Synthesis of Chiral α-Amino Tertiary Boronates via the Catalytic Enantioselective Nucleophilic Borylation of Dialkyl Ketimines

Koji Kubota, ${ }^{*}{ }^{\dagger},{ }^{\ddagger}$ Daiyo Miura, ${ }^{\dagger}$ Takumi Takeuchi, ${ }^{\dagger}$ Shun Osaki, ${ }^{\dagger}$ and Hajime Ito* ${ }^{\dagger}{ }^{\dagger}$,
${ }^{\dagger}$ Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan, FAX: +81-(0)11-706-6561
${ }^{\ddagger}$ Institute for Chemical Reaction Design and Discovery (WPI-ICRD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
\section*{Corresponding Author}
kbt@eng.hokudai.ac.jp, hajito@eng.hokudai.ac.jp

Table of Contents

1. General and Materials
2. Substrate Synthesis
3. General Experimental Procedures for Borylation of Ketimines
4. Experimental Procedures for the Synthesis of Peptydilboronic Acid Derivatives
5. Additional Experimental Results
6. Determination of Absolute Configuration of Borylation Product
7. Plausible Catalytic Cycle
8. DFT Calculations
9. Analysis for Non-Covalent Interactions in the Transition States
10. Reference
11.HPLC Charts
11. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

1. General and Materials

All reactions were performed in oven-dried glassware using conventional Schlenk techniques under a static pressure of nitrogen or argon. Materials were obtained from commercial suppliers and used as received unless otherwise noted. Dry solvents for the reactions were purchased from commercial suppliers, degassed via three freeze-pump-thaw cycles, and further dried over molecular sieves (MS4A) prior to use. 1,3-Dicyclohexylimidazolium chloride (ICy•HCl, >98.0\%) and $\mathrm{K}(\mathrm{O}-t-\mathrm{Bu})$ ($>97.0 \%$) purchased from Tokyo Chemical Industry Co. The chiral N-heterocyclic carbene (NHC) ligand precursors (R, S)-L1, $(R, S)-\mathbf{L 2},(R, S)$ - $\mathbf{L 3}$ were purchased from Strem Chemicals, Inc. [(S, S)-L4$(S, S)-\mathbf{L} 7^{1},(S, S)-\mathbf{L} \mathbf{8}^{2},(S, S)-\mathbf{L 9}{ }^{2}$ and $\left.(R, R)-\mathbf{L 1 0}{ }^{3}\right]$ were synthesized according to the literature. (R) -DTBM-SEGPHOS [(R)-L11] was purchased from Tokyo Chemical Industry Co. (R, R)-Quinox P^{*} [(R, R)-L12] was obtained from Nippon Chemical Industrial Co. Silica Gel $60 \mathrm{~N}(40-100 \mu \mathrm{~m}$, spherical, neutral) purchased from Kanto Chemical Co. was used as received. NMR spectra were recorded on JEOL JNM-ECX400P, ECS-400 (${ }^{1} \mathrm{H}: 392$ or $396 \mathrm{MHz},{ }^{13} \mathrm{C}: 99$ or 100 MHz), and JNM-ECA600 $\left({ }^{13} \mathrm{C}\right.$: 151 MHz). Tetramethylsilane ($\delta=0.00 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR) and $\mathrm{CDCl}_{3}\left(\delta=77.0 \mathrm{ppm}\right.$ for ${ }^{13} \mathrm{C}$ NMR) were employed as external standards. $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was used as an external standard for ${ }^{11} \mathrm{~B}$ NMR analysis. $\mathrm{D}_{3} \mathrm{PO}_{4}$ in $\mathrm{D}_{2} \mathrm{O}$ was used as an external standard for ${ }^{31} \mathrm{P}$ NMR analysis. Multiplicity was reported as follows: $\mathrm{s}=$ singlet, brs $=$ broad singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, sept $=$ septet, $m=$ multiplet. 1,1,2,2-Tetrachloroethane was used as an internal standard for determining NMR yield. NMR yield was determined by quantitative ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the crude reaction mixture. GLC analyses were conducted with a Shimadzu GC-2014 or GC-2025 equipped with ULBON HR-1 glass capillary column (Shinwa Chemical Industries) and an FID detector. Recycle preparative gel chromatography (GPC) was conducted with JAILC-9101 using CHCl_{3} as an eluent. FTIR spectra were recorded on a JASCO FT IR 4700 spectrometer. Single crystal X-ray structural analyses were carried out on an XtaLAB PRO MM007 diffractometer using graphite monochromated $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation. The structure was solved by direct methods and expanded using Fourier techniques. Non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. All calculations were performed using the Olex2 crystallographic software package except for refinement, which was performed using SHELXL-2013. High-resolution mass spectra were recorded at the Global Facility Center for Instrumental Analysis, Hokkaido University.

