Synthesis of Chiral α-Amino Tertiary Boronates via the Catalytic Enantioselective Nucleophilic Borylation of Dialkyl Ketimines

Koji Kubota,*^{†,‡} Daiyo Miura,[†] Takumi Takeuchi,[†] Shun Osaki,[†] and Hajime Ito*^{†,‡}

[†]Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan, FAX: +81-(0)11-706-6561

[‡]Institute for Chemical Reaction Design and Discovery (WPI-ICRD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan

Corresponding Author

kbt@eng.hokudai.ac.jp, hajito@eng.hokudai.ac.jp

Table of Contents

- 1. General and Materials
- 2. Substrate Synthesis
- 3. General Experimental Procedures for Borylation of Ketimines
- 4. Experimental Procedures for the Synthesis of Peptydilboronic Acid Derivatives
- 5. Additional Experimental Results
- 6. Determination of Absolute Configuration of Borylation Product
- 7. Plausible Catalytic Cycle
- 8. DFT Calculations
- 9. Analysis for Non-Covalent Interactions in the Transition States
- 10. Reference
- **11.HPLC Charts**
- 12.¹H and ¹³C NMR Spectra

1. General and Materials

All reactions were performed in oven-dried glassware using conventional Schlenk techniques under a static pressure of nitrogen or argon. Materials were obtained from commercial suppliers and used as received unless otherwise noted. Dry solvents for the reactions were purchased from commercial suppliers, degassed via three freeze-pump-thaw cycles, and further dried over molecular sieves (MS4A) prior to use. 1,3-Dicyclohexylimidazolium chloride (ICy·HCl, >98.0%) and K(O-t-Bu) (>97.0%) purchased from Tokyo Chemical Industry Co. The chiral N-heterocyclic carbene (NHC) ligand precursors (R,S)-L1, (R,S)-L2, (R,S)-L3 were purchased from Strem Chemicals, Inc. [(S,S)-L4-(S,S)-L7¹, (S,S)-L8², (S,S)-L9² and (R,R)-L10³] were synthesized according to the literature. (R)-DTBM-SEGPHOS [(R)-L11] was purchased from Tokyo Chemical Industry Co. (R,R)-Quinox P* [(R,R)-L12] was obtained from Nippon Chemical Industrial Co. Silica Gel 60 N (40–100 µm, spherical, neutral) purchased from Kanto Chemical Co. was used as received. NMR spectra were recorded on JEOL JNM-ECX400P, ECS-400 (¹H: 392 or 396 MHz, ¹³C: 99 or 100 MHz), and JNM-ECA600 (¹³C: 151 MHz). Tetramethylsilane ($\delta = 0.00$ ppm for ¹H NMR) and CDCl₃ ($\delta = 77.0$ ppm for ¹³C NMR) were employed as external standards. $BF_3 \cdot Et_2O$ was used as an external standard for ¹¹B NMR analysis. D₃PO₄ in D₂O was used as an external standard for ³¹P NMR analysis. Multiplicity was reported as follows: s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sept =septet, m = multiplet. 1,1,2,2-Tetrachloroethane was used as an internal standard for determining NMR yield. NMR yield was determined by quantitative ¹H-NMR analysis of the crude reaction mixture. GLC analyses were conducted with a Shimadzu GC-2014 or GC-2025 equipped with ULBON HR-1 glass capillary column (Shinwa Chemical Industries) and an FID detector. Recycle preparative gel chromatography (GPC) was conducted with JAILC-9101 using CHCl₃ as an eluent. FTIR spectra were recorded on a JASCO FT IR 4700 spectrometer. Single crystal X-ray structural analyses were carried out on an XtaLAB PRO MM007 diffractometer using graphite monochromated Cu- K_{α} radiation. The structure was solved by direct methods and expanded using Fourier techniques. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. All calculations were performed using the Olex2 crystallographic software package except for refinement, which was performed using SHELXL-2013. High-resolution mass spectra were recorded at the Global Facility Center for Instrumental Analysis, Hokkaido University.

2. Substrate Synthesis

List of the substrate used in this study.

The spectroscopic data of **1a** and **1e** were consistent with literature values.^{4,5} The E/Z configurations of other substrates were deduced relative to these compounds.

Procedure A.

(E)-N-(1-Cyclohexylethylidene)-P,P-diphenylphosphinic amide (1a).

MeLi (Et₂O 1.1 M) (9.1 mL, 10 mmol, 1.0 equiv) was added dropwise to a suspension of cyclohexanecarbonitrile (1.2 mL, 10 mmol, 1.0 equiv) in Et₂O (20 mL) at -78 °C under nitrogen atmosphere. The reaction mixture was allowed to warm to room temperature and stirred for 2 h. Then, the reaction mixture was cooled down to -78 °C, and diphenyl phosphinic chloride (1.91 mL, 10 mmol, 1.0 equiv) was added dropwise to the mixture. The reaction mixture was kept at -78 °C and stirred

overnight. The mixture was directly filtered through a short silica-gel column with EtOAc as an eluent, and then the resultant solution was concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography with EtOAc/Hex eluent (100:0 to 30:70). Further purification was conducted by GPC to afford the corresponding ketimine **1a** (280.5 mg, 0.86 mmol, 9% yield) as a white solid. The spectroscopic data were matched in those reported.⁴

¹H NMR (392 MHz, CDCl₃, δ): 1.17–1.46 (m, 5H), 1.71–1.95 (m, 5H), 2.35–2.43 (m, 1H), 2.47 (d, J = 1.6 Hz, 3H), 7.39–7.47 (m, 6H), 7.89–7.94 (m, 4H). HRMS-EI (*m/z*): [M]⁺ calcd for C₂₀H₂₄NOP, 325.1596; found, 325.1598.

(E)-N-(1-Cyclohexylethylidene)-P,P-di-m-tolylphosphinic amide (1b).

1b was prepared from the corresponding nitrile according to procedure A. The product **1b** was obtained in 26% yield (373.7 mg, 1.1 mmol, yellow oil) from the corresponding nitrile (4.0 mmol).

¹H NMR (392 MHz, CDCl₃, δ): 1.19–1.49 (m, 5H), 1.70–1.94 (m, 5H), 2.36 (s, 6H), 2.38–2.42 (m, 1H), 2.45 (d, *J* = 2.4 Hz, 3H), 7.24–1.34 (m, 4H), 767–7.76 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, δ): 21.5 (CH₃), 25.2 (d, *J* = 13.4 Hz, CH₃), 25.99 (CH₂), 26.04 (CH₂), 30.2 (CH₂), 52.1 (d, *J* = 20.1 Hz, CH), 128.2 (d, *J* = 13.4 Hz, CH), 128.7 (d, *J* = 8.6 Hz, CH), 132.0 (d, *J* = 5.8 Hz, CH), 132.1 (CH), 134.9 (d, *J* = 130.3 Hz, C), 138.1 (d, *J* = 13.4 Hz, C), 195.4 (d, *J* = 11.5 Hz, C). ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 18.4. HRMS-EI (*m*/*z*): [M]⁺ calcd for C₂₂H₂₈NOP, 353.1909; found, 353.1908. IR (neat, cm⁻¹): 1187 (P=O), 1652 (C=N).

(E)-N-(1-Cyclohexylethylidene)-P,P-di-o-tolylphosphinic amide (1c).

1c was prepared from the corresponding nitrile according to procedure A. The product **1c** was obtained in 4% yield (187.4 mg, 0.50 mmol, white solid) from the corresponding nitrile (13.6 mmol). ¹H NMR (392 MHz, CDCl₃, δ): 1.22–1.39 (m, 5H), 1.70–1.94 (m, 5H), 2.30 (s, 6H), 2.34–2.39 (m, 1H), 2.41 (d, *J* = 1.8 Hz, 3H), 7.14–7.17 (m, 2H), 7.28–7.30 (m, 2H), 7.35–7.41 (m, 2H), 8.08 (ddd, *J* = 1.0, 7.8, 15.7 Hz, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 21.7 (d, J = 2.9 Hz, CH₃), 25.3 (d, J = 14.2 Hz, CH₃), 26.1 (CH₂), 30.3 (CH₂), 52.6 (d, J = 20.8 Hz, CH), 125.4 (d, J = 12.3 Hz, CH), 131.4 (d, J = 12.3 Hz, CH), 131.6 (d, J = 1.9 Hz, CH), 132.6 (d, J = 123.8 Hz, C), 133.4 (d, J = 9.5 Hz, CH), 141.5 (d, J = 10.3 Hz, C), 196.3 (d, J = 11.3 Hz, C). ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 20.3. HRMS-EI (m/z): [M]⁺ calcd for C₂₂H₂₈NOP, 353.1909; found, 353.1903. mp 95–100 °C. IR (neat, cm⁻¹): 1186 (P=O), 1652 (C=N).

(E)-N-(3-Methylbutan-2-ylidene)-P,P-di-o-tolylphosphinic amide (1d).

1d was prepared from the corresponding nitrile according to procedure A. The product **1d** was obtained in 9% yield (146.2 mg, 0.45 mmol, white solid) from the corresponding nitrile (5.0 mmol).

¹H NMR (392 MHz, CDCl₃, δ): 1.17 (d, *J* = 6.7 Hz, 6H), 2.30 (s, 6H), 2.42 (d, *J* = 2.0 Hz, 3H), 2.72 (h, *J* = 6.9 Hz, 1H), 7.14–7.17 (m, 2H), 7.26–7.30 (m, 2H), 7.35–7.39 (m, 2H), 8.09 (ddd, *J* = 1.4, 5.9, 13.7 Hz, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 19.9 (*C*H₃), 21.6 (d, *J* = 3.8 Hz, *C*H₃), 24.9 (d, *J* = 14.2 Hz, *C*H₃), 42.4 (d, *J* = 20.8 Hz, *C*H), 125.4 (d, *J* = 11.3 Hz, *C*H), 131.4 (d, *J* = 12.3 Hz, *C*H), 131.6 (d, *J* = 1.9 Hz, *C*H), 132.5 (d, *J* = 124.6 Hz, *C*), 133.4 (d, *J* = 8.5 Hz, *C*H), 141.5 (d, *J* = 10.4 Hz, *C*), 196.9 (d, *J* = 11.4 Hz, *C*). ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 20.4. HRMS-EI (*m*/*z*): [M]⁺ calcd for C₁₉H₂₄NOP, 313.1596; found, 313.1593. mp 108–111 °C. IR (neat, cm⁻¹): 1188 (P=O), 1658 (C=N).

(E)-N-(3,3-Dimethylbutan-2-ylidene)-P,P-di-o-tolylphosphinic amide (1e).

1e was prepared from the corresponding nitrile according to procedure A. The product **1e** was obtained in 32% yield (414.6 mg, 1.27 mmol, white solid) from the corresponding nitrile (4.0 mmol). The spectroscopic data were matched in those reported.⁵

¹H NMR (392 MHz, CDCl₃, δ): 1.22 (s, 9H), 2.28 (s, 6H), 2.43 (d, *J* = 1.8 Hz, 3H), 7.13–7.17 (m, 2H), 7.26–7.30 (m, 2H), 7.35–7.39 (m, 2H), 8.09 (dd, *J* = 1.8, 7.6 Hz, 2H), 8.12 (dd, *J* = 1.4, 7.6 Hz, 2H). HRMS-EI (*m/z*): [M]⁺ calcd for C₂₀H₂₆NOP, 325.1752; found, 327.1746.

(E)-N-(3,3-Dimethylhexan-2-ylidene)-P,P-diphenylphosphinic amide (1f).

1f was prepared from the corresponding nitrile according to procedure A. The product **1f** was obtained in 44% yield (579.3 mg, 1.77 mmol, white solid) from the corresponding nitrile (4.0 mmol).

¹H NMR (392 MHz, CDCl₃, δ): 0.84 (t, *J* = 7.4 Hz, 3H), 1.09–1.18 (m, 2H), 1.20 (s, 6H), 1.54–1.58 (m, 2H), 2.46 (d, *J* = 1.6 Hz, 3H), 7.38–7.47 (m, 6H), 7.89–7.94 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, δ): 14.8 (CH₃), 18.1 (CH₂), 22.1 (d, *J* = 13.4 Hz, CH₃), 25.9 (CH₃), 43.5 (CH₂), 47.3 (d, *J* = 20.1 Hz, *C*), 128.4 (d, *J* = 12.5 Hz, CH), 131.3 (d, *J* = 2.9 Hz, CH), 131.6 (d, *J* = 9.6 Hz, CH), 135.1 (d, *J* = 131.2 Hz, *C*), 197.7 (d, *J* = 12.4 Hz, *C*). ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 17.3. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₀H₂₇NOP, 328.1825; found, 328.1823. mp 56–61 °C. IR (neat, cm⁻¹): 1203 (P=O), 1650 (C=N).

(E)-P,P-Diphenyl-N-[1-(1-phenylcyclobutyl)ethylidene]phosphinic amide (1g).

1g was prepared from the corresponding nitrile according to procedure A. The product **1g** was obtained in 28% yield (416.6 mg, 1.12 mmol, white solid) from the corresponding nitrile (4.0 mmol).

¹H NMR (392 MHz, CDCl₃, δ): 1.89 (quint, J = 13.2 Hz, 2H), 2.23 (d, J = 2.0 Hz, 3H), 2.50–2.57 (m, 2H), 2.83–2.90 (m, 2H), 7.17–7.31 (m, 5H), 7.42–7.50 (m, 6H), 7.96 (ddd, J = 1.5, 5.9, 9.8 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃, δ): 15.9 (*C*H₂), 21.9 (d, J = 12.4 Hz, *C*H₃), 31.9 (*C*H₂), 59.1 (d, J = 22.1 Hz, *C*), 126.4 (*C*H), 126.8 (*C*H), 128.4 (*C*H), 128.6 (d, J = 8.6 Hz, *C*H), 131.5 (d, J = 2.8 Hz, *C*H), 131.6 (d, J = 8.6 Hz, *C*H), 134.9 (d, J = 130.3 Hz, *C*), 144.0 (*C*), 193.3 (d, J = 11.5 Hz, *C*). ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 18.5. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₄H₂₄NOPNa, 396.1488; found, 396.1486. mp 88–96 °C. IR (neat, cm⁻¹): 1204 (P=O), 1655 (C=N).

(E)-P,P-Diphenyl-N-[1-(1-phenylcyclohexyl)ethylidene]phosphinic amide (1h).

1h was prepared from the corresponding nitrile according to procedure A. The product **1h** was obtained in 35% yield (567.9 mg, 1.41 mmol, white solid) from the corresponding nitrile (4.0 mmol).

¹H NMR (396 MHz, CDCl₃, δ): 1.37–1.58 (m, 6H), 2.01–2.08 (m, 2H), 2.24 (d, *J* = 2.4 Hz, 3H), 2.31–2.35 (m, 2H), 7.16–7.30 (m, 5H), 7.42–7.52 (m, 6H), 7.92–7.98 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, δ): 22.9 (d, *J* = 13.4 Hz, CH₃), 23.0 (CH₂), 26.1 (CH₂), 34.4 (CH₂), 54.9 (d, *J* = 20.1 Hz, *C*), 126.8 (CH), 126.9 (CH), 128.5 (d, *J* = 12.4 Hz, CH), 128.7 (CH), 131.5 (d, *J* = 2.9 Hz, CH), 131.7 (d, *J* = 9.6 Hz, CH), 134.6 (d, *J* = 130.3 Hz, *C*), 143.5 (C), 194.5 (d, *J* = 12.5 Hz, *C*). ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 18.4. HRMS-EI (*m*/*z*): [M]⁺ calcd for C₂₆H₂₈NOP, 401.1909; found, 401.1897. mp 103–106 °C. IR (neat, cm⁻¹): 1198, 1211 (P=O), 1651 (C=N).

N-{(E)-1-[(3r,5r,7r)-Adamantan-1-yl]ethylidene}-P,P-diphenylphosphinic amide (1i).

1i was prepared from the corresponding nitrile according to procedure A. The product **1i** was obtained in 10% yield (157.0 mg, 0.42 mmol, white solid) from the corresponding nitrile (4.0 mmol).

