SUPPORTING INFORMATION FOR

Substrate Chemistry and Lattice Effects in Vapor Transport Growth of Vanadium Dioxide Microcrystals

Samuel T. White ^{1*}, Ellis A. Thompson ², Peyton F. Brown ¹, Richard F. Haglund ^{1*}

¹Physics and Astronomy Department, Vanderbilt University, Nashville, TN, 37212

²Department of Physics, University of Washington, Seattle, WA, 98195

*E-mail: <u>richard.haglund@vanderbilt.edu</u>, <u>samuel.t.white@vanderbilt.edu</u>

CONTENTS

- S1: VO_2 Crystal lattice and phases
- S2: REVIEW OF PROGRESS IN VAPOR TRANSPORT GROWTH
- S3: SAMPLE AND PRECURSOR LOADING
- S4: ETCH PITS IN SAPPHIRE
- S5: EXAMPLES OF LARGE, FLAT, LOW-ASPECT-RATIO MICROCRYSTALS ON SAPPHIRE
- S6: ANALYSIS OF POLE FIGURES ON OTHER CUTS OF SAPPHIRE
- S7: EVIDENCE THAT A YVO4 LAYER UNDERLIES VO2 CRYSTALS ON YSZ
- S8: POLE FIGURES FOR YVO₄, ZrO₂, ON YSZ
- S9: GROWTH RESULTS ON QUARTZ
- S10: TITANIUM DIOXIDE SUBSTRATE PROPERTIES

S1: VO_2 Crystal Lattice and Phases

Figure S1 compares the unit cells of the M1, M2, and R phases of VO₂. The corresponding lattice parameters refered throughout this work are presenting in Table S1.

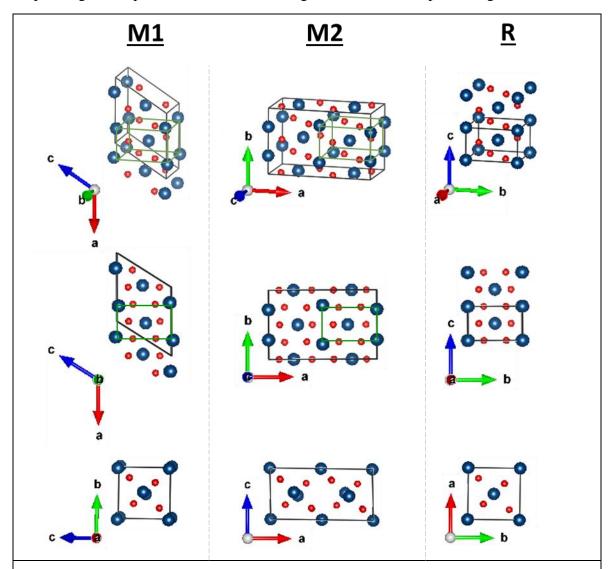


Figure S1: Schematic diagram of the VO_2 crystal structure in its M1, M2, and R phases. The unit cell for R is overlaid (in green) on the M1 and M2 structures as a guide to the eye.

Table S1: Lattice parameters for the M1, M2, and R VO2 phases									
Phase	Space Group	a (Å)	b (Å)	c (Å)	α(°)	β(°)	γ(°)	Ref.	
M1	P 21/c	5.7517	4.5378	5.3825	90	122.646	90	1	
M2	C 2/m	9.0600	5.8000	4.5217	90	91.850	90	2	
R	P 42/m n m	4.5546	4.5546	2.8514	90	90	90	3	

S2: REVIEW OF PROGRESS IN VAPOR TRANSPORT GROWTH

The optimization of different parameters involved in vapor transport growth has progressed significantly. This method was first developed using VO₂ as a precursor⁴⁻¹¹, but V₂O₅ has become the standard precursor powder because of its lower melting point. VO₂ melts at 1967°C, so using V₂O₅, which melts at about 690°C, allows for a larger flux of vapor making for a more efficient growth¹²⁻¹³. Results of previous growths also show that varying growth conditions affects the morphology of the products. Higher temperatures tend to yield denser nanowires which may show directional growth or even larger nanoplatelets, whereas at lower temperatures, fewer, more loosely attached nanowires tend to form^{8, 14}. In at least one study, use of a two-step method, wherein oxygen flow is introduced after the initial temperature ramp, yielded a higher density of nanowires as well⁷.

Choice of substrate has been extensively explored as a parameter of crystal growth. Several studies have focused on the effects of lattice match, showing that varying the lattice structure of the substrate may alter the shape and orientation of VO₂ crystals. Table S2 summarizes substrates that have been used and how lattice match affects the crystals they yield. Generally, VO₂ crystals tend to grow along the rutile c-axis $[001]_R$ with facets along the low-surface-energy $\{110\}_R$ family of planes¹¹.

The most commonly used substrates for VO₂ crystal growth are silicon and silica. Vanadium dioxide crystals grown on pure SiO₂ tend to grow in specific directions depending on the cut used (with $[001]_R$ aligned to $\langle 2\overline{110} \rangle_{SiO_2}$ on z-cut SiO₂¹⁴ and to $\langle 1\overline{100} \rangle_{SiO_2}$ on x-cut¹²). Silicon oxide on Si, pure Si, and Si₃N₄ have produced crystals with unique structural characteristics, but with random orientation in the plane of the substrate^{4-5, 15-17}. Growth on TiO₂ (100) and TiO₂ (110) also results in crystals with different structural characteristics, having unique cross-sectional shapes, unusual crystal facets parallel to the substrate, and specific inplane orientation¹¹. Another widely-used substrate is Al₂O₃. In addition to varying structural characteristics, crystals grown on Al₂O₃ show definite evidence of preferred growth direction relative to the substrate, depending on the cut used^{6, 10}. On c-cut, crystals grow at 60° angles relative to the substrate¹⁰. Across different crystalline substrates, the arrangement of atoms on the surface affects the shape and morphology of the crystals on a micron-scale.

