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Preface

This book consists of material for a one term course in classical me-
chanics presented to first year mathematics majors at the University
of Bristol. Unlike the undergraduate mathematics curriculum in the
United States, the United Kingdom has a rich tradition of teaching
classical mechanics (among other courses that might be viewed as
‘’theoretical physics”) at the undergraduate level. (This should not
be too surprising since, after all, Isaac Newton did invent calculus, in
part, to describe mechanical phenomena). I have always found this a
very enjoyable course to teach, but a bit challenging. The class tends to
be large, it is a requirement for all first year mathematics students, and
the students have varied backgrounds. Some have had a basic course
in mechanics, some have not. Almost all have a good background
in calculus, but I generally need to assume minimal background in
differential equations and linear algebra. Moreover, this needs to be
a mathematics course, not a physics or engineering type mechanics
course. So I have made the decision that there will be (essentially) no
free body diagrams.

The result is this book. The goal is to give students some expo-
sure to the beautiful subject of classical mechanics at a level that will
‘’mesh” with their other first year mathematics courses and give them
the prerequisites (and hopefully tempt them to take) more advanced
courses in classical, quantum, and statistical mechanics offered in the
second and third years.

This book was typeset with the Tufte latex package. I am grateful
to Edward R. Tufte for putting his beautiful design ideas in this Latex
book package.





Prelude: What is Mechanics and What Framework Will
We Use to Understand it?

What is Mechanics and What Framework Will We Use to Un-
derstand it?

We begin by first setting the stage for what these lectures are about.
What is “mechanics”? Very simply, it is the study of motion. Motion
of what? Well, just about anything. There are “mechanical theories”
or “descriptions” for such diverse systems (another word to define, at
some point) as the internet, DNA molecules, and the stockmarket, just
to name three. So the study of mechanics will prove useful in just
about every field of science, engineering, and technology, and should
be viewed as essential.

But let’s go back to the beginning. With our definition of mechanics
we have raised the obvious question, “what is motion?” Answering
this question will tell us a great deal about how we are going to study
“mechanics”.

Suppose I throw a ball across the room. In this case it should be
clear what I mean by “the motion of the ball”; I am merely referring
to the path the ball takes as it moves through the air on its way across
the room. “Describing the motion” may mean providing a description
of the ball’s location at each instant of time as it moves across the
room. But what do we mean by “time” and “location”? This may seem
“obvious”, but what is “obvious” to you, may not be so to someone
else, and one of our goals will be to understand just what we can take
as “obvious”, and what does require more careful consideration.

Time. We will make no attempts to define “time” in this course. It
is a notion that we can all reach some level of agreement upon based
on our common experience. Most importantly, we can provide a way
of measuring it with clocks that we can all agree upon. “Time” is
an example of a quantity referred to as a dimension, and dimensions
have different units (e.g., seconds, minutes, hours). There are some
deep issues lurking behind the scenes here, issues that led Einstein to
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develop the theory of special relativity, but you will learn about them
in other courses in your studies.

Space. The ball is moving through “space”. What is space? Like time,
for us space will be an undefined notion. However, again like time,
it will achieve meaning and utility for us by providing a way to mea-
sure it, and this will involve the notion of length or distance. So how
do we describe the balls “location in space” at a fixed instant of time?
This can be done by specifying a coordinate system, and by specifying
the location of the ball with respect to a chosen coordinate system. This
last phrase is significant, because there is a great deal of freedom in
choosing a coordinate system. “Convenience” is often the most signif-
icant motivating factor for the choice of a coordinate system. However,
it should be clear that some aspects of the motion of the ball should
be independent of the choice of coordinates used to quantitatively de-
scribe its motion. Understanding what aspects of motion are coordinate
dependent versus coordinate free is important.

“Length” is another example of a dimension, and you should be fa-
miliar with many units of length (e.g., meters, inches, or miles).

The location of the ball at each instant in time is referred to as the
kinematics of the ball. The subject of mechanics is usually broken into
two parts. Kinematics, which is the study of the description of motion,
and dynamics, which is the study of the cause of motion. Dynamics
would be concerned with what caused the particular kinematics of
the ball. That is, why did it take a certain path with a certain speed
(among other things that we don’t have the language to discuss yet).

The beginning point for the study of dynamics is “Newton’s Laws”.
What is a “law”? It’s something we cannot prove mathematically.
Rather, it is the distillation of years of experience (or experiment) that
we take as “the truth” until something better comes along (as a re-
sult of more experience and experiment). Newton’s laws were laid
down by him in his book The Principia1 (the title is actually longer,
but you can look that up, it is usually just referred to as “The Prin-
cipia”). We next describe Newton’s laws following the description of
Sommerfeld2.

Here’s the first law. (It happens that Newton’s first law was arrived
at many years earlier by Galileo (see the references below), but that’s
just the way science works sometimes. )

Newton’s First Law. Every material body remains in its state of rest or of
uniform rectilinear motion unless compelled by forces acting on it to change its
state.

We would like to make this law a bit more mathematical. In the
Principia Newton included a series of definitions in order to clarify
this.

©2017 Content under Creative Commons Attribution license CC-BY 4.0, code under BSD 3-Clause License.
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Definition II. The quantity of motion is the measure of the same, arising from
the velocity and the quantity of matter conjunctly.

The notion of “velocity” should be intuitively evident from our ear-
lier discussion, once we’ve chosen a coordinate system, that is. “Quan-
tity of matter” is a different issue.

Mass. Physical objects are made up of “stuff”, or matter. For us, this
will be another primitive concept that we will make no effort to de-
fine. “Mass” is another example of a dimension, and you are probably
familiar with many units of mass (e.g., grams and kilograms). Newton
did make an effort to define mass in his Definition 1, quoted below.

Definition I. The quantity of matter is the measure of the same, arising from
its density and bulk conjunctly.

Thus air of double density, in a double space, is quadruple in quan-
tity; in a triple space, sextuple in quantity. The same thing is to be under-
stood of snow, and fine dust or powders, that are condensed by compres-
sion or liquefaction; and of all bodies that are by any caused whatever
differently condensed. I have no regard in this place to a medium, if
any such there is, that freely pervades the interstices between the parts
of bodies. It is this quantity that I mean hereafter everywhere under the
name of body or mass. And the same is known by the weight of each
body; for it is proportional to the weight, as I have found by experiments
on pendulums, very accurately made, which shall be shewn hereafter.

This is a good example of “circular reasoning” (Sommerfeld refers
to it as a “mock definition”), see if you can figure out why. It should
give you hope to see geniuses making the same types of mistakes that
you may make (but it’s no excuse!).

So for Newton, “quantity of matter” and “mass” are synonyms.
According to Newton’s First Law, the “quantity of motion” is the

product of the mass and velocity. Now we quantify the notion of
mass with just a number (e.g., 6 kilograms, 600 kilograms, etc.), but
“velocity” is not just quantified by a number, but also by a direction
(think about it, it makes a difference which way you are going). Such
“directed quantities” are referred to as vectors, and they will be the
main subject of the lectures for the next few weeks.

Now let’s refer to the mass of the material body by m and the veloc-
ity by v, we make the velocity boldface to denote that it is a directed
quantity (in our context, we want to distinguish it from m). We shall
refer to the quantity of motion of the material body as its momentum,
and denote it by p (the phrase “quantity of motion” is not very good
as it does not reflect the directional quality of the motion. The idea of
a vector was not fully formed in Newton’s time, though he doubtless
would have understood the concept). Then we can write the equation:

©2017 Content under Creative Commons Attribution license CC-BY 4.0, code under BSD 3-Clause License.
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p = mv,

and Newton’s first law becomes:

p = constant in the absence of forces,

(yes, we have not said what a force is). Sometimes this is referred to as
the Law of Inertia.

Referring to the motivating example from above, the ball started
from rest in my hand, then it moved across the room. Its “quantity
of motion” changed. Therefore a force, or forces, must have “acted on
it” (of course, I threw it with my arm, but there were other forces too,
right? What were they?). We can’t predict the motion without knowing
the forces. Knowing the forces acting on a body is the key issue in solving
any mechanics problem.

But let’s return to this phrase “material body”. In our “thought
experiment” of tossing a ball across the room and describing its mo-
tion would it have made a difference if the ball was “small, round and
hard” or “a large plastic bag filled with water” or “four balls connected
by springs”? Probably. The point here is the the structure and compo-
sition of the material body will probably have an effect on the path it
takes as it is thrown across the room. This is a level of complexity that
we will not consider at this point. Our material bodies will consist of
all of the mass being concentrated in a point, sometimes referred to as
a “point mass” or “mass point”. Surprisingly, this approximation works
well in many situations. For example, we can get a pretty good idea
of the dynamics of the solar system by considering the sun, planets,
and some of the moons, as point masses (but for detailed calculations
of trajectories of objects in the solar system this approximation would
not be adequate).

Now let’s turn to the “real law of dynamics”; Newton’s second law
(if the second law is the “real law”, then why isn’t it the first law?
There is a “logical” answer. Try to figure it out.).

Newton’s Second Law. The change in motion is proportional to the force
acting and takes place in the direction of the straight line along which the force
acts.

Now we cannot avoid saying something about this term “force” any
longer. Intuitively, you should have some idea of this notion just from
using your muscles in daily life. From this, it should also seem rea-
sonable that force is another “directed quantity” or vector. We can
measure these forces that we generate with our muscles, or other ma-
chines, by comparing them against the “standard” force of gravity.
Once we specified a way of measuring a quantity, it achieves physical
meaningfulness.

©2017 Content under Creative Commons Attribution license CC-BY 4.0, code under BSD 3-Clause License.
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Now let’s write out Newton’s second law as an equation:

d
dt

p = F.

The “change of motion” is written as the time derivative of the mo-
mentum, and this is equal to the force. What about the phrase “. . .
direction of the straight line along which the force acts”? How is that
manifested in this equation? You will learn that when we learn about
the properties of vectors during the next few lectures.

For completeness, we write down Newton’s third law.

Newton’s Third Law. Action always equals reaction, or, the forces two bodies
exert on each other are always equal and opposite in direction.

This says that forces always occur in pairs in Nature. You attract the
earth just as much as the earth attracts you. The third law will play a
central role when we couple (or, “attach together”) many point masses
to form more complicated bodies.

“Physical measurement” is the notion that gives meaning to many
of the quantities in Newton’s three laws, hence the laws themselves.
But if you look back at our discussion of the different physical mea-
surements that we described in order to quantify time, space, and mass
underlying them all was the notion of a chosen coordinate system. Are
Newton’s law dependent on the coordinate system? We will learn later
that, for a certain class of coordinate systems, the answer is “no”.

This is the end of the general introduction. Now we will get down
to developing the “nuts and bolts” of mechanics and, for the most
part, forget about much of the issues that were raised here. We will
merely take Newton’s Laws as axioms, and once we’ve determined the
forces, derive the mathematical consequences. Newton’s laws will be
taken up in more detail after we’ve developed some tools to study
kinematics.

References

We mentioned that there are many textbooks on mechanics that cover
the basic material dealt with in this course. At some point you may
want to purchase a particular text for reference purposes. The partic-
ular text that you purchase may depend upon your tastes, interests,
and needs that you develop after a few years study of mathematics.
However, we mention below a few books that go somewhat beyond
the course and whose study will yield deep insights.

The book by Truesdell3 is a scholarly and entertainingly written
work on the history of mechanics. In it you will learn of some of the
intellectual struggles of some of the greatest scientific minds as they
developed some of the concepts that we now almost take for granted.
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This is an excellent book to learn about how mathematics is applied to
describe and predict physical phenomena.

Mach4 was one of the deepest thinkers about what mechanics really
”means”. It is said that Einstein studied this book throughly in the
time leading up to his development of relativity. It is easy to dip in
and out of the book depending on your interests, and thinking about
what Mach writes will certainly give much insight into mechanics.
This book is now available for free download at:

http://www.archive.org/details/scienceofmechani005860mbp

The book of Sommerfeld5 is a personal favorite of mine. Sommer-
feld was one of the greatest theoretical physicists of the 20th century,
and also one of the greatest teachers. It is probably fair to say that
this book is a bit ”obscure”. However, the topics, problems, and in-
sights are simply unequalled in any ”modern” textbook, and I still use
it regularly as a reference.

Finally, I want to mention the Schaum’s Outline on Theoretical Me-
chanics by Spiegel6. This is an excellent text from which to learn clas-
sical mechanics. It develops the theory at an adequate level and it
contains a wealth of problems that provide additional insight. I have
used it in my course and many of the problems have made their way
into my material. It is very unfortunate that it has been out of print in
recent years.
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Kinematics–Scalars, Vectors, and Vector Algebra

Broadly speaking, mechanical systems will be described by a combi-
nation of scalar and vector quantities. A scalar is just a (real) number.
For example, mass or weight is characterized by a (real and nonnega-
tive) number. A vector is characterized by a nonnegative real number
(referred to as a magnitude), and a direction. For example, momentum
and force are examples of vector quantities, since it is not only the
magnitude of these quantities that is important, but they also have a
“directional nature” (for the moment, we are just appealing to your
intuition here). We assume that you are familiar with the algebraic
rules associated with manipulating numbers. Similar algebraic rules
exist for manipulating vectors, and that is what we want to develop
now (for example, it is important to know how to deal with several
different forces acting on a “body” in different directions). However,
we are getting a bit ahead of ourselves. First, we need to give a math-
ematical definition of a vector. The rules of vector algebra are then
derived from the properties ascribed to vectors through the definition
(the axiomatic way of reasoning).

As you progress in your studies of mathematics you will see that
the notion of a vector is fundamental in many areas of studies. This is
possible because the fundamental idea has been generalized by virtue
of its being abstracted and axiomatized. However, the abstraction and
axiomatization sprang from a fundamental, and fairly simple, idea (it’s
always insightful to look for the motivation behind the abstraction),
and this is how we will develop the definition of a vector.

The Definition of a Vector

We now define the notion of a vector that is sufficient for the purposes of this
course. In other courses you will generalize the notion of a vector, but the
fundamental properties will remain the same. It is important to realize that our
definition of a vector does not require reference to a specific coordinate system.
It is ”coordinate free”. This is important to realize because later we will ”
represent” vectors in different coordinate systems.
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Our idea of the three dimensional space in which we live we are
taking as a basic, undefined concept. We consider two points in space,
labelled P and Q, and the line segment connecting them, starting at P
and ending at Q see Fig. 1.1.

P

Q

Figure 1.1: The definition of a vector as
a directed line segment from the point P
to the point Q.

Hence, a vector is a directed line segment, in the sense that its direction
is from P to Q. This is denoted in the figure by the arrow on the line
segment. The magnitude of the vector is just the length of the vector.

Our definition of a vector is valid in ordinary (three-dimensional)
space. Do not let the fact that the paper on which Fig. 1.1 is drawn
fool you. Work out in your mind that the definition is perfectly valid
in three dimensions. Geometrical reasoning is very powerful in math-
ematics. Many complicated ideas can be conveyed (and, allegedly,
understood) with a simple sketch. However, if the limitations of the
sketch are not well understood from the beginning, then false ideas
can also be conveyed. There is a bit of art work involved here; some-
thing that is gained with experience and careful thought. Some math-
ematicians may give you the impression that mathematics is a very
“cut-and-dried” subject; that it flows logically through an orderly cur-
rent of successive theorems, proofs, lemmas, propositions, and defini-
tions. This is nonsense! Many important areas of mathematics were
originally formulated in a very confused, illogical, and messy state,
and it’s only through many years of thought and refinement that they
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(or ”magnitude”) and direction.

are brought into the perfectly crisp and logical state that they are pre-
sented in today (which is also often dry and uninspiring).

Now we need to introduce some notation for vectors. That is, a way
of representing them on a piece of paper, or a black or whiteboard.
This is important. Notation forms the language of mathematics, so
you must get this right from the start. In the history of mathematics
many battles have been fought over the best notation for a subject (a
notable such battle was the one between Newton and Leibniz (and
their respective followers) for the notation of the calculus that you are
learning this year).

The vector shown in Fig. 1.1 can be denoted in several ways:

−→
PQ, ~A, A, A.

The first notation,
−→
PQ, probably makes a lot of sense from the point of

view of the definition of a vector that we gave (and good mathematical
notation should be intuitive in the sense that it conveys the aspects of
the quantity that is being represented). Unfortunately, we will rarely
use such notation. Now you are probably wondering where the “A”
came from. It’s certainly not shown in Fig. 1.1. It is at this point that
we perform a bit of abstraction with respect to our original definition
of a vector. A vector is defined by a “length and direction”. So the be-
ginning point (P in the figure) and the end point (Q in the figure) are
not crucial for defining a vector; any two points will do provided that
the segment between those two points has the same length and direc-
tion. Or, to put it another way, we can move the line segment all over
space and, so long as we maintain its length and direction, it always
defines the same vector (this will be important shortly when we talk
about addition of two vectors). This makes sense because, thinking
ahead, we want to use vectors to represent quantities such as momen-
tum and force (yes, things we have not defined yet). The force acting
on a body has a characteristic that is independent of the particular lo-
cation in space that it is being applied. For example, you can apply
the same force to lifting an object whether that object is in Bristol or in
London. But back to notation. Since the two particular endpoints are
not essential we economize the notation and use a single character, in
this case “A” to denote a vector. On the printed page it is denoted in
boldface, A. This doesn’t work so well on a black or whiteboard. In
that case either an underline is used, A, or an “overarrow”, ~A. 1

Vector Algebra
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Consistent with our definition of a vector, we now define

how vectors are added, multiplied by scalars (”numbers”),
and subtracted.

With the definition of a vector in hand we can now develop rules for
adding vectors, subtracting vectors, and multiplying vectors by scalars
(the idea of multiplying two vectors will be considered a bit later). But
first, we need to establish two important properties.

Equality of Two Vectors. Given two vectors, say A and B, what does it
mean for these two vectors to be equal? Since a vector is defined by
its direction and length, we say that A and B are equal if they have
the same direction and length, and we write this as A = B. Note that
equality of two vectors does not depend at all on their beginning and
end points in space.

The Negative of a Vector. Consider a vector A. The vector having the
same length as A, but with opposite direction, is denoted by −A.

The Sum of Two Vectors. Now let’s move on to the subject of adding
two vectors. Suppose we are given two vectors A and B. What mean-
ing could we give to the sum of A and B? We first place the beginning
point of B at the ending point of A, as shown in Fig. 1.2b. Then the
sum of A and B, denoted A + B, is defined to be the vector, which we
will call C, from the beginning point of A to the ending point of B, see
Fig. 1.2b. Sometimes the word resultant is used for sum. This defini-
tion is equivalent to the parallelogram law for vector addition, which we
illustrate in Fig. 1.2c.

It should be clear that this definition for vector addition can be eas-
ily extended to more that two vectors. We illustrate this in Fig. 1.3.

The Difference of Two Vectors. The difference of two vectors A and B,
denoted A− B, is the vector C which when added to B gives A. This
definition, along with the definition of the negative of a vector given
above, implies that we can write A− B as A + (−B) (it would be very
instructive if you drew a “picture” of this definition using the defi-
nitions given already). If A = B then A− B is defined as the zero
vector, and denoted by 0. The length of the zero vector is zero, but its
direction is undefined.

The Product of a Vector and a Scalar. The product of a vector A with
a scalar c is the vector cA (or Ac) with magnitude |c| times the mag-
nitude of A and the direction the same as A if c is positive, or the
direction opposite to A if c is negative. If c = 0 then cA = 0, the zero
vector.
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A

B

(a)

(b)

(c)

B
A

A

B

C A B+=

C A B+=

Figure 1.2: a) Two vectors A and B. b)
The sum of A and B. c) Illustration of the
parallelogram law for vector addition.

A B

C

D

E

F=A+B+C+D+E

(a)

(b)

A

B

C

D

E

Figure 1.3: a) Five vectors, A, B, C, D,
and E. b) The sum of the five vectors,
F = A + B + C + D + E.

Unit Vector. This is an important notion that will arise many times.
For this reason we choose to highlight the idea. A unit vector is simply
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2 Vectors are added using the ”parallel-
ogram law”. This rule for addition of
vectors does not require coordinates.

a vector having length one (“unit length”). Given any vector A, with
length A > 0, we can construct a unit vector from it, as follows:

A
A
≡ a,

then we can also write

A = Aa.

For a given vector A we will often denote its magnitude by:

A = |A|.

Note that the only thing distinguishing two unit vectors is their re-
spective directions.2

Kinematics–Multiplication of Vectors

There are two ways to multiply two vectors: the dot (or

scalar) product and the cross (or vector product.
Now we come to the subject of muliplication of vectors. If you think of

our purely geometrical definition of a vector given previously, it may
seem rather strange to think of multiplying two “arrows in space”.
However, our notion of multiplication will also be based on geometry.

