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1.	Model	description	

1. Infected	individuals	either:	(i)	will	show	clinical	symptoms	at	some	point	during	their	infection	
(with	probability	1-π),	or	(ii)	will	be	asymptomatic	(with	probability	π).		
	

2. Individuals	that	are	pre-clinical,	clinical,	or	asymptomatic	(see	Figure	1)	are	all	infectious	with	
different	levels	of	infectivity	given	contact	with	a	susceptible	person.	The	infectivity	of	infected	
individuals	changes	depending	on	the	number	of	days	since	infection	onset	and	follows	a	
Weibull	distribution	that	is	parameterized	such	that	peak	infectivity	occurs	approximately	5	
days	after	the	initial	infection,	and	90%	of	infections	occur	between	2.0	and	8.4	days	after	the	
infection	onset.	It	is	also	assumed	that	21	days	after	infection	onset	an	individual	is	no	longer	
infective.	See	Ferretti	et	al.	2020	for	a	justification	of	this	assumption.	

	
3. Individuals	with	asymptomatic	infections	are	less	likely	than	pre-clinically	infected	individuals	

to	infect	a	susceptible	person	given	a	contact,	where	ηS	is	a	coefficient	that	scales	the	
infectivity	of	asymptomatic	individuals	relative	to	pre-clinically	infected	individuals.	

	
4. Clinically	infected	individuals	are	assumed	to	self-isolate,	which	reduces	their	infectivity	by	a	

factor	ciso	relative	to	individuals	with	pre-clinical	infections.	
	

5. Infected	individuals	that	will	progress	to	have	a	clinical	infection	have	an	initial	period	when	
they	are	pre-clinical,	T1.	This	distribution	is	the	same	as	the	distribution	for	the	period	from	the	
date	of	infection	to	self-isolation,	and	is	gamma-distributed,	s	~	Γ(6.1,1.7).	Note	that	we	let	s	≈	
T1	+	T2,	where	T1	and	T2	appear	in	Plank	et	al.	2020.	
	

6. Each	infected	individual	j,	per	unit	time,	generates	a	Poisson-distributed	number	of	new	
infections	with	a	mean	equal	to	λj(t)	Δt.	This	mean	number	of	secondary	infections	depends	on	
the	fraction	of	susceptible	people	in	the	population,	1	–	N(t)/Npop,	the	type	of	infection	the	
infective	person	has,	Fj(t),	the	infectivity	of	the	infected	individual	a	given	number	of	days	
since	the	date	of	infection,	whether	the	infected	person	is	in	self-isolation,	and	the	rate	of	
contacts	between	individuals	in	the	population.	

	
The	rate	of	infection	for	the	jth	individual	(infected	at	the	time	tj)	on	the	time	interval	(t,	t+Δt]	
is	λj(t)Δt,	where	

	

	
(1)	

	
and,	
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(2)	

	
fW(τ)	is	the	density	of	the	serial-interval	time,	W,	and	Fj(t)	and	C(t)	are	given	by,	

and,	C(t),	the	function	that	accounts	for	public	health	measures	is	defined	as,	

where	t1	=	March	18,	2020	is	the	date	of	the	declaration	of	the	health	emergency	in	NL,	and	t2	
=	May	4,	2020,	the	date	when	we	consider	scenarios	representing	different	contact	rates	
between	NL	residents.	
	
We	performed	additional	simulations	where	the	number	of	new	infections	followed	a	negative	
binomial	distribution.	Our	results	were	strongly	consistent	with	the	simulations	when	the	
Poisson	distribution	was	assumed	(Figure	A.3).	
	

7. The	time	between	an	individual	becoming	infected	and	infecting	another	individual,	the	
generation	time,	follows	a	Weibull	distribution	with	a	shape	parameter	equal	to	2.83	and	a	
scale	parameter	equal	to	5.67	(mean	value	is	5	days).	The	infection	times	of	all	Nj	secondary	
infections	from	an	individual	j	are	independent	identically	distributed	random	variables	from	
this	distribution.	

	
8. On	an	interval	of	length	Δt,	the	rate	that	infected	travellers	arrive	and	fail	to	self-isolate	is	

λV(t)Δt,	which	follows	a	Poisson	distribution	with	the	parameter	λV(t)	given	as,	

where	r	=	restrictions	corresponds	to	travel	restrictions,	r	=	no	restrictions	corresponds	to	no	
travel	restrictions,	and	t2	corresponds	to	May	4,	2020.	
	

The	model	is	a	stochastic	birth-death	process	where	births	correspond	to	new	infections	and	deaths	
correspond	to	the	recovery	of	infected	individuals.	The	counts	arise	from	a	non-homogeneous	
Poisson	process,	and	the	model	describes	a	lagged	process	owing	to	the	consideration	of	the	serial	
interval	distribution.	The	model	is	implemented	in	R	using	Euler’s	method	(Gardner	2009).	
	