¹H NMR (392 MHz, CDCl₃, δ): 1.75 (q, *J* = 13.2 Hz, 6H), 1.88 (d, *J* = 2.7 Hz, 6H), 2.09 (s, 3H), 2.45 (d, *J* = 2.0 Hz, 3H), 7.38–7.47 (m, 6H), 7.90–7.96 (m, 4H). ¹³C NMR (99 MHz, CDCl₃, δ): 21.2 (d, *J* = 13.3 Hz, CH₃), 28.3 (CH), 36.7 (CH₂), 39.5 (CH₂), 45.9 (d, *J* = 19.8 Hz, *C*), 128.4 (d, *J* = 12.3 Hz, CH), 131.2 (d, *J* = 2.8 Hz, CH₃), 131.6 (d, *J* = 9.4 Hz, CH₃), 135.3 (d, *J* = 130.3 Hz, *C*), 197.9 (d, *J* = 11.3 Hz, *C*). ³¹P {¹H} NMR (159 MHz, CDCl₃, δ): 17.6. HRMS-EI (*m/z*): [M]⁺ calcd for C₂₄H₂₈NOP, 377.1909; found, 377.1908. mp 170–172 °C. IR (neat, cm⁻¹): 1202 (P=O), 1651 (C=N). (E)-N-(2,2-Dimethylheptan-3-ylidene)-P,P-diphenylphosphinic amide (1k).

1k was prepared from the corresponding nitrile according to the procedure A. The product 1k was obtained in 66% yield (905.7 mg, 2.65 mmol, white solid) from the corresponding nitrile (4.0 mmol).

¹H NMR (392 MHz, CDCl₃, δ): 0.86 (t, *J* = 7.1 Hz, 3H), 1.26 (s, 9H), 1.38 (quint, *J* = 7.3 Hz, 2H), 1.45–1.53 (m, 2H), 2.80–2.84 (m, 2H), 7.37–7.46 (m, 6H), 7.91–7.96 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, δ): 13.7 (CH₃), 23.4 (CH₂), 28.0 (CH₃), 31.3 (CH₂), 35.3 (d, *J* = 11.5 Hz, CH₂), 44.2 (d, *J* = 21.1 Hz, C), 128.4 (d, *J* = 12.4 Hz, CH), 131.2 (d, *J* = 2.9 Hz, CH), 131.6 (d, *J* = 8.6 Hz, CH), 135.6 (d, *J* = 132.2 Hz, C), 200.8 (d, *J* = 12.4 Hz, C). ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 15.6. HRMS-EI (*m*/*z*): [M]⁺ calcd for C₂₁H₂₈NOP, 341.1909; found, 341.1912. mp 67–70 °C. IR (neat, cm⁻¹): 1199 (P=O), 1650 (C=N).

(E)-N-(4-Methylpentan-2-ylidene)-P,P-diphenylphosphinic amide (11).

11 was prepared from the corresponding nitrile according to procedure A. The product **11** was obtained in 25% yield (302.0 mg, 1.0 mmol, white solid) from the corresponding nitrile (4.0 mmol).

¹H NMR (392 MHz, CDCl₃, δ): 0.94 (d, *J* = 7.1 Hz, 6H), 2.17–2.31 (m, 1H), 2.43–2.45 (m, 5H), 7.39–7.48 (m, 6H), 7.89–7.95 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, δ): 22.7 (*C*H₃), 26.3 (*C*H), 27.6 (d, *J* = 15.4 Hz, *C*H₃), 53.2 (d, *J* = 28.1 Hz, *C*H₂), 128.4 (d, *J* = 12.4 Hz, *C*H), 131.4 (d, *J* = 2.0 Hz, *C*H), 131.7 (d, *J* = 9.5 Hz, *C*H), 134.9 (d, *J* = 130.3 Hz, *C*), 191.9 (d, *J* = 10.6 Hz, *C*). ³¹P{¹H} NMR (162 MHz, CDCl₃, δ): 22.3. HRMS-EI (*m*/*z*): [M]⁺ calcd for C₁₈H₂₂NOP, 299.1439; found, 299.1431. mp 166–168 °C. IR (neat, cm⁻¹): 1180 (P=O), 1555 (C=N).

Procedure B.

(E)-N-(1-Cyclopropylethylidene)-P,P-diphenylphosphinic amide (1j).

1-Cyclopropylethan-1-one (841.0 mg, 10 mmol, 1.0 equiv) was added to a stirred solution of NH₂OH·HCl (1.04 g, 15 mmol, 1.5 equiv) and NaOAc (1.23 g, 15 mmol, 1.5 equiv) in EtOH/H₂O (1/1, 10 mL), and then heated to reflux. When the reaction was completed, the mixture was cooled down to ambient temperature. The reaction mixture was then diluted with Na₂CO₃ saturated aqueous solution and extracted with CH₂Cl₂ three times, and dried over MgSO₄. After filtration, the obtained oxime was dried under vacuum overnight and used directly for the next process without purification. A solution of chlorodiphenylphosphine (1.04 mL, 6.0 mmol, 1.0 equiv) in CH₂Cl₂ (6 mL) was added to a stirred solution of the oxime (597.5 mg, 6.0 mmol, 1.0 equiv) and triethylamine (836 μ L, 6.0 mmol, 1.0 equiv) in petroleum ether/CH₂Cl₂ (1:1, 9 mL) over 1 h at -45 °C. After the addition was finished, the cooling bath was removed, and the reaction temperature was gradually increased. The mixture was then allowed to stir overnight at ambient temperature. The mixture was directly filtered through a short silica-gel column with EtOAc as an eluent; then the resultant solution was concentrated under reduced pressure. The residue was purified by GPC to afford the corresponding ketimine **1j** (130.2 mg, 0.46 mmol, 8% yield) as a white solid.

¹H NMR (392 MHz, CDCl₃, δ): 0.99–1.04 (m, 2H), 1.15–1.18 (m, 2H), 1.93–2.00 (m, 1H), 2.54 (d, J = 2.0 Hz, 3H), 7.38–7.45 (m, 6H), 7.83–7.89 (m, 4H). ¹³C NMR (99 MHz, CDCl₃, δ): 12.3 (*C*H₂), 22.7 (d, J = 24.6 Hz, *C*H), 26.9 (d, J = 13.3 Hz, *C*H₃), 128.3 (d, J = 12.3 Hz, *C*H), 131.2 (d, J = 1.9 Hz, *C*H), 131.4 (d, J = 8.5 Hz, *C*H), 135.1 (d, J = 131.3 Hz, *C*), 194.1 (d, J = 7.5 Hz, *C*). ³¹P {¹H} NMR (162 MHz, CDCl₃, δ): 18.4. HRMS-EI (m/z): [M]⁺ calcd for C₁₇H₁₈NOP, 283.1126; found, 283.1120. mp 118–122 °C. IR (neat, cm⁻¹): 1183, 1194 (P=O), 1652 (C=N).

(E)-P,P-Diphenyl-N-(4-phenylbutan-2-ylidene)phosphinic amide (1m).

1m was prepared from the corresponding ketone according to procedure B. The product **1m** was obtained in 7% yield (127.7 mg, 0.37 mmol, white solid) from the corresponding oxime (5.0 mmol). The spectroscopic data were matched in those reported⁶.

¹H NMR (392 MHz, CDCl₃, δ): 2.47 (d, J = 1.6 Hz, 3H), 2.90 (t, J = 7.3 Hz, 2H), 3.04 (t, J = 7.4 Hz, 2H), 7.19–7.28 (m, 5H), 7.38–7.50 (m, 6H), 7.83–7.88 (m, 4H). ¹³C NMR (99 MHz, CDCl₃, δ): 27.3 (d, J = 14.2 Hz, CH₃), 31.7 (CH₂), 45.1 (d, J = 20.7 Hz, CH₂), 126.2 (CH), 128.31 (CH), 128.33 (CH), 128.5 (d, J = 11.4 Hz, CH), 131.4 (d, J = 2.8 Hz, CH), 131.6 (d, J = 9.4 Hz, CH), 134.6 (d, J = 130.3 Hz, C), 140.1 (C), 190.8 (d, J = 10.3 Hz, C). HRMS-EI (m/z): [M]⁺ calcd for C₂₂H₂₂NOP, 347.1439; found, 347.1430.

(E)-N-(Butan-2-ylidene)-P,P-diphenylphosphinic amide (1n).

1n was prepared from the corresponding ketone according to procedure B. The product **1n** was obtained in 5% yield (102.8 mg, 0.38 mmol, white solid) from the corresponding oxime (8.0 mmol).

¹H NMR (392 MHz, CDCl₃, δ): 1.20 (t, *J* = 7.3 Hz, 3H), 2.46 (d, *J* = 2.0 Hz, 3H), 2.58 (q, *J* = 7.3 Hz, 2H), 7.39–7.48 (m, 6H), 7.90–7.96 (m, 4H). ¹³C NMR (99 MHz, CDCl₃, δ): 10.2 (*C*H₃), 26.9 (d, *J* = 14.2 Hz, CH₃), 37.4 (d, *J* = 20.8 Hz, CH₂), 128.5 (d, *J* = 12.3 Hz, CH), 131.4 (d, *J* = 2.9 Hz, CH), 131.7 (d, *J* = 9.5 Hz, CH), 135.0 (d, *J* = 131.3 Hz, C), 192.8 (d, *J* = 10.4 Hz, C). ³¹P{¹H} NMR (162 MHz, CDCl₃, δ): 22.4. HRMS-EI (*m*/*z*): [M]⁺ calcd for C₁₆H₁₈NOP, 271.1126; found, 271.1121. mp 161–168 °C. IR (neat, cm⁻¹): 1179 (P=O), 1557 (C=N).

3. General Experimental Procedures for Borylation of Ketimines

CuCl (1.0 mg, 0.01 mmol, 5 mol %), (R,S)-L1 (4.4 mg, 0.01 mmol, 5 mol %), and bis(pinacolato)diboron (76.2 mg, 0.30 mmol, 1.5 equiv) were placed in a vial with a screw cap containing a Teflon®-coated rubber septum under air. The vial was put in a glove box, and then Na(Ot-Bu) (19.2 mg, 0.20 mmol, 1.0 equiv) was also added to the vial in the glove box under an argon atmosphere. After the reaction, the vial was removed from the glove box, THF (0.6 mL) was added to the vial via a syringe. The resulting mixture was stirred for 10 min at room temperature, then a THF solution (1.4 mL) of ketimine 1a (65.0 mg, 0.20 mmol, 1.0 equiv) was added dropwise to the vial. i-PrOH (31 µL, 0.40 mmol, 2.0 equiv) was added to the reaction mixture. After the resulting mixture was stirred at room temperature for 2 h, the reaction mixture was analyzed by GC to check the completeness of the reaction. The mixture was directly filtered through a short silica-gel column with EtOAc as an eluent; then the resultant solution was concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography with hexane/EtOAc eluent (100:0 to 40:60). After silica-gel column purification, the mixture was further purified by extraction with CH₂Cl₂ and H₂O three times to remove pinacol. The CH₂Cl₂ solution was dried over MgSO₄. After filtration, the corresponding product 3a was obtained in 86% yield (78.0 mg, 0.17 mmol) as a colorless oil. The racemic sample was prepared using ICy·HCl for the ligand instead of (R,S)-L1.

(R)-N-[1-Cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]-P,P-

diphenylphosphinic amide [(R)-3a].

The reaction was conducted with 65.1 mg (0.20 mmol) of **1a**. The product (*R*)-**3a** was purified by flash column chromatography (SiO₂, hexane/EtOAc, 100:0 \rightarrow 40:60) and extracted with H₂O to remove pinacol, and dried over MgSO₄. After filtration, (*R*)-**3a** was obtained in 86% yield (78.0 mg, 0.17 mmol, colorless oil) with 89% ee.

¹H NMR (396 MHz, CDCl₃, δ): 1.01–1.26 (m, 5H), 1.17 (s, 3H), 1.29 (s, 6H) 1.30 (s, 6H), 1.44–1.50 (m, 1H), 1.64–1.89 (m, 5H), 3.04 (d, *J* = 7.9 Hz, 1H), 7.38–7.48 (m, 6H), 7.80–7.88 (m, 4H). ¹³C NMR (99 MHz, CDCl₃, δ): 19.6 (d, *J* = 3.9 Hz, CH₃), 25.0 (CH₃), 25.1 (CH₃), 26.76 (CH₂), 26.81 (d, *J* = 1.9 Hz, CH₂), 28.5 (d, *J* = 42.6 Hz, CH₂), 47.5 (d, *J* = 4.4 Hz, CH), 49.5 (br, B-C), 84.2 (C), 128.2 (CH), 128.4 (CH), 131.3 (CH), 131.8 (d, *J* = 9.5 Hz, CH), 132.0 (d, *J* = 9.4 Hz, CH), 135.3 (d, *J* = 6.6 Hz, C), 136.6 (d, *J* = 5.7 Hz, C). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 33.1. ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 21.9. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₂₆H₃₇¹¹BNO₃PNa, 476.2501; found, 476.2496. [α]_D^{21.0} –6.59 (*c* 1.10 in CHCl₃, 89% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 10/90, 0.5 mL/min, 40 °C, *S* isomer: *t_S* = 11.97 min., *R* isomer: *t_R* = 15.01 min. IR (neat, cm⁻¹): 1200 (P=O).

(*R*)-*N*-[1-Cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]-*P*,*P*-di-*m*-tolylphosphinic amide [(*R*)-3b].

The reaction was conducted with 71 mg (0.20 mmol) of **1b** for 2 h. The product (*R*)-**3b** was purified by flash column chromatography (SiO₂, hexane/EtOAc, 100:0 \rightarrow 40:60) and extracted with H₂O to remove pinacol, and dried over MgSO₄. After filtration, (*R*)-**3b** was obtained in 74% yield (70.6 mg, 0.15 mmol, colorless oil) with 90% ee.

¹H NMR (392 MHz, CDCl₃, δ): 1.01–1.24 (m, 5H), 1.17 (s, 3H), 1.29 (s, 6H), 1.31 (s, 6H), 1.43– 1.50 (m, 1H), 1.56–1.94 (m, 5H), 2.36 (s, 6H), 3.02 (d, *J* = 7.8 Hz, 1H), 7.26–7.34 (m, 4H), 7.57–7.62 (m, 2H), 7.70 (dd, *J* = 4.5, 12.7 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 19.5 (d, *J* = 3.8 Hz, CH₃), 21.5 (CH₃), 25.0 (CH₃), 25.1 (CH₃), 26.76 (CH₂), 26.82 (d, J = 2.9 Hz, CH₂), 28.4 (d, J = 47.9 Hz, CH₂), 47.5 (d, J = 3.9 Hz, CH), 49.5 (br, B-C), 84.2 (C), 128.1 (d, J = 3.9 Hz, CH), 128.2 (d, J = 3.8 Hz, CH), 128.8 (d, J = 10.6 Hz, CH), 128.9 (d, J = 10.5 Hz, CH), 131.98 (d, J = 2.9 Hz, CH), 132.01 (d, J = 2.8 Hz, CH), 135.2 (d, J = 13.4 Hz, C), 136.5 (d, J = 11.5 Hz, C), 138.0 (d, J = 12.4 Hz, C). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 33.5. ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 22.3. HRMS-ESI (m/z): [M+Na]⁺ calcd for C₂₈H₄₁¹¹BNO₃PNa, 504.2814; found, 504.2814. [α]_D^{25.1} +1.24 (c 1.45 in CHCl₃, 90% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 10/90, 0.5 mL/min, 40 °C, S isomer: $t_S = 10.21$ min., *R* isomer: $t_R = 11.23$ min. IR (neat, cm⁻¹): 1193 (P=O).

(*R*)-*N*-[1-Cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]-*P*,*P*-di-*o*-tolylphosphinic amide [(*R*)-3c].

The reaction was conducted with 69.2 mg (0.20 mmol) of **1c** for 3 h. The product (*R*)-**3a** was purified by flash column chromatography (SiO₂, CH₂Cl₂/Et₂O, 100:0 \rightarrow 80:20) and obtained in 92% yield (86.3 mg, 0.18 mmol, colorless oil) with 95% ee.

