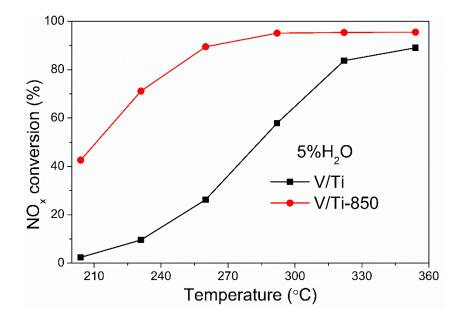


Fig. S2 NH₃-SCR activity over V/Ti and V/Ti-850 in humid conditions. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 5 vol.% O₂, 5 vol.% H₂O, total gas flow rate of 500 mL min⁻¹, space velocity of 100 000 h⁻¹, and balanced by N₂ gas.

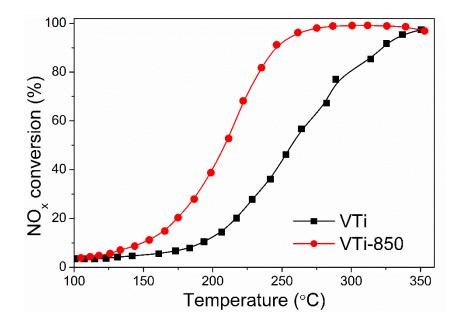


Fig. S3 NO_x conversion over vanadia-based catalysts while heating from 100 to 350 °C at the rate of 10 °C min⁻¹. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 5 vol.% O₂, 5 vol.% H₂O, total gas flow rate of 500 mL min⁻¹, space velocity of 100 000 h^{-1} , and balanced by N₂ gas.

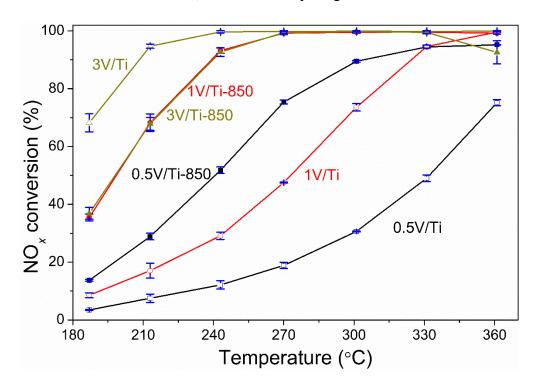


Fig. S4 The NH₃-SCR activity over vanadia-based catalysts with different vanadia loadings before and after thermal treatment. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 5 vol.% O₂, total gas flow rate of 500 mL min⁻¹, space velocity of 100 000

h⁻¹, and balanced by N₂ gas.

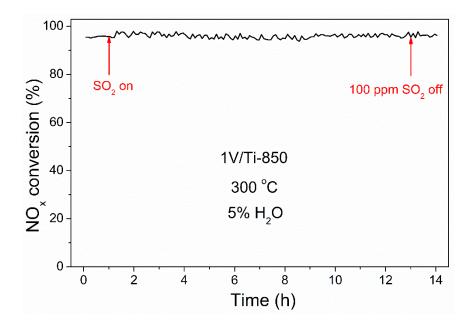


Fig. S5 Effect of SO₂ on NO_x conversion over the V/Ti-850 catalyst at 300 $^{\circ}$ C. Reaction conditions: 500 ppm NO, 500 ppm NH₃, 5 vol.% O₂, 5 vol.% H₂O, 100 ppm SO₂ (when used), total flow rate of 500 mL min⁻¹, space velocity of 100 000 h⁻¹ and balanced by N₂ gas.

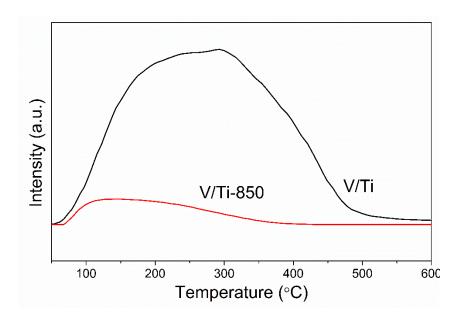


Fig. S6 NH₃-TPD results of V/Ti and V/Ti-850.