Other substrate-dependent effects during crystal growth play a significant role in determining the properties of the resulting VO₂ crystals. In particular, chemical interactions between the substrates and vanadium precursors affect the growth mechanism. On substrates with SiO₂ at the surface, a eutectic region forms between newly formed VO_x droplets and VO₂ wires which dissolves a small amount of surrounding material, embedding the wire into the substrate. This facilitates unobstructed growth which leads to larger crystals^{4, 17}, and firmly clamps the crystals to the substrate. On TiO₂ substrates, the precursor vapor wets the surface during growth instead of forming droplets¹⁷. These observations show that interfacial interactions between liquid vanadium oxides and the substrate surface changes the growth mechanism on these substrates, which may result in different crystal morphologies. In addition, some crystals

grown on Al_2O_3 and SiO_2 have been shown to exist in the M2 phase at room temperature^{7, 9, 18}. Although this has often been attributed to substrate-induced strain, the M2 phase persists in crystals removed from Al_2O_3 substrates (and thus relieved of substrate-induced strain). Moreover, the M2 phase has also been stabilized by aluminum doping¹⁹, which suggests the possibility of a chemical effect.

Table S2: Summary of substrate effects on VO2 crystal growth						
Substrate	Evidence of Lattice Match / Orientation	Evidence of Chemistry Effects				
$\frac{\text{SiO}_2 \text{ z-cut}}{(0001)_{SiO_2}}$		Molten V ₂ O ₅ forms eutectic with SiO ₂ ; eutectic layer facilitates growth; resulting VO ₂ crystals embedded in SiO ₂ 4, 17				
$\frac{\text{SiO}_2 \text{ x-cut}}{(11\overline{2}0)_{SiO_2}}$	$ \begin{array}{c} [001]_{R} \parallel \langle 1\overline{1}00 \rangle_{SiO_{2}} \\ \{110\}_{R} \parallel \{11\overline{2}0\}_{SiO_{2}} \end{array} \end{array} $					
SiO ₂ (amorphous) on Si	$\{110\}_R^{4, 17}$ and $\{011\}_R^4$ parallel to substrate; square-cross section ^{4, 16} ; random orientation in plane ¹⁷					
Si (w/ native oxide)	Random orientation in plane ⁶	Si-assisted reduction: $2V_2O_5(l) + Si(s) \rightarrow 4VO_2(s) + SiO_2$ Leads to small, dense nuclei ¹⁷				
Si_3N_4	Rectangular cross section; $\{110\}_R$ parallel to substrate ⁵	Higher density of nanowires compared to SiO ₂ substrates ⁵				
GaN (0001) _{GaN}	In-plane orientation reflects hexagonal substrate symmetry ¹⁷	Molten vanadia wets GaN surface ¹⁷				
TiO ₂ (110) _{TiO₂}	Triangular cross section; exposed facets are $\{100\}_R$ planes; $[001]_R \parallel \langle 001 \rangle_{TiO_2}$ $\{110\}_R \parallel \{110\}_{TiO_2}^{-11}$	Molten vanadia wets TiO ₂ surface ¹⁷				
TiO ₂ (100) _{TiO2}	Rectangular cross section; exposed facets are $\{100\}_R$ planes; $[001]_R \parallel \langle 001 \rangle_{TiO_2}$ $\{100\}_R \parallel \{100\}_{TiO_2}^{-11}$					
$Al_2O_3 c$ -cut (0001) $_{Al_2O_3}$	Triangular cross-section ¹⁰⁻¹¹ , $[001]_R \parallel \langle 11\overline{2}0 \rangle_{Al_2O_3}$ $\{100\}_R \parallel \{0001\}_{Al_2O_3}^{10},$	M2 phase stabilized at room temperature, attributed to strain effects ^{7, 9}				
$\begin{array}{c} \text{Al}_2\text{O}_3 \text{ r-cut} \\ (1\overline{1}02)_{Al_2O_3} \end{array}$	Square-cross section ¹⁰ ; growth axis out of plane, 60° relative to substrate surface, unique in-plane orientation ^{7, 10}					
$\begin{array}{c} \mathrm{Al}_2\mathrm{O}_3 \text{ a-cut} \\ (11\overline{2}0)_{Al_2O_3} \end{array}$	Square-cross section; growth axis out of plane, 3-fold in-plane orientation symmetry ¹⁰					
$\begin{array}{c} \text{Al}_2\text{O}_3 \text{ m-cut} \\ (10\overline{1}0)_{Al_2O_3} \end{array}$	Nanoblocks and nanowires appear to exhibit preferred orientation ²⁰					
Al ₂ O ₃ (amorphous) on SiO ₂		Al-doping stabilizes M2-phase at room temperature ¹⁹				

S3: SAMPLE AND PRECURSOR LOADING

Figure S2 shows an example of the samples before and after the growth process. Orange vanadium pentoxide (V_2O_5) powder is loaded into one end of the boat, and growth substrates into the other. During the growth process, V_2O_5 vapor is carried to the substrates by a directional gas flow. After growth, the V_2O_5 is consumed and the substrates are darkened with a coating of VO_2 crystals.