¹H NMR (396 MHz, CDCl₃, δ): 1.03–1.24 (m, 5H), 1.26 (s, 6H), 1.28 (s, 6H), 1.34 (s, 3H), 1.60– 1.91 (m, 6H), 2.44 (s, 3H), 2.57 (s, 3H), 2.80 (d, *J* = 11.5 Hz, 1H), 7.14–7.24 (m, 4H), 7.35 (q, *J* = 7.8 Hz, 2H), 7.53 (ddd, *J* = 1.0, 7.9, 11.9 Hz, 1H), 7.89 (ddd, *J* = 1.2, 7.9, 15.8 Hz, 1H). ¹³C NMR (99 MHz, CDCl₃, δ): 20.0 (d, *J* = 2.9 Hz, CH₃), 21.7 (d, *J* = 3.8 Hz, CH₃), 22.0 (d, *J* = 3.8 Hz, CH₃), 25.0 (CH₃), 25.1 (CH₃), 26.76 (CH₂), 26.84 (CH₂), 28.7 (d, *J* = 64.3 Hz, CH₂), 48.1 (d, *J* = 3.8 Hz, CH), 49.6 (br, B-C), 84.1 (C), 124.9 (d, *J* = 12.3 Hz, CH), 125.1 (d, *J* = 12.3 Hz, CH), 131.19 (d, *J* = 2.8 Hz, CH), 131.23 (d, *J* = 2.9 Hz, CH), 131.5 (d, *J* = 12.3 Hz, CH), 131.7 (d, *J* = 11.3 Hz, CH), 132.9 (d, *J* = 11.3 Hz, CH), 133.61 (d, *J* = 29.2 Hz, C), 133.67 (d, *J* = 10.4 Hz, CH), 134.8 (d, *J* = 32.2 Hz, C), 142.0 (d, *J* = 9.4 Hz, C), 142.1 (d, *J* = 10.4 Hz, C). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 33.6. ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 27.2. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₂₈H₄₁¹¹BNO₃PNa, 504.2814; found, 504.2814. [α]_D^{23.6} –26.5 (*c* 0.26 in CHCl₃, 95% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 10/90, 0.5 mL/min, 40 °C, *S* isomer: *t_S* = 8.77 min., *R* isomer: *t_R* = 9.57 min. IR (neat, cm⁻¹): 1192 (P=O). (*R*)-*N*-[3-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-yl]-*P*,*P*-di-*o*-tolylphosphinic amide [(*R*)-3d].

(R)-**3**0

The reaction was conducted with 63.7 mg (0.20 mmol) of **1d** for 2 h. The product (*R*)-**3d** was purified by flash column chromatography (SiO₂, CH₂Cl₂/Et₂O, 100:0 \rightarrow 80:20) and extracted with H₂O to remove pinacol, and dried over MgSO₄. After filtration, (*R*)-**3d** was obtained in 91% yield (81.8 mg, 0.19 mmol, colorless oil) with 97% ee.

¹H NMR (396 MHz, CDCl₃, δ): 0.98 (d, *J* = 6.7 Hz, 3H), 1.01 (d, *J* = 6.7 Hz, 3H), 1.25 (s, 6H), 1.27 (s, 6H), 1.32 (s, 3H), 1.93–2.02 (m, 1H), 2.43 (s, 3H), 2.56 (s, 3H), 2.75 (d, *J* = 10.7 Hz, 1H), 7.14–7.24 (m, 4H), 7.30–7.39 (m, 2H), 7.56 (ddd, *J* = 1.4, 7.9, 11.9 Hz, 1H), 7.91 (ddd, *J* = 1.2, 5.9, 13.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 18.3 (CH₃), 18.7 (CH₃), 19.7 (d, *J* = 2.9 Hz, CH₃), 21.8 (d, *J* = 3.9 Hz, CH₃), 22.0 (d, *J* = 3.8 Hz, CH₃), 25.0 (CH₃), 25.1 (CH₃), 37.6 (d, *J* = 4.8 Hz, CH), 49.8 (br, B-C), 84.1 (C), 124.9 (d, *J* = 13.4 Hz, CH), 125.1 (d, *J* = 13.5 Hz, CH), 131.2 (d, *J* = 2.9 Hz, CH), 131.3 (d, *J* = 2.0 Hz, CH), 131.5 (d, *J* = 11.5 Hz, CH), 131.7 (d, *J* = 11.5 Hz, CH), 132.9 (d, *J* = 11.5 Hz, CH), 133.6 (d, *J* = 25.9 Hz, C), 143.7 (d, *J* = 10.5 Hz, CH), 134.8 (d, *J* = 27.8 Hz, C), 141.9 (d, *J* = 9.6 Hz, C), 142.1 (d, *J* = 9.6 Hz, C). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 33.1.³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 27.2. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₂₅H₃₇¹¹BNO₃PNa, 464.2501; found, 464.2501. [α]₂^{27.4} +1.44 (*c* 1.08 in CHCl₃, 97% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 10/90, 0.5 mL/min, 40 °C, *S* isomer: *t_S* = 9.57 min., *R* isomer: *t_R* = 10.16 min. IR (neat, cm⁻¹): 1191 (P=O).

(*R*)-*N*-[3,3-Dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-yl]-*P*,*P*-di-*o*-tolylphosphinic amide [(*R*)-3e].

The reaction was conducted with 63.6 mg (0.20 mmol) of **1e** for 20 h. The product (*R*)-**3e** was purified by flash column chromatography (SiO₂, CH₂Cl₂/Et₂O, 100:0 \rightarrow 80:20) and obtained in 85% yield (74.9 mg, 0.16 mmol, white solid) with 99% ee.

¹H NMR (392 MHz, CDCl₃, δ): 1.04 (s, 9H), 1.28 (s, 6H), 1.29 (s, 6H), 1.37 (s, 3H), 2.40 (s, 3H), 2.50 (s, 3H), 2.77 (d, *J* = 9.4 Hz, 1H), 7.15–7.24 (m, 4H), 7.34 (tq, *J* = 1.4, 7.8 Hz, 2H), 7.66 (ddd, *J* = 1.3, 7.8, 15.7 Hz, 1H), 7.94 (ddd, *J* = 1.4, 7.8, 11.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, δ): 18.0 (d, *J* = 2.9 Hz CH₃), 21.86 (d, *J* = 2.9 Hz, CH₃), 21.94 (d, *J* = 3.8 Hz, CH₃), 25.0 (CH₃), 25.2 (CH₃), 26.5 (CH₃), 37.2 (d, *J* = 4.7 Hz, C), 52.7 (br, B-C), 84.2 (C), 124.6 (d *J* = 12.5 Hz, CH), 125.1 (d, *J* = 13.4 Hz, CH), 131.1 (d, *J* = 2.9 Hz, CH), 131.2 (d, *J* = 2.9 Hz, CH), 131.5 (d, *J* = 7.7 Hz, CH), 131.6 (d, *J* = 7.7 Hz, CH), 132.9 (d, *J* = 10.5 Hz, CH), 133.5 (d, *J* = 10.5 Hz, CH), 133.9 (d, *J* = 28.8 Hz, C), 135.1 (d, *J* = 29.7 Hz, C), 141.5 (d, *J* = 9.5 Hz, C), 142.1 (d, *J* = 10.6 Hz, C). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 33.3. ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 26.9. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₆H₄₀¹¹BNO₃P, 456.2839; found, 456.2831. [α]_D^{23.3} –11.68 (*c* 1.01 in CHCl₃, 99% ee). Daicel CHIRALPAK® IA-3, 2-PrOH/Hexane = 8/92, 0.5 mL/min, 40 °C, *S* isomer: *t_S* = 48.21 min., *R* isomer: *t_R* = 51.56 min. mp 114–120 °C. IR (neat, cm⁻¹): 1191 (P=O).

(*R*)-*N*-[3,3-Dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-2-yl]-*P*,*P*-diphenylphosphinic amide [(*R*)-3f].

The reaction was conducted with 64.8 mg (0.20 mmol) of **1f** for 3 h. The product (*R*)-**3f** was purified by flash column chromatography (SiO₂, hexane/EtOAc, 100:0 \rightarrow 50:50) and extracted with H₂O to remove pinacol, and dried over MgSO₄. After filtration, (*R*)-**3f** was obtained in 82% yield (73.9 mg, 0.16 mmol, colorless oil) with 99% ee.

¹H NMR (392 MHz, CDCl₃, δ): 0.91 (t, *J* = 6.9 Hz, 3H), 0.955 (s, 3H), 0.961 (s, 3H), 1.17 (s, 3H), 1.21–1.48 (m, 4H), 1.28 (s, 6H), 1.32 (s, 6H), 3.07 (d, *J* = 7.4 Hz, 1H), 7.38–7.48 (m, 6H), 7.79–7.89 (m, 4H). ¹³C NMR (99 MHz, CDCl₃, δ): 15.3 (*C*H₃), 16.8 (d, *J* = 4.8 Hz CH₃), 17.7 (*C*H₂), 22.0 (d, *J* = 28.4 Hz, CH₃), 25.0 (*C*H₃), 25.1 (*C*H₃), 39.3 (d, *J* = 4.8 Hz, *C*), 39.9 (*C*H₂), 53.5 (br, B-*C*), 128.3 (CH), 128.4 (CH), 131.19 (d, *J* = 2.8 Hz, CH), 131.23 (d, *J* = 2.9 Hz, CH), 131.7 (d, *J* = 9.4 Hz, CH), 131.9 (d, *J* = 9.4 Hz, CH), 135.5 (*C*), 136.8 (d, *J* = 5.6 Hz, *C*). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 33.7. ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 22.5. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₆H₄₀¹¹BNO₃P, 456.2838; found, 456.2834. [α] α ^{27.9} +2.15 (*c* 0.93 in CHCl₃, 99% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 10/90, 0.5 mL/min, 40 °C, *S* isomer: *t_S* = 9.39 min., *R* isomer: *t_R* = 12.77 min. IR (neat, cm⁻¹): 1199 (P=O).

(*R*)-*P*,*P*-Diphenyl-*N*-[1-(1-phenylcyclobutyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)phosphinic amide [(*R*)-3g].

The reaction was conducted with 74.2 mg (0.20 mmol) of **1g** for 2 h. The product (*R*)-**3g** was purified by flash column chromatography (SiO₂, hexane/EtOAc, 100:0 \rightarrow 0:100) and extracted with H₂O to remove pinacol, and dried over MgSO₄. After filtration, (*R*)-**3g** was obtained in 74% yield (73.4 mg, 0.15 mmol, colorless oil) with 98% ee.

¹H NMR (396 MHz, CDCl₃, δ): 1.09 (s, 3H), 1.30 (s, 6H), 1.34 (s, 6H), 1.75–1.89 (m, 2H), 2.37– 2.44 (m, 2H), 2.67–2.74 (m, 1H), 2.77–2.84 (m, 1H), 2.88 (d, *J* = 5.5 Hz, 1H), 7.20–7.48 (m, 13H), 7.78–7.83 (m, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 15.5 (*C*H₂), 17.7 (d, *J* = 3.8 Hz, *C*H₃), 25.3 (*C*H₃), 30.4 (d, *J* = 31.1 Hz, *C*H₂), 51.8 (br, B-C), 52.6 (d, *J* = 6.5 Hz, *C*), 84.3 (*C*), 125.9 (*C*H), 127.3 (*C*H), 128.1 (d, *J* = 12.3 Hz, *C*H), 128.3 (d, *J* = 13.3 Hz, *C*H), 128.9 (*C*H), 131.1 (d, *J* = 1.9 Hz, *C*H), 131.2 (d, *J* = 2.8 Hz, *C*H), 131.7 (d, *J* = 9.5 Hz, *C*H), 135.3 (d, *J* = 34.0 Hz, *C*), 136.6 (d, *J* = 28.3 Hz, *C*), 147.1 (*C*). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 32.7. ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 22.4. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₃₀H₃₇¹¹BNO₃PNa, 524.2502; found, 524.2501. [α]_D^{28.0} +1.67 (*c* 1.50 in CHCl₃, 98% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 10/90, 0.5 mL/min, 40 °C, *S* isomer: *t_S* = 10.85 min., *R* isomer: *t_R* = 15.55 min. IR (neat, cm⁻¹): 1200 (P=O).

(*R*)-*P*,*P*-Diphenyl-*N*-[1-(1-phenylcyclohexyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]phosphinic amide [(*R*)-3h].

The reaction was conducted with 79.4 mg (0.20 mmol) of **1h** for 3 h. The product (*R*)-**3h** was purified by flash column chromatography (SiO₂, CH₂Cl₂/EtOAc, 100:0 \rightarrow 90:10 to SiO₂, EtOAc

/MeOH, 100:0 \rightarrow 50:50) and extracted with H₂O to remove pinacol, and dried over MgSO₄. After filtration, (*R*)-**3h** was obtained in 72% yield (75.3 mg, 0.14 mmol, white solid) with 97% ee.

¹H NMR (392 MHz, CDCl₃, δ): 1.06 (s, 3H), 1.13–1.26 (m, 3H), 1.30 (s, 6H), 1.33 (s, 6H), 1.50– 1.60 (m, 4H), 1.73 (t, *J* = 13.1 Hz, 1H), 2.55 (t, *J* = 13.3 Hz, 2H), 2.93 (d, *J* = 3.9 Hz, 1H), 7.19 (td, *J* = 3.1, 7.6 Hz, 2H), 7.27–7.45 (m, 11H), 7.77 (ddd, *J* = 1.5, 7.8, 11.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃, δ): 18.0 (d, *J* = 3.9 Hz, CH₃), 22.5 (d, *J* = 2.8 Hz, CH₂), 25.0 (CH₃), 25.2 (CH₃), 26.9 (CH₂), 31.5 (d, *J* = 70.9 Hz, CH₂), 48.8 (d, *J* = 6.7 Hz, *C*), 53.8 (br, B-C), 84.3 (*C*), 125.8 (CH), 127.8 (CH), 128.0 (d, *J* = 13.4 Hz, CH), 128.3 (d, *J* = 12.5 Hz, CH), 130.0 (CH), 130.9 (d, *J* = 1.9 Hz, CH), 131.1 (d, *J* = 1.9 Hz, CH), 131.5 (d, *J* = 9.6 Hz, CH), 131.7 (d, *J* = 9.6 Hz, CH), 135.5 (d, *J* = 38.3 Hz, *C*), 136.7 (d, *J* = 32.6 Hz, *C*), 140.7 (*C*). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 32.9. ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 22.7. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₂H₄₂¹¹BNO₃P, 530.2996; found, 530.2998. [α]_D^{27.9} +0.48 (*c* 1.05 in CHCl₃, 97% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 10/90, 0.5 mL/min, 40 °C, *S* isomer: *t_S* = 9.92 min., *R* isomer: *t_R* = 12.13 min. mp 79–81 °C. IR (neat, cm⁻¹): 1196 (P=O).

N-{(*R*)-1-[(3*R*,5*R*,7*R*)-Adamantan-1-yl]-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl}-*P*,*P*-diphenylphosphinic amide [(*R*)-3i].

The reaction was conducted with 74.2 mg (0.20 mmol) of **1i** for 5 h. The product (*R*)-**3i** was purified by flash column chromatography (SiO₂, hexane/EtOAc, 100:0 \rightarrow 20:80) and extracted with H₂O to remove pinacol, and dried over MgSO₄. After filtration, (*R*)-**3i** was obtained in 87% yield (86.8 mg, 0.17 mmol, white solid) with 99% ee.