There are two ways in which we will multiply vectors. They arise
naturally in different settings in mechanics. They are the dot, or scalar
product and the cross, or vector product. This should already seem a
bit novel. After all, there is only one way to multiply numbers, and
when you multiply two numbers, you get a number. The terminology
here seems to indicate that, besides there being two ways to multiply
vectors, if you do it one way you get a number and if you do it the
other way you get a vector. This is indeed the case, but let’s get to the
definitions.

Dot, or Scalar Product. Let A and B be vectors. Then the dot, or scalar
product of A and B, denoted A · B, is defined by:

Key point:

A · B ≡ |A| |B| cos θ, 0 ≤ θ ≤ π,

where θ is the angle between A and B when we give A and B the same
starting points, see Fig. 1.4.

We say that two vectors are perpendicular, if their dot product is
zero. An equivalent term is “orthogonal”. Two vectors are said to be
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A

B

θ

Figure 1.4: The angle between two vec-
tors.

3 We noted earlier that we will assume
certain basic knowledge and take some
ideas as evident, e.g. the notions of
space, time, and mass. Concerning
space, the notion that two points deter-
mine a straight line, is also something
that most of you should accept based on
your experience with Euclidean geome-
try. In the hierarchy of Euclidean geo-
metrical objects, the next most compli-
cated object (beyond a line) would be
a plane. You should understand com-
pletely, and make sure you are comfort-
able with, the statements three points
determine a plane and two vectors de-
termine a plane.

orthogonal if their dot product is zero. A related term is “orthonormal”,
but this tends to be applied exclusively to unit vectors. Two unit vectors
are said to be orthonormal if their dot product is zero. 3

With the dot product of two vectors defined we can discuss the
notion of ”the projection of one vector onto another”.

The Projection of a Vector onto Another Vector. Consider the vectors A
and B as shown in Fig. 1.5. What do we mean by “the projection of A
onto B?”

A

B

θ

BA

A  b.

Figure 1.5: Projection of A onto B.

Let b = B
|B| denote the unit vector in the direction of B. Then the

projection of A on B is given by:

A · b = |A| cos θ.

Why didn’t we define the projection of A onto B as just A · B?

Cross, or Vector Product. Let A and B be vectors. Then the cross, or vector
product of A and B, denoted A× B, is defined by:
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Key point:

A× B ≡ |A| |B| sin θ n, 0 ≤ θ ≤ π,

where θ is the angle between A and B and n is a unit vector perpen-
dicular to the plane formed by A and B.

However, n is not uniquely defined in this way. There are two pos-
sibilities, and we will have to make a choice of one so that we are all
speaking the same language.

Here’s how to understand the possibilities. Take your right hand,
and point the thumb in the direction of A with the fingers in the direc-
tion of B, when you do this consider Fig. 1.6. Then n could be chosen
to either point “upward” out of your hand (Fig. 1.6a), or “downward”,
through your hand (Fig. 1.6b). We make the first choice, i.e. that
shown in Fig. 1.6a.

(a)

(b)

θ B

A

n

θ
BA

n

Figure 1.6: Illustration of the right hand
rule.

If A = B, or A and B are collinear (parallel), then we define A×B =



kinematics–scalars, vectors, and vector algebra 25

4

• The dot product of two vectors is a
scalar.

• The cross product of two vectors is a
vector.

• The definitions of dot product and
cross product do not require coordi-
nates.

0, the zero vector.

A Final Remark: Dimensions. We have been taking the notions of two
and three dimensional space as primitive concepts since most peo-
ple’s experience makes them comfortable with these notions. However,
many applications of mechanics involve the consideration of higher
dimensional space. How do we define vectors in higher dimensions?
The graphical constructions we’ve utilized here don’t appear to gen-
eralize easily. This is where abstraction comes in, and you will learn
about it in detail later in your studies. 4

Problem Set 1

1. For the vectors shown in Fig. 1.7 construct:

(a) −A + B + 2C,

(b) A− B− 2C,

(c) 2A + B− C,

(d) A + 1
2 B− 1

2 C.

What is the relation between the vectors you constructed in (a) and
(b)? What is the relation between the vectors you constructed in (c)
and (d)?

A

B C

Figure 1.7: Vectors for problem 1.

2. Suppose A, B, and C are vectors and a and b are scalars. Using only
the definitions given in class concerning vectors, and the rules you
already know for manipulating scalars, graphically demonstrate the
following laws of vector algebra.

(a) A + B = B + A, Commutative Law for Vector Addition,

(b) A + (B + C) = (A + B) + C, Associative Law for Vector Addition,

(c) a(bA) = (ab)A = b(aA), Associative Law for Scalar Multiplication,
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5 This is an important problem for un-
derstanding the geometric meaning of
the dot product. Note that it does not re-
quire the use of any coordinate system.

6 SImilar to the previous problem, this is
an important problem for understanding
the geometric meaning of the cross prod-
uct. It also does not require the use of
any coordinate system.

(d) (a + b)A = aA + bA, Distributive Law ,

(e) a(A + B) = aA + aB, Distributive Law.

3. Suppose A, B, and C are vectors and a is a scalar. Using the defini-
tion of the dot, or scalar product, given earlier, show that it has the
following properties.

(a) A · B = B ·A, Commutative Law for Dot Products,

(b) A · (B + C) = (A · B) + (A · C), Distributive Law,

(c) a(A · B) = (aA) · B = A · (aB) = (A · B)a.

4. Let A and B be nonzero vectors. Prove that A + B and A− B are
perperpendicular if and only if |A| = |B|.

Draw a diagram to show that, geometrically, this means that if A
and B are the sides of a parallelogram, then the parallelogram is, in
fact, a rhombus5.

5. Prove that the area of a parallelogram with sides A and B is |A×B|.
Argue that from this result it is easy to conclude that the area of the
triangle, with two sides given by A and B, is 1

2 |A× B|6.



2
Kinematics–Vectors and Coordinates

We have emphasized that our development of the definition and prop-
erties of vectors did not utilize at all the notion of a coordinate system,
i.e., an agreed upon set of locations with respect to which the location
of a vector in space is described. In this sense a vector is a coordinate
free concept. This is important to understand because many physical
quantities should be independent of the particular system of coordi-
nates in which they may be considered.

Nevertheless, you may have felt a certain "vagueness" with the geo-
metrical arguments given to prove the various laws of vector algebra.
Coordinates are very useful for calculating certain quantities and mak-
ing certain notions more “concrete”. Many of the laws of vector alge-
bra, as well as the properties of the dot and cross products, are easy to
verify using coordinates (but, these laws and properties are independent
of the particular choice of coordinates). In this lecture we will consider
different types of coordinate systems and how we represent a vector in
a given coordinate system. We begin with a coordinate system with
which you should already have some familiarity.

Rectangular, or Cartesian, Coordinates in Three-Dimensions. Consider three
unit vectors in three-dimensional space, i, j, and k emanating from the
same point (which we call 0, for origin) having the property that each
unit vector is perpendicular to the other two, i.e.,

Key point:
i · j = 0, j · k = 0, i · k = 0. (2.1)

These three vectors define three coordinate axes, which are referred to
as the x, y, and z axes, respectively. There is a slight technical point
that we need to address here, which is the same technical point that
arose in the previous lecture when we defined the direction of A× B.
We will choose i, j, and k in such a way that our coordinate system is a
right-handed coordinate system. Here is the rule for doing that (the same
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as for choosing the direction of the cross product). Position your right
hand so that your thumb is perpendicular to your fingers. Then put
your thumb in the direction of i and your fingers in the direction of j.
Now there are two choices for the direction of k (remember, these three
unit vectors are taken to be perpendicular). Our coordinate system will
be right-handed if we choose k to be pointing out of the palm of our
hand, see Fig. 2.1.

i
j

k

x

y

z Figure 2.1: The i, j, and k unit vectors
in the direction of the x, y, and z axes,
respectively.

Note that it also follows, from the definition of the scalar product
as well as the definition given for i, j, and k, that:

Key point:
i · i = 1, j · j = 1, k · k = 1. (2.2)

Expressing a Vector in Coordinates. Now consider an arbitrary vector A
emanating from the origin of this coordinate system, as shown in Fig.
2.2.
From this figure we see geometrically (i.e., using the geometrical defi-
nition of vector addition given in Chapter 1) that A can be expressed
as:

Key point:

A = (A · i)i + (A · j)j + (A · k)k,

and the numbers A · i, A · j, and A · k are called the components of A with
respect to this coordinate system. They are the x, y, and z coordinates of
the tip of the vector A. For notational convenience we may write:

A1 ≡ A · i, A2 ≡ A · j, A3 ≡ A · k,

or
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i
j

k

x

y

z

A

kA .

jA. j

k

iA . i( )

( )

( )

0

P

QR

Figure 2.2: The projection of A onto i, j,
and k.

Ax ≡ A · i, Ay ≡ A · j, Az ≡ A · k.

Using Coordinates to Compute the Magnitude of a Vector. We can also
compute the length (or, magnitude) of A in terms of its components
(and this is one place where coordinates are very useful). Refer to Fig.
2.2. Let P denote the point at the tip of the vector A, let Q denote its
projection onto the plane defined by i and j (projection along the k
direction), and let R denote the endpoint of (A · i)i. Let OP denote the
line segment from O to P, QP denote the line segment from Q to P,
OQ denote the line segment from O to Q, OR denote the line segment
from O to R, and RQ denote the line segment from R to Q. Let OP,
QP, OQ, OR, and RQ denote the lengths of these respective segments.
Then the length of A is OP and we will derive an expression for it in
terms of the components of A.

From the Pythagorean theorem we have:

OP2
= OQ2

+ QP2, (2.3)

and

OQ2
= OR2

+ RQ2. (2.4)

Substituting (2.4) into (2.3) gives:

OP2
= OR2

+ RQ2
+ QP2, (2.5)

or,

|A|2 = A2
1 + A2

2 + A2
3. (2.6)

Therefore, we have:
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Key point:

|A| =
√

A2
1 + A2

2 + A2
3. (2.7)

Note that in passing from (2.6) to (2.7) a choice of sign was made in
taking the square root. Why did we choose the positive sign? The
choice of sign always needs to be taken into account when taking any
root of a number. Taking it for granted will eventually cause some
regret. (But in this case we used the general fact that ”length” or
”distance” is always nonnegative.)

There is another issue here that is important, but often taken for
granted. We chose a particular coordinate system to compute the
length of a vector. However, one might imagine that “length” should
be an intrinsic property of a vector and, therefore, be a number that is
independent of the particular coordinate system with respect to which
it is computed. In the realm of classical mechanics (this course) this
is true (but this notion may require reconsideration when you learn
about the theory of relativity).

Vector Addition and Multiplication by Scalars in Coordinates. Vector ad-
dition in coordinates is easy. You just add the components. Let

A = A1i + A2j + A3k,

B = B1i + B2j + B3k.

Then

Key point:

A + B = (A1 + B1)i + (A2 + B2)j + (A3 + B3)k.

Multiplication of a vector by a scalar is also straightforward. Let a
be a scalar. Then:

Key point:
aA = aA1i + aA2j + aA3k.

Identification of a Vector with a 3-Tuple. Once our coordinate system is
chosen, then the components of a vector (in the chosen coordinate sys-
tem) uniquely define the vector. Hence, we could identify any vector
with the 3-tuple consisting of the components of the vector, i.e.,

(A1, A2, A3).

Vector addition corresponds to adding 3-tuples as follows:
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(A1, A2, A3) + (B1, B2, B3) = (A1 + B1, A2 + B2, A3 + B3),

and scalar multiplication of a vector corresponds to scalar multiplica-
tion of the 3-tuple as follows:

a(A1, A2, A3) = (aA1, aA2, aA3).

The Dot, or Scalar Product in Coordinates. Using (2.1) and (2.2), the dot
product of vectors is easy to compute when the vectors are represented
in these coordinates. Let

A = A1i + A2j + A3k,

B = B1i + B2j + B3k.

Then

Key point:

A · B = A1B1 + A2B2 + A3B3. (2.8)

It also follows immediately by comparing (2.8) (with A = B) and (2.7)
that:

Key point:
|A| =

√
A ·A.

The Vector, or Cross Product in Coordinates. It is also easy to compute
the cross product of two vectors in coordinates. However, first we need
to derive some properties of cross products of the unit vectors.

First, it should be clear that:

Key point:

i× i = 0, j× j = 0, k× k = 0, (2.9)

since the cross-product of two parallel vectors is zero.
Now consider i× j. By definition this is:

i× j = |i| |j| sin
π

2
n = n = k,

The unit vector n is from our original definition of cross product. The
only issue here is why did we identify n with k? This is because
we have chosen our coordinate system according to the right-hand-rule
described above. Reasoning in the same way, we have:
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Key point:

i× j = k, j× i = −k,

j× k = i, k× j = −i,

k× i = j, i× k = −j. (2.10)

With (2.9) and (2.10) in hand, we have the means to compute the
cross product of two vectors. Let

A = A1i + A2j + A3k,

B = B1i + B2j + B3k.

and we wish to compute:

A× B = (A1i + A2j + A3k)× (B1i + B2j + B3k)

= (A1i + A2j + A3k)× (B1i + B2j)

+ (A1i + A2j + A3k)× B3k,

= (A1i + A2j + A3k)× B1i

+ (A1i + A2j + A3k)× B2j

+ (A1i + A2j + A3k)× B3k,

= A1i× B1i + A2j× B1i + A3k× B1i

+ A1i× B2j + A2j× B2j + A3k× B2j

+ A1i× B3k + A2j× B3k + A3k× B3k,

= (A2B3 − A3B2)i + (A3B1 − A1B3)j + (A1B2 − A2B1)k.

A useful ”mnemonic” for remembering the expression for the cross
product, A × B, in cartesian coordinates is through the determinant,
expressed as follows:

Key point:

A× B = det

∣∣∣∣∣∣∣
i j k

A1 A2 A3

B1 B2 B3

∣∣∣∣∣∣∣
= (A2B3 − A3B2)i + (A3B1 − A1B3)j + (A1B2 − A2B1)k.

Kinematics–Derivatives and Integrals of Vectors

Suppose you have a vector, A, that is a function of a scalar variable, t,
i.e.,
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A = A(t).

What would we mean by “the derivative of A(t)”, and what types of
properties would it satisfy? This is a key point for the subject of me-
chanics because we have already said that many of the quantities of
interest will be expressed as vectors, and mechanics is the study of
how those quantities change in time (which is the reason we chose to
denote the scalar variable by t). Since the mathematical operation of
differentiation is concerned with the instantaneous rate of change (of
whatever we may be differentiating) it stands to reason that under-
standing the idea of the derivative of a vector will be important to us.
Remember, if a vector “changes”, it can change in two ways; direction
and length, since these are the two characteristics that define a vector.

We will assume familiarity with elementary properties of differen-
tiation and integration of functions of one variable.

Differentiation of Vectors. The derivative of a vector is defined in terms
of the usual difference quotient that you are already familiar with
(hopefully) :

dA
dt

(t) = lim
∆t→0

A(t + ∆t)−A(t)
∆t

, provided the limit exists. (2.11)

However, in this course we are only going to differentiate and integrate
vectors that are represented in some coordinate system, for now, the
coordinate system will be that defined by the unit vectors i, j and k.
So letting:

A(t) = A1(t)i + A2(t)j + A3(t)k, (2.12)

then the derivative of A(t) is given by:

Key point:

dA
dt

(t) =
dA1

dt
(t)i +

dA2

dt
(t)j +

dA3

dt
(t)k. (2.13)

Is it obvious that (2.13) follows from the definition (2.11)? Probably
not, it does require a proof, but we won’t do that in this course. How-
ever, you could try to derive (2.13) from (2.11) yourself. A key fact
is that the derivatives of i, j and k are zero, i.e., they don’t change
in length or direction. This follows from their definition, but it is an
important point to realize since later we will learn about moving coordi-
nate systems, and in those the unit vectors defining the coordinate axes
may change their direction (with respect to . . .?).
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Example 1. Let

A(t) = e−t sin ti + ln tj +
t3

3
k,

then

dA
dt

(t) = (−e−t sin t + e−t cos t)i +
1
t

j + t2k.

So you see that when the vector is represented in cartesian coor-
dinates, differentiation just means differentiating each of the compo-
nents. Therefore you only need the knowledge of the standard calculus
of one variable.

Higher order derivatives are computed in the same way. For exam-
ple, the second derivative of A(t) is expressed as:

d2A
dt2 (t) =

d2 A1

dt2 (t)i +
d2 A2

dt2 (t)j +
d2 A3

dt2 (t)k.

We compute the second derivative of the example given above.

Example 2. Let

A(t) = e−t sin ti + ln tj +
t3

3
k,

then

d2A
dt2 (t) = (e−t sin t− e−t cos t− e−t cos t− e−t sin t)i− 1

t2 j + 2tk.

= −2e−t cos ti− 1
t2 j + 2tk

In calculus you learned how to differentiate products of functions.
Similar rules exist for vector calculus. However, in vector calculus
there are three types of products: the product of a vector function
with a scalar function, the scalar product of two vectors, and the cross
product of two vectors. For a scalar function a(t), and vector functions
A(t), B(t), the rules for differentiating these products are given below.

Key point:

”Product Rules” for Differentiating Products Involving
Vectors

d
dt

(a(t)A(t)) = a(t)
dA
dt

(t) +
da
dt

(t)A(t),

d
dt

(A(t) · B(t)) = A(t) · dB
dt

(t) +
dA
dt

(t) · B(t),

d
dt

(A(t)× B(t)) = A(t)× dB
dt

(t) +
dA
dt

(t)× B(t).
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Integration of Vectors. Integration of vector functions expressed in co-
ordinates is developed in an analogous way. We have:

∫
A(t)dt =

∫
A1(t)dti +

∫
A2(t)dtj +

∫
A3(t)dtk (2.14)

There is a corresponding “fundamental theorem of calculus” for inte-
grals of vectors. If there exists a vector function B(t) such that

A(t) =
dB
dt

(t), (2.15)

then the indefinite integral of A(t) is given by:

∫
A(t)dt =

∫ dB
dt

(t)dt = B(t) + c, (2.16)

where c is a constant vector. The definite integral of A(t) is expressed
as:

∫ b

a
A(t)dt =

∫ b

a

dB
dt

(t)dt = (B(t) + c) |ba = B(b)− B(a). (2.17)

We give an example.

Example 3. Let

A(t) = e−t sin ti + ln tj +
t3

3
k,

and we want to compute

∫
A(t)dt.

Now

∫
e−t sin t dt = − e−t

2
(sin t + cos t) + c1,

∫
ln t dt = t ln t− t + c2,

∫ t3

3
dt =

t4

12
.

Therefore

∫
A(t)dt = − e−t

2
(sin t + cos t)i + (t ln t− t)j +

t4

12
k + c1i + c2j + c3k.
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Kinematics–Space Curves, their Description and Derivatives

If a particle is in motion we can imagine it tracing out a curve in space.
In order to give a mathematical description of this motion we need
to develop some mathematical tools for describing a curve in three
dimensional space, or a space curve.

Space Curves, or Paths. Consider the following vector that depends on
a scalar variable t (“time”):

r(t) = x(t)i + y(t)j + z(t)k (2.18)

For each t this vector locates a point in space. As t varies, the tip of
the vector traces out a curve. We say that (2.18) defines a space curve,
see Fig. 2.3. We imagine that this curve is the path of a particle.

i
j

k

x

y

z

P

Q(t)r

(t + ∆t)r

Figure 2.3: Geometry of a space curve.

Velocity. We define the velocity of the particle at the point P (also
called instantaneous velocity) as:

v(t) = lim
∆t→0

r(t + ∆t)− r(t)
∆t

, if the limit exists. (2.19)

Geometrically, it is a vector tangent to the path at the point P. In
coordinates, we have:

v(t) =
dr
dt
(t) =

dx
dt

(t)i +
dy
dt

(t)j +
dz
dt

(t)k.

The magnitude of the velocity is called the speed, and is given by:

|v(t)| =
∣∣∣∣dr

dt
(t)
∣∣∣∣ =

√(
dx
dt

(t)
)2

+

(
dy
dt

(t)
)2

+

(
dz
dt

(t)
)2
≡ ds

dt
(t),
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1 The point of this exercise is to empha-
size basic algebraic properties of vec-
tors. The dot product of two vectors is
a scalar, the cross product of two vectors
is a vector, and dividing by a vector is
not defined.

where s is the arclength along the curve as measured from some ini-
tial point P. More precisely, we imagine the components of the curve,
(x(t), y(t), z(t)) as given, then this is a differential equation whose so-
lution is the arclength along the curve (but you must choose a starting
and ending point in order to do the integral).