S4: ETCH PITS IN SAPPHIRE

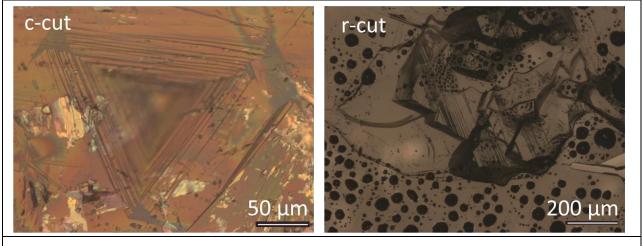
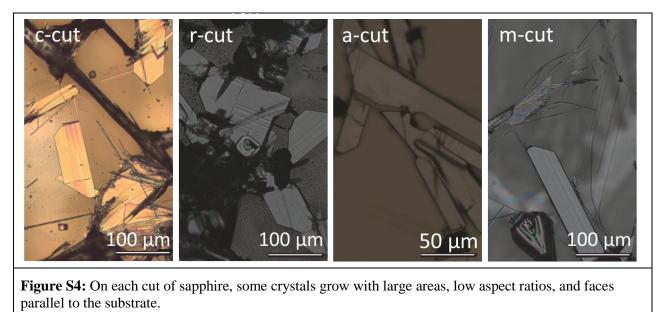
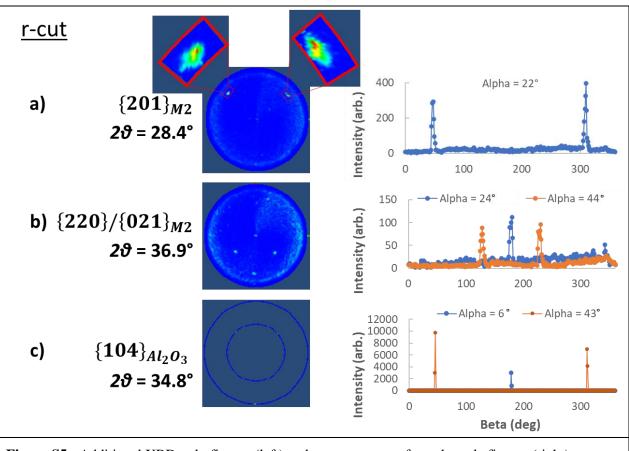



Figure S3: After crystal growth, etch pits can often be observed in the sapphire substrate.


After the growth process, pits can be observed in the sapphire substrate, examples of which are shown in Figure S3. These have a similar appearance to etch pits in sapphire²¹, with a tendency to have stepped edges and to be shaped differently on different cuts, reflecting the difference in etch rates on different lattice planes. These pits are not observed on untreated substrates, or on substrates heated in the absence of V_2O_5 precursor. We attribute them to the corrosive action of molten V_2O_5 , which has been used to etch Al₂O₃ surfaces²²⁻²³.

S5: EXAMPLES OF LARGE, FLAT, LOW-ASPECT-RATIO MICROCRYSTALS ON SAPPHIRE

As discussed in the main text, both highly-oriented nanowires and un-oriented microplatelets can be observed on each cut of sapphire. Examples of the latter are shown in Figure S4.

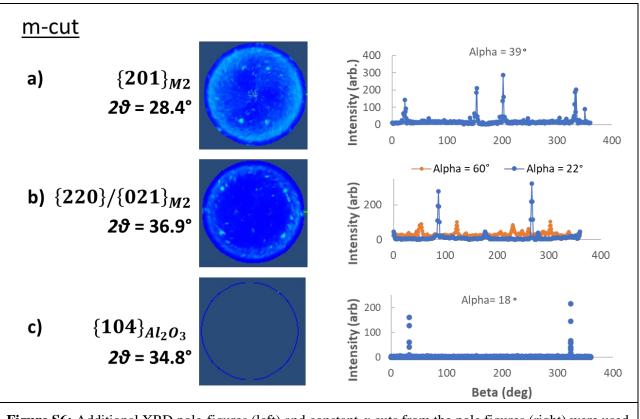
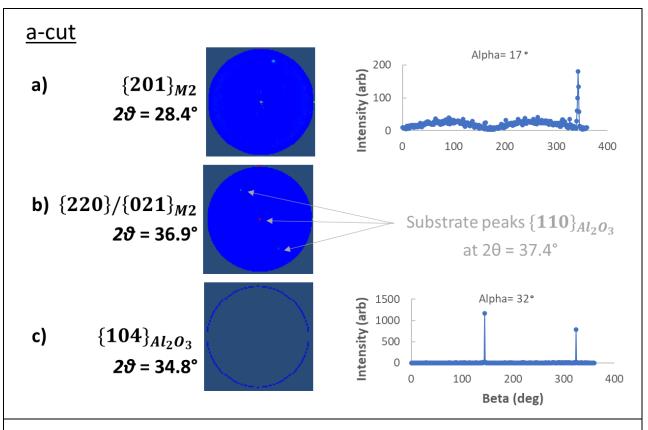


Figure S5: Additional XRD pole-figures (left) and constant- α cuts from the pole figures (right) were used in determining the VO₂ crystal orientation on r-cut sapphire. Higher-resolution scans (inset) show that the {201}_{M2} peaks are single peaks rather than doublets.


On r-cut Al₂O₃, the $\{201\}_{M2} \equiv \{110\}_R$ family of planes shows one peak at $\alpha=90^\circ$ ($\{110\}_R$ parallel to substrate) and two at $\alpha=22^\circ$ with $\beta=-2^\circ\pm48^\circ$. The $\{220\}/\{021\}_{M2} \equiv \{011\}_R$ planes show four clear peaks: $\alpha=90^\circ$, $\alpha=45^\circ$ with $\beta=-1^\circ\pm129^\circ$, and $\alpha=24^\circ$ with $\beta=180^\circ$. These four peaks correspond to the two $\{110\}_R$ peaks at $\alpha=22^\circ$. On the other hand, no $\{011\}_R$ peaks are observed that correspond to the $\{110\}_R$ peak at $\alpha=90^\circ$, which implies that these crystals have no in-plane orientation. Thus, some of the VO₂ crystals on r-cut Al₂O₃ have $\{110\}_R$ parallel to the substrate with no in-plane orientation, while others have $\{011\}_R$ parallel to the substrate with one unique in-plane orientation. To establish the substrate orientation, $\{104\}_{Al_2O_3}$ peaks are observed at $\alpha=43^\circ$ with $\beta=-2^\circ\pm48^\circ$ and $\alpha=6^\circ$ with $\beta=178^\circ$. This establishes the orientation of the VO₂ crystals relative to the substrate, as listed in Table 2 of the main text.