¹H NMR (396 MHz, CDCl₃, δ): 1.14 (s, 3H), 1.30 (s, 6H), 1.33 (s, 6H), 1.60–1.77 (m, 12H), 2.02 (s, 3H), 3.05 (d, *J* = 7.9 Hz, 1H), 7.38–7.48 (m, 6H), 7.80–7.88 (m, 4H). ¹³C NMR (100 MHz, CDCl₃, δ): 15.5 (d, *J* = 4.8 Hz CH₃), 25.1 (CH₃), 25.2 (CH₃), 28.8 (CH), 37.35 (CH₂), 37.44 (CH₂), 38.3 (d, *J* = 4.8 Hz, *C*), 53.0 (br, B-*C*), 84.3 (*C*), 128.3 (d, *J* = 1.9 Hz, CH), 128.4 (d, *J* = 1.9 Hz, CH), 131.16 (d, *J* = 2.9 Hz, CH), 131.23 (d, *J* = 1.9 Hz, CH), 131.7 (d, *J* = 9.6 Hz, CH), 132.0 (d, *J* = 9.6 Hz, CH), 135.7 (d, *J* = 3.8 Hz, CH), 137.0 (*C*). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 33.7. ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 22.5. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₃₀H₄₂¹¹BNO₃P, 506.2995; found,

506.2989. $[\alpha]_D^{27.8}$ -1.34 (*c* 1.12 in CHCl₃, 99% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 10/90, 0.5 mL/min, 40 °C, *S* isomer: t_S = 11.28 min., *R* isomer: t_R = 13.47 min. mp 194–197 °C. IR (neat, cm⁻¹): 1202 (P=O).

(*R*)-*N*-[1-Cyclopropyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]-*P*,*P*-diphenylphosphinic amide [(*R*)-3j].

(R)-**3j**

The reaction was conducted with 56.3 mg (0.20 mmol) of **1j** for 2 h. The product (*R*)-**3j** was purified by flash column chromatography (SiO₂, hexane/EtOAc, 100:0 \rightarrow 20:80) and extracted with H₂O to remove pinacol, and dried over MgSO₄. After filtration, (*R*)-**3j** was obtained in 50% yield (40.5 mg, 0.10 mmol, colorless oil) with 86% ee.

¹H NMR (392 MHz, CDCl₃, δ): 0.29–0.32 (m, 2H), 0.34–0.46 (m, 2H), 1.04–1.14 (m, 1H), 1.24 (s, 3H), 1.25 (s, 6H), 1.26 (s, 6H), 3.08 (d, *J* = 8.6 Hz, 1H), 7.38–7.48 (m, 6H), 7.82–7.90 (m, 4H). ¹³C NMR (99 MHz, CDCl₃, δ): 1.93 (CH₂), 2.56 (CH₂), 21.6 (d, *J* = 5.6 Hz, CH), 22.9 (d, *J* = 3.8 Hz, CH₃), 24.8 (CH₃), 24.9 (CH₃), 84.3 (C), 128.2 (d, *J* = 2.9 Hz, CH), 128.4 (d, *J* = 3.8 Hz, CH), 131.29 (CH), 131.31 (CH), 131.9 (d, *J* = 9.6 Hz, CH), 132.0 (d, *J* = 8.5 Hz, CH), 135.1 (C), 136.4 (C). The carbon directly attached to the boron atom was not detected, likely because of quadrupolar relaxation. ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 33.0. ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 22.2. HRMS-ESI (*m/z*): [M+Na]⁺ calcd for C₂₃H₃₁¹¹BNO₃PNa, 434.2031; found, 434.2029. [α]_D^{25.2} –2.44 (*c* 1.17 in CHCl₃, 86% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 10/90, 0.5 mL/min, 40 °C, *S* isomer: *t_S* = 21.95 min., *R* isomer: *t_R* = 28.56 min. IR (neat, cm⁻¹): 1197 (P=O).

(*R*)-*N*-[2,2-Dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptan-3-yl]-*P*,*P*-diphenylphosphinic amide [(*R*)-3k].

The reaction was conducted with 67.2 mg (0.20 mmol) of **1k** for 2 h. The product (*R*)-**3k** was purified by flash column chromatography (SiO₂, hexane/EtOAc, 100:0 \rightarrow 20:80) and extracted with H₂O to remove pinacol, and dried over MgSO₄. After filtration, (*R*)-**3k** was obtained in 80% yield (73.6 mg, 0.16 mmol, colorless oil) with 86% ee.

¹H NMR (392 MHz, CDCl₃, δ): 0.63 (t, *J* = 7.3 Hz, 3H), 0.84–1.21 (m, 4H), 1.03 (s, 9H), 1.25 (s, 6H), 1.26 (s, 6H), 1.62 (dt, *J* = 6.5, 18.8 Hz, 1H), 1.82–1.94 (m, 1H), 3.04 (d, *J* = 11.0 Hz, 1H), 7.37–7.46 (m, 6H), 7.73–7.79 (m, 2H), 7.86–7.91 (m, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 14.1 (CH₃), 23.5 (CH₂), 25.0 (CH₃), 25.2 (CH₃), 27.3 (CH₃), 29.7 (CH₂), 31.3 (d, *J* = 2.8 Hz, CH₂), 37.9 (C), 60.0 (br, B-C), 84.4 (C), 128.0 (d, *J* = 13.2 Hz, CH), 128.3 (d, *J* = 12.3 Hz, CH), 130.9 (d, *J* = 2.9 Hz, CH), 131.0 (d, *J* = 1.9 Hz, CH), 131.3 (d, *J* = 10.4 Hz, CH), 132.2 (d, *J* = 10.4 Hz, CH), 136.6 (d, *J* = 61.4 Hz, C), 137.9 (d, *J* = 59.5 Hz, C). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 33.0. ³¹P{¹H} NMR (159 MHz, CDCl₃, δ): 22.2. HRMS-ESI (*m*/*z*): [M+H]⁺ calcd for C₂₇H₄₂¹¹BNO₃P, 470.2995; found, 470.2989. [α]_D^{25.7} +1.40 (*c* 3.67 in CHCl₃, 88% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 10/90, 0.5 mL/min, 40 °C, *S* isomer: *t_S* = 9.49 min., *R* isomer: *t_R* = 12.08 min. IR (neat, cm⁻¹): 1204 (P=O).

(*R*)-*N*-[4-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentan-2-yl]-*P*,*P*-diphenylphosphinic amide [(*R*)-31].

The reaction was conducted with 60.2 mg (0.20 mmol) of **1i** for 2 h. The product (*R*)-**3i** was purified by flash column chromatography (SiO₂, hexane/EtOAc, 100:0 \rightarrow 40:60) and extracted with H₂O to remove pinacol, and dried over MgSO₄. After filtration, (*R*)-**3l** was obtained in 86% yield (73.5 mg, 0.17 mmol, colorless oil) with 88% ee. ¹H NMR (392 MHz, CDCl₃, δ): 0.90 (d, *J* = 6.7, Hz, 3H), 0.93 (d, *J* = 6.7, Hz, 3H), 1.23 (s, 3H), 1.26 (s, 6H), 1.28 (s, 6H), 1.44 (dd, *J* = 7.6, 13.9 Hz, 1H), 1.68 (dd, *J* = 5.5, 13.3 Hz, 1H), 1.83–1.97 (m, 1H), 3.11 (d, *J* = 9.0 Hz, 1H), 7.39–7.50 (m, 6H), 7.77–7.83 (m, 2H), 7.87–7.93 (m, 2H). ¹³C NMR (99 MHz, CDCl₃, δ): 23.7 (CH₃), 24.2 (CH₃), 24.6 (d, *J* = 4.8 Hz, CH₃), 25.0 (CH₃), 25.3 (CH), 45.7 (br, B-C), 50.6 (d, *J* = 2.9 Hz, CH₂), 84.4 (C), 128.3 (d, *J* = 3.8 Hz, CH), 128.4 (d, *J* = 3.8 Hz, CH), 131.3 (CH), 131.7 (d, *J* = 9.5 Hz, CH), 132.1 (d, *J* = 9.4 Hz, CH), 135.2 (C), 136.5 (C). ¹¹B {¹H} NMR (127 MHz, CDCl₃, δ): 33.8. ³¹P {¹H} NMR (159 MHz, CDCl₃, δ): 21.9. HRMS-ESI (*m/z*): [M+Na]⁺ calcd for C₂₄H₃₅¹¹BNO₃P, 450.2344; found, 450.2340. [α]_D^{25.9}+1.34 (*c* 4.28 in CHCl₃, 88% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 10/90, 0.5 mL/min, 40 °C, *S* isomer: *t_S* = 13.73 min., *R* isomer: *t_R* = 17.52 min. IR (neat, cm⁻¹): 1198 (P=O).

(*R*)-*P*,*P*-Diphenyl-*N*-[4-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-yl]phosphinic amide [(*R*)-3m].

The reaction was conducted with 69.1 mg (0.20 mmol) of **1m** for 6 h. The product (*R*)-**3m** was purified by flash column chromatography (SiO₂, hexane/EtOAc, 100:0 \rightarrow 40:60) and extracted with H₂O to remove pinacol, and dried over MgSO₄. After filtration, (*R*)-**3m** was obtained in 44% yield (41.4 mg, 0.09 mmol, colorless oil) with 89% ee.

¹H NMR (392 MHz, CDCl₃, δ):1.285–1.294 (m, 15H), 1.82 (td, *J* = 4.3, 12.9 Hz, 1H), 2.00 (td, *J* = 5.0, 13.0 Hz, 1H), 2.57 (td, *J* = 4.7, 12.9 Hz, 1H), 2.87 (td, *J* = 4.8, 12.9 Hz, 1H), 3.21 (d, *J* = 8.6 Hz, 1H), 7.13–7.16 (m, 3H), 7.23–7.27 (m, 2H), 7.39–7.52 (m, 6H), 7.83–7.92 (m, 4H). ¹³C NMR (99 MHz, CDCl₃, δ): 24.2 (d, *J* = 3.8 Hz, CH₃), 24.9 (CH₃), 25.0 (CH₃), 32.3 (CH₂), 43.5 (d, *J* = 3.8 Hz, CH₂), 46.1 (br, B-C), 84.5 (C), 125.8 (CH), 128.3 (d, *J* = 2.9 Hz, CH), 128.40 (CH), 128.45 (d, *J* = 1.9 Hz, CH), 128.55 (CH), 135.0 (d, *J* = 5.7 Hz, C), 136.3 (d, *J* = 6.6 Hz, C), 142.7 (C). ¹¹B {¹H} NMR (127 MHz, CDCl₃, δ): 32.6. ³¹P {¹H} NMR (159 MHz, CDCl₃, δ): 22.1. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₂₈H₃₅¹¹BNO₃PNa, 498.2345; found, 498.2339. [α]_D^{22.0} –13.9 (*c* 0.85 in CHCl₃, 89% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 5/95, 0.5 mL/min, 40 °C, *S* isomer: *t_S* = 32.80 min., *R* isomer: *t_R* = 47.56 min. IR (neat, cm⁻¹): 1196 (P=O).

(*R*)-*P*,*P*-Diphenyl-*N*-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-yl]phosphinic amide [(*R*)-3n].

(*R*)-**3n**

The reaction was conducted with 53.8 mg (0.20 mmol) of **1n** for 1 h. The product (*R*)-**3n** was purified by flash column chromatography (SiO₂, hexane/EtOAc, 100:0 \rightarrow 50:50) and extracted with H₂O to remove pinacol, and dried over MgSO₄. After filtration, (*R*)-**3n** was obtained in 28% yield (22.3 mg, 0.06 mmol, colorless oil) with 69% ee.

¹H NMR (392 MHz, CDCl₃, δ): 0.94 (t, *J* = 7.4 Hz, 3H), 1.23 (s, 3H), 1.26 (s, 6H), 1.27 (s, 6H), 1.57 (sxt, *J* = 7.2 Hz, 1H), 1.70 (sxt, *J* = 7.1 Hz, 1H), 3.11 (d, *J* = 9.0 Hz, 1H), 7.39–7.49 (m, 6H), 7.82–7.91 (m, 4H). ¹³C NMR (99 MHz, CDCl₃, δ): 10.1 (*C*H₃), 23.6 (d, *J* = 3.8 Hz, *C*H₃), 24.9 (*C*H₃), 25.0 (*C*H₃), 34.2 (d, *J* = 3.8 Hz, *C*H₂), 46.7 (br, B-*C*), 84.3 (*C*), 128.2 (*C*H), 128.4 (*C*H), 131.3 (*C*H), 131.8 (d, *J* = 10.4 Hz, *C*H), 132.1 (d, *J* = 10.4 Hz, *C*H), 135.1 (*C*), 136.4 (*C*). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 32.5. ³¹P{¹H} NMR (162 MHz, CDCl₃, δ): 22.0. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₂₂H₃₁¹¹BNO₃P,422.2031; found, 422.2026. [α]_D^{25.0} +18.9 (*c* 0.12 in CHCl₃, 69% ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane = 10/90, 0.5 mL/min, 40 °C, *S* isomer: *t_S* = 19.49 min., *R* isomer: *t_R* = 24.40 min. IR (neat, cm⁻¹): 1196 (P=O).

4. Experimental Procedures for the Synthesis of Peptydilboronic Acid Derivatives

The borylation product (R)-3i (177 mg, 0.35 mmol, 1.0 equiv) was placed in a vial with a screw cap containing a Teflon[®]-coated rubber septum under air. A MeOH solution of HCl (0.1 M, 3.5 mL) was added to the vial via a syringe. The resulting mixture was stirred for 3 h at room temperature. The solvents are removed under reduced pressure to afford the deprotection product. The product was used in the next step without further purification. The condensation reaction was performed according to the literature.⁷. Boc-L-Ala-OH (85.9 mg, 0.46 mmol, 1.3 equiv) and TCFH (118 mg, 0.42 mmol, 1.2 equiv) were placed in a vial with a screw cap containing a Teflon[®]-coated rubber septum under air. MeCN (100 µL) was added to the vial via a syringe. The resulting mixture was stirred for 5 min at room temperature. A THF solution (250 µL) of the deprotection product was then added dropwise to the vial. N-Metylimidazole (94 µL, 1.2 mmol, 3.5 equiv) was added dropwise to the vial. The reaction mixture was stirred for 24 h. The reaction mixture was analyzed by TLC to check the completeness of the reaction. The mixture was directly filtered through a short silica-gel column with EtOAc as an eluent, then the resultant solution was concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography with hexane/EtOAc eluent (100:0 to 40:60) to give the corresponding product 4a in 71% yield (118.0 mg, 0.25 mmol) as white solid. The diastereomeric ratio was determined by HPLC analysis (d.r. >99:1).

tert-Butyl [(S)-1-({(R)-1-[(3R,5R,7R)-adamantan-1-yl]-1-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)ethyl}amino)-1-oxopropan-2-yl]carbamate (4a).

NMR spectra for **4a** contains conformational isomers, which is caused by the restricted C–N bond rotation around the carbamate group. ¹H NMR (392 MHz, CDCl₃, δ): 1.14 (s, 3H), 1.23 (s, 6H), 1.24 (s, 6H), 1.35 (d, J = 7.4 Hz, 3H), 1.45 (s, 9H), 1.60–1.76 (m, 12H), 1.96 (s, 3H), 4.09–4.29 (m, 1H), 4.73–5.01 (m, 1H), 6.59–6.87 (m, 1H). ¹³C NMR (99 MHz, CDCl₃, δ): 16.4 (CH₃), 24.9 (CH₃), 25.2 (CH₃), 25.5 (CH₃), 28.4 (CH₃), 28.7 (CH), 36.9 (CH₂), 37.2 (CH₂), 37.5 (C), 48.0 (CH), 51.1 (br, B-C), 75.1 and 80.5 (a pair of s, C), 81.9 (C), 155.8 (C), 173.8 (C). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 25.5. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₂₆H₄₅N₂O₅¹¹BNa, 499.3319; found, 499.3313. [α]₂C^{2.3} –25.3 (*c* 0.39 in CHCl₃). The diastereomeric ratio was determined by HPLC analysis (d.r. >99:1, right side in Figure S1) by comparison with a mixture of the diastereomers that was obtained by the reaction of racemic **3i** with Boc-L-Ala-OH (d.r. 80:20, left side in Figure S1). Daicel CHIRALPAK® ID-3, 2-PrOH/Hexane = 3/97, 0.5 mL/min, 40 °C, minor isomer = 11.88 min., major isomer = 15.07 min. mp 82–92 °C. IR (neat, cm⁻¹): 1699 (C=O, amide).

Figure S1. Determination of the diastereomeric ratio of 4a by HPLC analysis.

tert-Butyl ((*S*)-1-oxo-3-phenyl-1-{[(*R*)-1-(1-phenylcyclobutyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]amino}propan-2-yl)carbamate (4b).