Acceleration. Acceleration of the particle at the point P (or, sometimes
called instantaneous acceleration) is the derivative of the velocity at the
point P, i.e.,

a(t) =
dv
dt

(t) = lim
∆t→0

v(t + ∆t)− v(t)
∆t

, if the limit exists.

In cartesian coordinates this is expressed as:

a(t) =
dv
dt

(t) =
d2x
dt2 (t)i +

d2y
dt2 (t)j +

d2z
dt2 (t)k,

and the magnitude of the acceleration is given by:

|a(t)| =
∣∣∣∣dv

dt
(t)
∣∣∣∣ =

√(
d2x
dt2 (t)

)2

+

(
d2y
dt2 (t)

)2

+

(
d2z
dt2 (t)

)2

.

Problem Set 2

1. Suppose A, B, C ,and D are vectors and a is a scalar. Using the def-
inition of the cross, or vector product, given in class, and expressing
the vectors in rectangular coordinates, show that the following proper-
ties hold.

(a) A× B = −B×A, Commutative Law for Cross Products Fails,

(b) (A + B)× (C + D) = (A× C) + (B× C) + (A×D) + (B×D),
Distributive Law,

(c) a(A× B) = (aA)× B = A× (aB) = (A× B)a.

2. Let A = 4i + 3j + 2k and B = −i + 7j− 3k. Compute A× B and
A · B .

3. Let A = 2i + 4j + 2k and B = −4i − 8j − 4k. Determine A× B
without doing any computations.

4. Consider each of the expressions below. Which expressions ”make
sense” (i.e. have mathematical validity in terms of the properties of
vectors). For those that do, use a = i− j, b = i, c = j, and d = i + j
to evaluate the expression.1

(a) a·b
c·d .
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(b) a · b · c,

(c) a·b d
b·c .

(d) a·d b·c
d .

(e) |a · b d|,

(f) a |c− d|,

(g) a + b · c,

(h) a× b,

(i) a× b× c,

(j) a× b + a · b,

(k) a× b · d,

(l) a× (b · c).

5. Consider the vectors

A = A1i + A2j + A3k, B = B1i + B2j + B3k,

both emanating from the origin of a cartesian coordinate system.
Let the tip of the vector A be denoted by P and the tip of the vector
B be denoted by Q. In other words, with respect to the cartesian
coordinate system, P is located at the point (A1, A2, A3) and Q is
located at the point (B1, B2, B3). Determine the vector starting at P
and ending at Q, and compute its magnitude. See Fig. 5.

i
j

k

x

y

z

A

B

P

Q

6. Let A(t) = A1(t)i+ A2(t)j+ A3(t)k, B(t) = B1(t)i+ B2(t)j+ B3(t)k,
and a(t) denote a scalar valued function. Prove the following prop-
erties for different types of products.

(a) d
dt (a(t)A(t)) = a(t) dA

dt (t) +
da
dt (t)A(t),
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2 This problem can be a bit tricky. It is
important to understand the nature of
each integrand.

(b) d
dt (A(t) · B(t)) = A(t) · dB

dt (t) +
dA
dt (t) · B(t),

(c) d
dt (A(t)× B(t)) = A(t)× dB

dt (t) +
dA
dt (t)× B(t).

7. If A(t) = 4(t− 1)i− (2t + 3)j + 6t2k, then compute2:

(a)
∫ 3

2
A(t)dt,

(b)
∫ 2

1
(ti− 2k) ·A(t)dt.

8. Suppose a particle moves along a space curve defined by:

x(t) = e−t cos t, y(t) = e−t sin t, z(t) = e−t.

Find the magnitude of the velocity and acceleration at any time t.

9. The position vector of a particle at any time t is given by:

r = a cos ωti + a sin ωtj + bt2k.

where a and b are scalars. Show that the speed of the particle in-
creases with time, but the magnitude of the acceleration is constant.
Describe the motion of the particle geometrically.





3
Kinematics–Space Curves, their Description and Deriva-
tives, Circular Motion, and Line Integrals

A “Moving Coordinate System” Along a Space Curve. We will now con-
struct a coordinate system (i.e., a set of three, orthogonal unit vectors)
at each point of a space curve. This can be viewed in two ways. If we
imagine a particle moving along the curve then our coordinate sys-
tem could be viewed as a moving coordinate system, moving with the
particle (with the particle always at the origin of the coordinate sys-
tem). Alternatively, we could view the curve as being fixed in space
and the coordinate system at each point could be used to describe the
shape of the curve. Both points of view occur in many applications.
For example, in biology DNA molecules are modeled as curves with a
complicated folded structure. In physics and chemistry polymers are
also modeled a curves with a complicated spatial structure. In pure
mathematics the subject of knot theory is concerned with describing
the structure of closed curves in three dimensions.

We begin by considering a curve, which we refer to as C, that is
traced out by the vector function r = r(t), as t varies through all possi-
ble values. We consider a particular point on that curve, called P, see
Fig. 3.1.

Notation: Make sure you distinguish vectors (boldface type) from
scalars (regular type) in the following. Also, all quantities are defined
at a specific point on the curve, i.e., they are functions of t. Remember
this, because for the sake of less cumbersome notation we are going to
omit the explicit dependence on t.

First, we define the unit tangent vector T, tangent to C at P. This is
defined as:

T =
dr
ds

, (3.1)

where s is arclength measured from some initial point on the curve
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Figure 3.1: Geometry of the coordinate
system associated with a space curve.

(which is arbitrary). So where does this come from, and why is it of
unit length?

First, the velocity, v(t) ≡ dr
dt (t) is, by definition, tangent to C. Now

recall the definition of arclength given earlier:

Key point:

|v(t)| =
∣∣∣∣dr

dt
(t)
∣∣∣∣ =

√(
dx
dt

(t)
)2

+

(
dy
dt

(t)
)2

+

(
dz
dt

(t)
)2
≡ ds

dt
.

(3.2)

A good candidate for a unit tangent vector to C at P would be

v(t)
|v(t)| . (3.3)

Now if you remember the chain rule from calculus, it follows from
(3.2) and the definition of velocity, that

Key point:
v(t)
|v(t)| =

dr
dt

dt
ds

(t) =
dr
ds

= T, (3.4)

which is the same as (3.1).

Technical Point: There is an issue here that we have side-stepped. What
happens if v(t) = 0? Dividing by zero is (usually) not allowed. In these
lectures we will not explicitly deal with this issue. When you learn more
about curves and surfaces you will learn how to understand this point.

Next we define the unit principal normal N at P. This is defined as:

Key point:

N ≡ dT
ds

/∣∣∣∣ dT
ds

∣∣∣∣. (3.5)
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Clearly, N is of unit length (at least it should be “clear”, or else you have
missed something really fundamental and should go back and find out
what it is), but it should also be perpendicular to T. This is (probably) not
obvious, so we will prove it. We’ve made the argument (by intimidation)
that T is of unit length. Therefore,

T · T = 1. (3.6)

Now let’s differentiate this expression with respect to s:

T · dT
ds

+
dT
ds
· T = 2T · dT

ds
= 0, (3.7)

from which it is immediate that:

T · dT
ds

= 0. (3.8)

From this expression, and the definition of N given in (3.5), it follows
that N · T = 0. At this point we introduce some notation and terminol-
ogy. It is standard to define:

Key point: ∣∣∣∣ dT
ds

∣∣∣∣ ≡ κ, (3.9)

to be the curvature of C at P. Moreover,

Key point:

R =
1
κ

(3.10)

is defined to be the radius of curvature of C at P. With these definitions
we can write:

N ≡ R
dT
ds

. (3.11)

We complete the construction of our coordinate system by defining the
unit binormal B to C at P. To do this, we desire to construct a third unit
vector that is perpendicular to the two that we have already constructed.
How would we do this? You should already have a good idea. We
merely need to take the cross product of the two unit vectors that we
have already constructed:

Key point:
B = T×N. (3.12)

Technical Point: Why did we take B = T×N, rather than B = N× T?
Because we wanted a right-handed coordinate system. Go back and
convince yourself that this is the type of coordinate system we have
constructed.
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1

• For a space curve, r(t) (which we
can think of as the position vector
of a particle) we have defined an or-
thonormal coordinate system at each
point on the curve, with the vectors T,
N, and B. These three vectors (gener-
ally) vary from point to point on this
curve, so we say that T, N, and B de-
fine a moving coordinate system.

• The space curve can be parametrized
by t or s, and the relation between
these parameters is given by (3.2).
This is a point that often gives stu-
dents difficulties, at first. So think
about what (3.2) means.

• The velocity and the acceleration of
the particle located by this position
vector r(t) can be described at each
point in space defined by r(t) in
terms of the (moving) coordinate sys-
tem defined by T, N, and B.

It follows from our construction (see (3.1) and (3.4)) that the velocity of
a particle on this curve is given by:

Key point:
v(t) = vT, where v ≡ |v|. (3.13)

What is the acceleration of a particle on this curve? We can compute this
by differentiating (3.13):

a =
dv
dt

=
d
dt
(vT) =

dv
dt

T + v
dT
dt

. (3.14)

Now

dT
dt

=
dT
ds

ds
dt

. (3.15)

From (3.2) it follows that

ds
dt

= v, (3.16)

and from (3.5) and (3.9) it follws that:

dT
ds

= κN. (3.17)

Therefore

dT
dt

= κN
ds
dt

= κvN =
vN
R

. (3.18)

Putting this all together gives the following expression for the accelera-
tion:

Key point:

a =
dv
dt

T + v
(

vN
R

)
=

dv
dt

T +
v2

R
N, (3.19)

where the first and second terms on the right hand side are called the
tangential acceleration and normal or centripetal acceleration, respectively.
1

Motion Constrained to a Circle. Now let’s consider a very simple case of
motion along a curve in space that arises in a number of applications:
motion on a circle in the plane. This is an example of constrained motion,
the particle is forced to move on the circle.

We consider a circle, C, of radius R, with center at the origin 0, and
a particle P moving along the circle. If s denotes arclength measured
along the circle (from some point A), then the angle subtended by the
particle is given through the relation s = Rθ, see Fig. 3.2.
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Figure 3.2: Motion of a particle con-
strained to a circle.

The magnitudes of the tangential velocity and acceleration are given,
respectively, by:

v =
ds
dt

= R
dθ

dt
= Rω, (3.20)

dv
dt

=
d2s
dt2 = R

d2θ

dt2 = Rα, (3.21)

where ω ≡ dθ
dt is called the angular speed and α ≡ d2θ

dt2 is called the angular
acceleration. The normal or centripetal acceleration, as seen from (3.19) is
given by v2

R = ω2R.

Polar Coordinates, and a Rotating Coordinate System. Let (r, θ) denote the
polar coordinates describing the position of a particle. Let r1 denote a
unit vector in the direction of the position vector r , and let θ1 denote a
unit vector perpendicular to r, and in the direction of increasing θ, see
Fig. 3.3.

First, we want to derive expressions for r1 and θ1 in terms of i and
j. The resulting equations will tell us how to transform vectors from
one coordinate system to another (a subject that we will return to later).
From Fig. 3.3, it is easy to see that the position vector r is given by:

r = r cos θi + r sin θj. (3.22)

Therefore we have:

Key point:
r1 =

r
|r| = cos θi + sin θj. (3.23)

It is also easy to verify that:
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Figure 3.3: The relationship between
polar coordinates and Cartesian coordi-
nates.

Key point:
θ1 = − sin θi + cos θj. (3.24)

Moreover, one can solve (3.23) and (3.24) simultaneously for i and j as
functions of r1 and θ1:

Key point:

i = cos θr1 − sin θθ1, (3.25)

j = sin θr1 + cos θθ1. (3.26)

Now there is a big difference between i, j and r1, θ1. As the particle
moves, i, j remain fixed in space with unit length (i.e. their derivatives
with respect to t are zero), but r1, θ1 move with the particle. We want to
determine how they move by computing their derivatives with respect
to t. We begin with r1. Differentiating (3.23) with respect to t gives:

Key point:

ṙ1 = − sin θ θ̇i + cos θ θ̇j,

= θ̇ (− sin θi + cos θj) ,

= θ̇θ1, using (3.24). (3.27)

Next we compute the derivative of θ1 with respect to t by differentiating
(3.24):

Key point:

θ̇1 = − cos θ θ̇i− sin θ θ̇j,

= −θ̇ (cos θi + sin θj) ,

= −θ̇r1, using (3.23). (3.28)
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2 The vectors i and j are of unit length,
and their direction is fixed in space.
Therefore their derivative with respect to
time is zero. The vectors r1 and `1 are
also of unit length, but their directions
in space change. Therefore their deriva-
tives with respect to time are non-zero,
and we have computed these derivatives
above. The derivatives of each vector can
either be represented in the coordinate
system defined by i − j, or the coordi-
nate system defined by r1 − `1.

Now we can compute the velocity of the particle in the coordinate sys-
tem defined by r1, θ1, where the position vector of the particle is r = rr1:

Key point:

v =
dr
dt

=
dr
dt

r1 + r
dr1
dt

= ṙr1 + rṙ1 = ṙr1 + rθ̇θ1. (3.29)

Next we compute the acceleration of the particle in this coordinate sys-
tem:

Key point:

a =
dv
dt

=
d
dt
(
ṙr1 + rθ̇θ1

)
,

= r̈r1 + ṙṙ1 + ṙθ̇θ1 + rθ̈θ1 + rθ̇θ̇1,

= r̈r1 + ṙ(θ̇θ1) + ṙθ̇θ1 + rθ̈θ1 + (rθ̇)(−θ̇r1),

= (r̈− rθ̇2)r1 + (rθ̈ + 2ṙθ̇)θ1. (3.30)

These formulae will be very useful later on.2

Kinematics–Line Integrals, and “Independence of Path”

Consider the cartesian coordinate system that we have developed and
denote the coordinates of any point in space with respect to that coor-
dinate system by (x, y, z). Suppose at each point of space we denote a
vector, A = A(x, y, z). Then we can view A = A(x, y, z) as a vector val-
ued function of the three variables (x, y, z). Sometimes such functions are
called vector fields. Vector fields arise everywhere. For example, the mass
of the earth exerts a force at each point in space (the earth’s gravitational
field) and in a flowing fluid each point of the fluid has a velocity (the
velocity field of the fluid).

Key point: Be aware of the difference between a vector valued
function of a single variable (e.g. a position vector that is a
function of time), and a vector valued function of a vector vari-
able (e.g. the velocity of a fluid defined at each point in space).
The former should be familiar by now, the latter will become
more familiar.

As a particle moves through space one may want to “add up” (or, more
mathematically, “integrate”) the effect a particular type of field has on
the particle during the course of its motion. This is where the notion of
line, or path integral arises.

Let

r(t) = x(t)i + y(t)j + z(t)k, (3.31)
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denote the position vector of a particle. Let P1 ≡ (x(t1), y(t1), z(t1)) and
P2 ≡ (x(t2), y(t2), z(t2)) denote points on the path of the particle. We
refer to the segment of the path of the particle between P1 and P2 as C.
Let A(x, y, z) = A1(x, y, z)i + A2(x, y, z)j + A3(x, y, z)k denote a vector
field, i.e., a vector defined at each point (x, y, z). The integral of the
tangential component of A(x, y, z) along C from P1 to P2 is written as:

∫ P2

P1

A · dr =
∫

C
A · dr =

∫
C

A1dx + A2dy + A3dz, (3.32)

is an example of a line integral. If C is a closed curve it is usually written
as:

∮
C

A · dr =
∮

C
A1dx + A2dy + A3dz, (3.33)

It probably seems quite reasonable that the value of the line integral
depends on the path, and generally it does.

Example 4. Consider the vector field

A = (3x2 − 6yz)i + (2y + 3xz)j + (1− 4xyz2)k.

We will evaluate
∫

C
A · dr from (0, 0, 0) to (1, 1, 1) along the straight line from

(0, 0, 0) to (0, 0, 1), then from (0, 0, 1) to (0, 1, 1), and, finally, from (0, 1, 1),
then to (1, 1, 1). Figure 3.4 may help visualize the path.

y

z

x

(0,0,1) (0,1,1)

(1,1,1)1C 3C

2C

Figure 3.4: Geometry of the path for
computing the line integral.

First, we have:
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∫
C

A · dr =
∫

C

(
(3x2 − 6yz)i + (2y + 3xz)j + (1− 4xyz2)k

)
· (dxi + dyj + dzk),

=
∫

C
(3x2 − 6yz)dx + (2y + 3xz)dy + (1− 4xyz2)dz. (3.34)

From considering this expression, and the statement of the problem to be solved
(i.e. compute this integral along a specified path between two points on the
path) you should see one of the main issues concerning the computation of
line integrals. There is an extra, essential, step involved. We must develop a
parametrization of the path between the two points for which the line integral
is to be computed. In this case, we will give that parametrization explicitly. The
path will consist of three segments:

1. C1: the straight line along the z-axis from (0, 0, 0) to (0, 0, 1).

2. C2: the straight line in the direction of the y-axis from (0, 0, 1) to (0, 1, 1).

3. C3: the straight line in the direction of the x-axis from (0, 1, 1) to (1, 1, 1).

See Figure 3.4.

Along the straight line from (0, 0, 0) to (0, 0, 1) , x = y = 0, dx = dy = 0 and
z varies from 0 to 1. Then the integral over this part of the path is:

∫ z=1

z=0
(3(0)2− 6(0)z)d(0)+ (2(0)+ 3(0)z)d(0)+ (1− 4(0)(0)z2)dz =

∫ z=1

z=0
dz = 1.

Along the straight line from (0, 0, 1) to (0, 1, 1), x = 0, z = 1, dx = 0, dz = 0,
and y varies from 0 to 1. Then the integral over this part of the path is:

∫ y=1

y=0
(3(0)2− 6y)d(0)+ (2y+ 3(0))dy+(1− 4(0)y)d(0) =

∫ y=1

y=0
2ydy = 1.

Along the straight line from (0, 1, 1) to (1, 1, 1), y = 1, z = 1, dy = 0, dz = 0,
and x varies from 0 to 1. Then the integral over this part of the path is:

∫ x=1

x=0
(3x2− 6)dx+(2y+ 3x)d(0)+ (1− 4x)d(0) =

∫ x=1

x=0
(3x2− 6)dx = (x3− 6x)

∣∣∣∣1
0
= −5.

Adding up the contributions from each segment gives.

∫
C

A · dr = 1 + 1− 5 = −3.

The ”Art” of Computing Line Integrals

In order to compute (3.32) we need to parametrize the (one dimensional)
path connecting P1 to P2. In some problems a parametrization of the
path may be specified (like in the example above). In others, it may be up
to us to construct a parametrization. A clever choice of parametrization
might make the computation of the line integral very easy.
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We will revisit this example in the problems where we will compute the
line integral along two different paths between (0, 0, 0) and (1, 1, 1), and
we will see that we get a different answer for each path. This probably
seems quite reasonable. However, in mechanics there are certain impor-
tant situations when the line integral of certain quantities is independent
of the path. This naturally gives rise to the following question. Is there
something particular about the nature of a vector field A that would
make its line integral between points P1 and P2 independent of the path
taken from P1 to P2? The answer is “yes”, but to tell you what the answer
is we need to introduce some definitions.

First, we need to discuss a new notion of the derivative of a scalar valued
function of more than one variable–the ”partial derivative”.

Partial Derivatives of Scalar Valued Functions of Two, or More Variables. We
have seen that functions of more than one variable (e.g. functions of the
coordinates of space) typically arise in mechanics. We will want to quan-
tify how these functions change as the variables change. This leads to
the notion of differentiation of functions of more than one variable. Over
the course of your studies in mathematics you will learn that there are
numerous ways that the differentiation operation can be carried out for
high dimensional functions depending on many variables. Fundamen-
tally, differentiation, in whatever context, is always related to the same
idea–understanding the behaviour of of function in a neighbourhood of a
point in terms of a linear approximation of the function at the point.

The notion of differentiation that we will need in this course is the notion
of partial differentiation, which we will now describe. For our purposes
we will be concerned with scalar valued function of two or three vari-
ables, e.g.

φ(x, y, z) = xy sin z, (3.35)

or

ψ(x, y) =
x
y

. (3.36)

In a sense you already know how to compute partial derivatives since
the idea of partial differentiation reduces the differentiation problem for
functions of more than one variable to the familiar situation of differen-
tiation of a function of a single variable. For example, the partial deriva-
tive of (3.35) with respect to any one of the variables x, y, or z, let’s say
y, means that we view all variables except the one that we are differenti-
ating with respect to as fixed, or constant. In this way we have a function
of a single variable, y, and we differentiate the resulting function exactly
as we differentiate functions of a single variable, e.g.