Notably, this orientation is not the one that would yield the smallest lattice mismatch theoretically. If instead the orientation was $\langle 11\overline{1}\rangle_R \parallel \langle 0\overline{2}2\overline{1}\rangle_{Al_2O_3}$, the calculated mismatch would be only 0.3% (1.4%). This orientation is very close to that we observe, having only a $\pm 2.5^{\circ}$ shift in β ; however, this would lead to a 5° peak splitting, which is not observed in our data, even with higher-resolution measurements (Figure S5a, insets).

Figure S6: Additional XRD pole-figures (left) and constant- α cuts from the pole figures (right) were used in determining the VO₂ crystal orientation on m-cut sapphire.

On m-cut Al₂O₃, the $\{201\}_{M2} \equiv \{110\}_R$ family of planes shows one peak at $\alpha=90^\circ$ ($\{110\}_R$ parallel to substrate) and four at $\alpha=39^\circ$ with $\beta=\pm24^\circ$ or $\beta=\pm155^\circ$. The $\{220\}/\{021\}_{M2} \equiv \{011\}_R$ planes show four clear peaks, all at $\alpha=21^\circ$ with $\beta=1^\circ\pm54^\circ$ or $\beta=1^\circ\pm125^\circ$. These four peaks correspond to the two $\{110\}_R$ peaks at $\alpha=39^\circ$, and arise from VO₂ crystals in two symmetry-equivalent orientations, which can be fully identified by comparison to the substrate $\{104\}_{Al_2O_3}$ peaks at $\alpha=18^\circ$ and $\beta=-2^\circ\pm34^\circ$ (see main text, Table 2). Once again, no $\{011\}_R$ peaks can be identified to correspond to the $\{110\}_R$ peaks at $\alpha=90^\circ$, indicating that the crystals with $\{110\}_R$ parallel to the substrate have no definite in-plane orientation.

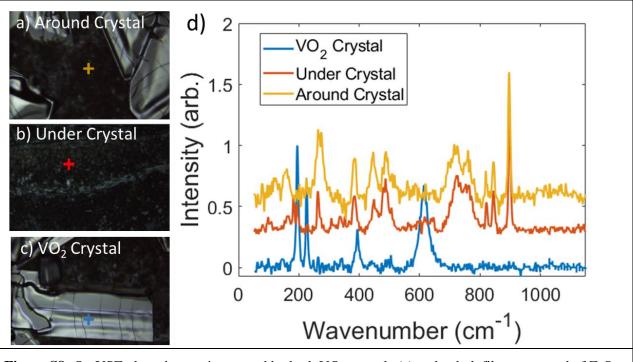
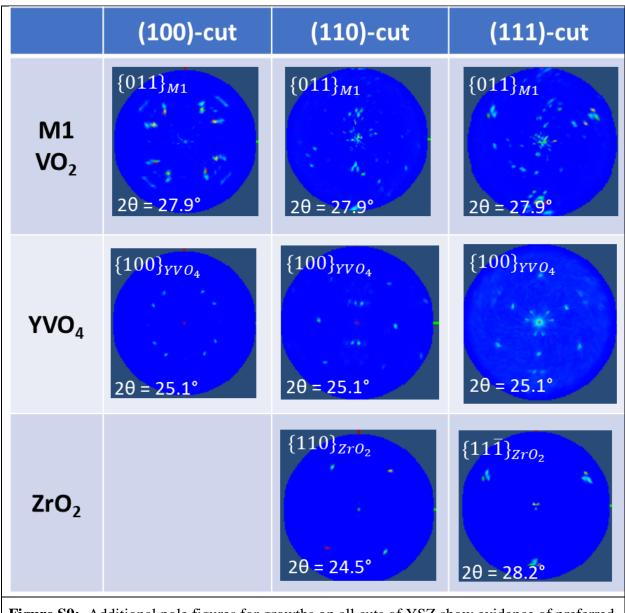


Figure S7: Additional XRD pole-figures (left) and constant- α cuts from the pole figures (right) were used in determining the VO₂ crystal orientation on m-cut sapphire. The peaks that appear in the $\{220\}/\{021\}_{M2}$ pole figure (at $2\theta = 36.9^{\circ}$) are positioned where $\{110\}_{Al_2O_3}$ peaks (at $2\theta = 37.4^{\circ}$) would be expected, and are likely the result of bleed-over from those reflections.

On a-cut Al₂O₃, the $\{201\}_{M2} \equiv \{110\}_R$ family of planes shows, as usual, one peak at $\alpha=90^{\circ}$ ({110}_R parallel to substrate), but only one other peak, at $\alpha=17^{\circ}$ with $\beta=-17^{\circ}$. Given the substrate symmetry, at least two peaks at $\alpha = 17^{\circ}$ would be expected for a sufficiently large sample of crystals; however, this sample was more sparsely covered with VO₂ than the others, and it may be that the corresponding symmetric peak was simply too weak to be observed. Similarly, no peaks are observed due to the $\{220\}/\{021\}_{M2} \equiv \{011\}_R$ family of planes. The peaks that do appear in the pole figure (Figure S6b) can be assigned to bleed-over from the (much more intense) $\{110\}_{Al_2O_3}$ peaks which have a similar 2 θ value. All of the $\{011\}_R$ peaks, being intrinsically less intense than the $\{110\}_R$, are simply too weak to be observed. However, to fully determine the orientation which produced the one $\{110\}_R$ peak at $\alpha = 17^\circ$ requires additional information. Standard θ -2 θ measurements reveal all the VO₂ planes which are parallel to the substrate surface. Table S3 lists all the M2-VO₂ planes identified in θ -2 θ measurements on a-cut Al_2O_3 . Some of these may correspond to crystals with no in-plane orientation (as appears to be typical of the $\{201\}/\{20\overline{1}\}_{M2}$ planes), or to loose, randomly oriented crystals, but we can identify one that is consistent with $\{110\}_R$ peak at $\alpha=17^\circ$, which makes it possible to identify that orientation.