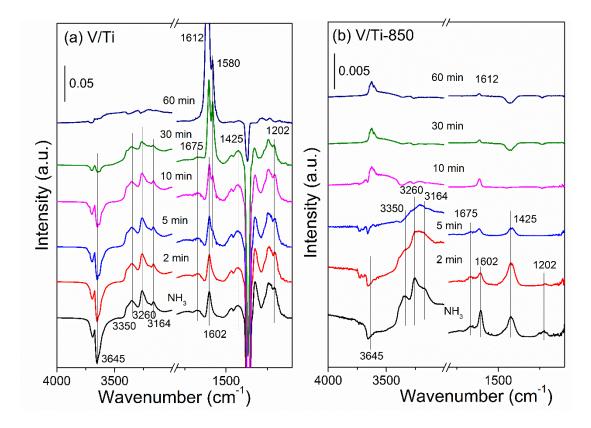


Fig. S7 *In situ* DRIFTS of NO + O_2 reacted with pre-adsorbed NH₃ species at 200 °C on (a) V/Ti, and (b) V/Ti-850.

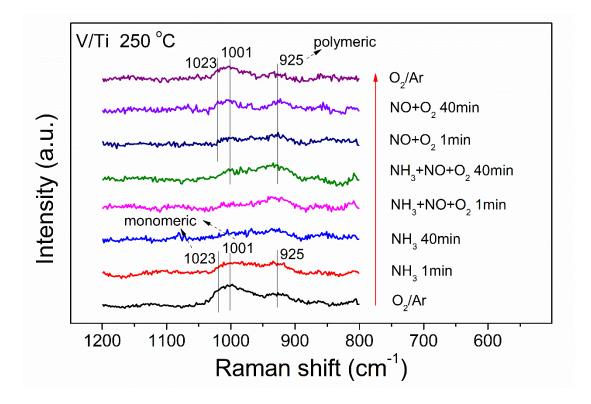


Fig. S8 In situ Raman spectra of V/Ti under different NH₃-SCR conditions at 250 °C.

DFT calculation.

The formation energy of NH₃-adsorbed on monomeric, dimeric, and crystalline vanadia loaded on TiO₂ surfaces ($E_{mono/di/cryst VOx}^{f}$) was calculated, which is defined as¹:

$$E_{mono/di/cryst\,VOx}^{f} = E_{mono/di/cryst\,VOx} - E_{TiO2} - E_{V} - \frac{x}{2}E_{O2}$$

Where $E_{mon/di/cryst VOx}$, E_{TiO2} , E_V , and E_{O2} are the energies of NH₃-adsorbed monomeric, dimeric, and crystalline vanadia species loaded on TiO₂, the TiO₂ surface, bulk vanadium metal, and gas-phase O₂, respectively. The negative formation energy represents the stabilization of VO_x species on TiO₂ surfaces. The formation energies are -6.00 eV, -6.88 eV, and -5.86 eV for NH₃-adsorbed monomeric, dimeric, and crystalline vanadia on TiO₂, respectively, indicating that the adsorption of NH₃ is beneficial to the formation of polymeric vanadia on TiO₂.

Table S1 The formation energy (E^f) of NH₃-adsorbed monomeric, dimeric, and crystalline vanadia on TiO₂ surfaces.

Species	Monomeric VO _x	Dimeric VO _x	Crystalline VO _x
E ^f (eV)*	-6.00	-6.88	-5.86

* The formation energies of dimeric, and crystalline vanadia have been normalized to the values of individual VO_x species.

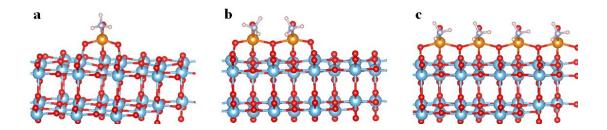


Fig. S9 Optimized geometries of NH₃-adsorbed on (a) monomeric, (b) dimeric, and
(c) crystalline vanadia loaded on TiO₂ surfaces for formation energy calculations.
Large blue, red, orange, small blue, and white circles denote Ti, O, V, N, and H atoms, respectively.

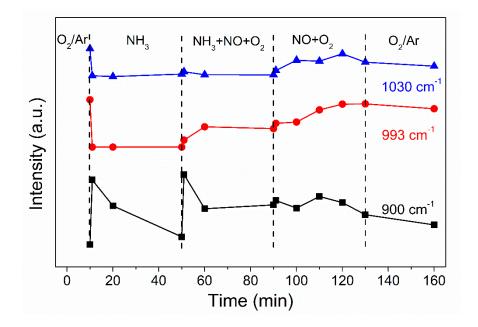


Fig. S10 Plot of the change in integral areas of various Raman peaks of vanadium species under different atmospheres with time.

References

1. Song, I.; Lee, J.; Lee, G.; Han, J. W.; Kim, D. H., Chemisorption of NH_3 on Monomeric Vanadium Oxide Supported on Anatase TiO₂: A Combined DRIFT and DFT Study. *J. Phys. Chem. C* **2018**, *122* (29), 16674-16682.