∂φ

∂y
= x sin z, (3.37)

where we use a different symbol for partial differentiation–∂ rather than
d.
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We can also express the partial derivative of a scalar valued function of
two or more variables in terms of the usual difference quotient. For
example:

∂φ

∂y
(x, y, z) = lim

h→0

φ(x, y + h, z)− φ(x, y, z)
h

, if the limit exists. (3.38)

For completeness, we give the remaining partial derivatives of φ(x, y, z):

∂φ

∂x
= y sin z, (3.39)

and

∂φ

∂z
= xy cos z. (3.40)

We also give the partial derivatives of ψ(x, y):

∂ψ

∂x
=

1
y

, (3.41)

and

∂ψ

∂y
= − x

y2 . (3.42)

Gradient of a Scalar Valued Function (of a vector variable). Let φ(x, y, z)
denote a scalar valued function of (x, y, z). The gradient of φ, denoted ∇φ

is a vector whose components in cartesian coordinates are given by:

∇φ =

(
∂φ

∂x
,

∂φ

∂y
,

∂φ

∂z

)
.

Curl of a Vector Valued Function (of a vector variable). Let A = A(x, y, z)
be a vector with components (A1(x, y, z), A2(x, y, z), A3(x, y, z)). Then
the curl of A = A(x, y, z), denoted ∇× A, is a vector whose components
are given by:

∇×A =

(
∂A3
∂y
− ∂A2

∂z
,

∂A1
∂z
− ∂A3

∂x
,

∂A2
∂x
− ∂A1

∂y

)
.

You will learn more about these notions when you study vector analysis.
But it’s always good to see the same concepts from different points of
view and they arise very naturally in the setting of mechanics, as we will
see in the coming lectures.

With these definitions in hand we can now state the conditions under
which the line integral between two points is independent of the path
taken between the point.



52 elementary classical mechanics

The line integral (3.32) will have a value that is independent of the path
joining P1 and P2 if and only if:

A = ∇φ, (3.43)

for some scalar valued function φ = φ(x, y, z) or, equivalently:

∇×A = 0. (3.44)

First, we show that if A has the form of (3.43), then the line integral
depends only on the endpoints of the path taken. Denote the coordinates
of P1 and P2 by (x1, y1, z1) and (x2, y2, z2), respectively. Then

∫ P2

P1

A · dr =
∫ P2

P1

∇φ · dr =
∫ P2

P1

∂φ

∂x
dx +

∂φ

∂y
dy +

∂φ

∂z
dz

=
∫ P2

P1

dφ = φ(x2, y2, z2)− φ(x1, y1, z1).

So the value of this integral depends only on the endpoints.

Now it is not obvious that if A satisfies (3.44), then it can be written
as the gradient of a scalar valued function. You may prove this in later
courses. However, for now, it provides a computable criterion to deter-
mine of the line integral of a vector field along a path depends only on
the endpoints.

Key point: The line integral of a vector field A(x, y, z) between
two points, P1 and P2, does not depend on the path connecting
P1 and P2 if A(x, y, z) can be expressed as the gradient of a
scalar valued function φ(x, y, z), i.e. A(x, y, z) = ∇φ(x, y, z).
A vector field A(x, y, z) can be expressed as the gradient of a
scalar valued function if the curl of A(x, y, z) is zero, i.e., ∇×
A(x, y, z) = 0.

Here we want to point out some issues with respect to differentiation of
functions that you should think about.

In calculus you learned about the derivative, and its computation, for
scalar valued functions of a scalar variable. So far, we have learned
about two generalizations of this idea. We have considered some specific
cases of how to differentiate a vector valued function of a scalar variable
and a scalar valued function of a vector variable. We recall each case
separately.

A particular form of a vector valued function of a scalar variable is:

A(t) = A1(t)i + A2(t)j + A3(t)k. (3.45)

We use the phrase ”particular form” because we are using a particular
coordinate system (defined by the unit vectors i− j− k) to ”represent”
the vector, and vectors have a meaning that is independent of the coor-
dinate system in which they are represented.
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The derivative of this vector, with respect to t (time for our applications)
is given by:

dA
dt

(t) =
dA1
dt

(t)i +
dA2
dt

(t)j +
dA3
dt

(t)k. (3.46)

So the components of the derivative (in the Cartesian coordinate system)
are just the derivative of the components of the original vector. This is
easy, but it works because the derivatives of the unit vectors i, j, k are
zero (their lengths and directions are constant in time-think of applying
the product rule to (3.45) for computing the derivative).

Of course, there are important situations where we represent the vector
in a coordinate system defined by unit vectors whose directions vary in
time. An important example is the position vector represented in polar
coordinates:

r(t) = r(t)r1. (3.47)

It is important that you know how to differentiate (3.47) twice with re-
spect to time.

Now consider the notion of the derivative of a scalar valued function of
a vector variable

φ(r) = φ(x, y, z).

We have defined the idea of the gradient of such functions (and I hope
that you have some appreciation why the idea is useful):

∇φ(x, y, z) =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k. (3.48)

So the derivative of a vector valued function of a scalar variable is a
vector, and the derivative (more precisely, the gradient) of a scalar valued
function of a vector is a vector. What is the derivative of a vector valued
function of a vector variable? One might think of the curl of a vector
valued function of a vector variable as a type of derivative (but this is
limited to three, or fewer, dimensions since the cross product does not
generalize to more than three dimensions).

You will be seeing the notion of differentiation many times, and in many
forms, throughout your study of mathematics. Fundamentally, in all
settings the idea is the same. The derivative of a function (at a point) is
a local, linear approximation of the function (near that particular point).

Problem Set 3

1. Let C be a space curve and let the position of any point on the curve
be given by the following vector:

r = 3 cos 2ti + 3 sin 2tj + (8t− 4)k.

(a) Find a unit tangent vector T to the curve (for any point on the
curve).
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3 In terms of the vector nature of a, it is
important to understand what ‘’directed
towards the origin” means, and what
‘’proportional to the distance from the
origin” means.
4 What does ‘’constant vector” mean?
Hint: a vector has length and direction.

(b) If r is the position vector of a particle moving on C at any time t,
verify in this case that v = vT.

(c) Compute the curvature at any point on the curve.

(d) Compute the radius of curvature at any point on the curve.

(e) Compute the unit principal normal N at any point on the curve.

2. A particle moves so that its position vector is given by:

r = cos ωti + sin ωtj,

where ω is a constant. Prove the following:

(a) the velocity v of the particle is perpendicular to r,

(b) the acceleration a is directed toward the origin and has magnitude
proportional to the distance from the origin3,

(c) r× v is a constant vector4.

3. Let r(t) denote a position vector, and consider the function:

T =
1
2

mṙ · ṙ,

where m is a constant. Compute dT
dt .

4. Let V(r) be a scalar valued function of the position vector r(t). Com-
pute dV

dt , and express it as the dot product of two vectors.

5. Consider the space curve defined by the following position vector:

r(t) = cos ti + sin tj + tk,

and the scalar valued function:

V(x, y, z) =
1
2

(
x2 + y2 + z2

)
.

Evaluate the function on the space curve, and then compute its deriva-
tive with respect to t.

6. Consider the space curve defined by the following position vector:

r(t) = cos ti + sin tj + tk.

Compute the length of a piece of the curve from the point (1, 0, 0) to
the point

(
0, 1, π

2
)
.

7. Parametrize the curve in the previous problem in terms of arclength,
rather than t.

8. For the example in the previous two exercises show explicitly that:

dr
dt

=
dr
ds

ds
dt

.
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Examples of the Computation of Line Integrals and
Newton’s Axioms

We now consider an example where we compute the line integral of a
vector field between two points along three different paths.

Let

A(x, y, z) = x2i + y2j + z2k. (4.1)

and consider the points p1 = (1, 0, 0) and p2 = (0, 1, 0) shown in Fig.
4.1.

y

z

x
1
p (1,0,0)=

(0,1,0)=2p

Figure 4.1: The points p1 and p2. The
dashed lines represent coordinate axes
with negative values.
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We will compute

∫ p2

p1

A · dr, (4.2)

along the following three paths.

1. Along the path from p1 to the origin along the x axis, then from the
origin to p2 along the y axis, see Fig. 4.2.

y

z

x
1
p (1,0,0)=

(0,1,0)=2p

Figure 4.2: The path from p1 to the ori-
gin along the x axis, then from the origin
to p2 along the y axis.

The path is broken into two segments: one piece along the x axis and
the other along the y axis, see Fig. 4.2. In this case (4.2) becomes:

∫ 0

1
x2dx +

∫ 1

0
y2dy = 0.

2. Along the straight line in the x − z plane from p1 to (0, 0, 1), then
along the straight line in the y− z plane from (0, 0, 1) to p2, see Fig.
4.3.
This path is also broken into two segments: the line in the x− z plane
given by:

z = −x + 1, y = 0,

and the line in the y− z plane given by:

z = −y + 1, x = 0.

(In the parametrization of the two paths, make sure you understand
the signs on each of the terms describing the path segment.) Then
(4.2) becomes:
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y

z

x
1
p (1,0,0)=

(0,1,0)=2p

(0,0,1)

Figure 4.3: The path along the straight
line in the x− z plane from p1 to (0, 0, 1),
then along the straight line in the y − z
plane from (0, 0, 1) to p2.

∫ 0

1
x2dx + (−x + 1)2(−dx) +

∫ 1

0
y2dy + (−y + 1)2(−dy) = 0.

3. The path in the x− y plane along 3
4 of the unit circle from p1 to p2,

see Fig. 4.4.
We parametrize the circle by:

(x(t), y(t), z(t)) = (cos t,− sin t, 0), 0 ≤ t ≤ 3π

2
.

(Make sure that you understand why this parametrization corresponds
to the 3

4 circle describing the path in the figure.) Then (4.2) becomes:

∫ 3π
2

0
− cos2 t sin tdt− sin2 t cos tdt = 0.

It should not have escaped your notice that for all three paths the value
of the line integral was zero. We could verify that the line integral should
be independent of the path since the curl of A is zero. Moreover, we
could (probably) determine by inspection that A = ∇φ(x, y, z), where
φ(x, y, z) = 1

3
(

x3 + y3 + z3). In this case we have:

∫ p2

p1

A · dr =
∫ p2

p1

∇φ(x, y, z) · dr

=
∫ p2

p1

(
∂φ

∂x
dx +

∂φ

∂y
dy +

∂φ

∂z
dz
)

=
∫ p2

p1

dφ = φ(1, 0, 0)− φ(0, 1, 0) = 0. (4.3)
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y

z

x
1
p (1,0,0)=

(0,1,0)=2p

Figure 4.4: The path from p1 to p2 de-
fined by 3

4 of the unit circle in the x− y
plane. The perspective in this figure is
awful, just think of the points in the
x− y plane that the unit circle must pass
through.

Dynamics–Newton’s Axioms

At this point we are finished with our development of purely kinematic
ideas and we turn to the study of dynamics. A good starting point is to
recall Newton’s Laws of Motion, which we will take as axioms.

Newton’s Axioms.

1. Every particle persists in a state of rest or of uniform motion in a
straight line (i.e., with constant velocity) unless acted upon by a force.

2. If F is the force acting on a particle of mass m which as a consequence
is moving with velocity v, then

F =
d
dt
(mv) =

dp
dt

, (4.4)

where p = mv is called the momentum. If m is independent of time t
(4.4) becomes:

F = m
dv
dt

= ma, (4.5)

where a is the acceleration of the particle.

3. If particle 1 acts on particle 2 with a force F12 in a direction along the
line joining the two particles, while particle 2 acts on particle 1 with
a force F21, then F21 = −F12. In other words, to every action there is
an equal and opposite reaction.
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Example 5. A particle of mass m moves in the x− y plane in such a way that
its position vector is given by:

r = a cos ωti + b sin ωtj (4.6)

where a, b, and ω are positive constants, with a > b.

1. Show that the particle moves in an ellipse.

From the expression for the position vector we have:

x = a cos ωt, y = b sin ωt,

which are just the parametric equations for an ellipse with semi-major axis
of length a and semi-minor axis of length b. Since

x2

a2 +
y2

b2 = cos2 ωt + sin2 ωt = 1,

the equation for the ellipse can also be taken as:

x2

a2 +
y2

b2 = 1.

2. Show that the force acting on the particle is always acting towards
the origin.
We will assume that the mass m is constant. Then

F = m
dv
dt

= m
d2r
dt2 = m

d2

dt2 (a cos ωti + b sin ωtj) ,

= m
(
−ω2a cos ωti−ω2b sin ωtj

)
,

= −mω2 (a cos ωti + b sin ωtj) = −mω2r,

from which it follows immediately that the force is directed to the origin.

Definitions of Force and Mass. Strictly speaking, force and mass are un-
defined quantities in Newton’s axioms. Intuitively, I expect most of you
to have a good idea of what they are. Mass is a measure of the “quantity
of matter” in an object. Force is a measure of the “push or pull” on an
object. The question of “what is force” and “what is mass” are deep
and fundamental. They are questions of current interest in elementary
particle physics and quantum field theory (so beyond the scope of this
course). It is possible to “define” force and mass through Newton’s ax-
ioms. Some mechanics books take this approach, but fundamentally, it
is not satisfactory (you might think “why not”?).

Units and Dimensions. It is appropriate at this point to say something
about dimensions since we will seeon be encountering a number of new
quantities that are measured with respect to specific types of units.

We saw earlier, that the basic dimensions that we will encounter in this
course are length, mass, and time. There will be two systems of units
that we will use to describe each: the centimeter-gram-second (cgs) system
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Physical Quantity Dimensions CGS System MKS System

Length L cm m
Mass M gm kg
Time T sec sec

Velocity LT−1 cm/sec m/sec
Acceleration LT−2 cm/sec2 m/sec2

Force MLT−2
gm cm/sec2

= dyne
kg m/sec2

= newton

Momentum, Impulse MLT−1
gm cm/sec
= dyne sec

kg m/sec
= nt sec

Energy, Work ML2T−2
gm cm2/sec2

= dyne cm = erg
kg m2/sec2

= nt m = joule

Power MLT−3
gm cm2/sec3

= dyne cm/sec = erg/sec
kg m2/sec3

= joule/sec = watt
Volume L3 cm3 m3

Density ML−3 gm/cm3 kg/m3

Angle none radian (rad) rad
Angular Velocity T−1 rad/sec rad/sec

Angular Acceleration T−2 rad/sec2 rad/sec2

Torque ML2T−2
gm cm2/sec2

= dyne cm
kg m2/sec2

= nt m
Angular Momentum ML2T−1 gm cm2/sec kg m2/sec

Moment of Inertia ML2 gm cm2 kg m2

Pressure ML−1T−2
gm/(cm sec2)

= dyne/cm2
kg/(m sec2)

= nt/m2

Table 4.1: Units and Dimensions

and the meter-kilogram-second (mks) system. Units for various quantities
are given in Table 4.1.

In terms of units, we can give a definition of force. A dyne is the force
that will give a 1 gm mass an acceleration of 1 cm/sec2. A newton is the
force that will give a 1 kg mass an acceleration of 1 m/sec2.

Inertial Frames of Reference and Absolute Motion. It needs to be stated that
in the course of reasoning from experience that led to Newton’s axioms
it was always assumed that all measurements or observations were made
with respect to a coordinate system or frame of reference which was fixed
in space, i.e., absolutely at rest. This is the assumption that space or
motion is absolute.

We show that to observers in two different coordinate systems a particle
appears to have the same force acting on it if and only if the coordinate
systems are moving at constant velocity with respect to each other. This
is sometimes called the classical principle of relativity.

We consider two observers, O and O’, each located at the origin of a dif-
ferent coordinate system, denoted x− y− z and x′− y′− z′, respectively.
Each observer observes the motion of a particle P in space. The position
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O

O'

R = r - r'

r

r'

P
Figure 4.5: Two distinct coordinate sys-
tems in three dimensional space.

vector of P in the x− y− z coordinates system is denoted my r and the
position vector of P in the x′ − y′ − z′ coordinate system is denoted by
r′. The vector R = r− r′ locates the origin of the x′ − y′ − z′ coordinate
system with respect to the x− y− z coordinate system, se Fig. 4.5.

Relative to observers O and O’ the forces acting on P according to New-
ton’s laws are given, respectively, by:

F = m
d2r
dt2 , F′ = m

d2r′

dt2 . (4.7)

The difference in observed forces is:

F− F′ = m
d2

dt2 (r− r′) = m
d2R
dt2 , (4.8)

and this will be zero if and only if:

d2R
dt2 = 0, or

dR
dt

= constant, (4.9)

i.e., the coordinate systems are moving at constant velocity relative to
each other. Such coordinate systems are called inertial coordinate systems.

Problem Set 4

1. If A = (3x2 − 6yz)i + (2y + 3xz)j + (1− 4xyz2)k evaluate
∫

C
A · dr

from (0, 0, 0) to (1, 1, 1) along the following paths C:

(a) x = t, y = t2, z = t3,

(b) the straight line joining (0, 0, 0) to (1, 1, 1).

2. Consider the following scalar valued function of (x, y, z):

φ(x, y, z) = x3 + zy + xy + sin xy + cos
x2

z
.

Compute ∂φ
∂x , ∂φ

∂y , and ∂φ
∂z .
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3. Suppose

A = (2xy + z3)i + (x2 + 2y)j + (3xz2 − 2)k.

Show that the line integral of A between two points is independent
of the path taken between the two points.

4. Consider the following vector fields:

(a) A(x, y, z) = cos x sin y sin zi + sin x cos y sin zj + sin x sin y cos zk,

(b) A(x, y, z) = yzi + xzj + xyk,

(c) A(x, y, z) = zk,

Compute the line integral of A along any path of your choice con-
necting (0, 0, 0) to (1, 1, 1).
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Dynamics–Motion of a Particle in One Dimension

“Motion of a Particle in One Dimension” means that the particle is re-
stricted to lie on a curve. If you think hard about this statement you
might think that the motion of all particles is one dimensional since the
motion traces out a curve in space. Actually, this is true. However, in
order to take advantage of this you must know the curve, i.e., know the
motion. In practice, this is usually what we are trying to find out. The
situations we have in mind here are when the forces on a particle are
always acting so that at each point of a known curve they are tangential
to that curve. Initially, the “curve” of interest will be a straight line. In
this case, the forces act only in the direction of this straight line. We will
also consider particles constrained to move in a circle, as well as other
plane curves.

We will denote the generic coordinate for the particle by “s”. For a
particle moving horizontally in the x direction, s would just be x. For a
particle falling under the influence of gravity s would be z. For a simple
pendulum the particle would be constrained to move in a circle and s
would be an angular coordinate, where the angle is measure from some
fixed (say vertical) line.

If we assume constant mass, Newton’s second axiom of motion becomes:

m
d2s
dt2 = F. (5.1)

This is an example of an ordinary differential equation (ODE) and all we
now need to do is “solve it” to obtain the motion, s(t). However, we are
getting a bit ahead of ourselves, because there is the problem of speci-
fying the right-hand-side of (5.1), the F. This requires an understanding
of the physics of the system under consideration. But first, we want to
consider some strictly mathematical issues associated with (5.1).

First some terminology. Newton’s equations are second order ODEs. This
means that the highest order derivatives appearing in the equation are
two.

The other point to make is that solutions to second order ODEs require
the specification of two constants (which have physical meaning). Why
is this? Here is an argument that is not generally found in mechanics
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textbooks. Suppose s(t) is a solution of (5.1) and we are interested in the
solution near t = t0. So we could consider a Taylor expansion near t0:

s(t + t0) = s(t0) +
ds
dt

(t0)t +
1
2

d2s
dt2 (t0)t2 +

1
6

d3s
dt3 (t0)t3 + · · · , (5.2)

and the Taylor coefficients are just the derivatives of s(t) evaluated at
t0. Now in what sense does the equation (5.1) provide the information
to completely specify (5.2)? Here, ‘’completely specify” would mean to
completely specify all of the Taylor coefficients. Equation (5.1) provides
us with the second derivative of s(t), we can repeatedly differentiate it to
obtain all the higher order derivatives. However, it tells us nothing about
s(t0) and ds

dt (t0). These we must specify separately. If t0 is the initial time
we say that we must specify initial conditions; the initial position, s(t0),
and the initial velocity, ṡ(t0).

Now for what type of forces can we actually solve (5.1) analytically (as
opposed to using a computer)? This depends on the “functional form”
of the force, i.e., how it depends on s, ṡ and t. We summarize the results
in Table 5.1, and then provide some detailed calculations backing up the
claims.

Force Function Solvability of Newton’s Equations

F = constant yes
F = F(t) yes
F = F(ṡ) yes
F = F(s) yes

F = F(ṡ, t) generally no, except for special cases
F = F(s, t) generally no, except for special cases

F = F(s, ṡ, t) generally no, except for special cases

Table 5.1: Examples of mathematical
forms of forces for Newton’s equations
in one dimension.

Everything was going fine until the last three rows of Table 5.1, and that
requires some explanation.