Table S3: M2 VO ₂ peaks observed in θ -2 θ measurements on a-cut sapphire				
{201}/{201}				
{220}/{021}				
{400}/{002}				
{401}/{202}				

S7: EVIDENCE THAT A YVO4 LAYER UNDERLIES VO2 CRYSTALS ON YSZ

Figure S8: On YSZ, the substrate is covered by both VO_2 crystals (c) and a dark film composed of ZrO_2 and YVO_4 (a). When a VO_2 crystal is removed, the same film is observed beneath (b). Raman spectroscopy (d) shows that the material under (red) and around (yellow) the crystal is the same.

As discussed in the main text, YSZ substrates are covered in a dark, granular film after the crystal growth process. Raman spectroscopy showed this film to be composed of ZrO_2 and YVO₄. To determine whether this film covers the entire substrate or only that portion not occupied by VO₂ crystals, we remove a VO₂ crystal with adhesive tape and examine the material underneath. The crystal (Figure S7c) exhibits the characteristic Raman spectrum of VO₂ (Figure S7d, blue trace); once it has been removed, the area underneath it has the same visual appearance (Figure S7b) and Raman spectrum (Figure S7d, red trace) as the film that appears elsewhere on the exposed substrate (Figure S7a and S7d, red trace). This shows that the ZrO_2/YVO_4 film covers the entire substrate before VO₂ crystals form above it. S8: POLE FIGURES FOR YVO₄, ZRO₂, ON YSZ

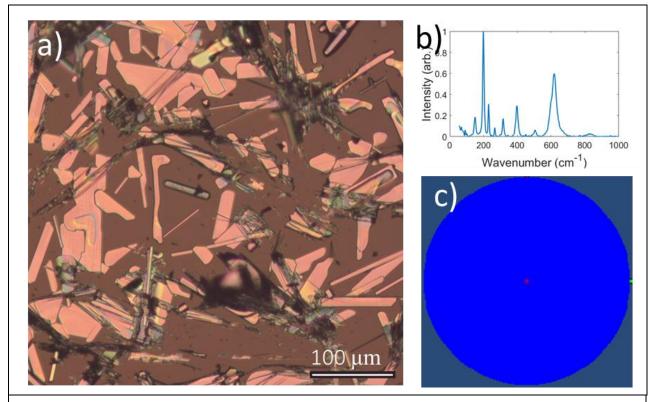


Figure S9: Additional pole figures for growths on all cuts of YSZ show evidence of preferred orientation for VO₂, YVO₄, and ZrO₂.

Figure S9 compares the pole figures for the VO₂ $\{011\}_{M1} \equiv \{1\overline{1}0\}_R$ family of planes to representative low-index planes belonging to YVO₄ and ZrO₂. Both YVO₄ and ZrO₂ exhibit sharp peaks in well-defined patterns, with a high degree of symmetry reflecting the symmetry of the substrate plane: 4-fold on (100)-cut, 2-fold on (110)-cut, and 3-fold on (111)-cut. This shows that the YVO₄ and ZrO₂ are highly-oriented, likely due to a heteroepitaxial relationship to the substrate and each other. Notably, the pole-figure patterns become progressively more complex from ZrO₂ to YVO₄ to VO₂. We hypothesize that atop the YSZ substrate is an yttriadepleted ZrO₂ layer, heteroepitaxial to the substrate, but with multiple distinct orientations arising from its decreased symmetry. Above the ZrO₂ layer, the yttria reacts with V₂O₅ to form a YVO₄ layer, in turn oriented with respect to the ZrO₂. Multiple symmetry-allowed orientations lead to multiplicatively more peaks in the pole-figure pattern. VO₂ crystals grown on the YSZ layer in turn have preferred orientations relative to it. Finally, we note that since the $\{011\}_{M1}$ and $\{11\overline{1}\}_{ZrO_2}$ planes have similar 2 θ values (27.9° and 28.2°, respectively) is it possible that some bleed-over from the more-intense ZrO₂ peaks contributes to the VO₂ pole figures.

S9: GROWTH RESULTS ON QUARTZ

Quartz is perhaps the most commonly-used and well-characterized substrate for VO_2 crystal growth by vapor-phase transport. As a baseline comparison for our crystals on other substrates, we present a sample grown on z-cut (0001) quartz. On this cut of quartz, crystals may exhibit a preferred orientation with six-fold symmetry¹⁴, as noted above; and as on all SiO₂ substrates, VO_2 crystals will be embedded slightly in substrate due to formation of a eutectic during growth¹⁷.

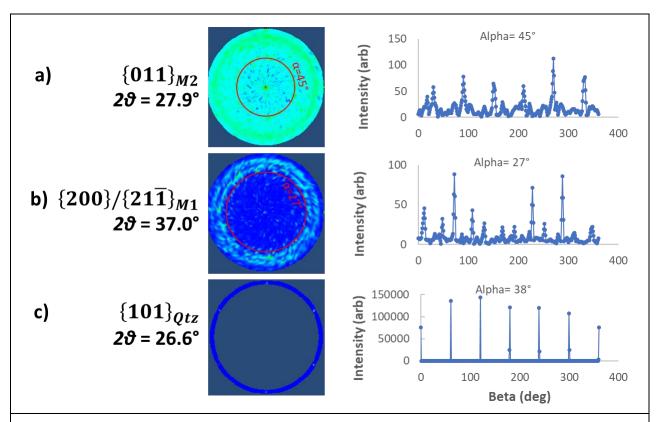


Figure S10: Examples of typical VO₂ crystals grown on quartz. Optical microscopy (a) shows that a variety of sizes and shapes appear, with no clear preferred orientation. Raman microscopy (b) shows the vast majority of crystals to be in the M1 phase at room temperature. Pole figure measurements (c) show that the $\{011\}_{M1}$ planes tend to be parallel to the substrate, but do not have a preferred orientation in-plane.