Definitions	of	the	mean	rates	appearing	in	Figure	1	
Susceptible	individuals	become	infected	at	a	mean	rate,	λS(t)Δt,	with		λS(t)	=	Σj	λj(t)	where	λj(t)	is	given	
by	equation	1.	Infected	travellers	that	fail	to	self-isolate	enter	the	population	at	a	rate	λV(t)	(equation	

	

	
	(3)	

	

		
(4)	

	

		
(5)	
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5).	At	a	rate,	λP(t)Δt,	with	λP(t)	=	Σj	γjP(t)	individuals	with	pre-clinical	infections	develop	clinical	
infections.	Finally,	both	individuals	with	asymptomatic	and	clinical	infections	recover	at	rates	λA(t)Δt	
with	λA(t)	=	Σj	γjA(t)	and	λC(t)Δt	with	λC(t)	=	Σj	γjC(t),	respectively.	The	probability	of	removing	the	jth	
individual	from	the	K	class	in	the	time	interval	(t,t+Δt],	given	that	this	individual	has	not	been	
removed	before	is,	

where	fK(τ)	and	FK(τ)	are	the	density	and	distribution	functions	for	the	time	to	removal	from	the	K	
class	
	
2.	Negative	binomial	distribution	of	secondary	infections	

	
Figure	A.1.	We	repeated	our	simulations	assuming	that	the	number	of	secondary	infections	followed	
a	negative	binomial	distribution	with	k	=	0.1	(Endo	et	al.	2020)	rather	than	a	Poisson	distribution	(see	
6.	of	Model	description	in	this	Appendix).	For	the	negative	binomial	distribution,	we	set	R0	=	4.67	so	
that	the	model	predictions	were	consistent	with	the	NL	data	from	March	16th-June	26th,	2020,	as	
shown	in	this	figure.	
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Figure	A.2.	We	repeated	our	simulations	assuming	that	the	number	of	secondary	infections	followed	
a	negative	binomial	distribution	with	k	=	0.1	(Endo	et	al.	2020)	rather	than	a	Poisson	distribution	(see	
6.	of	Model	description	in	this	Appendix).	For	the	negative	binomial	distribution,	we	set	R0	=	4.67	so	
that	the	model	predictions	were	consistent	with	the	NL	data	from	March	16th-June	26th,	2020	(Figure	
A.1).	This	figure	is	comparable	to	Figure	3,	which	assumed	a	Poisson	distribution	of	secondary	
infections.	
	
3.	Model	Calibration	
We	estimated	the	percentage	of	contacts	between	March	19	and	May	4,	2020,	relative	to	the	pre-
pandemic	level	as	c1	=	30%.	To	estimate	c1,	we	used	model	calibration,	where	different	values	of	c1	
were	considered	and	the	resulting	agreement	with	the	data	was	observed.	In	Figure	A.3,	we	show	
that	when	c1	=	20%	(red)	the	peak	number	of	active	cases	occurs	too	early,	and	the	number	of	active	
cases	during	the	decline	is	under-predicted.	When	c1	=	40%	(Figure	A.3,	blue),	the	number	of	active	
cases	before	and	after	the	peak	is	over-estimated.	For	our	analysis,	we	used	c1	=	30%	(Figure	A.3,	
green),	as	this	value	was	consistent	with	the	epidemic	data	(black	dots).	We	did	not	consider	a	formal	
fitting	algorithm	due	to	the	long	computational	times	associated	with	fitting	stochastic	models,	
because	we	cannot	precisely	estimate	the	other	model	parameters,	and	because	Figure	A.3	
demonstrates	that	the	estimated	c1	value	is	likely	between	20	and	40%.	
	

with travel restrictions

3.3
5.1

7.8
10.6

16.4

29.7

4.1

0

20

40

60

80

40 50 60 70
contact rate (%)

m
ea

n 
in

fe
ct

io
ns

 a
fte

r M
ay

 4
a

without travel restrictions

3.5 4.8
7

9.1

17.1

25.2

7.5
10.2

12.9

16.8

21.4

31.3

42.9

6.4 6.3 6.3 6.3 6.4 6.3 6.3

0

20

40

60

80

40 50 60 70
contact rate (%)

b

source
local

prior

travel



	 5	

	
	
Figure	A.3.	Our	analysis	assumed	the	percentage	of	contacts	between	March	19	and	May	4,	2020	
relative	to	the	pre-pandemic	baseline	was	c1	=	30%	(green	line).	This	value	was	estimated	using	model	
calibration	and	observing	the	agreement	of	the	model	with	the	epidemic	data	(black	dots).	If	c1	=	20%	
(red),	the	peak	number	of	active	cases	occurs	too	early,	and	the	number	of	active	cases	during	the	
decline	is	under-predicted.	If	c1	=	40%	(blue),	the	number	of	active	cases	before	and	after	the	peak	is	
over-estimated.	
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