There is an important distinction between linear and nonlinear ODEs.
The distinction being that solutions of linear ODEs are fairly simple,
while the solutions of nonlinear ODEs may be extremely complicated (in
ways that can be made mathematically precise).

For these reasons it is important to understand from the outset whether
you are dealing with a linear or nonlinear ODE.

First, let’s define what we mean by a linear ODE. This means that
F(s, ṡ, t) is a linear function of s and ṡ, plus a function solely of t (which
could be constant), i.e.,

F(s, ṡ, t) = (a0 + a1(t))s + (b0 + b1(t))ṡ + c0 + c1(t), (5.3)

where a0, b0, c0 are constants, and a1(t), b1(t), c1(t) are functions of t.

So are Newton’s equations solvable with a force of the form of (5.3)?
No. The problem comes from the coefficients on the s and ṡ terms. If
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they are constant (i.e., a1(t) = b1(t) = 0), then Newton’s equations can
always be solved.

So what is a nonlinear ODE? It is one that is not linear, according to our
definition above.

Now let’s turn to justifying Table 5.1.

F = constant. Newton’s equations are:

m
d2s
dt2 = F = constant, s(t0) = s0, ṡ(t0) = v0,

and this is about the easiest differential equation that you could be given
to solve. To solve it, you just “integrate twice”, as we now show.

m
∫ t

t0

d
dτ

(
ds
dτ

(τ)

)
dτ =

∫ t

t0

Fdτ,

Performing the integrals gives:

ds
dt

(t) = v0 +
F
m
(t− t0).

Integrating this equation gives:

∫ t

t0

ds
dτ

(τ)dτ = v0

∫ t

t0

dτ +
F
m

∫ t

t0

(τ − t0)dτ.

Performing the integrals gives:

s(t) = s0 + v0(t− t0) +
F

2m
(t− t0)

2.

F = F(t). Newton’s equations are:

m
d2s
dt2 = F(t), s(t0) = s0, ṡ(t0) = v0,

and this is about the second easiest differential equation that you could
be given to solve. To solve it, you also integrate twice.

m
∫ t

t0

d
dτ

(
ds
dτ

(τ)

)
dτ =

∫ t

t0

F(τ)dτ,

Performing the integrals gives:

ds
dt

(t) = v0 +
1
m

∫ t

t0

F(τ)dτ.

Integrating this expression gives:
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∫ t

t0

ds
dτ′

(τ′)dτ′ = v0

∫ t

t0

dτ′ +
1
m

∫ t

t0

∫ τ′

t0

F(τ)dτdτ′,

or

s(t) = s0 + v0(t− t0) +
1
m

∫ t

t0

∫ τ′

t0

F(τ)dτdτ′.

F = F(ṡ). Newton’s equations are:

m
d2s
dt2 = F

(
ds
dt

)
, s(t0) = s0, ṡ(t0) = v0.

To solve this equation let

u =
ds
dt

, (5.4)

then Newton’s equations become:

m
du
dt

= F(u). (5.5)

We can solve this equation for u(t) (provided we can do the integrals that
arise), and then integrate u(t) with respect to t to get s(t).

More precisely, we solve for u(t) by rewriting (5.5) in the following form:

m
∫ u(t)

u(t0)=v0

du
F(u)

=
∫ t

t0

dτ.

If this integral can be performed (which will depend on F(u)), then we
may be able to obtain u(t) = ds

dt (t). We integrate this expression from t0
to t to obtain s(t).

F = F(s). Newton’s equations are given by:

m
d2s
dt2 = F(s), s(t0) = s0, ṡ(t0) = v0. (5.6)

Solving this equation requires a certain insight that, fortunately, others
have had earlier.

Define the function:

V(s) = −
∫ s

c
F(s′)ds′, (5.7)

where c is any constant. Then Eq. (5.6) becomes:

m
d2s
dt2 = − dV

ds
(s), s(t0) = s0, ṡ(t0) = v0. (5.8)

Notice that:

d
dt

(m
2

ṡ2 + V(s)
)
= ṡ

(
ms̈ +

dV
ds

(s)
)
= 0. (5.9)
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Now it is important to interpret this equation correctly. It says that a
solution of ms̈ + dV

ds (s) = 0 must also satisfy:

m
2

ṡ2 + V(s) = constant. (5.10)

The constant is determined by the initial conditions. This is a very im-
portant expression and later we will see how it is related to “energy”.

F = F(ṡ, t). If we let

ṡ = u,

then Newton’s equations become first order equations for the velocity:

mu̇ = F(u, t), u(t0) = v0.

If these equations could be solved then the velocity could be integrated
to give the position. Unfortunately, even though they are first order, the
general equation cannot be solved explicitly (although many “special
cases” are known that can be solved). However, it is true that all linear
first order equations can be solved, i.e., equations of the form:

mu̇ = a(t)u + b(t), u(t0) = v0, (5.11)

where a(t) and b(t) are continuous functions of t. Before demonstrating
how this can be solved, let’s first simplify this equation by getting rid of
the annoying mass term (we can restore it later). We do this by defining:

ā(t) ≡ a(t)
m

, b̄(t) ≡ b(t)
m

.

Then (5.11) becomes:

u̇ = ā(t)u + b̄(t), u(t0) = v0, (5.12)

Now the “trick” to solving this equation is due to Johann Bernoulli. He
proposed to write the solution of (5.12) in the form u(t) = n(t)m(t).
Substituting this into (5.12) gives:

ṅm + ṁn = ā(t)nm + b̄(t), u(t0) = n(t0)m(t0) = v0. (5.13)

The solution of this equation can be obtained by breaking it into two
pieces, and solving each piece separately (why?):

ṅ = ā(t)n, solve for n, (5.14)

ṁ =
b̄(t)

n
, integrate to get m, with n substituted in from above.(5.15)

The solution of (5.14) is given by:

n(t) = n(t0)e
∫ t

t0
ā(τ)dτ . (5.16)
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This is then substituted into (5.15), and integrated, to obtain:

m(t) = m(t0) +
1

n(t0)

∫ t

t0

b̄(τ)e−
∫ τ

t0
ā(τ′′)dτ′′dτ. (5.17)

To obtain u(t), we multiply n(t) and m(t) to obtain:

u(t) = n(t)m(t) = n(t0)m(t0)e
∫ t

t0
ā(τ)dτ

+ e
∫ t

t0
ā(τ)dτ

∫ t

t0

b̄(τ)e−
∫ τ

t0
ā(τ′′)dτ′′dτ,

(5.18)

and remember that

u(t0) = n(t0)m(t0).

This expression illustrates the fact that the general solution of (5.12) is
the sum of a solution to the homogeneous equation:

u̇ = ā(t)u,

which is the first term in the solution (5.18), and a particular solution
(the second term in the solution (5.18). A particular solution is just any
solution of:

u̇ = ā(t)u + b̄(t),

where you don’t worry about the initial conditions. The initial condi-
tions are then satisfied for the sum of the homogeneous plus particular
solution.

F = F(s, t). Newton’s equations are:

m
d2s
dt2 = F(s, t), s(t0) = s0, ṡ(t0) = v0.

Equations of this type cannot generally be solved analytically, even if they
are linear. However, there is one class of systems of this form which al-
ways have a solution: the linear, constant coefficient systems, i.e., systems
of the form:

m
d2s
dt2 = as + b(t),

where a is a real number and b(t) is a continuous function of t.

F = F(s, ṡ, t). Newton’s equations are:

m
d2s
dt2 = F(s, ṡ, t), s(t0) = s0, ṡ(t0) = v0.

Equations of this type cannot generally be solved analytically, even if they
are linear. However, there is one class of systems of this form which al-
ways have a solution: the linear, constant coefficient systems, i.e., systems
of the form:
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1 Hint: What does Newton’s first law
have to say about the situation?

2 Hint: Again, consider Newton’s first
law.

m
d2s
dt2 = aṡ + bs + c(t),

where a and b are real numbers and c(t) is a continuous function of t.

Problem Set 5

1. Recall the example given earlier. A projectile was launched with a ve-
locity of magnitude v0 at an angle of α with respect to the horizontal.
It was assumed that the only force acting on the projectile was grav-
ity, which was further assumed to be constant, and acting vertically
downward (and we took the vertical coordinate to be z).

(a) It was stated that with no loss of generality the motion could be
assumed to be in the y− z plane. Explain why1.

(b) We found that the y component of velocity was constant in time.
Why should we have expected this to be the case before we did
any calculations2?

2. A particle of mass m moves along a straight line (which, without loss
of generality (why?) we may consider to be the x-axis) under the
influence of a constant force F, see Fig. 2.

m x

O

iF

P

x

i

Suppose that the particle starts at x = 0 at t = 0 with a velocity v0i
(v0 > 0). Find:

(a) the speed,

(b) the velocity as a function of time,

(c) the distance traveled after time t,

(d) the speed as a function of position (x). (Hint: use the previous two
results and eliminate time between them.)

3. An object of mass m is thrown vertically upward from the Earth’s
surface with an initial velocity v0k (v0 > 0). We assume that the only
force acting on the object is gravity, see Fig. 3.

Find:

(a) the position at any time,

(b) the time taken to reach the highest point,

(c) the maximum height reached,

(d) the speed as a function of its distance from the origin.
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4. Now we consider a variation of the previous problem. Suppose we
drop an object of mass m from a height h at t = 0 (from this statement
it should be clear that the speed of the object at t = 0 is 0). In
addition to the force of gravity, suppose there is a force (due to air
resistance) directed in the positive z direction that is proportional to
the instantaneous speed, i.e., the force has the form βvk, where β is
a positive scalar, see Fig. 4.
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Find:

(a) the speed as a function of time,

(b) the distance traveled as a function of time,

(c) the acceleration at any time t > 0.

Show that there is a limiting speed, i.e., as time increases, the speed
approaches a limit.

5. Recall the definition of linear ODE given in class:

m
d2s
dt2 = (a0 + a1(t))s + (b0 + b1(t))ṡ + c0 + c1(t), (5.19)
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where a0, b0, c0 are constants, and a1(t), b1(t), c1(t) are functions of
t.

First, consider the situation where c0 = c1(t) = 0, i.e.,

m
d2s
dt2 = (a0 + a1(t))s + (b0 + b1(t))ṡ. (5.20)

In this case the linear ODE is said to be homogeneous.

(a) Suppose s1(t) is a solution of (5.20), and let k1 denote a constant
(real number). Prove that k1s1(t) is also a solution of (5.20).

(b) Suppose s1(t) and s2(t) are solutions of (5.20), and let k1 and k2
denote constants (real numbers). Prove that k1s1(t) + k2s2(t) is
also a solution of (5.20). This is the superposition principle for linear
homogeneous ODE’s.

(c) Do these two results hold for (5.19)?

(d) Now let’s consider a physical application of the results in a) and b)
applied to an ODE of the type (5.20). Consider a particle of mass m
moving vertically under the influence of a (constant) gravitational
force. Suppose at t = 0 the particle is at height 12 (in some units
that are not important for this question) with velocity zero. We
drop the ball and it’s position as a function of time is s̃(t) for
t > 0.

Now suppose that we consider a different situation. Suppose at
t = 0 the particle is at height 24 with zero velocity. What is the
particle’s position as a function of time for t > 0?

6. Are the following ordinary differential equations linear or nonlinear?

(a) ms̈ = −s + cos t,

(b) ms̈ = −s2 + cos t,

(c) ms̈ = −s cos t,

(d) ms̈ = −t2s,

(e) ms̈ = −s + s2,

7. Solve the following ODE:

ms̈ = g, s(0) = s0, ṡ(0) = 0,

where g is a constant.

8. Solve the following ODE:

ms̈ = sin t, s(0) = s0, ṡ(0) = 0.

9. Consider the following ODE:

ms̈ = s− s2.

Find the function of s and ṡ that a solution of this ODE must satisfy.
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10. Consider Newton’s equations:

m
d2s
dt2 = F(s).

Define a new time variable, τ, which is related to the “old” time t by:

t =
√

mτ.

Use the chain rule to show that with respect to the new time the ODE
becomes:

d2s
dτ2 = F(s),

i.e., the constant disappears. This is referred to as rescaling time.

11. Consider the following nonlinear ODE:

s̈ = s− s2.

Suppose s1(t) and s2(t) are solutions, and let k1 and k2 denote con-
stants.

(a) Is k1s1(t) a solution?

(b) Is k1s1(t) + k2s2(t) a solution?



6

Dynamics–Projectiles, Constrained Motion, Friction

We begin by introducing some new concepts and defining some new
terms.

Projectiles. What’s a projectile? It’s an object that is “projected through
space”. That is, an object (for us, this will be a particle of constant mass
m), at some initial position and time, is given an initial velocity. We are
interested in the motion thereafter, which is subject to the applied forces
(e.g., gravity, air resistance, etc.). Classically, such problems have been
phrased in terms of the flight of cannonballs, bullets, or thrown balls.
However, an understanding of the motion of projectiles is fundamental
to many current problems in science and engineering. For example, a
topic of great recent interest has been concerned with trying to under-
stand how certain rock fragments from the planet Mars made their way
to Earth. It turns out that this is a result of the impact of an asteroid
with the surface of Mars. The impact dislodged fragments of the planets
surface, flinging them out into space. Their subsequent trajectories then
came under the influence of the Earth’s gravitational field, pulling them
onto the surface of the Earth.

Weight and Acceleration Due to Gravity. It has been experimentally deter-
mined that, near the earth’s surface, objects fall with a constant vertical
acceleration, provided that air resistance is negligible. This acceleration
is denoted by g, and is referred to as the acceleration due to gravity or the
gravitational acceleration. It is approximately equal to 9.8m/sec2.

Assuming that the earth’s surface is represented by the x− y plane, the
force due to gravity acting on a particle of mass m is given by:

W = −mgk.

This force, which is referred to as the weight of the particle, has magnitude
W = mg, see Fig. 6.1.

We remark that this assumption of a flat earth is only approximately
correct. Moreover, the force of gravity varies slightly over the surface of
the earth. You will learn more about this when you learn about Newton’s
Law of Gravitation.
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Figure 6.1: The force of gravity acting on
a particle.

Constrained Motion. In some cases a particle is forced to move along a
curve or surface. This curve or surface is referred to as a constraint, and
the resulting motion is called constrained motion.

The particle exerts a force on the constraint, and by Newton’s third law
the constraint exerts a force on the particle. This force is called the
reaction force, and is described by giving its components normal to the
motion, denoted N, and parallel to the motion, denoted f.

Friction. In the constrained motion of a particle a common force par-
allel to the motion of the particle is friction, which typically acts in the
direction opposite to that of the motion (i.e., it acts in such a way as
to slow the motion of the particle). Experimentally, it is found that the
magnitude of the frictional force is proportional to the magnitude of the
normal force, i.e.,

f = µN,

where the proportionality constant, µ is referred to as the coefficient of
friction. Typically, its value depends on both the material of the particle
and the constraint.

Example 6. Consider a projectile of constant mass m that is launched with
initial speed v0 at an angle α with the horizontal. We will compute:

1. the position vector at any time,

2. the time to reach the highest point,
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3. the maximum height reached,

4. the time of flight back to earth,

5. the range.

For an illustration of the geometry see Fig. 6.2.
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Figure 6.2: Geometry of the motion of a
projectile under the influence of gravity.

We will denote the position vector of the projectile at any time t by r, and the
velocity at any time t by v. Of course, we begin by writing down Newton’s
equations:

m
d2r
dt2 = −mgk,

which, after dividing both sides by the mass, become:

d2r
dt2 = −gk, or

dv
dt

= −gk.

The equation for v is easily solved to give:

v = −gtk + c1. (6.1)

To evaluate the constant vector c1 we need to require our solution to satisfy the
initial conditions. We assume that our initial velocity is in the y− z plane (why
is it sufficient to assume this?) so that the initial conditions take the form:

v0 = v0 cos αj + v0 sin αk. (6.2)
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Evaluating (6.1) at t = 0 and equating the result to v0 gives c1 = v0, and
therefore we have:

v = v0 cos αj + (v0 sin α− gt)k. (6.3)

Now we can solve for the position vector. Writing v = dr
dt , substituting this

into (6.3), and integrating from 0 to t (using the initial condition r(0) = 0),
gives:

r = (v0 cos α)tj +
(
(v0 sin α)t− g

2
t2
)

k. (6.4)

or, in components,

x = 0, y = (v0 cos α)t, z = (v0 sin α)t− g
2

t2. (6.5)

So we see that if the projectile has initial velocity in the y− z plane, it remains
in the y− z plane. Should we have been able to determine this without solving
the equations of motion?

Next we compute the time to reach the highest point. What characterizes
the highest point? The projectile goes up, then it comes down. In order to
come down, the z component of velocity must change from positive to negative.
Therefore, at the highest point, the z component of velocity vanishes, i.e.,

v0 sin α− gt = 0, and therefore t =
v0 sin α

g
.

Now we compute the maximum height reached. What characterizes the
maximum height? This is the same as the previous question. The height is a
maximum when the z component of velocity vanishes. We computed the time
for this to occur in the previous question. We then substitute this time into the
expression for the z component of position given in (6.5) to obtain:

maximum height reached = (v0 sin α)

(
v0 sin α

g

)
− g

2

(
v0 sin α

g

)2
=

v2
0 sin2 α

2g
.

Next we compute the time of flight back to the earth. What characterizes
this time? This is the time for the z value to return to z = 0. To obtain this
we take the expression for the z component of the motion as a function of time
given in (6.5) and equate it to zero, solving for t:

(v0 sin α)t− g
2

t2 = t
(

v0 sin α− g
2

t
)
= 0,

which gives:

t =
2v0 sin α

g
.

(t = 0 is also a solution. Why do we discount it?) Note that this is twice the
value that it takes to reach the maximum height. Would you expect that?

Finally, we compute the range. This is the maximum distance that the projec-
tile travels horizontally (i.e., in the y direction). To compute this we substitute
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the time that it takes to return back to earth into the expression for the y com-
ponent given in (6.5):

Range = (v0 cos α)

(
2v0 sin α

g

)
=

2v2
0 sin α cos α

g
=

v2
0 sin 2α

g
.

Example 7. A particle P of constant mass m slides without rolling down a
frictionless inclined plane of angle α, see Fig. 6.3.
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Figure 6.3: Geometry of the motion of
a particle under the influence of gravity
down an inclined plane.

If the particle starts from rest at the top of the incline (at point A) find:

1. the acceleration,

2. the velocity,

3. the distance traveled after time t.

Since there is no friction the only forces acting on the particle are the weight
W = −mgk and the reaction force of the incline which is given by the normal
force N.

Let e1 and e2 be unit vectors parallel and perpendicular to the incline, respec-
tively. We let s denote the magnitude of the displacement of the particle mea-
sured from the top of the incline (point A). Now we can write down Newton’s
second law for this system:

m
d2

dt2 (se1) = W + N = mg sin αe1,

or

d2s
dt2 = g sin α,

which gives the acceleration.

Next we compute the speed. Since ds
dt = v we have:
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dv
dt

= g sin α,

or

v = (g sin α)t + c1

Using the initial condition v = 0 at t = 0, we obtain c1 = 0. Hence, the speed
at any time t is given by:

v = (g sin α)t.

The velocity at any time t is given by:

ve1 = (g sin α)te1.

Finally, we compute the distance traveled after time t. Since v = ds
dt we

have:

ds
dt

= (g sin α)t or s =
1
2
(g sin α)t2 + c2.

Using the initial condition s = 0 at t = 0 we find that c2 = 0, and therefore

s =
1
2
(g sin α)t2.

We continue these topics with a further example.

Example 8. A particle, denoted by P, sits at the top (point A in the figure) of
a frictionless fixed sphere of radius b, see Fig. 6.4.

The particle is displaced slightly so that it slides (without rolling) down the
sphere. Compute:

1. the position of the particle as it leaves the sphere,

2. the speed of the particle at the instant it leaves the sphere.

The particle slides along a circle which, as indicated in the figure, we have
taken to lie in the x− y plane. The forces acting on the particle are its weight,
W = −mgj, and the reaction force N of the sphere on the particle normal to
the sphere.

We let the position of the particle on the circle be measured by the angle θ, and
we let r1 and θ1 denote unit vectors in the radial direction and the direction of
increasing θ, respectively (see Fig. 6.4).

For this problem it is most natural to use a (moving) coordinate system tangen-
tial and normal to the sphere since the question of interest is how far the particle
has moved along the sphere when it leaves the sphere.

Therefore, we want to express Newton’s equations in this coordinate system.
We begin by resolving the forces into components along these directions. First,
as a preliminary calculation, note from Fig. 6.4, that we have:
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Figure 6.4: Particle moving on a sphere
under the influence of gravity.

j · r1 = |j| |r1| sin θ = sin θ,

j · θ1 = |j| |θ1| cos θ = cos θ,

We use these relations to resolve the force due to gravity on the particle in the
r1 and θ1 directions. This is given by:

W = (W · r1)r1 + (W · θ1)θ1,

= (−mgj · r1)r1 + (−mgj · θ1)θ1,

= −mg sin θr1 −mg cos θθ1.