Figure S10 shows example data of our VO₂ crystals grown on z-cut quartz. Polarized optical microscopy (Figure S10a) shows that the crystals lie flat, with upper facets parallel to the substrate surface. The crystals are well adhered to the substrate—due to being embedded into the quartz, as mentioned above—and the substrate-induced strain results in complex ferroelastic twin domains (observed as light and dark mazelike patterns in the microscope image)²⁴. There is no obvious preferred orientation, and our crystals are more reminiscent of those others have observed on SiO₂ thermal oxides on Si^{4, 17}, than the oriented nanowires observed on z-cut quartz¹⁴. As we observed in our sapphire growths, it is likely possible for both oriented

nanowires and non-oriented microplatelets to form, especially under different growth conditions. Raman microscopy (Figure S10b) shows that the majority of VO_2 crystals on quartz are in the M1 phase at room temperature, though some are in the T phase due to the influence of substrate strain.

Pole figure measurements (Figure S10c) show that the vast majority of $\{011\}_{M1} \equiv \{1\overline{1}0\}_R$ planes tend to be parallel to the substrate (α =90°). Replotting this figure on a log scale (Figure S11a) reveals an additional bright ring at α =45° with brighter spots appearing with a sixfold symmetry (reflective of the six-fold symmetry of the z-cut quartz substrate). Another bright ring in this figure at very low α is background noise present in all pole figures, usually too weak to appear on the scale used. The $\{200\}/\{21\overline{1}\}_{M1} \equiv \{011\}_R$ show peaks, of variable intensity, at α =27° with six-fold symmetry: β =12°+n*60° and β =48°+n*60° (n=0, 1, 2, 3, 4, 5). However, no VO₂ orientation can be identified to satisfy both $\{011\}_R$ at α =27° and $\{1\overline{1}0\}_R$ parallel to the substrate with no preferred in-plane orientation, while some crystals grow in at least two distinct orientations. Additional measurements will be required to identify the latter.

Figure S11: Pole figures (left) for quartz show bright rings, corresponding to crystals with a certain plane parallel to the substrate, but no in-plane orientation. Constant-alpha cuts (right) show some distinct peaks, suggesting a degree of preferred orientation; but no singe orientation can be identified to satisfy the peaks observed for both $\{011\}_{M2}$ and $\{200\}/\{21\overline{1}\}_{M1}$.

S10: TITANIUM DIOXIDE SUBSTRATE PROPERTIES

For this study, we chose two substrates that exemplify both chemical and latticematching effects in a well-understood case (Al₂O₃) as well as a novel one (YSZ). To similarly analyze all common VO₂ growth substrates is beyond the scope of this work, but one in particular deserves mention. Though more expensive, titanium dioxide (TiO₂) is commonly regarded as the best substrate for heteroepitaxial VO₂ growth because it has the same rutile crystal structure with very similar lattice parameters ($a_{R,TiO_2} = 4.593$ Å and $c_{R,TiO_2} = 2.959$ Å²⁵, compared to $a_{R,VO_2} = 4.555$ Å and $c_{R,VO_2} = 2.851$ Å³), and has produced highly-oriented films ²⁶⁻²⁷ and crystals ¹¹. Table S3 presents predicted lattice mismatch values for epitaxial VO₂ on several low-index planes of TiO₂. Compared to the values calculated for VO₂ on Al₂O₃ (Table 1 of the main text), these are for the most part comparable or better, with one notable exception: the percent lattice match for VO₂ on c-cut Al₂O₃ (according to the orientation we observed) is better than that on {110}_{TiO_2} or {100}_{TiO_2} (the two cuts of TiO₂ used previously for singlecrystal VO₂ growth). Although this represents multi-domain heteroepitaxy on Al₂O₃ as opposed to single-domain on TiO₂, lattice match on sapphire suffices for our purposes.

Table S4: Predicted orientation and lattice match for VO ₂ crystals grown on various cuts of TiO ₂							
Substrate Plane	Crystal Orientation	Lattice Mismatch $\left(\frac{d_{VO_2} - d_{TiO_2}}{d_{TiO_2}}\right)$	d _{VO2} (Å)	d _{TiO2} (Å)			
(110) (110)	$[001]_R \parallel \langle 001 \rangle_{TiO_2}$	-3.6%	2.851	2.959			
$\{110\}_R \parallel \{110\}_{TiO_2}$	$[\overline{1}10]_R \parallel \langle \overline{1}10 \rangle_{TiO_2}$	-0.8%	6.442	6.496			
$\{100\}_R \parallel \{100\}_{TiO_2}$	$[001]_R \parallel \langle 001 \rangle_{TiO_2}$	-3.6%	2.851	2.959			
$\{100\}_R \parallel \{100\}_{TiO_2}$	$[010]_R \parallel \langle 010 \rangle_{TiO_2}$	-0.8%	4.555	4.593			
$\{001\}_R \parallel \{001\}_{TiO_2}$	$[100]_R \parallel \langle 100 \rangle_{TiO_2}$	-0.8%	4.555	4.593			
$\{001\}_R \parallel \{001\}_{TiO_2}$	$[010]_R \parallel \langle 010 \rangle_{TiO_2}$	-0.8%	4.555	4.593			
	$[100]_R \parallel \langle 100 \rangle_{TiO_2}$	-0.8%	4.555	4.593			
$\{011\}_R \parallel \{011\}_{TiO_2}$	$[01\overline{1}]_R \parallel \{01\overline{1}\}_{TiO_2}$	-1.6%	5.374	5.464			