2. Substrate Synthesis

List of the substrate used in this study.

1a

1b

1c

1d

$1 e$

$1 f$

1k

1 g

11

1h

1 m

$1 i$

1j

1n

The spectroscopic data of $\mathbf{1 a}$ and $\mathbf{1 e}$ were consistent with literature values. ${ }^{4,5}$ The E / Z configurations of other substrates were deduced relative to these compounds.

Procedure A.

(E)- N-(1-Cyclohexylethylidene)- P, P-diphenylphosphinic amide (1a).

1a
$\mathrm{MeLi}\left(\mathrm{Et}_{2} \mathrm{O} 1.1 \mathrm{M}\right)(9.1 \mathrm{~mL}, 10 \mathrm{mmol}, 1.0$ equiv) was added dropwise to a suspension of cyclohexanecarbonitrile ($1.2 \mathrm{~mL}, 10 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere. The reaction mixture was allowed to warm to room temperature and stirred for 2 h . Then, the reaction mixture was cooled down to $-78^{\circ} \mathrm{C}$, and diphenyl phosphinic chloride $(1.91 \mathrm{~mL}, 10 \mathrm{mmol}$, 1.0 equiv) was added dropwise to the mixture. The reaction mixture was kept at $-78^{\circ} \mathrm{C}$ and stirred
overnight. The mixture was directly filtered through a short silica-gel column with EtOAc as an eluent, and then the resultant solution was concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography with $\mathrm{EtOAc} / \mathrm{Hex}$ eluent (100:0 to 30:70). Further purification was conducted by GPC to afford the corresponding ketimine $\mathbf{1 a}(280.5 \mathrm{mg}, 0.86 \mathrm{mmol}$, 9% yield) as a white solid. The spectroscopic data were matched in those reported. ${ }^{4}$
${ }^{1} \mathrm{H}$ NMR ($\left.392 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.17-1.46(\mathrm{~m}, 5 \mathrm{H}), 1.71-1.95(\mathrm{~m}, 5 \mathrm{H}), 2.35-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.39-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.89-7.94(\mathrm{~m}, 4 \mathrm{H}) . \operatorname{HRMS}-E I(\mathrm{~m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NOP}$, 325.1596; found, 325.1598 .

(E)-N-(1-Cyclohexylethylidene)-P,P-di-m-tolylphosphinic amide (1b).

1b
1b was prepared from the corresponding nitrile according to procedure A. The product $\mathbf{1 b}$ was obtained in 26% yield (373.7 mg , 1.1 mmol , yellow oil) from the corresponding nitrile (4.0 mmol).
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 1.19-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.94(\mathrm{~m}, 5 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 2.38-2.42(\mathrm{~m}$, $1 \mathrm{H}), 2.45(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.24-1.34(\mathrm{~m}, 4 \mathrm{H}), 767-7.76(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$: $21.5\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{~d}, J=13.4 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 25.99\left(\mathrm{CH}_{2}\right), 26.04\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 52.1(\mathrm{~d}, J=20.1 \mathrm{~Hz}$, $C H), 128.2(\mathrm{~d}, J=13.4 \mathrm{~Hz}, C \mathrm{H}), 128.7(\mathrm{~d}, J=8.6 \mathrm{~Hz}, C \mathrm{H}), 132.0(\mathrm{~d}, J=5.8 \mathrm{~Hz}, C \mathrm{H}), 132.1(\mathrm{CH})$, $134.9(\mathrm{~d}, J=130.3 \mathrm{~Hz}, C), 138.1(\mathrm{~d}, J=13.4 \mathrm{~Hz}, C), 195.4(\mathrm{~d}, J=11.5 \mathrm{~Hz}, C) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(159$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 18.4$. HRMS-EI (m/z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NOP}, 353.1909$; found, 353.1908. IR (neat, $\left.\mathrm{cm}^{-1}\right)$: $1187(\mathrm{P}=\mathrm{O}), 1652(\mathrm{C}=\mathrm{N})$.

(E)-N-(1-Cyclohexylethylidene)-P,P-di-o-tolylphosphinic amide (1c).