The normal reaction force clearly acts in radial direction (since this is normal to
the sphere):

N = Nr1.

Hence, Newton’s laws become:

F = ma = m
(
(r̈− rθ̇2)r1 + (rθ̈ + 2ṙθ̇)θ1

)
,

= W + N,

= (N −mg sin θ)r1 −mg cos θθ1,
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where the expression for the acceleration is given by the second derivative of the
position vector expressed in polar coordinates which was discussed earlier.

Alternately, we can write the equations separately in components as follows:

m(r̈− rθ̇2) = N −mg sin θ, m(rθ̈ + 2ṙθ̇) = −mg cos θ. (6.6)

But in this problem, the particle is constrained to move along the sphere (until
it leaves, but we won’t be concerned with the motion after this happens), so
we have r = b, and therefore ṙ = r̈ = 0. Therefore, the equations of motion
simplify to:

−mbθ̇2 = N −mg sin θ, bθ̈ = −g cos θ. (6.7)

Now that we have written down the equations of motion we have to think what
we have been asked to compute. The first thing we want to know is at what
position (i.e., value of θ) will the particle leave the sphere? We must ask
ourselves what would characterize this event (in terms of the applied forces)?
The particle leaves the sphere when the normal reaction force is zero (think about
this). Therefore, we would like to find an expression for the normal force as a
function of θ, then equate the expression to zero and solve for θ.

How do we find an expression for the normal force? We have to go to the
equations of motion (6.7), and be a bit clever.

If we multiply the second equation in (6.7) by θ̇, we see that the result can be
written as:

b
d
dt

(
θ̇2

2

)
= −g

d
dt
(sin θ).

Integrating this equation gives:

b
θ̇2

2
= −g sin θ + c.

Now at the top of the sphere, θ = π
2 , we have θ̇ = 0. Therefore c = g, and we

have:

bθ̇2 = 2g(1− sin θ). (6.8)

Substituting this expression into the first equation of (6.7) gives:

N = mg(3 sin θ − 2),

which is our sought after expression for the normal force as a function of θ.

Equating this expression to zero gives:

sin θ =
2
3

, or θ = sin−1 2
3

. (6.9)

Finally, we want to find the speed of the particle at the moment it leaves
the sphere. The angular speed of the particle while it is on the sphere is given
by |θ̇|.
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If we substitute (6.9) into (6.8) we obtain:

θ̇2 =
2g
3b

.

So the angular speed of the particle when it leaves the sphere is given by:

|θ̇| =
√

2g
3b

.

Therefore the speed of the particle when it leaves the sphere is given by:

|bθ̇| =
√

2
3

gb.

Finally, we end this chapter with some general remarks. In particular,
we address the issue of:

”How do you solve mechanics problems?”

Initially, this might seem to be a curious statement since the point of the
lectures is to provide you with the tools for solving mechanics problems.
They do provide you with the tools. However, in the first year many
students find the problems in mechanics more difficult than those in,
say, calculus. There is probably some truth to this, so we should look at
this in more detail.

First, in calculus many of the problems that you are set involve perform-
ing a specific computation that should be clear from the statement of the
problem. For example, you might be given a scalar valued function of
two variables and asked to compute its (first) partial derivatives. Hope-
fully, you understand that the solution of that problem is a straightfor-
ward calculation. Another example involves integration of a function of
one variable. You may be given a function and asked to integrate it be-
tween two limits. What you are asked to do should be straightforward.
However, some insight (coming from experience) is required in order to
know what technique to employ (e.g. partial fractions, integration by
parts, etc.) to successfully integrate the given function. Knowing how to
start with a mechanics problem is essential to answering the questions
related to the problem that you are asked. Let’s consider this in the
context of the first two examples in this lecture.

The first example concerns the motion of a projectile. You are given a
one sentence description of the problem, and then asked to determine
5 quantities associated with the motion of the projectile. The natural
thing to do is to focus on the 5 quantities that you are asked to deter-
mine. But this is not where you start. Instead, you should first focus
on writing down Newton’s equations, i.e. the second order differential
equation that is a consequence of Newton’s second law of motion. This
involves determining the forces acting on the particle (at the moment
we are concerning with one particle of constant mass m). Once this is
done, you can write down Newton’s equations as a vector equation (the
mass multiplied by the second derivative of the position vector is equal
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to the vector sum of all of the forces acting on the particle). Now the
motion tends to be described in terms of a particular coordinate system
(e.g. how high does the particle go? how far does it go? where is it
along the inclined plane?). In order to do this you will need to choose a
set of coordinates that are appropriate to the problem in which to repre-
sent Newton’s equations, i.e. represent the vector quantities in Newton’s
equations in components with respect to the chosen coordinates. Once
you have carried out these steps (determine the forces acting on the
particle, write down Newton’s equations, choose an appropriate set of
coordinates in which to represent Newton’s equations) then you will be
ready to answer the questions concerning the motion of the particle that
you are asked. However, note that when determining Newton’s equa-
tions (i.e. the nature of the vector sum of forces acting on the particle)
you may have to use Newton’s first and third laws of motion. See how
this arises in the examples in this chapter.

Problem Set 6

Key point: The are several points to take particular care with
in the problems below.

• Do the distances and times that you compute make ”physi-
cal sense” in the context of the stated problem? For example,
are particles moving through solid obstacles? Are time in-
tervals real and positive?

• In some cases you will have to solve quadratic equations,
which have two solutions. Make sure you determine if
both solutions, one solution, or no solutions make ”phys-
ical sense” in the context of the stated problem.

• Distances are measured with respect to a chosen coordinate
system. Make sure you are taking the appropriate signs for
a distance with respect to the chosen coordinate system.

1. A particle P of constant mass m slides without rolling down an in-
clined plane of angle α that has a constant coefficient of friction µ, see
Fig. 1.
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If the particle starts from rest at the top of the incline (at point A)
find:
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(a) the acceleration,

(b) the velocity,

(c) the distance traveled after time t.

2. Refer to Fig. 2. An inclined plane makes an angle α with the horizon-
tal.
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A projectile is launched from the bottom of the plane (point O) with
speed v0 in a direction making an angle β with the horizontal. Prove
that the range R up the incline is given by:

R =
2v2

0 sin(β− α) cos β

g cos2 α
.

3. An object slides on a surface along the horizontal straight line OA,
see Fig. 3.
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We assume that x = 0 and v = v0 at t = 0. Suppose that the object
comes to rest after traveling a distance x0. Show that the coefficient
of friction is:

v2
0

2gx0
.

4. This question is concerned with the first example, the projectile prob-
lem, from Chapter 6. The expression for the vertical displacement of
the particle as a function of time is given by:

z(t) = (v0 sin α) t− g
2

t2.

Clearly, for t sufficiently large, z(t) can be negative. Does this pose
any problems?
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5. The set-up for this question is the same as the first example, the pro-
jectile problem, from Chapter 6, except at a distance d from the launch
point of the projectile, the horizontal boundary suddenly ”drops” to
a distance H below zero, see Fig. 5 (think of launching the projectile
from a cliff).
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Compute the time that it takes the projectile to reach the vertical dis-
tance H below the launch point.

6. The set-up for this question is the same as the first example, the pro-
jectile problem, from Chapter 6, except at a distance d from the launch
point of the projectile, a wall is placed of height H , see Fig. 5 (the
wall is parallel to the x− z plane).
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(a) Compute the time that it takes the projectile to hit the wall.

(b) Show that a necessary condition for a particle to hit the wall at a
height T > 0 is:
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d <
2v2

0 sin α cos α

g
.

(c) Now suppose α = 450, v0 = 100m/s, and g = 9.8m/s2. With these
parameters fixed, what value of d must we take in order to hit the
wall at a height of 10m?
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Dynamics–Work and Power

We now introduce the ideas of work and power. The notion of work can
be viewed as the ”bridge” between Newton’s second law, and energy
(which we have yet to define and discuss). The term work was first
used in 1826 by the French mathematician/engineer Gaspard-Gustave
Coriolis (note that this was, roughly, 150 years after Newton).

Work. Suppose a force F acting on a particle gives it a displacement dr.
Then the work done by the force on the particle is defined as:

dW = F · dr. (7.1)

(It should be clear that work is a scalar.) The total work done by a force
field (or, vector field) F in moving a particle from point P1 to point P2
along a path C is given by the line integral:

W =
∫

C
F · dr =

∫ P2

P1

F · dr =
∫ r2

r1

F · dr, (7.2)

where r1 is the position vector of P1 and r2 is the position vector of P2,
see Fig. 7.1.

It is worth considering the F more carefully in the expression for work.
In our discussion of Newton’s second law, F = ma, F was the vector
sum of all forces acting on the particle of mass m, i.e. the ”net force
acting on m”. This will ”almost always” be the case in our expressions
for work, and it is definitely the case when Newton’s second law is
used in certain manipulations involving the expression for work, e.g., in
Theorem 1. However, there may be circumstances when one is interested
in the work done on a particle by a specific force in the vector sum of all
forces. This should be clear from the context. Unless explicitly stated,
the F in the expression for work is the vector sum of all forces acting on
the particle of constant mass m.

The words of Sommerfeld1 are particularly insightful when considering
the concept of work.
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Figure 7.1: Geometry associated with a
force acting on a particle in three dimen-
sional space.

work does not equal ’force times distance’ as often stated, but
’component of force along path times path length’ or ’force times
component of path length along force’.

Now consider carefully Sommerfeld’s statement in the context of the
following example.

Example 9. Find the work done in moving an object along a vector r =

3i + 2j − 5k if the applied force is F = 2i − j − k, see Fig. 7.2 (following
Sommerfeld, this means ”along a distance of the constant length of the vector
in the constant direction of the vector”).

Solution:

Work done = magnitude of force in direction of motion× distance moved,

= (F cos θ)(r) = F · r,

= (2i− j− k) · (3i + 2j− 5k),

= 6− 2 + 5 = 9.

We consider another example.

Example 10. Find the work done in moving a particle once around a circle C
in the x− y plane, if the circle has center at the origin and radius 3, and if the
force field is given by:

F = (2x− y + z)i + (x + y− z2)j + (3x− 2y + 4z)k,
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Figure 7.2: An example of a force acting
on a particle.
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Figure 7.3: A force moving a particle
around a circle.

see Fig. 7.3.
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Solution: In the plane z = 0, F = (2x − y)i + (x + y)j + (3x − 2y)k and
dr = dxi + dyj. Then the work done is:

∫
C

F · dr =
∫

C
((2x− y)i + (x + y)j + (3x− 2y)k) · (dxi + dyj) ,

=
∫

C
(2x− y)dx + (x + y)dy.

Choose the parametric equations of the circle as x = 3 cos t, y = 3 sin t, where
t varies from 0 to 2π. Then the line integral becomes:

∫ 2π

t=0
(2(3 cos t)− 3 sin t) (−3 sin t) dt + (3 cos t + 3 sin t) (3 cos t)dt,

=
∫ 2π

0
(9− 9 sin t cos t)dt =

(
9t− 9

2
sin2 t

) ∣∣2π

0 = 18π.

In traversing C we have chosen the counterclockwise direction indicated in Fig.
7.3. We refer to this as the positive direction and say that C has been tra-
versed in the positive sense. If we had traversed C in the clockwise (negative)
direction the value of the integral would have been −18π.

Power. The time rate of doing work on a particle is called the instanta-
neous power, or, briefly, the power applied to the particle. Denoting the
instantaneous power by P , we have:

P =
dW
dt

.

If F denotes the force acting on a particle and v is the velocity of the
particle then we also have:

P = F · v.

Example 11. Suppose a particle of mass m moves under the influence of a force
field along a space curve whose position vector is given by:

r = (2t3 + t)i + (3t4 − t2 + 8)j− 12t2k.

Find the instantaneous power applied to the particle by the force field.

Solution:

We need to compute the force and the velocity, and then take their dot product.
The velocity of the particle is given by:

v = (6t2 + 1)i + (12t3 − 2t)j− 24tk.

The acceleration is given by:

a = 12ti + (36t2 − 2)j− 24k.

Therefore the force is given by:
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F = ma = m
(

12ti + (36t2 − 2)j− 24k
)

.

Now we have enough information to compute the instantaneous power:

F · v = m
(

12ti + (36t2 − 2)j− 24k
)
·
(
(6t2 + 1)i + (12t3 − 2t)j− 24tk

)
,

= m
(

72t3 + 12t + 432t5 − 72t3 − 24t3 + 4t + 576t
)
= m

(
432t5 − 24t3 + 592t

)
.

Dynamics–Kinetic Energy

We now show that the idea of work leads naturally to the notion of the
idea of the kinetic energy of a particle. If the force is conservative, we show
that this enables us to introduce the idea of potential energy. In this way
work can be characterized either through kinetic energy, or through the
potential energy.

Kinetic Energy. Refer back to Fig. 7.1 which we reproduce again here
for ease of reference.
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Figure 7.4: Geometry of a force acting on
a particle in three dimensional space.

We assume that the mass m of the particle is constant, and that at times
t1 and t2 it is located at points P1 and P2, respectively, and moving with
velocities v1 = dr

dt (t1) and v2 = dr
dt (t2) at points P1 and P2, respectively.

Then we can prove the following theorem.
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2 It is important to be able to justify all
steps in this calculation to yourself.

Theorem 1. The total work done by the net forces F in moving the particle
along the curve C from P1 to P2 is given by:

W =
∫

C
F · dr =

1
2

m(v2
2 − v2

1). (7.3)

Proof.

Work done =
∫ t2

t1

F · dr
dt

dt =
∫ t2

t1

F · vdt,

=
∫ t2

t1

m
dv
dt
· vdt = m

∫ t2

t1

v · dv, Note that Newton’s second law is used here.

=
1
2

m
∫ t2

t1

d(v · v) = 1
2

mv2
∣∣∣∣t2

t1

=
1
2

mv2
2 −

1
2

mv2
1,

which completes the proof. 2

If we call the quantity:

T =
1
2

mv2,

the kinetic energy, this theorem states that:

The total work done by the net forces F in moving the particle of constant
mass m from P1 to P2 along C = the kinetic energy at P2 - the kinetic
energy at P1.

or, symbolically,

W = T2 − T1,

where T1 = 1
2 mv2

1 and T2 = 1
2 mv2

2.

It should be clear (but you should convince yourself of this) that C is a solution
of Newton’s equations.

Now we consider the important case when the force is conservative.

Conservative Force Fields. Suppose there exists a scalar function V such
that F = −∇V. Then we can prove the following:

Theorem 2. The total work done by the force F = −∇V. in moving the
particle along C from P1 to P2 is:

W =
∫ P2

P1

F · dr = V(P1)−V(P2).

Proof. First, note that:

dV(x, y, z) =
∂V
∂x

(x, y, z)dx +
∂V
∂y

(x, y, z)dy +
∂V
∂z

(x, y, z)dz = ∇V · dr.



dynamics–work and power 93

Then the proof follows from a direct calculation using the specific form
of F = −∇V:

W =
∫ P2

P1

F · dr =
∫ P2

P1

−∇V · dr =
∫ P2

P1

−dV = −V
∣∣∣∣P2

P1

= V(P1)−V(P2),

which completes the proof.

Now we state (without proof) two theorems that give computable con-
ditions for determining if a force field is conservative.

Theorem 3. A force field F is conservative if and only if there exists a con-
tinuously differentiable scalar field V such that F = −∇V or, equivalently, if
and only if:

∇× F = curl F = 0 identically.

Theorem 4. A continuously differentiable force field F is conservative if and
only if for any closed non-intersecting curve C (i.e., simple closed curve) we
have:

∮
C

F · dr = 0,

i.e., the total work done in moving a particle around any simple closed curve is
zero.

Potential Energy or Potential. The scalar function V, such that F = −∇V
is called the potential energy (or also the scalar potential or just potential) of
the particle in the conservative force field F.

It should be noted that if you add an arbitrary constant to the potential,
the associated force does not change. We can express the potential as:

V = −
∫ r

r0

F · dr′,

where r0 is chosen arbitrarily. The point r0 is sometimes called the ref-
erence point. Even though it is arbitrary, a wise choice can simplify a
problem. We will see examples of this later on.

Problem Set 7

1. Suppose F is the net force acting on a particle of constant mass m, and
suppose that F gives the particle a displacement dr. Then, we defined
the work done by F in moving the particle through a displacement dr
as dW = F · dr. Recall that Newton’s second law is F = m d2r

dt2 , i.e., F
is proportional to the second derivative of the displacement r of the
particle. Then shouldn’t F be proportional to the displacement r?

2. Let r denote the position vector of a particle of constant mass m and
let v = dr

dt denote the velocity of the particle. Let A denote a vector
such that F = v×A is the net force acting on the particle. Show that
this force does no work on the particle.
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3. Explain the following statements:

(a) Work is equal to the transference of kinetic energy.

(b) There can be no work without motion.

4. A particle of mass m moves in the x − y plane so that its position
vector is:

r = a cos ωti + b sin ωtj,

where a, b, and ω are positive constants with a > b, see Fig. 4.

x

y

O

tr

a

b

A

B m

ω

(a) Show that the particle moves on an ellipse.

(b) Show that the force acting on the particle is always directed to-
wards the origin.

(c) Find the kinetic energy of the particle at points A and B.

(d) Find the work done by the force field in moving the particle from
point A to point B by computing the appropriate line integral.

(e) Using the previous two results, show that the work done in mov-
ing from point A to point B is the kinetic energy at B minus the
kinetic energy at A.

(f) Show that the total work done by the force field in moving the
particle once around the ellipse is zero.

(g) Show that the force field is conservative.

(h) Find the potential energy at points A and B.

(i) Compute the work done in moving the particle from point A to
point B by taking the difference in the potential energy, and show
that it is the same as the answer you got in part d) above.

5. Consider the first example in Chapter 6 (the projectile problem). Com-
pute the work done by the net force on the projectile from the launch
point to the highest point of the trajectory by:
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(a) using the definition of work given by the line integral,

(b) using the definition of work given by the difference of kinetic en-
ergies at the two points.

(You should get the same answer for each.)

6. Consider Problem 1 from the Chapter 6 problems (the inclined plane
problem, assuming it to have length L). Compute the work done by
the net force on the particle resulting from the motion from the top
of the incline, to the bottom:

(a) using the definition of work given by the line integral,

(b) using the definition of work given by the difference of kinetic en-
ergies at the two points.

(You should get the same answer for each.)





8

Dynamics–Conservation of Energy and Momentum

If a certain quantity associated with a system does not change in time.
We say that it is conserved, and the system possesses a conservation law.
Conservation laws are important since they can greatly simplify the “so-
lution” of problems. For example, they can eliminate the need to solve
differential equations in order to find the motion, or at least simplify the
integration procedure (this should definitely get your attention).

The first conservation law we will study is the law of conservation of total
energy.

Conservation of Energy for Conservative Force Fields. We consider a parti-
cle of mass m moving under the influence of a conservative force field,
i.e., the force can be written as F = −∇V, for some scalar valued func-
tion V. Referring to Fig. 8.1, we assume that the mass m of the particle
is constant, and that at times t1 and t2 it is located at points P1 and P2,
respectively, and moving with velocities v1 = dr1

dt and v2 = dr2
dt at points

P1 and P2, respectively.

In Theorem 1 in the previous chapter we proved that the total work done
by the force in moving the particle from P1 to P2 along the curve C is
given by the difference in the kinetic energies at P2 and P1, i.e.,

W =
1
2

mv2
2 −

1
2

mv2
1.

If the force is conservative, we proved in Theorem 2 from the previous
chapter that the total work done by the force in moving the particle from
P1 to P2 along the curve C is given by the difference in the potential
energies at P1 and P2, i.e.,

W = V(P1)−V(P2).

Setting these two expressions equal gives:

1
2

mv2
2 −

1
2

mv2
1 = V(P1)−V(P2),
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Figure 8.1: Geometry associated with
a force moving a particle between two
points in space.

or

1
2

mv2
2 + V(P2) =

1
2

mv2
1 + V(P1). (8.1)

We refer to the sum of the kinetic and potential energy of a particle as
the total energy or just energy of the particle. Since the path C and the
points P1 and P2 were completely arbitrary, (8.1) says that, under the
influence of a conservative force field, a particle moves so that its total
energy never changes. This is the law of conservation of energy, valid for
conservative forces.

Constant Forces are Conservative. We have considered a number of prob-
lems concerning the motion of a particle under the influence of only a
constant force field. We want to explicitly show that constant forces are
conservative. This immediately implies that energy is conserved. We
will use this fact and return to those problems and show that taking into
account energy conservation greatly simplifies their solution.

