Supplemental Materials

Coding and interpretation of regression methods with both left and right censoring.

Contents:

- 1. Hazard Ratios and Acceleration Factors
- Interpretation from SAS output
 SAS code to implement left and right censoring

1. Hazard Ratios and Acceleration Factors

	Possible interpretation					
Distribution	Hazard Ratio	Acceleration Factor				
Weibull	•	•				
Log-normal		•				
Log-logistic		•				

Depending on the distribution specified, the regression methods can be interpreted as a hazard ratio or as an acceleration factor.

Acceleration Factor (AF) = $\exp(\beta)$ Hazard Ratio (HR) = $\exp(-\beta/\sigma)$

where β is the parameter estimate and σ the scale estimate.

2. Interpretation from SAS output

An example from SAS output is below.

Analysis of Maximum Likelihood Parameter Estimates

Parameter		DF	Estimate	Standard Error	95% Cor Limits	nfidence	Chi- Square	Pr > ChiSq
Intercept		1	5.4854	0.1497	5.1920	5.7788	1342.97	<.0001
Occupation	Other	1	-0.1347	0.1251	-0.3798	0.1104	1.16	0.2814
Occupation	Housewife	0	0.0000					
Farmland	No	1	0.2615	0.1345	-0.0020	0.5251	3.78	0.0518
Farmland	Yes	0	0.0000			-		
Antenatal	0-1	1	0.9839	0.1679	0.6549	1.3130	34.34	<.0001
Antenatal	2-3	1	0.3597	0.1427	0.0800	0.6394	6.35	0.0117
Antenatal	4	0	0.0000			-		
Distance	<30 min	1	0.2034	0.1475	-0.0857	0.4924	1.90	0.1679
Distance	≥60 min	1	-0.2304	0.1523	-0.5290	0.0682	2.29	0.1304
Distance	30-59 min	0	0.0000			•		
Scale		1	1.0571	0.0662	0.9351	1.1951		
Weibull Shape		1	0.9460	0.0592	0.8368	1.0694		

For the parameter associated with 0-1 antenatal care visits (compared to 4 antenatal care visits), the following interpretations are possible with a Weibull distribution:

```
Acceleration Factor (AF) = \exp(\beta) = \exp(0.9839) = 2.67
```

Compared to children whose mothers had 4 or more antenatal care visits, children whose mothers had only 0-1 antenatal care visits had an expected time to vaccination that was 2.67 times as long.

```
Hazard Ratio (HR) = \exp(-\beta/\sigma) = \exp(-0.9839/1.0571) = 0.39
```

For numbers <1, this is often interpreted by subtracting from 1 (e.g., 1 - 0.39 = 61%).

Compared to children whose mothers had 4 or more antenatal care visits, children whose mothers had only 0-1 antenatal care visits were 61% less likely to be vaccinated at any age.

3. SAS code to implement left and right censoring

The code below corresponds to an analysis of pentavalent dose 3 (see main text Table 2).

```
data dates;
set dates;
/**specify the following variables**/
intdt= /**this is the date of data collection**/
gbirthd= /**this is the date of birth**/
gpenta3d= /**this is the date of pentavalent dose 3 vaccination**/
penta3= /**this variable =1 if the child received pentavalent dose 3
(regardless of date or not) **/
if gpenta3d=. then do;
penta3days=.;
end:
else do;
penta3days=gpenta3d-gbirthd;
if gpenta3d ne . then do;
     penta31cens=0;
     penta3rcens=0;
     end;
else if penta3=1 then do;
     penta3rcens=0;
     penta3lcens=1;
     end:
else if penta3 ne 1 then do;
     penta3rcens=1;
     penta31cens=0;
     end;
if penta3lcens=0 and penta3rcens=0 then do;
penta3hi=penta3days;
```

```
penta3lo=penta3days;
 end;
else if penta3lcens=1 then do;
penta3hi=agedays;
penta3lo=.;
end;
else if penta3rcens=1 then do;
penta3hi=.;
penta3lo=agedays;
end;
run;
proc lifereg data=dates;
class /**insert categorical predictor variables here, as appropriate**/;
model (penta3lo, penta3hi) = /**insert categorical and continuous predictor
variables here, as appropriate**/
      / dist=Weibull ; /* or dist=LNormal (lognormal) or dist=LLogistic
(log-logistic) or dist=Gamma */
run; quit;
```