4b was synthesized according to the procedure for the synthesis of **4a**. The reaction was conducted with 100.5 mg (0.20 mmol) of (*R*)-**3g** using Boc-L-Phe-OH (79.9 mg, 0.30 mmol, 1.5 equiv) and TCFH (78.2 mg, 0.28 mmol, 1.4 equiv). The product **4b** was purified by flash column chromatography (SiO₂, hexane/EtOAc, 100:0 \rightarrow 70:30) to give the corresponding product **4b** in 62% yield (69.3 mg, 0.12 mmol) as white solid. The diastereomeric ratio was determined by HPLC analysis (d.r. >99:1).

NMR spectra for **4b** contains conformational isomers, which is caused by the restricted C–N bond rotation around the carbamate group. ¹H NMR (396 MHz, CDCl₃, δ): 0.82 (brs, 3H), 1.29 (s, 6H), 1.35 (s, 6H), 1.35–1.39 (m, 9H), 1.66–1.85 (m, 2H), 2.16–2.23 (m, 1H), 2.34–2.42 (m, 1H), 2.50–2.58 (m, 1H), 2.72–2.84 (m, 1H), 2.94 (dd, *J* = 6.9, 13.7 Hz, 1H), 3.13 (dd, *J* = 6.1, 14.1 Hz, 1H), 4.23–4.33 (m, 1H), 4.88–4.97 (m, 1H), 5.75–5.86 (m, 1H), 7.12–7.31 (m, 10H). ¹³C NMR (100 MHz, CDCl₃, δ): 15.3 (CH₂), 18.6 (CH₃), 25.4 (CH₃), 25.8 (CH₃), 28.3 (CH₃), 31.0 (CH₂), 38.2 (CH₂), 48.8 (br, B-C), 51.0 (C), 54.7 (CH), 80.2 (C), 82.9 (C), 126.0 (CH), 127.0 (CH), 127.6 (CH), 128.6 (CH), 128.7 (CH), 129.6 (CH), 136.4 (C), 145.9 (C), 155.2 (C), 171.8 (C). ¹¹B{¹H} NMR (127 MHz, CDCl₃, δ): 29.1. HRMS-ESI (*m*/*z*): [M+Na]⁺ calcd for C₃₂H₄₅N₂O₅¹¹BNa, 571.3319; found, 571.3316. [α]_D^{22.0}–5.94 (*c* 1.10 in CHCl₃). The diastereomeric ratio was determined by HPLC analysis (d.r. >99:1). Daicel CHIRALPAK® ID-3, 2-PrOH/Hexane = 3/97, 0.5 mL/min, 40 °C, minor isomer = 8.65 min., major isomer = 12.01 min. mp 62–70 °C. IR (neat, cm⁻¹): 1708 (C=O, amide).

Figure S2. Determination of the diastereomeric ratio of 4b by HPLC analysis.

5. Additional Experimental Results

Unsuccessful examples of the borylation of ketimines with P(O)(o-tol)2 as the protecting group

An unsuccessful example of the borylation of aromatic ketimine 10

Unsuccessful synthesis of the substrate 1n'

Neither procedure A nor B could synthesize the ketimine 1n'.

Condensation reactions with Boc-Ala-OH

(pin)E	Ph Ph V/	1. HCI (MeOH solution)			
			la-OH (1.5 equiv)		
	///Me (<i>R</i>)- 3i 99% ee	conde base	t (0.2 M), rt, 24 h		1e Ia
entry	condensation	reagents	base	solvent	yield (%)
1	HATU (3.0	equiv)	<i>i</i> -Pr ₂ EtN (3.0 equiv)	DCM	0
2	TCFH (1.2	equiv)	N-methylimidazole (3.5 equiv)	MeCN	74%

Hydrolysis of 4a with NaIO₄

4a (71.6 mg, 0.15 mmol, 1.0 equiv) and NaIO₄ (121.9 mg, 0.57 mmol, 3.8 equiv) were placed in a vial with a screw cap containing a Teflon[®]-coated rubber septum under air. THF (1.0 mL) and H₂O

 $(250 \ \mu\text{L})$ were added to the vial via a syringe. The resulting mixture was stirred for 24 h at room temperature. The reaction mixture was then diluted with brine and extracted with EtOAc three times, and dried over MgSO₄, and concentrated under reduced pressure. The combined mixture was washed cold pentane to give the boroxine **5** in 70% yield (41.3 mg, 0.105 mmol) as white solid. The corresponding boronic acid was not detected.

6. Determination of Absolute Configuration of Borylation Product

The absolute configuration of the product was determined based on X-ray crystallographic analysis of the compound (R)-**3e**. The absolute configurations of other borylation products were deduced by this product. The details were summarized in Figure S3 and Table S1.

Figure S3. Molecular structure of (R)-3e. Thermal ellipsoids set at 50% probability; hydrogen atoms omitted for clarity.

CCDC Name	2052090
Empirical Formula	C52H78B2N2O6P2
Formula Weight	910.72
Crystal System	monoclinic
Crystal Size / mm ³	0.15 imes 0.15 imes 0.1
<i>a</i> / Å	7.83470(10)
<i>b</i> / Å	33.8529(3)
<i>c</i> / Å	10.56040(10)
β/°	111.6360(10)
V / Å3	2603.57(5)
Space Group	P21
Z value	2
Dcalc / g cm ⁻³	1.162
Temperature / K	123
$2 heta_{ m max}$ / °	147.536
μ (MoK $lpha$) /cm ⁻¹	11.32
No. of Reflections Measured	Total: 12604 Unique: 7917 (<i>R_{int}</i> = 0.0223)
No. of Observations (All reflections)	7917
Residuals: R_I (I > 2.00 σ (I))	0.0324
Residuals: <i>wR</i> ₂ (All reflections)	0.0939
Goodness of Fit Indicator (GOF)	1.109
Maximum Peak in Final Diff. Map / Å ³	0.23 e ⁻
Minimum Peak in Final Diff. Map / Å ³	-0.24 e ⁻
Flack Parameter	0.075(10)

Table S1. Summary of X-ray crystallographic data

7. Plausible Catalytic Cycle

Based on the theoretical and experimental results, we have proposed a plausible mechanism for the enantioselective borylation of aliphatic ketimines (Figure S4). First, CuCl, (R,S)-L1 and Na(O-t-Bu) would react to form the copper(I)/NHC complex **A**, which would undergo sigma-bond metathesis with **2** to give borylcopper(I) **B**. The subsequent insertion to **1** would lead to the formation of the copper(I) intermediate **D**, which would be protonated in the presence of an alcohol to afford the borylated product **3**. This step would also result in the formation of copper alkoxide **A**.

Figure S4. Proposed mechanism for the copper(I)-catalyzed enantioselective borylation of aliphatic ketimines.

8. DFT Calculations

All calculations were performed using the Gaussian 09W (revision C.01) program package.⁸ Geometry optimizations and transition states (TS) calculations were performed with wB97XD/def2tzvp//wB97XD/Def2svp/THF(SMD). Molecular structures were drawn using the Mercury 3.5 program.⁹ Frequency calculations were conducted on gas-phase optimized geometries to check all the stationary points as either minima or transition states. Intrinsic reaction coordinate (IRC) calculations were carried out to confirm the transition state connecting the correct reactant and product on the potential energy surface.

We conducted the DFT calculations on the addition of the (R,S)-L1/borylcopper(I) complex (II) to ketimine 1p (I) to investigate the reaction mechanism and the origin of the enantioselectivity. The copper(I)-catalyzed borylation of dialkyl ketimine 1p proceeded to give (R)-3p in 74% yield with 90% ee. As shown in Figure S3, The energy of the transition state (TS1) in the *Si*-face addition is lower than that of the transition state (TS3) in the *Re*-face addition by 1.93 kcal/mol. This calculation result is in good agreement with the experimental result (calc. 92% ee versus exp. 90% ee).

Figure S5. DFT calculations (wB97XD/def2tzvp//wB97XD/Def2svp THF(SMD)) of the addition of the (R,S)-L1/borylcopper(I) complex to ketimine 1p. Gibbs free energy values relative to I and II are shown in kcal/mol at 298 K and 1.0 atm in the gas phase.

9. Analysis for Non-Covalent Interactions in the Transition States

Non-covalent interactions (NCIs) in the transition states were computed using the non-covalent interaction index from the optimized electron density at the same level of theory as the geometry optimizations. The wave function files (.wfn) were obtained from the corresponding formatted gaussian checkpoint files (.fchk) using the Multiwfn program.¹⁰ The following thresholds were applied to S33 to generate the NCI plot isosurface with NCIPLOT program,^{11,12} sign($\lambda 2$) ρ ranging from -0.2 to 0.2 au and reduced density gradient (RDG) = 0.60 au. The surfaces were colored on a blue-greenred (BGR) scale using VMD program¹³ according to values of sign($\lambda 2$) ρ ranging from -0.01 to 0.01 au. The blue region indicates strong attractive interactions and the red region indicates strong repulsive interactions.

Detailed Analysis of Transition State Structures

The detailed analysis of both transition states **TS1** and **TS3** was carried out by the combination of structural analysis based on the transition state structures and the non-covalent interaction (NCI) plot. As shown in Figure S6, C(sp₃)-H/ π interaction between the phenyl group of DPP and the methyl group of the mesityl group was found, and C(sp₃)-H/O interaction between the camphor moiety and an oxygen atom of P=O also existed. These interactions stabilize **TS1** to afford the major enantiomer (*R*)-**3p**. We also performed a non-covalent interaction (NCI) plot analysis of **TS3**. As shown Figure S7, an C(sp₃)-H/ π interaction between the phenyl group of the mesityl group was found. However, a steric hindrance between the isopropyl group of the substrate (**1p**) and camphor moiety might destabilize **TS3** to produce minor enantiomer (*S*)-**3p**.

Figure S6. Detailed structural analysis of transition state structure for TS1.

Figure S7. Detailed structural analysis of transition state structure for TS3.

Coordination profiles

Si-face TS1

Cu	-0.06392	0.2486	0.59795
С	2.87951	-1.15702	3.23617
0	1.29464	0.5591	3.24174
0	2.01939	-1.25353	2.08168
В	1.04317	-0.28889	2.18544
С	-1.0933	-0.96821	1.84609
С	-0.75084	-2.44169	2.04232
С	-1.68923	-0.3093	3.11189
Н	-0.9697	-0.47892	3.92995
Н	-0.14322	-2.82482	1.21353
Ν	-1.83164	-0.63708	0.67825
Р	-2.18939	-1.61919	-0.58055
0	-1.14826	-2.50003	-1.23821
Н	-1.68147	-3.03196	2.07221
Н	-0.21208	-2.61301	2.98439
С	-1.87627	1.19714	2.95777
Н	-2.25155	1.64199	3.89294
Н	-0.92457	1.69079	2.71302
Н	-2.59698	1.42576	2.15807
С	-3.01283	-0.97346	3.5003
Н	-3.75729	-0.85034	2.69961
Н	-2.90109	-2.05063	3.69406
Н	-3.42005	-0.51345	4.41461
С	2.64568	0.3261	3.68469

С	2.72898	0.56528	5.18235
Н	3.73022	0.30918	5.56097
Н	2.54517	1.6281	5.39851
Н	1.98424	-0.02586	5.73095
С	3.54084	1.31665	2.9395
Н	3.48757	1.16075	1.85083
Н	3.20309	2.34105	3.15271
Н	4.59057	1.23045	3.25488
С	2.38469	-2.17532	4.26024
Н	2.366	-3.17123	3.79408
Н	3.04698	-2.21731	5.13727
Н	1.36656	-1.94044	4.60419
С	4.30811	-1.47579	2.82866
Н	4.39611	-2.53753	2.55622
Н	4.62922	-0.87542	1.96714
Н	4.99762	-1.28291	3.66464
С	-2.92196	-0.458	-1.78315
С	-2.7738	-0.74164	-3.14484
С	-3.64742	0.67577	-1.39414
С	-3.35071	0.08938	-4.10613
Н	-2.19729	-1.62052	-3.44393
С	-4.23789	1.49549	-2.35389
Н	-3.73851	0.91763	-0.33312
С	-4.09152	1.20311	-3.71116
Н	-3.22276	-0.13496	-5.16791
Н	-4.8079	2.37357	-2.04091
Н	-4.54893	1.85123	-4.4629
С	-3.58862	-2.6952	-0.06787
С	-4.76665	-2.18143	0.48862
С	-3.45406	-4.07902	-0.21977
С	-5.78903	-3.03837	0.89285
Н	-4.8908	-1.10191	0.60691
С	-4.47413	-4.9389	0.18943

TT	2 52 42 4	1 1(02)	0 ((19)
Н		-4.46926	
С	-5.64227	-4.41959	0.74712
Н	-6.70419	-2.62731	1.32606
Н	-4.35672	-6.01876	0.06896
Н	-6.44235	-5.09178	1.06711
С	1.05626	1.3705	-0.47651
Ν	2.25734	1.06015	-1.01757
Ν	0.95613	2.68375	-0.72206
С	2.90352	-0.23962	-1.01321
С	2.81041	2.18623	-1.55525
Ν	2.02569	3.20851	-1.39189
С	-0.18498	3.47823	-0.39031
С	2.00813	-1.41187	-1.42676
С	4.07547	-0.29638	-2.05083
Н	3.2779	-0.40376	0.00536
С	4.12657	2.05888	-2.25142
С	-1.19505	3.61619	-1.34804
С	-0.2726	4.03412	0.89315
С	1.3816	-1.10722	-2.79548
Н	1.27373	-1.69966	-0.66295
С	3.08429	-2.47912	-1.76319
С	3.76583	-1.58502	-2.85557
Н	5.03832	-0.38654	-1.51727
0	4.15116	0.82125	-2.90888
Н	4.95292	2.14859	-1.51998
Н	4.24131	2.85378	-2.99879
С	-2.333	4.34318	-0.98605
С	-1.06632	2.9688	-2.69813
С	-1.43266	4.7408	1.21109
С	0.84101	3.84775	1.88586
Н	0.56848	-1.8184	-2.9837
Н	0.9258	-0.10712	-2.82631
С	2.571	-1.25371	-3.77617

С	3.99312	-2.86037	-0.58601
С	2.48647	-3.78478	-2.29473
С	4.97948	-2.14996	-3.56714
С	-2.47207	4.90357	0.28619
Н	-3.13443	4.46573	-1.71957
Н	-0.08247	3.16706	-3.14862
Н	-1.17723	1.8749	-2.61247
Н	-1.8416	3.33167	-3.38515
Н	-1.5301	5.177	2.20948
Н	0.96767	2.78568	2.14883
Н	1.79981	4.19825	1.47251
Н	0.63921	4.40246	2.81204
Н	2.41367	-2.07237	-4.49362
Н	2.76183	-0.34367	-4.3578
Н	3.38	-3.19474	0.26458
Н	4.65749	-3.69095	-0.87102
Н	4.63819	-2.04944	-0.22287
Н	3.2815	-4.45514	-2.65777
Н	1.96073	-4.30631	-1.4795
Н	1.76411	-3.65019	-3.10928
Н	4.72393	-3.06684	-4.12059
Н	5.37879	-1.42285	-4.29172
Н	5.78539	-2.3934	-2.85637
С	-3.70785	5.6745	0.66571
Н	-3.46886	6.73253	0.8584
Н	-4.46665	5.63813	-0.12834
Н	-4.15599	5.27062	1.58668

Si-face TS2

Cu	-0.32131	0.33266	0.12578
С	-3.96906	1.77265	1.73222
0	-2.17371	0.44923	2.44747
0	-2.91943	1.75152	0.74534
В	-1.8472	1.06861	1.26116
С	0.00828	2.12728	1.09581
С	-0.58113	3.40828	0.5008
С	0.22592	2.24726	2.62941
Н	-0.76223	2.4074	3.08942
Н	-0.9553	3.24566	-0.51597
Ν	1.17075	1.62204	0.43376
Р	1.81529	2.15062	-0.97157
0	0.93987	2.56239	-2.13733
Н	0.21027	4.17287	0.44004
Н	-1.39661	3.80546	1.11877
С	0.82759	0.98938	3.24379
Н	0.92095	1.09965	4.3356
Н	0.19547	0.11143	3.05054
Н	1.82951	0.79856	2.83034
С	1.08432	3.46835	2.97296
Н	2.064	3.41597	2.47756
Н	0.60774	4.41482	2.6795
Н	1.25841	3.51316	4.05962
С	-3.60029	0.53551	2.62565