Let’s suppose that the constant force field has the following form:

F = Ai + Bj + Ck,

where A, B and C are constants (real numbers). In order to show that
F is conservative we need only show that ∇× F = 0 (Theorem 3 from
the previous chapter). However, this should be obvious since the curl
of a vector involves the partial derivatives of the vector. This vector is
constant, so all the partial derivatives are zero.
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Since F is conservative, it can be represented as the (negative) gradient
of a potential function. Let’s now compute the potential. However, let
us simplify the problem by assuming that F is nonzero only in one of
the coordinate directions, say k. Then we have

F = Ck = −∇V = − ∂V
∂x

i− ∂V
∂y

j− ∂V
∂z

k,

or

0 = − ∂V
∂x

,

0 = − ∂V
∂y

,

C = − ∂V
∂z

.

The first two of these equations imply that V(x, y, z) does not depend on
x or y (we might have expected this, why?). We can therefore integrate
the last equation to obtain:

V = −Cz + c1,

where c1 is an unknown, and arbitrary, integration constant (arbitrary in
the sense that its choice does not affect the force). Let us therefore make
a choice. Suppose we choose V = 0 at z = z0. Then we have:

0 = −Cz0 + c1, or c1 = Cz0,

and therefore:

V = −C(z− z0).

If we consider the important case of the constant gravitional force F =

−mgk, then the associated potential is:

V = mg(z− z0). (8.2)

Motion in One Dimension under a Conservative Force Field. Consider New-
ton’s equations in one dimension where the force is given by a conser-
vative force field, i.e.

m
d2s
dt2 = −∇V(s), s(t0) = s0, ṡ(t0) = v0. (8.3)

We know, since the force is conservative, that the particle moves in such
a way that energy is conserved, i.e.,

1
2

mṡ2 + V(s) = E, (8.4)

where E is a constant, called the energy. To reiterate, any solution of
(9.1) must satisfy (8.4) (and vice-versa, review chapter 5). But how are
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the initial conditions for a solution of (9.1) manifested in (8.4)? Through
the constant E. Eq. (8.4) holds for all points on a solution of (9.1),
including the starting point (initial conditions). Therefore, the constant
E can be expressed in terms of the (constant) initial condition of (9.1) by
substituting the initial conditions of (9.1) into (8.4).

Now (8.4) can help us solve (9.1) more easily by enabling us to “skip”
one integration. Here is what we mean. Eq. (8.4) can be rewritten as:

ds
dt

= ±
√

2
m

√
E−V(s), (8.5)

or,

±
∫ s(t)

s(t0)

ds′√
E−V(s′)

=

√
2
m

∫ t

t0

dt′. (8.6)

If we can do this integral (an “invert it”) we will have solved for s(t).
Hence, conservation of energy reduces the solution of a second order or-
dinary differential equation to integrating a first order differential equa-
tion. Evaluating the integral depends crucially on V(s) and, unfortu-
nately, for most functions V(s) we cannot do the integral analytically.
Also, there’s that ± sign. The proper choice there must be made when
taking the square root, and depends upon the specific application under
consideration.

Conservation of Momentum. While we are discussing conservation, we
may as well highlight the conservation of momentum, although we have
really already discovered it as it is expressed in Newton’s laws.

Recall Newton’s second law in momentum form:

dp
dt

= F, (8.7)

where F is the vector sum of all the forces. Now suppose that all of the
forces are zero. Then we have:

dp
dt

= 0, (8.8)

which says that the momentum is constant, in time, if there are no net
forces, i.e., momentum is conserved in the absence of forces.

Now we well return to several examples and problems given earlier and
solve them using conservation of energy.

Problem 3 from Chapter 5. An object of mass m is thrown vertically up-
ward from the Earth’s surface with an initial velocity v0k (v0 > 0). We
assume that the only force acting on the object is gravity, see Fig. 8.2.

Find:

1. the maximum height reached,

2. the speed as a function of its distance from the origin.
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Figure 8.2: A particle moving vertically
under the influence of gravity.

In the previous lecture we showed that the potential energy associated
with the force of gravity was given by:

V = mg(z− z0), (8.9)

where z0 is a reference position. We shall choose this so that a particle
has zero potential energy at z = 0, i.e., we choose z0 = 0.

With this choice, we know the total energy at z = 0. It is just given by
the kinetic energy 1

2 mv2
0. Now what characterizes the total energy at the

maximum height? At the maximum height the velocity is zero, so the
total energy is given by the potential energy mgzmax. Thus, equating the
total energy at z = 0 to the total energy at zmax gives:

1
2

mv2
0 = mgzmax, or zmax =

v2
0

2g
.

How would we calculate the velocity at an arbitrary height? Well, energy
is the same at any height since it is conserved. The energy at an arbitrary
height z is given by:

Ez =
1
2

mv2 + mgz.

This must be equal to the energy at z = 0, which is just the kinetic
energy at z = 0:

Ez=0 =
1
2

mv2
0.
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Since energy is conserved Ez=0 = Ez, and therefore:

1
2

mv2
0 =

1
2

mv2 + mgz, or v =
√

v2
0 − 2gz.

Since v = dz
dt we can also solve for the height as a function of time by

integrating the equation for v = dz
dt , i.e.,

v =
dz
dt

=
√

v2
0 − 2gz,

or

∫ z

0

dz′√
v2

0 − 2gz′
=
−2
√

v2
0 − 2gz′

2g

∣∣∣∣z
0
=
∫ t

0
dt′ = t.

After a bit of algebra you obtain:

z = v0t− 1
2

gt2.

Revisiting an example from Chapter 6. A particle, denoted by P, sits at the
top (point A in the figure) of a frictionless fixed sphere of radius b, see
Fig. 8.3.
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O

θ

Figure 8.3: A particle moving on a
sphere.

The particle is displaced slightly so that it slides (without rolling) down
the sphere. Compute:
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1. the position of the particle as it leaves the sphere,

2. the speed of the particle at the instant it leaves the sphere.

First, the potential energy due to the gravitational force is given by V =

mg(y− y0), and we take the reference point to be y0 = 0, meaning that
the potential energy is chosen to be zero at y = 0.

Using conservation of energy, we have:

P.E. at A + K. E. at A = P.E. at P + K. E. at P
mgb + 0 = mgb sin θ + 1

2 mv2,

From which it follows that:

v2 = 2gb(1− sin θ). (8.10)

But remember here that v = bθ̇.

Now we have to ask ourselves, “what characterizes the particle leaving
the sphere?” We argued in the Chapter 4 that this was when the normal
reaction force was zero. This means that we will not be able to avoid
Newton’s equations entirely.

Recall from Chapter 3 that the acceleration of a particle constrained to
move along a circle is given by:

a = − v2

b
r1 +

dv
dt

θ1.

Hence, Newton’s equations are given by:

m
(
− v2

b
r1 +

dv
dt

θ1

)
= W + N,

= (N −mg sin θ)r1 −mg cos θθ1.

The r1 component of this equation will give us a relationship between
the magnitude of the normal force, and θ and v:

−m
v2

b
= N −mg sin θ. (8.11)

Now setting N = 0 in (8.11) gives us a relationship between the value of
v2 and θ for when the particle leaves the sphere:

v2 = bg sin θ.

Eq. (8.10) gives the value of v2 for any angle θ. Hence, equating these
two expressions gives us an equation for the angle at which the particle
leaves the sphere:

2gb(1− sin θ) = bg sin θ, or sin θ =
2
3

.

The speed at which the particle leaves the sphere is found by substituting
this value into (8.10):
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v2 = b2 θ̇2 =
2
3

gb, or |θ̇| =
√

2g
3b

.

r

Problem Set 8

1. Consider a projectile of constant mass m that is launched with initial
speed v0 at an angle α with the horizontal. Using conservation of
energy, compute:

(a) the maximum height reached,

(b) the position vector at any time.

For an illustration of the geometry see Fig. 1.
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2. A particle P of constant mass m slides without rolling down a fric-
tionless inclined plane of angle α and length `, see Fig. 2.

α
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mg sin α e1

-mg cos α e 2

α

e1

e 2
k-mgW =

If the particle starts from rest at the top of the incline (at point A) use
conservation of energy to determine the following quantities:

(a) the velocity as a function of distance traveled,

(b) the distance traveled after time t.
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(c) Compute the magnitude of the acceleration.

3. Consider a particle of mass m moving with velocity v0 and a par-
ticle of mass M moving with velocity V0, where both particles are
constrained to move along a line and there is no net force acting on
the particles, see Fig. 3. (Note that since the motion is one dimen-
sional, we are dispensing with the use of unit vectors in expressing
the vectorial nature of velocity–the sign of the quantity is adequate
for determining the direction.) We assume that the two particles col-
lide.

m
M

x

V
0

v
0

(a) Relate the momentum of the two particles before the collision to
the momentum of the two particles after the collision.

(b) Let x denote the position of the particle of mass m and let X denote
the position of the particle of mass M. We define the center of mass
of the system of two particles by:

ξ =
mx + MX

m + M
.

Show that the velocity of the center of mass, i.e. ξ̇, is constant.

(c) An elastic collision is defined as a collision where the sum of the
kinetic energy of the two particles is the same before and after the
collision, i.e.,

1
2

mv2
0 +

1
2

MV2
0 =

1
2

mv2 +
1
2

MV2. (8.12)

Using this result, and the result from part (a), show that the veloc-
ities before and after the collision are related as follows:

v =
m−M
m + M

v0 +
2M

m + M
V0,

V =
M−m
m + M

V0 +
2m

m + M
v0. (8.13)

(d) Consider the case of an elastic collision with m = M. What are v
and V?

(e) Consider the case of an elastic collision with M ”very large com-
pared to m”. Determine v and V in general, and describe the
motion in the special case that V0 = 0.





1 Note that in one dimension the gradi-
ent is a scalar (as opposed to a vector
in 2 or 3 dimensions) and has the much
simpler form,∇V(s) ≡ dV

ds (s).

9

Dynamics–The Phase Plane for One Dimensional Mo-
tion

We saw in Chapter 8 that a solution to Newton’s equation in one dimen-
sion with conservative forces, i.e.,

m
d2s
dt2 = −∇V(s), s(t0) = s0, ṡ(t0) = v0, (9.1)

must satisfy

1
2

mṡ2 + V(s) = E, (9.2)

where E is a constant, called the total energy, which is determined by the
initial conditions s(t0) = s0, ṡ(t0) = v0

1. We now want to exploit this
fact and develop a graphical way of understanding all possible solutions
to (9.1) (i.e., for any choice of initial condition). This technique is called
phase plane analysis. It works for differential equations in general, and
you will learn more about that later on.

First, what is this phase “plane”? After all, we are studying motion in
one dimension. The first step to understanding this is a closer examina-
tion of (9.2) and giving it a geometrical interpretation. Let us consider (9.2)
as a function of two variables (which it is, of course), s and ṡ (and, you
guessed it, the phase plane will be the plane with coordinate axes s and
ṡ). We will call this function:

H(s, v) =
1
2

mv2 + V(s), (9.3)

where we now denote

ṡ ≡ v.

We refer to H(s, v) as the energy function, and the interpretation we have
from above is that the level sets, or level curves of the energy function
are trajectories of (9.1) (we will return to the initial condition question
shortly, but, for the moment, we will leave it as we focus on developing
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this geometrical picture). The level sets, or level curves of a function are
the set of points in the domain of a function where the function is a
constant. In our case, the level sets of H(s, v) are the sets of points in the
s − v plane for which H(s, v) = constant. “Typically”, these level sets
are curves. Let’s consider a familiar example.

Example 12. Consider the function:

H(s, v) = s2 + v2.

The level sets of this function, i.e.,

{(s, v) ∈ R2|H(s, v) = s2 + v2 = E = constant},

are the circles of radius
√

E. Clearly, the level sets are defined only for constants
E ≥ 0. They are circles (curves) for E > 0. For E = 0 the level set is a point,
the origin. For certain exceptional values the level sets may degenerate to a
point (which is why we put “typically” in quotes above).

So now you see how to “solve” (9.1). Write down the energy function
and plot its level sets in the s − v plane. But in what sense does this
“solve” (9.1)? We need to develop this geometrical picture further in
order to see this.

Suppose s(t) is a solution of (9.1). Then it follows that (s(t), ṡ(t) ≡ v(t))
lies on a level set of the energy function, for some energy (constant) E,
i.e.,

H(s(t), v(t)) =
1
2

mv(t)2 + V(s(t)) = E. (9.4)

Then we have:

d
dt

H(s(t), v(t)) =
∂H
∂s

ds
dt

+
∂H
∂v

dv
dt

= ∇H ·
(

ds
dt

,
dv
dt

)
= 0. (9.5)

As t varies, (s(t), v(t)) traces out a curve in the phase plane, which
is a solution of (9.1), and a level set of (9.2). Now, for any fixed t,(

ds
dt (t),

dv
dt (t)

)
is a vector tangent to the level set. It then follows from

(9.5) that
(

∂H
∂s (s(t), v(t)), ∂H

∂v (s(t), v(t))
)

= ∇H(s(t), v(t)) is a vector
perpendicular to the level set at that point (in the sense of being per-
pendicular to the tangent vector to the curve at that point).

For each value of t,
(

ds
dt (t),

dv
dt (t)

)
is a vector in the s− v plane that is

tangent to a trajectory of (9.1). It is in this sense that we say that (9.1) de-
fines a vector field in the phase plane, and the solutions of (9.1) are curves,
parametrised by t, have the property that for each t the tangent vector is
given by the vector field. This is made more explicit if we rewrite (9.1)

in the form of a first order equation for the vector
(

ds
dt (t),

dv
dt (t)

)
. This is

done as follows:

ṡ = v,

s̈ = v̇ = − 1
m
∇V(s). (9.6)
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It should be clear that (9.6) is equivalent to (9.1) in the sense that a
solution of (9.6) is equivalent to a solution of (9.1), and vice-versa. The
geometrical picture that we have developed is illustrated in Fig. 9.1.

s

v

(t)s , v (t)( )

H (t)s , v (t)( ) = E = constant

(t)s , v (t)( )..

v6
H 6

6s
H 6 (t)s , v (t)( ) (t)s , v (t)( )( ),

Figure 9.1: Geometry of motion associ-
ated with a level set of the energy.

Now we describe a graphical way of drawing the level sets of the energy
function in the phase plane, or constructing the phase portrait. We can
solve (8.4) for v as a function of E and s:

v = ±
√

2
m

√
E−V(s). (9.7)

For fixed E, this defines the corresponding level set of the energy func-
tion as the graph of a function of s. Well, “almost”, there is the ± to
consider. However, this actually makes things simpler. We must deal
with both the + and − signs separately. First we consider the + sign.
Since the square root of a function is positive then v will be positive. We
then plot the graph of the function. Next we consider the minus sign.
But it is the same graph, with just an overall minus sign. Hence, we just re-
flect the graph constructed with the plus sign about the horizontal axis
in the phase plane (you should think carefully about this!).

But still, how do we construct the graph to begin with, with the plus
sign? There is a simple graphical procedure for this, which we now
describe.

Plot the potential energy as a function of s, and immediately below this
graph draw the s and v axes of the phase plane, as shown in Fig. 9.2.
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v

V(s)

E2

1E

Figure 9.2: Graphical procedure for
drawing the phase portrait from the po-
tential energy.

For the potential energy function sketched in the figure, we will sketch
the phase portrait. This means sketch the level sets of the energy func-
tion (8.4) for different values of E.

Pick a value of E, say E1. Draw the horizontal line V(s) = E1 on the
graph of the potential as shown in Fig. 9.2. Now consider (9.7) with
the plus sign. From this expression it should be clear that v exists only
for the range of s for which E1 − V(s) ≥ 0. The values of s for which
E1 −V(s) = 0 (i.,e., v = 0) are called turning points. Start at the left hand
value of s for which E1 −V(s) = 0. Then move to the right (i.e, increase
s). In this case v increases since E1 −V(s) increases. As we move to the
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right, E1 −V(s) continues to increase until it reaches a maximum value,
then it decreases to zero at the right hand point where E1 − V(s) = 0.
This results in a curve in the positive v half plane. If we take the minus
sign in (9.7), we get the negative of this curve, which results in the closed
curve shown in Fig. 9.2. We see that the turning points are aptly named
since the velocity changes direction at those points. We have also shown
a direction of motion on these curves. You should convince yourself
that this is correct. We can repeat this construction for a larger value of
energy, say E2 as shown in Fig. 9.2. We get another closed path that
contains the one previously constructed with lower energy.

What about the point at the origin, which is a local minimum of the
potential? At this point dV

ds (0) = 0, which implies that v̇ = 0 from (9.6).
Also, v = 0, which implies ṡ = 0 from (9.6). Hence, the vector field is
zero at this point. The point cannot “move”. It is called an equilibrium
point. In general, any point for which (s, v), where v = 0 and s satisfies
dV
ds = 0 is an equilibrium point. For this example we say that it is a stable

equilibrium point since solutions starting nearby oscillate around it, i.e.,
they never move far away. The closed curves in Fig. 9.2 are examples of
periodic solutions.

Now let’s consider a more complicated example, as shown in Fig. 9.3.
What makes this example more complicated is that the potential has
multiple relative extrema (sometimes called “critical points”).

First, note that there are three equilibrium points, two stable (corre-
sponding to relative minima of the potential), and one saddle point (corre-
sponding to a relative maximum of the potential). Following the graph-
ical procedure described above, we obtain the level sets of the energy
function for the four different values of energy shown in Fig. 9.3.

You should be able to convince yourself that for energies E1, E2, and
E4 you obtain closed curves in the phase plane (but think about where
the “dimples” in the closed curves arise from). The energy E3 is slightly
different. This is the energy of the saddle point, and now you will be
able to see where the name comes from. At this energy a level set of
the energy function passes through this point as shown in Fig. 9.3. If
you take into consideration the direction of motion of the level set, the
saddle point nature is clear, but let’s look at this point more closely.

For Figs. 9.2 and Fig. 9.3 why did we put the arrows on the curves as
indicated (i.e, I’m worried about getting the direction right)? The arrows
are in the direction of motion. Refer back to (9.6). Note that for v > 0,
we have ṡ > 0, which means that the direction is from left to right. For
v < 0, we have ṡ < 0, which means that the direction is from right to
left. Make sure you understand this argument.

In Fig. 9.3 the level set of the energy function with energy E3 is an
example of a separatrix, i.e, a curve that separates qualitatively distinct
level sets of the energy function. It is the level set that passes through a
relative maximum of the potential energy.

The phase portrait is understood if we sketch the qualitatively distinct
curves in the phase plane? What do we mean by qualitatively distinct?
In Fig. 9.2 all of the level sets of the energy function were “concentric”
closed curves in the phase plane. We say that they are all qualitatively
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Figure 9.3: A more complicated example
of the graphical procedure for drawing
the phase portrait from the potential en-
ergy.

similar. Each could be smoothly deformed into any other by shrinking
or growing, and without passing through any equilibria. That is not the
case in Fig. 9.3 due to the presence of the saddle point and its associated
separatrix. The separatrix defines the boundary between regions with
qualitatively similar level sets of the energy function. Therefore, if there
are no saddle points the phase portrait is fairly simple.

There have been a lot of ideas in this chapter. Now we summarize the
main points.

Phase Plane. The plane with horizontal axis given by s, and vertical axis
given by ṡ = v.

Level Set of the Energy Function. The set of points in the phase plane with
equal energy. Typically, this is one or more curves, but could also be
an isolated point. These are sometimes called phase curves, or trajecto-
ries.

Closed Level Set of the Energy Function, not Containing any Equilibria. These
are periodic solutions of the system.

Turning Point. The point on the horizontal axis where v̇ = 0.

Equilibrium Point. A point in the phase plane where ṡ = 0 and v̇ =

0, simultaneously. Equivalently, a relative extrema of the potential
energy.



dynamics–the phase plane for one dimensional motion 113

Stable Equilbrium Point. An equilibrium point which is a relative minima
of the potential energy, i.e., at the equilibrium point we have dV

ds = 0

and d2V
ds2 > 0.

Saddle Point. An equilibrium point which is a relative maxima of the
potential energy, i.e., at the equilibrium point we have dV

ds = 0 and
d2V
ds2 < 0.

Phase Portrait. An illustration of the qualitatively distinct level sets of
the energy function in the phase plane.

Separatrix. A level set of the energy function that passes through a rela-
tive maximum of the potential energy. It separates qualitatively dis-
tinct level sets of the energy function.

Vector Field. The field of velocity vectors in the phase plane defined by
the two-dimensional, first order form of Newton’s equations.

Problem Set 9
1. Consider the equation:

s̈ = −s,

where, for simplicity, we have set m = 1 (remember from an ear-
lier homework problem that we can “rescale time” so that the mass
becomes unity).