As with Al₂O₃ and YSZ, there is a possibility of chemical reaction between TiO₂ and V₂O₅. Studies on TiO₂-supported V₂O₅ catalysts show that at high temperatures vanadia catalyzes the TiO₂ anatase-to-rutile transition, and V⁴⁺ is incorporated into the rutile TiO₂ lattice, yielding V_xTi_{1-x}O₂ at the interface ²⁸⁻³⁰. Also, V₂O₅ is reported to react with titania-stabilized zirconia (TiSZ) to produce TiVO₄ ³¹. On the other hand, several corrosion studies on Ti-containing thermal barrier coatings suggest that TiO₂ is less reactive with vanadia than some other metal oxides, including alumina ³²⁻³⁴. The possibility of chemical reactions occurring at the TiO₂-V₂O₅ interface during crystal growth certainly deserves further study, but sapphire provides a better example of substrate-vanadia reactions for this study.

There are few experimental studies of the TiO₂ surface energy, but computational studies predict values ranging from 0.3 to 1.8 J/m² for the $\{110\}_{TiO_2}$ plane, depending on the calculation

method, and higher for other planes ³⁵⁻³⁸. The highest of these predicted values are larger than those used in our study, and might lead to good substrate wetting, as observed in one crystal growth study ¹⁷.

1. Longo, J. M.; Kierkega, P., A refinement of structure of VO₂. *Acta Chem. Scand.* **1970**, *24* (2), 420-426.

2. Ghedira, M.; Chenavas, J.; Marezio, M., Cation disproportionation and pairing in insulating T-phase of V_{0.985}Al_{0.015}O₂. *Journal of Physics C-Solid State Physics* **1977**, *10* (11), L309-L314.

3. McWhan, D. B.; Marezio, M.; Remeika, J. P.; Dernier, P. D., X-ray-diffraction study of metallic VO₂. *Phys. Rev. B* **1974**, *10* (2), 490-495.

4. Cheng, Y.; Wong, T. L.; Ho, K. M.; Wang, N., The structure and growth mechanism of VO₂ nanowires. *J. Cryst. Growth* **2009**, *311* (6), 1571-1575.

5. Guiton, B. S.; Gu, Q.; Prieto, A. L.; Gudiksen, M. S.; Park, H., Single-crystalline vanadium dioxide nanowires with rectangular cross sections. *J. Am. Chem. Soc.* **2005**, *127* (2), 498-499.

6. Kim, I. S.; Lauhon, L. J., Increased yield and uniformity of vanadium dioxide nanobeam growth via two-step physical vapor transport process. *Cryst. Growth Des.* **2012**, *12* (3), 1383-1387.

7. Kim, M. W.; Ha, S. S.; Seo, O.; Noh, D. Y.; Kim, B. J., Real-time structural and electrical characterization of metal-insulator transition in strain-modulated single-phase VO₂ wires with controlled diameters. *Nano Lett.* **2016**, *16* (7), 4074-4081.

8. Maeng, J.; Kim, T. W.; Jo, G.; Lee, T., Fabrication, structural and electrical characterization of VO₂ nanowires. *Mater. Res. Bull.* **2008**, *43* (7), 1649-1656.

9. Sohn, J. I.; Joo, H. J.; Ahn, D.; Lee, H. H.; Porter, A. E.; Kim, K.; Kang, D. J.; Welland, M. E., Surfacestress-induced mott transition and nature of associated spatial phase transition in single crystalline VO₂ nanowires. *Nano Lett.* **2009**, *9* (10), 3392-3397.

10. Sohn, J. I.; Joo, H. J.; Porter, A. E.; Choi, C. J.; Kim, K.; Kang, D. J.; Welland, M. E., Direct observation of the structural component of the metal-insulator phase transition and growth habits of epitaxially grown VO₂ nanowires. *Nano Lett.* **2007**, *7* (6), 1570-1574.

11. Wang, L. X.; Ren, H.; Chen, S.; Chen, Y. L.; Li, B. W.; Zou, C. W.; Zhang, G. B.; Lu, Y. L., Epitaxial growth of well-aligned single-crystalline VO₂ micro/ nanowires assisted by substrate facet confinement. *Cryst. Growth Des.* **2018**, *18* (7), 3896-3901.

12. Cheng, C.; Guo, H.; Amini, A.; Liu, K.; Fu, D.; Zou, J.; Song, H. S., Self-assembly and horizontal orientation growth of VO₂ nanowires. *Sci Rep* **2014**, *4*, 5456.

13. Cheng, C.; Liu, K.; Xiang, B.; Suh, J.; Wu, J. Q., Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation. *Appl. Phys. Lett.* **2012**, *100* (10), 103111.

14. Loffler, S.; Auer, E.; Weil, M.; Lugstein, A.; Bertagnolli, E., Impact of growth temperature on the crystal habits, forms and structures of VO₂ nanocrystals. *Appl. Phys. A-Mater. Sci. Process.* **2011**, *102* (1), 201-204.

15. Jiang, L. L.; Wei, M. D.; Ye, B. H.; Wei, K. M., VO₂ rods with a rectangular cross-section. *J. Cryst. Growth* **2008**, *310* (19), 4301-4304.

16. Lin, J.; Ji, H.; Swift, M. W.; Hardy, W. J.; Peng, Z. W.; Fan, X. J.; Nevidomskyy, A. H.; Tour, J. M.; Natelson, D., Hydrogen diffusion and stabilization in single-crystal VO₂ micro/nanobeams by direct atomic hydrogenation. *Nano Lett.* **2014**, *14* (9), 5445-5451.