С	-3.9048	0.7004	4.10512
Н	-4.9815	0.86444	4.26371
Н	-3.61701	-0.21259	4.64743
Н	-3.35358	1.543	4.5427
С	-4.19401	-0.7681	2.09964
Н	-4.00431	-0.87203	1.02353
Н	-3.71757	-1.61545	2.61447
Н	-5.27869	-0.82288	2.27202
С	-3.86647	3.1022	2.47768
Н	-3.93986	3.92588	1.75254
Н	-4.67833	3.21609	3.21063
Н	-2.90646	3.19888	3.00589
С	-5.31289	1.67373	1.0286
Н	-5.48675	2.58276	0.43393
Н	-5.34785	0.81372	0.34846
Н	-6.12854	1.58446	1.7621
С	2.8889	0.75213	-1.47507
С	3.98509	0.31246	-0.72354
С	2.57985	0.09628	-2.67174
С	4.76109	-0.75828	-1.16452
Н	4.24506	0.80789	0.21377
С	3.33966	-0.993	-3.1011
Н	1.73442	0.45313	-3.26437
С	4.43533	-1.41957	-2.34997
Н	5.62176	-1.08282	-0.57523
Н	3.08268	-1.50164	-4.03372
Н	5.04073	-2.26307	-2.69108
С	2.97009	3.53167	-0.61436
С	3.01574	4.60534	-1.51083
С	3.8029	3.55108	0.51212
С	3.88277	5.67611	-1.29046
Н	2.3547	4.58753	-2.38049
С	4.67406	4.61709	0.73092

Н	3.76759	2.72963	1.23128
С	4.71531	5.68167	-0.17122
Н	3.9084	6.50955	-1.99692
Н	5.32032	4.62005	1.6122
Н	5.39754	6.5179	0.00092
С	-0.48573	-1.261	-0.957
Ν	0.37088	-2.31302	-0.95943
Ν	-1.34851	-1.59058	-1.93319
С	1.51098	-2.53597	-0.08492
С	-0.01044	-3.20012	-1.92444
Ν	-1.07413	-2.78294	-2.53857
С	-2.57064	-0.90495	-2.22373
С	1.26752	-2.20355	1.39305
С	1.91451	-4.05329	-0.0484
Н	2.33978	-1.93429	-0.47718
С	0.74492	-4.4817	-2.04738
С	-3.75288	-1.42717	-1.67415
С	-2.54881	0.25243	-3.0067
С	-0.0052	-2.92562	1.86445
Н	1.28865	-1.12419	1.58661
С	2.39702	-3.02299	2.07551
С	1.91038	-4.38001	1.46441
Н	2.92652	-4.16895	-0.47449
0	1.04607	-4.91458	-0.74727
Н	1.66192	-4.33382	-2.64913
Н	0.12628	-5.24313	-2.53777
С	-4.93449	-0.72108	-1.89026
С	-3.73731	-2.70792	-0.88522
С	-3.7607	0.93234	-3.18253
С	-1.27921	0.75168	-3.63347
Н	-0.31261	-2.55428	2.85147
Н	-0.85731	-2.74941	1.19425
С	0.42979	-4.41194	1.90615

С	3.81816	-2.61484	1.67103
С	2.34097	-2.96062	3.60503
С	2.6989	-5.62801	1.80939
С	-4.9544	0.47021	-2.62766
Н	-5.86513	-1.10475	-1.46184
Н	-3.52896	-3.56771	-1.54103
Н	-2.95361	-2.69523	-0.11189
Н	-4.70396	-2.87847	-0.39295
Н	-3.76499	1.85007	-3.7774
Н	-0.65848	1.33408	-2.92962
Н	-0.66468	-0.08477	-3.99953
Н	-1.50563	1.408	-4.48557
Н	0.34718	-4.836	2.91716
Н	-0.16507	-5.0469	1.23801
Н	3.99595	-1.55902	1.92871
Н	4.55688	-3.21939	2.21976
Н	4.03626	-2.72899	0.60227
Н	3.09901	-3.62818	4.04357
Н	2.56852	-1.93684	3.94242
Н	1.36975	-3.23789	4.03384
Н	2.69163	-5.81394	2.89455
Н	2.2636	-6.51089	1.31589
Н	3.74774	-5.544	1.48329
С	-6.24768	1.21448	-2.8221
Н	-6.74846	1.39169	-1.85774
Н	-6.08591	2.18654	-3.30836
Н	-6.94402	0.63316	-3.44752

Re-face TS3

Cu	0.00263	-0.39312	0.29451
С	2.9024	-2.96928	1.70614
С	1.83232	-3.22448	2.82873
0	0.79172	-2.29673	2.46943
0	2.09154	-2.47938	0.61919
В	0.91833	-1.97684	1.14087
С	-1.01164	-2.13846	0.0175
С	2.29988	-2.91306	4.24125
Н	2.58272	-1.85827	4.35433
Н	1.48909	-3.12307	4.95437
Н	3.16223	-3.54065	4.51321
С	1.22586	-4.62505	2.77261
Н	1.94758	-5.39054	3.09213
Н	0.35951	-4.66695	3.44892
Н	0.8783	-4.87405	1.7592
С	3.89462	-1.86518	2.06939
Н	4.56937	-2.17905	2.87863
Н	4.51277	-1.63201	1.18954
Н	3.37694	-0.94591	2.38249
С	3.65056	-4.20885	1.24363
Н	4.37571	-3.93535	0.46292
Н	4.20433	-4.66233	2.0796
Н	2.96876	-4.96058	0.82517
С	-0.54247	-3.30203	-0.89109
С	-1.83718	-2.63445	1.20427

Н	-2.84384	-2.91815	0.85765
Н	-1.37263	-3.51133	1.67492
Н	-1.96698	-1.85338	1.96213
С	0.35999	-2.85155	-2.03194
Н	-0.15099	-2.10497	-2.65868
Н	1.28852	-2.41391	-1.64311
Н	0.63549	-3.70564	-2.67039
Н	0.03207	-3.99981	-0.25816
С	-1.75154	-4.06485	-1.44414
Н	-1.4167	-4.88559	-2.09788
Н	-2.37064	-4.50763	-0.6507
Н	-2.39284	-3.39876	-2.04108
Ν	-1.55126	-1.04831	-0.7182
Р	-2.97752	-0.28642	-0.47111
0	-3.51718	-0.01347	0.91276
С	-4.2424	-1.22675	-1.41343
С	-5.34927	-1.74439	-0.73501
С	-4.10422	-1.47259	-2.78554
С	-6.30107	-2.50751	-1.41434
Н	-5.45319	-1.53997	0.33347
С	-5.05785	-2.22558	-3.46708
Н	-3.24074	-1.073	-3.32493
С	-6.15649	-2.74833	-2.78018
Н	-7.16134	-2.91284	-0.87571
Н	-4.94299	-2.41017	-4.53802
Н	-6.90234	-3.3426	-3.31399
С	-2.79406	1.26576	-1.41588
С	-1.79963	1.46869	-2.37896
С	-3.70916	2.29103	-1.14979
С	-1.72686	2.67785	-3.07092
Н	-1.0732	0.67599	-2.56904
С	-3.64279	3.49592	-1.84802
Н	-4.46997	2.13974	-0.37981

С	-2.65164	3.69045	-2.81104
Н	-0.94366	2.83071	-3.81775
Н	-4.36179	4.29024	-1.63288
Н	-2.59445	4.6368	-3.35449
С	0.98903	1.18742	0.7657
Ν	2.25213	1.45414	0.35305
Ν	0.76137	2.16988	1.64932
С	3.04305	0.66262	-0.56743
С	2.71797	2.55731	1.00574
Ν	1.81463	3.02795	1.81045
С	-0.46767	2.39549	2.34493
С	2.36558	0.31876	-1.89422
С	4.34014	1.41423	-1.00873
Н	3.2942	-0.26572	-0.04376
С	4.10077	3.0336	0.69625
С	-1.36785	3.32526	1.80829
С	-0.72595	1.68269	3.52143
С	1.92485	1.61492	-2.59206
Н	1.57083	-0.42798	-1.77539
С	3.60299	-0.13141	-2.71811
С	4.32701	1.24942	-2.552
Н	5.22499	0.92565	-0.56323
0	4.36283	2.77997	-0.65683
Н	4.82995	2.52333	1.35496
Н	4.18125	4.1138	0.87062
С	-2.57405	3.52281	2.48162
С	-1.03868	4.06435	0.54208
С	-1.94846	1.91324	4.15751
С	0.27044	0.69857	4.06955
Н	1.24092	1.39215	-3.42255
Н	1.37656	2.27923	-1.90876
С	3.25912	2.22757	-3.08475
С	4.36556	-1.3275	-2.12795

С	3.25388	-0.50077	-4.16218
С	5.6968	1.40416	-3.18277
С	-2.88446	2.82007	3.6505
Н	-3.2945	4.23871	2.076
Н	-0.94531	3.36387	-0.30324
Н	-1.82231	4.79187	0.29499
Н	-0.0818	4.60109	0.6314
Н	-2.17534	1.36606	5.07697
Н	0.27255	-0.23696	3.48743
Н	1.29275	1.10579	4.03986
Н	0.03333	0.44348	5.11156
Н	3.30901	2.27281	-4.18208
Н	3.42698	3.24252	-2.70624
Н	3.67901	-2.17447	-1.97568
Н	5.15144	-1.6556	-2.82537
Н	4.85726	-1.1296	-1.16563
Н	4.1697	-0.65209	-4.75468
Н	2.69447	-1.44994	-4.17336
Н	2.64032	0.2463	-4.6817
Н	5.64651	1.27764	-4.2753
Н	6.10625	2.40638	-2.98131
Н	6.40985	0.66415	-2.78555
С	-4.21641	3.00305	4.32548
Н	-4.62556	4.00855	4.15077
Н	-4.94444	2.276	3.92918
Н	-4.14477	2.83898	5.41047

Re-face TS4

Cu	0.38065 -0.55231 -0.04231
С	3.52854 -1.39344 2.52424
С	2.52477 -0.7389 3.5422
0	1.41266 -0.39829 2.69086
0	2.64439 -1.88684 1.499
В	1.4829 -1.15425 1.54584
С	-0.3318 -2.22476 0.88826
С	3.03356 0.52759 4.21313
Н	3.24747 1.31777 3.48203
Н	2.27479 0.90776 4.91342
Н	3.95074 0.32158 4.78573
С	2.0172 -1.71817 4.59772
Н	2.79153 -1.9335 5.34845
Н	1.15147 -1.27447 5.11087
Н	1.69688 -2.66963 4.15061
С	4.45092 -0.37328 1.8624
Н	5.20822 0.00641 2.56354
Н	4.96605 -0.85137 1.01643
Н	3.87661 0.47696 1.4702
С	4.34001 -2.55185 3.08058
Н	5.01272 -2.94134 2.30207
Н	4.95832 -2.21948 3.9283
Н	3.69771 -3.37606 3.41711
С	0.33576 -3.55452 0.45823

С	-0.87487	-2.29046	2.31458
Н	-1.79029	-2.90455	2.32512
Н	-0.15084	-2.75663	2.99673
Н	-1.14269	-1.30013	2.69659
С	1.00493	-3.46617	-0.9086
Н	0.25454	-3.31206	-1.69884
Н	1.72737	-2.63581	-0.9477
Н	1.55305	-4.39395	-1.13601
Н	1.11664	-3.77454	1.20228
С	-0.67676	-4.70327	0.47867
Н	-0.19685	-5.64039	0.15476
Н	-1.09507	-4.87782	1.48093
Н	-1.51498	-4.49886	-0.20508
Ν	-1.22323	-1.73135	-0.1068
Р	-2.72202	-1.12849	0.13375
0	-3.07552	-0.33534	1.37463
С	-3.89392	-2.53087	-0.0084
С	-4.83775	-2.73368	1.00229
С	-3.85159	-3.41265	-1.09609
С	-5.7269	-3.8077	0.93175
Н	-4.86262	-2.03704	1.84371
С	-4.74252	-4.48129	-1.17065
Н	-3.11311	-3.26263	-1.8888
С	-5.68059	-4.68105	-0.15441
Н	-6.46126	-3.96102	1.72659
Н	-4.70538	-5.1653	-2.02211
Н	-6.37866	-5.51995	-0.21188
С	-3.04404	-0.10929	-1.3512
С	-2.2237	-0.11824	-2.48302
С	-4.11795	0.78797	-1.29572
С	-2.44662	0.77938	-3.52698
Н	-1.3914	-0.8196	-2.52731
С	-4.34631	1.68305	-2.33979

Н	-4.75979	0.80399	-0.41173
С	-3.50303	1.68825	-3.45269
Н	-1.78961	0.77173	-4.40039
Н	-5.17879	2.38841	-2.28051
Н	-3.67381	2.39855	-4.26546
С	0.87977	1.01722	-1.04683
Ν	0.23587	2.20905	-1.05832
Ν	1.83065	1.19317	-1.98048
С	-0.89716	2.60929	-0.23959
С	0.81372	3.02274	-1.99026
Ν	1.80767	2.42424	-2.57138
С	2.8774	0.26574	-2.28094
С	-0.78703	2.25676	1.25013
С	-1.0698	4.16889	-0.22924
Н	-1.78652	2.13669	-0.67375
С	0.29486	4.41521	-2.13459
С	4.15208	0.51048	-1.75293
С	2.59234	-0.85804	-3.06601
С	0.53806	2.81199	1.79568
Н	-0.97286	1.19285	1.45173
С	-1.84494	3.22756	1.84651
С	-1.13715	4.50335	1.28028
Н	-2.01523	4.43187	-0.73487
0	-0.0259	4.88258	-0.85285
Н	-0.58553	4.42684	-2.80597
Н	1.06555	5.06701	-2.56403
С	5.14904	-0.43618	-1.99962
С	4.44155	1.76158	-0.97127
С	3.61973	-1.7794	-3.27888
С	1.22092	-1.07249	-3.63847
Н	0.74399	2.38998	2.78737
Н	1.39374	2.53255	1.16504
С	0.29533	4.34178	1.83435

-3.2737	2.99837	1.33498
-1.91244	3.16569	3.37519
-1.78017	5.84657	1.56416
4.89876	-1.59228	-2.74547
6.14839	-0.26768	-1.58835
4.49822	2.6326	-1.64314
3.65005	1.97483	-0.23728
5.39711	1.67887	-0.43672
3.41177	-2.6704	-3.87803
0.51605	-1.35296	-2.84254
0.83534	-0.15707	-4.11174
1.22588	-1.8784	-4.384
0.34706	4.73895	2.85853
1.01683	4.90527	1.22983
-3.54221	1.94251	1.49226
-3.98214	3.63401	1.88894
-3.41533	3.21826	0.26797
-2.57041	3.95914	3.76339
-2.34387	2.20086	3.68425
-0.94052	3.26641	3.8751
-1.82961	6.04245	2.6465
-1.20116	6.66168	1.10225
-2.80463	5.89402	1.16156
5.9722	-2.62754	-2.94714
5.87728	-3.12013	-3.9257
6.97664	-2.18667	-2.87411
5.89813	-3.41213	-2.17609
	-1.91244 -1.78017 4.89876 6.14839 4.49822 3.65005 5.39711 3.41177 0.51605 0.83534 1.22588 0.34706 1.01683 -3.54221 -3.98214 -3.41533 -2.57041 -2.34387 -0.94052 -1.82961 -1.20116 -2.80463 5.9722 5.87728 6.97664	-1.912443.16569-1.780175.846574.89876-1.592286.14839-0.267684.498222.63263.650051.974835.397111.678873.41177-2.67040.51605-1.352960.83534-0.157071.22588-1.87840.347064.738951.016834.90527-3.542211.94251-3.982143.63401-3.415333.21826-2.570413.95914-2.343872.20086-0.940523.26641-1.829616.04245-1.201166.66168-2.804635.894025.9722-2.627545.87728-3.120136.97664-2.18667

10. Reference

- Shintani, R.; Takatsu, K.; Takeda, M.; Hayashi, T. Copper-Catalyzed Asymmetric Allylic Substitution of Allyl Phosphates with Aryl- and Alkenylboronates. *Angew. Chem., Int. Ed.* 2011, 50, 8656–8659.
- (2) Winn, C. L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P.; Alexakis, A. Enantioselective copper catalysed 1,4-conjugate addition reactions using chiral N-heterocyclic carbenes. J. Org. Met. Chem. 2005, 690, 5672–5695.
- (3) Harada, A.; Makida, Y.; Sato, T.; Ohmiya, H.; Sawamura, M. Copper-Catalyzed Enantioselective Allylic Alkylation of Terminal Alkyne Pronucleophiles. J. Am. Chem. Soc. 2014, 136, 13932– 13939.
- (4) Núñez, M. G.; Farley, A. J. M.; Dixon, D. J. Bifunctional Iminophosphorane Organocatalysts for Enantioselective Synthesis: Application to the Ketimine Nitro-Mannich Reaction. J. Am. Chem. Soc. 2013, 135, 16348–16351.
- (5) Abell, J. P.; Yamamoto, H. Dual-Activation Asymmetric Strecker Reaction of Aldimines and Ketimines Catalyzed by a Tethered Bis(8-quinolinolato) Aluminum Complex. J. Am. Chem. Soc. 2009, 131, 15118–15119.
- (6) Masumoto, S., Usuda, H., Suzuki, M., Kanai, M., & Shibasaki, M. Catalytic Enantioselective Strecker Reaction of Ketoimines. J. Am. Chem. Soc. 2003, 125, 5634–5635.
- (7) Beutner, G. L.; Young, I. S.; Davies, M. L.; Hickey, M. R.; Park, H.; Stevens, J. M.; Ye, Q. TCFH– NMI: Direct Access to N-Acyl Imidazoliums for Challenging Amide Bond Formations. *Org. Lett.* 2018, 20, 4218–4222.
- (8) Gaussian 09, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT, 2009.