(a) Write it as a first order system, or vector field, on the phase plane.

(b) Compute the potential energy and sketch it.

(c) Find all equilibria and classify their stability.

(d) Sketch the phase portrait.

(e) Compute expressions for the trajectories in the phase plane as a
function of time (and take s(0) = 0 for simplicity).

2. Consider the equation:

s̈ = s− s3,

where, for simplicity, we have set m = 1.

(a) Write it as a first order system, or vector field, on the phase plane.

(b) Compute the potential energy and sketch it.

(c) Find all equilibria and classify their stability.

(d) Sketch the phase portrait.

3. Consider the equation:

s̈ = s− s2,

where, for simplicity, we have set m = 1.

(a) Write it as a first order system, or vector field, on the phase plane.

(b) Compute the potential energy and sketch it.

(c) Find all equilibria and classify their stability.

(d) Sketch the phase portrait.
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Dynamics–The Simple Pendulum. Torque and Angu-
lar Momentum

We consider the classic pendulum, a particle of mass m connected to
some point by an inextensible (and massless) connector (“string”) of
constant length `, which is free to move in a circle of radius ` in a vertical
plane. We assume that the only force acting on the mass is gravity, see
Fig. 10.1.

O

C

A

B

m

θ l

Figure 10.1: Geometry associated with
the pendulum.

First, we will derive Newton’s equation for the pendulum. But we need
to take a step back and first address some kinematical considerations
(i.e., how we will describe the motion). We will consider the the motion
to be one dimensional with the mass is constrained to lie on a circle of
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radius `. Therefore it is natural to describe the location of the mass by
an angle, say θ, which we take as the deviation from vertical (i.e., the
pendulum hanging straight down).

We will derive the equations of motion two ways: 1) by the energy
method, and 2) by writing down Newton’s second Law (i.e., “Newton’s
equations”).

The Energy Method

The only forces acting on the pendulum mass (that we are considering)
are gravity, and we know (make sure you do know this!) that gravity is a
conservative force. Hence, the total energy, kinetic plus potential energy,
is conserved.

The potential energy is solely due to gravity, and is given by mgh, where
h is the height above a reference position. We will take this position
(remember, it can be chosen arbitrarily without affecting the equations
of motion) to be the position where the pendulum is at its lowest point,
i.e. ”hanging straight down”. Using a little bit of trigonometry, the
height above this position, as a function of θ, is given by `(1− cos θ) (see
Fig. 10.1). Therefore the potential energy is given by V = mg`(1− cos θ).

Now focus on the kinetic energy. It is certainly one half times the mass
times the square of the velocity. But what is the velocity? It’s the time
derivative of the position vector. The position vector is given by:

r = `r1,

and therefore

ṙ = `ṙ1 = `θ̇θ1.

So the total energy is :

1
2

mṙ · ṙ + V(θ) = E,

or

1
2

m`2 θ̇2 + mg`(1− cos θ) = E.

Now differentiate this expression with respect to time:

m`2 θ̈θ̇ + mg` sin θθ̇ = 0,

or, after cancelling θ̇ and rearranging terms:

θ̈ = − g
`

sin θ.
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Newton’s Equations

Newton’s equations are given by:

mr̈ = F.

The mass is constrained to lie on a circle. So we are only interested in the
acceleration and forces in the tangential direction, i.e., θ1. Recall from
above that:

r = `r1,

from which it follows, after differentiating with respect to time, that the
component of acceleration in the θ1 direction is given by:

`θ̈θ1.

The gravitational force is given by −mgk. The component of this force
in the θ1 direction is given by:

(−mgk · θ1) θ1 = −mg cos
(π

2
− θ
)

θ1 = −mg sin θθ1.

From these two expressions we obtain:

m`θ̈ = −mg sin θ,

or

θ̈ = − g
`

sin θ. (10.1)

Now we want to sketch the phase portrait for the pendulum. However,
the presence of the constants g and ` present a small problem in that
we would wonder if the phase portrait would change significantly if dif-
ferent values of these constants were taken. We can deal with this by
eliminating them completely through rescaling time and making the re-

sulting equation dimensionless. First, note that
√

g
` has the dimensions of

1
time . We can therefore define a dimensionless time, called, τ, as follows:

t =

√
`

g
τ.

Then

d2

dt2 =
g
`

d2

dτ2 ,

and, in the dimensionless time τ, (10.1) becomes:

d2θ

dτ2 = − sin θ. (10.2)

In dimensionless form, we take as the potential energy:
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V(θ) = 1− cos θ,

since, using this form for V(θ), (10.2) can be written as:

d2θ

dτ2 = − dV
dθ

(θ).

In Fig. 10.2 we plot the potential energy and the phase portrait using
the graphical procedure as described in Chapter 9.

v

θ

π−π

V(θ)

θ

=1−cosθ

−π π

Figure 10.2: The potential energy and
the phase portrait associated with the
pendulum.

It is important to be aware that the phase plane is periodic in θ. What
does this mean in terms of the motion of the pendulum? There are two
equilibrium points: a stable equilibrium at θ = 0, and a saddle at θ = π.
There are two separatrices that pass through the saddle point. The sep-
aratrices bound a family of closed level sets of the energy function (pe-
riodic solutions of Newton’s equations)periodic solutions of Newton’s
equations. They have the property that the angle variable never goes
beyond ±π. Can you give a physical description of such periodic so-
lutions? The are called librations, or librational motions. The periodic
solutions above and below the separatrices are called rotations. Why?

Dynamics–Torque and Angular Momentum

Consider a particle moving under the action of a force F. Let r denote
the position vector of the particle with respect to a point fixed in space,
which we call O, and take as the origin of a cartesian cordinate system,
see Fig. 10.3.
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Figure 10.3: Geometry associated with a
force acting on a particle moving in three
dimensional space.

We define the torque about O, or the moment of the force F about O as:

Λ = r× F. (10.3)

You can think of the magnitude of the torque as a measure of the “turn-
ing effect” of the force on the particle about the chosen point O.

Theorem 5.

r× F =
d
dt

(m(r× v)) .

Proof. This is just a straightforward computation.

d
dt

(m(r× v)) = m
(

dr
dt
× v + r× dv

dt

)
= m(v× v) + r×m

dv
dt

= r× F = Λ.

The quantity:

Ω = m(r× v) = r× p, (10.4)

is called the angular momentum about O, or the moment of momentum about
O.

The theorem states the torque acting on a particle (about a point O) is
equal to the time rate of change of its angular momentum (about the
same point O), i.e.,

Λ =
dΩ

dt
. (10.5)
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Just as linear momentum is conserved if there are no net exernal forces
on a particle, angular momentum about a point is conserved if there
are no net torques on the particle about the same point. To see this, set
Λ = 0 in (10.5). This gives:

d
dt

(m(r× v)) = 0, (10.6)

or

m(r× v) = constant. (10.7)

Example 13. Recall the problem from the Chapter 7 problem set. A particle of
mass m moves in the x− y plane so that its position vector is:

r = a cos ωti + b sin ωtj,

where a, b, and ω are positive constants with a > b. Here we consider questions
related to angular momentum and torque on the particle. In particular, we will:

1. compute the torque on the particle about the origin,

2. compute the angular momentum of the particle about the origin,

3. show that angular momentum is conserved.

In the problem we showed previously that the force on the particle is given by:

F = −mω2r.

Therefore, the torque on the particle about the origin due to this force is given
by:

Λ = r× F = r× (−mω2r) = −mω2(r× r) = 0.

Furthermore, it was shown in the problem previously that the velocity of the
particle is given by:

v = −ωa sin ωti + ωb cos ωtj,

and therefore the momentum is given by:

p = −mωa sin ωti + mωb cos ωtj.

Then the angular momentum about O is given by:

Ω = r× p =

i j k
a cos ωt b sin ωt 0

−mωa sin ωt mωb cos ωt 0
= mωabk.

Clearly, the angular momentum about O is constant, but we knew that should
be the case since the torque about O is zero.

Problem Set 10



dynamics–the simple pendulum. torque and angular momentum 121

Problems 1-7 below are concerned with the motion of a particle of con-
stant mass m in one dimension under the action of a conservative force:

ṡ = v,

v̇ = − 1
m

dV
ds

(s),

where V(s) is the potential function.

1. Show that all level sets of the energy function cross the s axis in the
phase plane perpendicularly. (Hint: Compute the slope of the level
set at the turning point, v = 0.)

2. Suppose you add a constant (i.e. a real number) to the potential
function. How does the corresponding phase portrait change?

3. Suppose (s, v) ≡ (s0, 0) is an equilibrium point of Newton’s equations
above. Is it a solution of Newton’s equations?

4. Consider the potential energy sketched in Fig. 4.

s

V(s)

(a) Determine the number of equilibria and their stability type.

(b) Sketch the phase portrait.

5. Consider the potential energy sketched in Fig. 5.

s

V(s)
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(a) Determine the number of equilibria and their stability type.

(b) Sketch the phase portrait.

6. Consider the potential energy sketched in Fig. 6.

s

V(s)

(a) Determine the number of equilibria and their stability type.

(b) Sketch the phase portrait.

7. Consider the potential energy sketched in Fig. 7.

s

V(s)

There is an inflection point at the origin (i.e., think of V(s) = s3).

(a) Determine the number of equilibria and their stability type.

(b) Sketch the phase portrait.

8. The angular momentum (about some point) as a function of time is
given by:

Ω = 6t2i− (2t + 1)j + (12t3 − 8t2)k.

Find the torque (about the same point) at t = 1.

9. A particle of mass 2 moves in a time-dependent force field given by:

F = 24t2i + (36t− 16)j− 12tk.

Assume that at t = 0 the particle has the following position and
velocity:
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1 This is an important result that we will
use in the next chapter

2 This is also an important result that we
will use in the next chapter

r0 = 3i− j + 4k,

v0 = 6i + 15j− 8k.

Compute, for any time t:

(a) the velocity,

(b) the position,

(c) the torque about the origin,

(d) the angular momentum about the origin.

10. A central force is a force having the following form:

F = f (r)r1 = f (r)
r
r

,

where f (r) is an arbitrary function of the magnitude of the position
vector. Show that angular momentum about the origin is conserved
for a particle of constant mass m moving under the influence of a
central force field1.

11. Show that if a particle moves under the influence of a central force
field, then its path must always lie in a plane. (Hint. A plane is
defined by a constant vector. It then suffices to show that the position
vector is perpendicular to an appropriately chosen constant vector.
Use the previous problem to choose this constant vector.)2
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Motion in a Central Force Field

In this chapter we are going to study the properties of a particle of (con-
stant) mass m moving in a particular type of force field, a central force
field. Central forces are very important in physics and engineering. For
example, the gravitional force of attraction between two point masses is
a central force. The Coulomb force of attraction and repulsion between
charged particles is a central force. Because of their importance they de-
serve special consideration. We begin by giving a precise definition of
central force, or central force field.

Central Forces: The Definition. Suppose that a force acting on a particle
of mass m has the properties that:

• the force is always directed from m toward, or away, from a fixed
point O,

• the magnitude of the force only depends on the distance r from O.

Forces having these properties are called central forces. The particle is
said to move in a central force field. The point O is referred to as the center
of force.

Mathematically, F is a central force if and only if:

F = f (r)r1 = f (r)
r
r

, (11.1)

where r1 = r
r is a unit vector in the direction of r.

If f (r) < 0 the force is said to be attractive towards O. If f (r) > 0 the
force is said to be repulsive from O. We give a geometrical illustration in
Fig. 11.1.

Properties of a Particle Moving under the Influence of a Central Force. If a
particle moves in a central force field then the following properties hold:

1. The path of the particle must be a plane curve, i.e., it must lie in a
plane. (This was a problem in Chapter 10.)

2. The angular momentum of the particle is conserved, i.e., it is constant
in time. (This was a problem in Chapter 10.)
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Figure 11.1: Geometrical illustration of a
central force.

3. The particle moves in such a way that the position vector (from the
point O) sweeps out equal areas in equal times. In other words, the
time rate of change in area is constant. This is referred to as the Law
of Areas. We will describe this in more detail, and prove it, shortly.

Equations of Motion for a Particle in a Central Force Field. Now we will
derive the basic equations of motion for a particle moving in a central
force field.

From Property 1 above, the motion of the particle must occur in a plane,
which we take as the xy plane, and the center of force is taken as the
origin. In Fig. 11.2 we show the xy plane, as well as the polar coordinate
system in the plane.

Since the vectorial nature of the central force is expressed in terms of
a radial vector from the origin it is most natural (though not required!)
to write the equations of motion in polar coordinates. In earlier lec-
tures we derived the expression for the acceleration of a particle in polar
coordinates:

a = (r̈− rθ̇2)r1 + (rθ̈ + 2ṙθ̇)θ1. (11.2)

Then, using Newton’s second law, and the mathematical form for the
central force given in (11.1), we have:

m(r̈− rθ̇2)r1 + m(rθ̈ + 2ṙθ̇)θ1 = f (r)r1, (11.3)
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Figure 11.2: Polar coordinate system as-
sociated with a particle moving in the xy
plane.

or

m(r̈− rθ̇2) = f (r), (11.4)

m(rθ̈ + 2ṙθ̇) = 0. (11.5)

These are the basic equations of motion for a particle in a central force
field. They will be the starting point for many of our investigations.

From these equations we can derive a useful constant of the motion. This
is done as follows. From (11.5) we have:

m(rθ̈ + 2ṙθ̇) =
m
r
(r2 θ̈ + 2rṙθ̇) =

m
r

d
dt
(r2 θ̇) = 0,

or

r2 θ̇ = constant = h. (11.6)

This is an interesting relation that, we will see, is related to properties
2 and 3 above. However, one use for it should be apparent. If you
know the r component of the motion it allows you to compute the θ

component by integration. This is another example of how constants
of the motion allow us to “integrate” the equations of motion. It also
explain why constants of the motion are often referred to as integrals of
the motion.

Now, let us return to property 3 above and derive the Law of Areas.
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Suppose that in time ∆t the position vector moves from r to r + ∆r. Then
the area swept out by the position vector in this time is approximately
half the area of a parallelogram with sides r and ∆r. We give a proof of
this:

Area of parallelogram = height× |r|,
= |∆r| sin θ|r|,
= |r× ∆r|,

see Fig. 11.3.
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Figure 11.3: Illustration of the Law of Ar-
eas.

Hence,

∆A =
1
2
|r× ∆r|.

Dividing this expression by ∆t, and letting ∆t→ 0, gives:

lim
∆t→0

∆A
∆t

= lim
∆t→0

1
2

∣∣∣∣r× ∆r
∆t

∣∣∣∣ = 1
2
|r× v|,

or

Ȧ =
1
2
|r× v|.

Now we need to evaluate r× v. Using r = rr1, we have:
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r× v = r× (ṙr1 + rθ̇θ1) = ṙ(r× r1) + rθ̇(r× θ1) = r2 θ̇k.

Therefore we have:

r2 θ̇ = 2Ȧ = constant. (11.7)

The vector:

Ȧ = Ȧk =
1
2

r2 θ̇k,

is called the areal velocity.

Next we will derive some useful alternative forms for the basic equations
of motion.

Alternative Forms to the Basic Equations of Motion for a Particle in a Central
Force Field. Recall the basic equations of motion given previously. They
will be our starting point:

m(r̈− rθ̇2) = f (r), (11.8)

m(rθ̈ + 2ṙθ̇) = 0. (11.9)

Previously we derived the following constant of the motion:

r2 θ̇ = h = constant. (11.10)

In the problems at the end of this chapter you will show that this con-
stant of the motion will allow you to determine the θ component of mo-
tion, provided you know the r component of motion. However, (11.8)
and (11.9) are coupled (nonlinear) equations for the r and θ components
of the motion. How could you solve them without solving for both the
r and θ components? This is where alternative forms of the equations of
motion are useful.

Let us rewrite (11.8) in the following form (by dividing through by the
mass m):

r̈− rθ̇2 =
f (r)
m

. (11.11)

Now, using (11.10), (11.11) can be written entirely in terms of r:

r̈− h2

r3 =
f (r)
m

. (11.12)

We can use (11.12) to solve for r(t), and the use (11.10) to solve for θ(t).

Equation (11.12) is a nonlinear differential equation. There is a useful
change of variables, which for certain important central forces, turns the
equation into a linear differential equation with constant coefficients, and
these can always be solved analytically. Here we describe this coordinate
transformation.
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Let

r =
1
u

.

This is part of the coordinate transformation. We will also use θ as a new
“time” variable. Coordinate transformation are effected by the chain
rule, since this allows us to express derivatives of “old” coordinates in
terms of the “new” coordinates. We have:

ṙ =
dr
dt

=
dr
dθ

dθ

dt
=

h
r2

dr
dθ

=
h
r2

dr
du

du
dθ

= −h
du
dθ

, (11.13)

and

r̈ =
dṙ
dt

=
d
dt

(
−h

du
dθ

)
=

d
dθ

(
−h

du
dθ

)
dθ

dt
= −h2u2 d2u

dθ2 , (11.14)

where, in both expressions, we have used the relation r2 θ̇ = h at strategic
points.

Now

rθ̇2 = r
h2

r4 = h2u3. (11.15)

Substituting this relation, along with (11.14) into (11.8), gives:

m
(
−h2u2 d2u

dθ2 − h2u3
)
= f

(
1
u

)
,

or

d2u
dθ2 + u = −

f
(

1
u

)
mh2u2 . (11.16)

Now if f (r) = K
r2 , where K is some constant, (11.16) becomes a linear,

constant coefficient equation.

Central Force Fields are Conservative. Now we will show that central
forces are conservative forces. We already know that there are many
important implications that will follow from this fact, such as conserva-
tion of total energy.

If a central force is conservative then the work done by the force in
moving a particle between two points is independent of the path taken
between the two points, i.e., it only depends on the endpoints of the
path. In this case we must have:

F · dr = −dV

where V is a scalar valued function (the potential). Evaluating the left-
hand-side of this expression gives:

F · dr = f (r)
r
r
· dr = f (r)dr,
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where we have used the relation r · dr = rdr. You can derive this relation
by noting that r · r = r2, and then computing the differential of this
equality. Therefore,

−dV = f (r)dr,

from which it follows that:

V = −
∫

f (r)dr. (11.17)

Hence, if we know the central force field, (11.17) tells us how to compute
the potential.

Conservation of Energy for a Particle in a Central Force Field. Since central
forces are conservative forces, we know that total energy must be con-
served. Now we derive expressions for the total energy of a particle of
mass m in a central force field. We will do this in two ways.

First Method. First we compute the kinetic energy. The velocity is given
by:

v = ṙr1 + rθ̇θ1,

and therefore:

v · v = v2 = ṙ2 + r2 θ̇2.

The kinetic energy is given by:

1
2

mv2 + V = E.

Therefore we have:

1
2

m
(

ṙ2 + r2 θ̇2
)
−
∫

f (r)dr = E. (11.18)

Second Method. The second method deals directly with the equations
of motion and realizes the expression for the total energy as an integral
of the equations of motion.

We multiply (11.4) by ṙ, multiply (11.5) by rθ̇, and add the resulting two
equations to obtain:

m(ṙr̈+ r2 θ̇θ̈ + rṙθ̇2) = f (r)ṙ = ṙ
d
dr

∫
f (r)dr =

dr
dt

d
dr

∫
f (r)dr =

d
dt

∫
f (r)dr,

or,

1
2

m
d
dt

(
ṙ2 + r2 θ̇2

)
=

d
dt

∫
f (r)dr.
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Integrating both sides of this equation with respect to time gives:

1
2

m
(

ṙ2 + r2 θ̇2
)
−
∫

f (r)dr = E = constant.

Problem Set 11

1. Prove that in cartesian coordinates the magnitude of the areal velocity
is 1

2 (xẏ− yẋ).

2. Derive the equation:

d2r
dθ2 −

2
r

(
dr
dθ

)2
− r =

r4 f (r)
mh2 .

3. Show that the position of a particle as a function of time moving in a
central force field can be determined from the equations:

t =
∫ 1√

G(r)
dr, t =

1
h

∫
r2dθ, (11.19)

where

G(r) =
2E
m

+
2
m

∫
f (r)dr− 2h2

m2r2 .

4. (a) Find the potential energy for a particle which moves in the force
field:

F = − K
r2 r1,

where K is some positive constant.

(b) How much work is done by the force field in moving a particle
from a point on the circle of radius r = a > 0 to a point on the
circle of radius r = b > 0? Does the work depend on the path?

5. Consider the relation:

r2 θ̇ = h = constant,

that we derived earlier. Explain how it enables us to determine the θ

component of motion if we know the r component of motion.

6. How is the expression r2 θ̇ related to the angular momentum of the
particle about O?
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