17. Strelcov, E.; Davydov, A. V.; Lanke, U.; Watts, C.; Kolmakov, A., In situ monitoring of the growth, intermediate phase transformations and templating of single crystal VO₂ nanowires and nanoplatelets. *ACS Nano* **2011**, *5* (4), 3373-3384.

18. Jones, A. C.; Berweger, S.; Wei, J.; Cobden, D.; Raschke, M. B., Nano-optical investigations of the metal-insulator phase behavior of individual VO₂ microcrystals. *Nano Lett.* **2010**, *10* (5), 1574-1581.

19. Strelcov, E.; Tselev, A.; Ivanov, I.; Budai, J. D.; Zhang, J.; Tischler, J. Z.; Kravchenko, I.; Kalinin, S. V.; Kolmakov, A., Doping-based stabilization of the M2 phase in free-standing VO₂ nanostructures at room temperature. *Nano Lett.* **2012**, *12* (12), 6198-6205.

20. Choi, S.; Kim, B. J.; Lee, Y. W.; Yun, S. J.; Kim, H. T., Synethesis of VO₂ nanowire and observation of metal-insulator transition. *Jpn. J. Appl. Phys.* **2008**, *47* (4), 3296-3298.

21. Zhang, L. Y.; Sun, J. F.; Zuo, H. B.; Yuan, Z. Y.; Zhou, J.; Xing, D. W.; Han, J. C., Tridimensional morphology and kinetics of etch pit on the {0001} plane of sapphire crystal. *J. Solid State Chem.* **2012**, *192*, 60-67.

22. Katz, J. D.; Hurley, G., Etching alumina with molten vanadium pentoxide. *J. Am. Ceram. Soc.* **1990**, *73* (7), 2151-2152.

23. Safdar, M.; Frischat, G. H.; Salge, H., Etching of Al_2O_3 surfaces with molten V_2O_5 . *J. Am. Ceram. Soc.* **1974**, *57* (2), 106-106.

24. Tselev, A.; Strelcov, E.; Luk'yanchuk, I. A.; Budai, J. D.; Tischler, J. Z.; Ivanov, I. N.; Jones, K.; Proksch, R.; Kalinin, S. V.; Kolmakov, A., Interplay between ferroelastic and metal-insulator phase transitions in strained quasi-two-dimensional VO₂ nanoplatelets. *Nano Lett.* **2010**, *10* (6), 2003-2011.

25. Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson, J. W.; Smith, J. V., Structural electronic relationships in inorganic solids - powder neutron-diffraction studies of the rutile and anatase polymorphs of titanium-dioxide at 15 and 295-K. *J. Am. Chem. Soc.* **1987**, *109* (12), 3639-3646.

26. Muraoka, Y.; Ueda, Y.; Hiroi, Z., Large modification of the metal-insulator transition temperature in strained VO₂ films grown on TiO₂ substrates. *J. Phys. Chem. Solids* **2002**, *63* (6-8), 965-967.

27. Sambi, M.; Sangiovanni, G.; Granozzi, G.; Parmigiani, F., Growth and the structure of epitaxial VO₂ at the TiO₂(110) surface. *Phys. Rev. B* **1997**, *55* (12), 7850-7858.

28. Vejux, A.; Courtine, P., Interfacial reactions between V_2O_5 and TiO_2 (anatase) - role of structuralproperties. *J. Solid State Chem.* **1978**, *23* (1-2), 93-103.

Saleh, R. Y.; Wachs, I. E.; Chan, S. S.; Chersich, C. C., The interaction of V₂O₅ with TiO₂(anatase) - catalyst evolution with calcination temperature and o-xylene oxidation. *J. Catal.* **1986**, *98* (1), 102-114.
Haber, J.; Nowak, P., A catalysis related electrochemical study of the V₂O₅/TiO₂ (rutile) system. *Langmuir* **1995**, *11* (3), 1024-1032.

31. Habibi, M. H.; Guo, S. M., The hot corrosion behavior of plasma sprayed zirconia coatings stabilized with yttria, ceria, and titania in sodium sulfate and vanadium oxide. *Mater. Corros.* **2015**, *66* (3), 270-277.

32. Liu, H.; Cai, J.; Zhu, J. H., Hot corrosion behavior of $BaLa_2Ti_3O_{10}$ thermal barrier ceramics in V_2O_5 and $Na_2SO_4 + V_2O_5$ molten salts. *Coatings* **2019**, *9* (6), 351.

33. She, Y. J.; Guo, Y. W.; Tan, Z. X.; Liao, K., $Na_2SO_4 + V_2O_5$ corrosion behavior of $BaNd_2Ti_3O_{10}$ for thermal barrier coating applications. *Coatings* **2020**, *10* (9), 901.

34. Singh, G.; Kumar, S.; Kumar, R., Comparative study of hot corrosion behavior of thermal sprayed alumina and titanium oxide reinforced alumina coatings on boiler steel. *Mater. Res. Express* **2020**, *7* (2), 026527.

35. Barnard, A. S.; Zapol, P.; Curtiss, L. A., Modeling the morphology and phase stability of TiO₂ nanocrystals in water. *J. Chem. Theory Comput.* **2005**, *1* (1), 107-116.

36. Labat, F.; Baranek, P.; Adamo, C., Structural and electronic properties of selected rutile and anatase TiO₂ surfaces: An ab initio investigation. *J. Chem. Theory Comput.* **2008**, *4* (2), 341-352.

37. Lazzeri, M.; Vittadini, A.; Selloni, A., Structure and energetics of stoichiometric TiO₂ anatase surfaces. *Phys. Rev. B* **2001**, *63* (15), 155409.

38. Okeke, G.; Hammond, R. B.; Antony, S. J., Effects of heat treatment on the atomic structure and surface energy of rutile and anatase TiO₂ nanoparticles under vacuum and water environments. *Chem. Eng. Sci.* **2016**, *146*, 144-158.