- (9) Mercury: http://www.ccdc.cam.ac.uk/Solutions/CSDSystem/Pages/Mercury.aspx
- (10)Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* **2012**, *33*, 580–592.
- (11)Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506.
- (12)Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J. P.; Beratan, D. N.;
 Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. *J. Chem. Theory Comput.* 2011, *7*, 625–632.
- (13)Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

0 0 0 -10.0 -20.0 -30.0 0 -10.0 -20.0 -30.0 -30.0 0 -10.0 -20.0 -30.0 -30.0	Ph ph	PROCESSING PARAMETERS dc_balance(0, FALSE) sexp(2.0[Hz], 0.0[s]) trapezoid3(0[%], 80[%], 100[%]) zerofill(1) fft(1, TRUE, TRUE) machinephase ppm Derived from: MUR-253-31P-1.jdf
0 0	$\frac{1}{13}$ Me	Author= elementExperiment= single pulse_decSample_Id= S#446872Solvent= CHLOROFORM-DActual_Start_Time= 28-APR-2021 19:10:32
Open Field Strength = 9.20197068(T) (390(MHz)) X.Acc Duration = 0.2339296(s) 319 X.Acc Duration = 0.2339296(s) 30.093923(MHz) X.Acc Duration = 0.2339296(s) 30.0 Y.Dereg = 317,0655441(MHz) X.Sevep = 138,08888895(HHz) Tr.T.Preeq = 391,70655441(MHz) Tr.T.Preeq = 391,70655441(MHz) Tr.T.Preeq = 391,70655441(MHz) Tr.T.Preeq = 391,70655441(MHz) Tr.T.Preeq = 391,7065541(MHz) Tr.T.T.T.T.Preeq = 21,25(MHz) X.Acc Time = 0.239296(s) X.Acc Time = 0.239296(s) X.Acc Time = 0.239296(s) X.Acc Time = 0.239296(s) X.Acc Time = 21,45(B) Tr.Act Dec		Data Format = 1D COMPLEX Dim_Size = 26214 X Domain = 31P Dim_Title = 31P Dim_Units = [ppm] Dimensions = X Site = ECS 400
O Image: Constrained on the second of th		<pre>Field Strength = 9.20197068[T] (390[MHz]) X_Acq_Duration = 0.2359296[s] X_Domain = 31P X_Freq = 158.59799923[MHz] X_Offset = 0[ppm] X_Points = 32768 X_Prescans = 4 X_Resolution = 4.23855252[Hz] X_Sweep = 138.888888889[kHz] Irr_Domain = 1H</pre>
30 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 -30.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0 Initial Wait = 1[s] 5 00 0 -10.0 -20.0 -30.0 Noe_Time = 22.359296[s] 40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0		Irr_Offset = 5[ppm] Clipped = FALSE Scans = 20 Total_Scans = 20 Relaxation_Delay = 2[s] Recvr Gain = 46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	pundance	X 90_Width = 12.25[us] X_Acq_Time = 0.2359296[s] X_Angle = 30[deg] X_Atn = 5.5[dB] X_Pulse = 4.08333333[us] Irr_Atn_Dec = 22.45[dB] Irr_Atn_Noe = 22.45[dB] Irr Noise = WALTZ
\mathbf{V}_{i}	40.0 30.0 20.0 10.0 0 -10.0 -20.0 -30.0	Initial_Wait = 1[s] Noe = TRUE Noe Time = 2[s]

0 X Ac_Ouration = 0.23529(is) X Pres = 156.5793221MHz] X Points = 32768 X Presca = 106.5793221MHz] X Points = 32768 X Presca = 32768 X Presca = 32768 X Presca = 32768 X Presca = 4.2385252[Hz] X Secolution = 18 = 18.8793980[KHz] Irr_Dream = 18.7655441[MHz] Irr_Dream = 20 = 51.76655441[MHz] Olipped = 57.631 Collpped = 20.22520[s] Y Presca = 0.235290[s] Y Presca = 20 Total_Scans = 20 Points = 50.763 Y Presca = 0.23529[s] Y Presca = 0.23529[s] Y Presca = 0.23529[s] Y Presca = 0.23529[s] Y Presca = 5.5(dB] Y Presca = 5.5(dB] Y Presca = 4.0333331(u)] Y Presca = 4.0333331(u)] Y Presca = WAL72 Presca = WAL72 Y Presca = WAL72 <th>0 5.0 6.0 7.0 8.0</th> <th>Pl</th> <th>Ph, <math>Ph N - P = 0 Me He Hh</math></th> <th></th> <th></th> <th> PROCESSING PARAMETERS dc_balance(0, FALSE) sexp(2.0[Hz], 0.0[s]) trapezoid3(0[%], 80[%], 100[%]) zerofill(1) fft(1, TRUE, TRUE) machinephase ppm Derived from: MUR-277-31P-1.jdf Filename = MUR-277-31P-1.jdf Priment = single_pulse_dec Sample_Id = S#472047 Solvent = cHLORFORM-D Actual_Start_Time = 8-APR-2021 19:52:2 Revision_Time = 6-MAY-2021 19:52:2 Revision_Time = 6-MAY-2021 19:52:2 Revision_Time = 6-MAY-2021 19:52:2 Revision_Time = 1D COMPLEX Dim_Size = 26214 X_Domain = 31P Dim_Units = [ppm] Dim_Units = [ppm] Dim_Esize = ZCS 400 Spectrometer = JNM-ECS400</th> <th>0</th>	0 5.0 6.0 7.0 8.0	Pl	Ph, $PhN - P = 0MeHeHh$			PROCESSING PARAMETERS dc_balance(0, FALSE) sexp(2.0[Hz], 0.0[s]) trapezoid3(0[%], 80[%], 100[%]) zerofill(1) fft(1, TRUE, TRUE) machinephase ppm Derived from: MUR-277-31P-1.jdf Filename = MUR-277-31P-1.jdf Priment = single_pulse_dec Sample_Id = S#472047 Solvent = cHLORFORM-D Actual_Start_Time = 8-APR-2021 19:52:2 Revision_Time = 6-MAY-2021 19:52:2 Revision_Time = 6-MAY-2021 19:52:2 Revision_Time = 6-MAY-2021 19:52:2 Revision_Time = 1D COMPLEX Dim_Size = 26214 X_Domain = 31P Dim_Units = [ppm] Dim_Units = [ppm] Dim_Esize = ZCS 400 Spectrometer = JNM-ECS400	0
0						X Acq_Duration = 0.2359296[s] X Domain = 31P X_Freq = 158.59799923[MHz] X_Offset = 0[ppm] X_Points = 32768 X_Prescans = 4 X_Resolution = 4.23855252[Hz] X_Sweep = 138.88888889[kHz] Irr_Domain = 1H Irr_Freq = 391.78655441[MHz] Irr_Offset = 5[ppm] Clipped = FALSE Scans = 20	MHz])
		300.0	200.0 100.0	0 -100.0	 -300.0	Relaxation_Delay = 2[s] Recvr_Gain = 50 Temp_Get = 18.7[dC] X 90 Width = 12.25[us] X Acq_Time = 0.2359296[s] X Angle = 30[deg] X_Atn = 5.5[dB] X_Pulse = 4.08333333[us] Irr_Atn_Dec = .22.45[dB] Irr_Atn_Noise = WALTZ Decoupling = TRUE Initial Wait = 1[s]	

8.0	Ph	Ph		dc_balance(sexp(2.01E trapezoid3(zerofill(1 fft(1, TRU machinephas ppm	E, TRUE)
7.0	И-1-	² 0		Filename	= MUR-252-31P-2.jdf
6.0	Et Me			Author Experiment Sample_Id Solvent Actual_Star Revision_Ti	= element = single_pulse_dec = S#443497 = CHLOROFORM-D t_Time = 28-APR-2021 19:04:51
5.0) (Comment Data Format Dim Size X Domain Dim Title	= 26214 = 31P = 31P
				Dim_Units Dimensions Site Spectromete	= [ppm] = X = ECS 400 r = JNM-ECS400
4.0				Field_Stren X_Acq_Durat X_Domain X_Freq X_Offset	ion = 0.2359296[s] = 31P = 158.59799923[MHz] = 0[ppm]
3.0				X_Points X_Prescans X_Resolutic X_Sweep Irr_Domain	= 138.888888889[kHz] = 1H
2.0				Irr_Freq Irr_Offset Clipped Scans Total_Scans	= 391.78655441[MHz] = 5[ppm] = FALSE = 20 = 20
1.0	0			Relaxation Recvr Gain Temp Get X_90 Width X_Acq Time	= 50 = 18.7[dC] = 12.25[us] = 0.2359296[s]
abundance 0	en en hende ste skiller men en blever per blever per blever bene blever bene skiller bene blever blever blever Men skiller sjeller blever skiller en skiller af skiller blever blever blever blever blever blever skiller skil	ng) with and any state of the second state of	ande ste die stad en en en die ste geden oorden (Die jaar het die lichte oorden ste die Die en die Vierbeide d Verenie geden oorde en een een een een een een een een ee	X_Angle X_Atn X_Pulse Irr_Atn_Dec Irr_Atn_Noe Irr_Noise Decoupling	= 22.45[dB] = WALTZ
	300.0 200.0	100.0 0	-100.0 -200.0	-300.0 Decoupling Initial_Wai Noe Noe_Time Repetition_	= TRUE = 2[s]
	X : parts per Million : 31P	17.558			

S77

.

•

					dc_balance(sexp(2.0[E	E, TRUE)
30.0	Me EE	y-Me			Derived fro	m: MUR-210-31P-1.jdf
Ř - - -	(pin)BN-P=	Ø			Filename Author Experiment Sample_Id Solvent Actual_Star Revision_Ti	
-	(R) - 3b				Comment Data_Format Dim_Size X Domain	= single pulse decoupled ga = 1D COMPLEX = 26214 = 31P
20.0	(K) - 30				Dim_Title Dim_Onits Dimensions Site Spectromete	= 31P = [ppm] = X = ECS 400
10.0					Field Stren X_Acq_Durat X_Domain X_Freq X_Offset X_Points X_Prescans X_Resolutic X_Sweep Irr_Domain Irr_Freq Irr_Offset Clipped Scans Total_Scans	gth = 9.20197068[T] (390[MHz]) ion = 0.2359296[s] = 31P = 158.59799923[MHz] = 0[ppm] = 32768 = 4 n = 4.23855252[Hz] = 118.888888889[kHz] = 1H = 391.78655441[MHz] = 5[ppm] = FALSE = 50 = 50
0					Relaxation Recvr Gain Temp_Get X_90_Width X_Acq_Time X_Angle X_Atn X_Pulse Irr_Atn_Noe Irr_Atn_Noe Irr_Noise	= 48 = 19[dC] = 12.25[us] = 0.2359296[s] = 30[deg] = 5.5[dB] = 4.08333333[us] = 22.45[dB] = 22.45[dB] = WALTZ
3	300.0 200.0	0 0.000 0.001 0.001 0.001	-100.0	-200.0	-300.0 Decoupling Initial_Wai Noe Noe_Time Repetition_	= TRUE $= 2[s]$

0.0	Ph ph					PROCESSING PARAMETERS dc_balance(0, FALSE) sexp(2.0[Hz], 0.0[s]) trapezoid3(0[%], 80[%], 100[%]) zerofill(1) fft(1, TRUE, TRUE) machinephase		
5.0	(pin)B H - P = 0					ppm Derived from: MUR-249-31P-1.jdf		
4.0	Me					Filename Author Experiment Sample_Id Solvent Actual_Start_Time Revision_Time	<pre>= MUR-249-31P-2.jdf = element = single_pulse_dec = S#455748 = CHLOROFORM-D = 27-APR-2021 19:25:28 = 6-MAY-2021 21:35:50</pre>	
	Me Me (R)-3f					Comment Data_Format Dim_Size X_Domain Dim_Title Dim_Units Dimensions	<pre>= single pulse decoupled ga = 1D COMPLEX = 26214 = 31P = 31P = [ppm] = X</pre>	
3.0						Site Spectrometer Field_Strength X_Acq_Duration X_Domain X_Freq X Offset	= ECS 400 = JNM-ECS400 = 0.2359296[s] = 31P = 158.59799923[MHz]	
1.0 2.0						X_Points X_Prescans X_Prescans X_Resolution X_Sweep Irr_Domain Irr_Freq Irr_Offset Clipped Scans Total_Scans	<pre>= 0[ppm] = 32768 = 4 = 4.23855252[Hz] = 138.888888889[kHz] = 1H = 391.78655441[MHz] = 5[ppm] = FALSE = 100 = 100</pre>	
- 0 U						Relaxation_Delay Recvr_Gain Temp_Get X_90_Width X_Acq_Time X_Angle X_Atn X_Pulse	= 2[s] = 48 = 18.8[dC] = 12.25[us] = 0.2359296[s] = 30[deg] = 5.5[dB] = 4.08333333[us]	
abundance	300.0 200.0 100.0	• • •	-100.0	-200.0	-300.0	Irr_Atn_Dec Irr_Atn_Noe Irr_Noise Decoupling Initial_Wait Noe	= 22.45[dB] = 22.45[dB] = WALTZ = TRUE = 1[s] = TRUE = 2[s]	
	X : parts per Million : 31P	0.000				Noe_Time Repetition_Time	= 218] = 2.2359296[s]	

÷

.

D-2000: Isocrati Series: 3131 c HPLC

Reported Date and Time: 2021/01/06 Analyzed Date and Time: 2021/01/06 18:55 16:13 Processed Date and Time: 2021/01/06 18:55 Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3131\ Processing Method: 10/90 iPrOH/Hexane System (acquisition): Sys 1 Series: 3131 Vial Number: 142 Application(data): Isocratic HPLC Vial Type: UNK Sample Name: MUR-363-OZ3-10% Injection from this vial: 1 of 1 Volume: 10.0 ul Sample Description:

Processing Method: 10/90 iPrOH/Hexane Column Type: OD-H 2 Method Developer: Administrator Pump A: L-2130

Pump A Solvent A: HexanePump A Solvent B: 10/90 iPrOH/HexanePump A Solvent C: iPrOHPump A Solvent D: iPrOH

Method Description:

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA

Calculation	Method: AREA%		
No.	RT	Area	Area %
1	12.08	190883	5.296
2	15.23	3413518	94.704
		3604401	100.000

Peak rejection level: 0

Page Indicator: $\frac{S150}{1}$ 4

D-2000: Isocrati Series: 3132 c HPLC Report Name: modified System: Sys 1

D-2000 Elite HPLC System Manager Report

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane Column Type: OD-H 2 Method Developer: Administrator Pump A: L-2130 Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane

Pump A Solvent C: iPrOH Pump A Solvent D: iPrOH Method Description:

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%					
No.	RT	Area	Area %		
1 2	11.97 15.23	6017014 6051054	49.859 50.141		
		12068068	100.000		

Peak rejection level: 0

Intensity (mV)

Page Indicator: $S_{151/4}$

Report Name: modified System: Sys 1 D-2000: Isocrati Series: 2970 c HPLC **D-2000 Elite HPLC System Manager Report** Reported Date and Time: 2020/04/15 Analyzed Date and Time: 2020/04/15 16:08 15:22 Processed Date and Time: 2020/04/15 16:07 Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\2970\ Processing Method: 10/90 iPrOH/Hexane Series: 2970 System (acquisition): Sys 1 Vial Number: 145 Application(data): Isocratic HPLC Sample Name: MUR-210-L22-OZ3-10% Vial Type: UNK Injection from this vial: 1 of 1 Volume: 10.0 ul Sample Description: Chrom Type: HPLC Channel : 1 120 100 23, 11. Intensity (mV) 80 60 103654 40 21, 20 10. 0 12 13 11 10 8 9 Retention Time (min) Processing Method: 10/90 iPrOH/Hexane Method Developer: Administrator Column Type: OD-H 2 Pump A: L-2130 Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane Pump A Solvent D: iPrOH Pump A Solvent C: iPrOH Method Description: Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA

Calculation Me	ethod: AREA%		
No.	RT	Area	Area %
1 2	10.21 11.23	103654 1951737	5.043 94.957
		2055391	100.000

Peak rejection level: 0

Page Indicator: $\frac{S152}{14}$

D-2000: Isocrati Series: 2969 c HPLC Report Name: modified System: Sys 1

Pump A Solvent C: iPrOH Method Description:

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%

RT	Area	Area %
10.16	556458	50.696 49.304
11.20		100.000
		10.16 556458

D-2000: Isocrati Series: 3104 c HPLC

D-2000 Elite HPLC System Manager Report

Reported Date and Time: 2020/11/22 Analyzed Date and Time: 2020/11/22 17:25 14:47 Processed Date and Time: 2020/11/22 16:54 Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3104\ Processing Method: 10/90 iPrOH/Hexane Series: 3104 System (acquisition): Sys 1 Vial Number: 149 Application(data): Isocratic HPLC Vial Type: UNK Sample Name: MUR-145-0Z3-10% Volume: 10.0 ul Injection from this vial: 1 of 1 Sample Description:

Chrom Type: HPLC Channel : 1

Retention Time (min)

Processing Method: 10/90 iPrOH/Hexane Method Developer: Administrator Column Type: OD-H 2 Pump A: L-2130 Pump A Solvent B: 10/90 iPrOH/Hexane Pump A Solvent A: Hexane Pump A Solvent D: iPrOH Pump A Solvent C: iPrOH Method Description: Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA% Area % - -יחים Area

RI	Alea	Ai Cu i
8.77	33527	2.474
9.57	1321638	97.526
	1355165	100.000
	8.77	8.77335279.571321638

D-2000: Isocrati Series: 3105 c HPLC Report Name: modified System: Sys 1

D-2000 Elite HPLC System Manager Report

Reported Date and Time: 2020/11/24 Analyzed Date and Time: 2020/11/22 09:29 18:28 Processed Date and Time: 2020/11/24 09:28 Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3105\ Processing Method: 10/90 iPrOH/Hexane Series: 3105 System (acquisition): Sys 1 Application(data): Isocratic HPLC Vial Number: 150 Vial Type: UNK Sample Name: MUR-1c-rac Volume: 10.0 ul Injection from this vial: 1 of 1 Sample Description:

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane Column Type: OD-H 2 Method Developer: Administrator Pump A: L-2130 Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane

Pump A Solvent C: iPrOH Pump A Solvent D: iPrOH Method Description:

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %
1	8.75	513150	49.633
2	9.52	520740	50.367
		1033890	100.000
	Υ	1033890	100.0

Peak rejection level: 0

Page Indicator: S155/4

D-2000: Isocrati Series: 2939 c HPLC Report Name: modified System: Sys 1

D-2000 Elite HPLC System Manager Report

Reported Date and Time: 2019/12/21 Analyzed Date and Time: 2019/12/21 13:35 12:00 Processed Date and Time: 2019/12/21 13:35 Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\2939\ Processing Method: 10/90 iPrOH/Hexane System (acquisition): Sys 1 Series: 2939 Vial Number: 143 Application(data): Isocratic HPLC Sample Name: MUR-146-0Z3-10% Vial Type: UNK Injection from this vial: 1 of 1 Volume: 10.0 ul Sample Description:

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane Column Type: OD-H 2 Method Developer: Administrator Pump A: L-2130

Pump A Solvent A: Hexane Pump A Solvent C: iPrOH Pump A Solvent B: 10/90 iPrOH/Hexane Pump A Solvent D: iPrOH

Method Description:

Intensity (mV)

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %
1 2	9.57 10.16	13704 1028406	1.315 98.685
		1042110	100.000

Peak rejection level: 0

Page Indicator: $\frac{S156}{1}/4$

Peak rejection level: 0

Page Indicator: $S_{157/4}$

No.	RT	Area	Conc 1	BC
1 2	48.207 51.560	25084 4108822	0.607 99.393	BB BB
		4133906	100.000	

Peak rejection level: 0

Page Indicator: 1 / 4

Pump 1 Solvent A: hexanePump 1 Solvent B: 2-propanolPump 1 Solvent C:Pump 1 Solvent D:Method Description:Pump 1 Solvent D:

Chrom Type: Fixed WL Chromatogram, 250 nm Peak Quantitation: AREA Calculation Method: AREA%

No. RT	Area	Conc 1	BC
1 46.973 2 50.367	3579983 3588904	49.938 50.062	BB BB
	7168887	100.000	

D-2000: Isocrati Series: 3017 c HPLC

D-2000 Elite HPLC System Manager Report

Column Type: OD-H 2 Method Developer: Administrator Pump A: L-2130

Pump A Solvent A: HexanePump A Solvent B: 10/90 iPrOH/HexanePump A Solvent C: iPrOHPump A Solvent D: iPrOHMethod Description:Pump A Solvent D: iPrOH

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area 🖇
1	9.39	10442	0.652
2	12.77	1591567	99.348
		1602009	100.000

D-2000: Isocrati Series: 3018 c HPLC

50.203

100.000

1105356

2201768

Peak	rejection	level:	0

1

2

9.39

12.77

Page Indicator: $\frac{S161}{1}/4$

D-2000 Elite HPLC System Manager Report

Peak rejection level: 0

Page Indicator: S_{162} 4

D-2000: Isocrati Series: 3029 c HPLC Report Name: modified System: Sys 1

Processing Method: 10/90 iPrOH/Hexane Column Type: OD-H 2 Method Developer: Administrator Pump A: L-2130 Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane

Pump A Solvent C: iPrOH

Pump A Solvent B: 10/90 iPrOH/Hexane Pump A Solvent D: iPrOH

Method Description:

Intensity (mV)

Peak Quantit Calculation	ation: AREA Method: AREA%		
No.	RT	Area	Area %
1	10.91	343783	49.658
2	15.65	348518	50.342
		692301	100.000

Chrom Type: HPLC Channel : 1

Peak rejection level: 0

Page Indicator: S163/ 4

D-2000: Isocrati Series: 3040 c HPLC Report Name: modified System: Sys 1

D-2000 Elite HPLC System Manager Report

Reported Date and Time: 2020/08/03 Analyzed Date and Time: 2020/08/03 18:22 16:39 Processed Date and Time: 2020/08/03 18:21 Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3040\ Processing Method: 10/90 iPrOH/Hexane System (acquisition): Sys 1 Series: 3040 Vial Number: 142 Application(data): Isocratic HPLC Vial Type: UNK Sample Name: MUR-279-L22-OZ3-10% Volume: 10.0 ul Injection from this vial: 1 of 1 Sample Description:

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane Column Type: OD-H 2 Method Developer: Administrator Pump A: L-2130 Pump A Solvent A: Hexane Pump A Solvent C: iPrOH Pump A Solvent B: 10/90 iPrOH/Hexane Pump A Solvent C: iPrOH Di iPrOH

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %
1	9.92	21570	1.323
2	12.13	1609115	98.677
		1630685	100.000

Peak rejection level: 0

Page Indicator: S164/ 4

D-2000: Isocrati Series: 3039 c HPLC

Report Name: modified System: Sys 1

D-2000: Isocrati Series: 3025 c HPLC

Report Name: modified System: Sys 1

14

15

16

Retention Time (min)

13

Processing Method: 10/90 iPrOH/Hexane Method Developer: Administrator Column Type: OD-H 2 Pump A: L-2130

12

Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane Pump A Solvent D: iPrOH Pump A Solvent C: iPrOH

Method Description:

40

20

0

9

10

Chrom Type: HPLC Channel : 1 Ouontitation.

10652

, 00 200

11

Peak Quantit	at ron:	AREA
Calculation	Method:	AREA%

No.	RT	Area	Area %
1	11.28	10652	0.683
2	13.47	1547976	99.317
		1558628	100.000

Peak rejection level: 0

Page Indicator: $\frac{S166}{1}$ 4

c HPLC **D-2000 Elite HPLC System Manager Report** Analyzed Date and Time: 2020/06/29 Reported Date and Time: 2020/06/29 18:55 17:26 Processed Date and Time: 2020/06/29 18:55 Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3026\ Processing Method: 10/90 iPrOH/Hexane System (acquisition): Sys 1 Series: 3026 Vial Number: 142 Application(data): Isocratic HPLC Sample Name: MUR-255-rac-OZ3-10% Vial Type: UNK Volume: 10.0 ul Injection from this vial: 1 of 1 Sample Description: Chrom Type: HPLC Channel : 1 25 .23, 20 ac-31 11. Intensity (mV) 15 10

Processing Method: 10/90 iPrOH/Hexane Column Type: OD-H 2 Method Developer: Administrator Pump A: L-2130

Pump A Solvent A: HexanePump A Solvent B: 10/90 iPrOH/HexanePump A Solvent C: iPrOHPump A Solvent D: iPrOHMethod Description:Pump A Solvent D: iPrOH

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %
1	11.23	427089	49.482
2	13.41	436037	50.518
		863126	100.000

Peak rejection level: 0

5

D-2000: Isocrati Series: 3026

Page Indicator: $S_{167/4}$

Calculation	Method:	AREA%	

No.	RT	Area	Area %
1 2	21.95 28.56	95837 1270464	7.014 92.986
		1366301	100.000

D-2000: Isocrati Series: 3004 c HPLC

Processing Method: 10/90 iPrOH/Hexane Column Type: OD-H 2 Method Developer: Administrator Pump A: L-2130

Pump A Solvent A: Hexane Pump A Solvent C: iPrOH Pump A Solvent B: 10/90 iPrOH/Hexane Pump A Solvent D: iPrOH

Method Description:

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %
1	21.63	5484438	49.817
2	28.45	5524810	50.183
		11009248	100.000

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%

RT	Area	Area %
9.49	213581	5.956
12.08	3372492	94.044
· · ·	3586073	100.000
	9.49	9.4921358112.083372492

Peak rejection level: 0

D-2000: Isocrati Series: 3027

Page Indicator: $S_{170/4}$

D-2000: Isocrati Series: 3028 c HPLC

D-2000 Elite HPLC System Manager Report

Chrom Type: HPLC Channel : 1

Retention Time (min)

Processing Method: 10/90 iPrOH/Hexane

Column Type: OD-H 2 Method Developer: Administrator Pump A: L-2130

Pump A Solvent A: HexanePump A Solvent B: 10/90 iPrOH/HexanePump A Solvent C: iPrOHPump A Solvent D: iPrOH

Method Description:

Intensity (mV)

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %
1 2	9.47 12.13	675850 681852	49.779 50.221
		1357702	100.000

Peak rejection level: 0

Page Indicator: $$171 \\ 1 / 4$

D-2000: Isocrati Series: 3079 c HPLC

D-2000 Elite HPLC System Manager Report

Processing Method: 10/90 iPrOH/Hexane Column Type: OD-H 2 Method Developer: Administrator

Pump A: L-2130

Pump A Solvent A: HexanePump A Solvent B: 10/90 iPrOH/HexanePump A Solvent C: iPrOHPump A Solvent D: iPrOH

Method Description:

Chrom Type: HPLC Channel : 1

Peak Quantit	tation:	AREA
Calculation	Method:	AREA%

No.	RT	Area	Area %
1 2	13.73 17.52		5.941 94.059
	t	5214108	100.000

D-2000: Isocrati Series: 3081 c HPLC

Peak rejection level: 0

Page Indicator: $S_{173/3}$

c HPLC **D-2000 Elite HPLC System Manager Report** Reported Date and Time: 2020/10/16 Analyzed Date and Time: 2020/10/16 23:15 21:24 Processed Date and Time: 2020/10/16 23:15 Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3097\ Processing Method: 05/95 iPrOH/Hexane Series: 3097 System (acquisition): Sys 1 Vial Number: 143 Application(data): Isocratic HPLC Vial Type: UNK Sample Name: MUR-326-2-OZ3-5% Volume: 10.0 ul Injection from this vial: 1 of 1 Sample Description: Chrom Type: HPLC Channel : 1 40 17.56, 30 Intensity (mV) 20 80, 159200 10 32. 0 52 54 42 44 46 48 50 38 40 34 36 30 32

Report Name: modified System: Sys 1

Retention Time (min)

Processing Method: 05/95 iPrOH/Hexane Column Type: OD-H 2 Method Developer: Administrator Pump A: L-2130

Pump A Solvent A: HexanePump A Solvent B: 10/90 iPrOH/HexanePump A Solvent C: iPrOHPump A Solvent D: iPrOH

Method Description:

D-2000: Isocrati Series: 3097

Chrom Type: HPLC Channel : 1 Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %
1 2	32.80 47.56	159200 2696784	5.574 94.426
		2855984	100.000

No.	RT	Area	Area %
1 2	32.79 47.96	569684 570629	49.959 50.041
		1140313	100.000

Peak rejection level: 0

Page Indicator: S175/4

Peak rejection level: 0

Page Indicator: \$176 / 4

D-2000: Isocrati Series: 3101 c HPLC **D-2000 Elite HPLC System Manager Report** Reported Date and Time: 2020/10/31 Analyzed Date and Time: 2020/10/31 16:49 15:25 Processed Date and Time: 2020/10/31 16:48 Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3101\ Processing Method: 10/90 iPrOH/Hexane Series: 3101 System (acquisition): Sys 1 Vial Number: 148 Application(data): Isocratic HPLC Vial Type: UNK Sample Name: MUR-332-rac-OZ3-10% Volume: 10.0 ul Injection from this vial: 1 of 1 Sample Description: Chrom Type: HPLC Channel : 1 30 25 Intensity (mV 20 15 24. 10 5 0 TITTTT 28 25 26 27 22 23 24 20 21 19 17 18 Retention Time (min) Processing Method: 10/90 iPrOH/Hexane

Method Developer: Administrator Column Type: OD-H 2 Pump A: L-2130

Pump A Solvent A: Hexane Pump A Solvent C: iPrOH

Pump A Solvent B: 10/90 iPrOH/Hexane Pump A Solvent D: iPrOH

Report Name: modified System: Sys 1

Method Description:

Chrom Type: HPLC Channel : 1

Peak Quantitation: AREA Calculation Method: AREA%

No.	RT	Area	Area %
1 2	19.55 24.56	699405 691632	50.279 49.721
		1391037	100.000