1c
1c was prepared from the corresponding nitrile according to procedure A. The product 1c was obtained in 4% yield ($187.4 \mathrm{mg}, 0.50 \mathrm{mmol}$, white solid) from the corresponding nitrile (13.6 mmol).
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 1.22-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.94(\mathrm{~m}, 5 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 2.34-2.39(\mathrm{~m}$, $1 \mathrm{H}), 2.41(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.14-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 2 \mathrm{H}), 8.08$ (ddd, J
$=1.0,7.8,15.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.7\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C H_{3}\right), 25.3(\mathrm{~d}, J=14.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 26.1\left(\mathrm{CH}_{2}\right), 30.3\left(\mathrm{CH}_{2}\right), 52.6(\mathrm{~d}, J=20.8 \mathrm{~Hz}, C \mathrm{H}), 125.4(\mathrm{~d}, J=12.3 \mathrm{~Hz}, \mathrm{CH}), 131.4(\mathrm{~d}, J$ $=12.3 \mathrm{~Hz}, C H), 131.6(\mathrm{~d}, J=1.9 \mathrm{~Hz}, C H), 132.6(\mathrm{~d}, J=123.8 \mathrm{~Hz}, C), 133.4(\mathrm{~d}, J=9.5 \mathrm{~Hz}, C \mathrm{H})$, 141.5 (d, $J=10.3 \mathrm{~Hz}, C), 196.3$ (d, $J=11.3 \mathrm{~Hz}, C) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.159 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ 20.3. HRMS$\mathrm{EI}(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NOP}, 353.1909$; found, 353.1903. mp 95-100 ${ }^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): 1186 $(\mathrm{P}=\mathrm{O}), 1652(\mathrm{C}=\mathrm{N})$.

(E)-N-(3-Methylbutan-2-ylidene)-P,P-di-o-tolylphosphinic amide (1d).

1d
$\mathbf{1 d}$ was prepared from the corresponding nitrile according to procedure A. The product $\mathbf{1 d}$ was obtained in 9% yield ($146.2 \mathrm{mg}, 0.45 \mathrm{mmol}$, white solid) from the corresponding nitrile (5.0 mmol).
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 1.17(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 2.42(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.72$ (h, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 2 \mathrm{H}), 8.09$ (ddd, $J=1.4,5.9$, $13.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $19.9\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 24.9(\mathrm{~d}, J=14.2$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 42.4(\mathrm{~d}, J=20.8 \mathrm{~Hz}, C \mathrm{H}), 125.4(\mathrm{~d}, J=11.3 \mathrm{~Hz}, C \mathrm{H}), 131.4(\mathrm{~d}, J=12.3 \mathrm{~Hz}, C \mathrm{H}), 131.6(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, C \mathrm{H}), 132.5(\mathrm{~d}, J=124.6 \mathrm{~Hz}, C), 133.4(\mathrm{~d}, J=8.5 \mathrm{~Hz}, C \mathrm{H}), 141.5(\mathrm{~d}, J=10.4 \mathrm{~Hz}, C)$, $196.9(\mathrm{~d}, J=11.4 \mathrm{~Hz}, C) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.159 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ 20.4. HRMS-EI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NOP}, 313.1596$; found, 313.1593. mp 108-111 ${ }^{\circ} \mathrm{C}$. IR (neat, $\left.\mathrm{cm}^{-1}\right)$: $1188(\mathrm{P}=\mathrm{O}), 1658(\mathrm{C}=\mathrm{N})$.

(E)-N-(3,3-Dimethylbutan-2-ylidene)-P,P-di-o-tolylphosphinic amide (1e).

1 e
$\mathbf{1 e}$ was prepared from the corresponding nitrile according to procedure A. The product $\mathbf{1 e}$ was obtained in 32% yield ($414.6 \mathrm{mg}, 1.27 \mathrm{mmol}$, white solid) from the corresponding nitrile (4.0 mmol). The spectroscopic data were matched in those reported. ${ }^{5}$
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 1.22(\mathrm{~s}, 9 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 2.43(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.13-7.17(\mathrm{~m}$, $2 \mathrm{H}), 7.26-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{dd}, J=1.8,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{dd}, J=1.4,7.6 \mathrm{~Hz}$, 2H). HRMS-EI (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NOP}, 325.1752$; found, 327.1746 .

(E)-N-(3,3-Dimethylhexan-2-ylidene)- P, P-diphenylphosphinic amide (1f).

$1 f$

1f was prepared from the corresponding nitrile according to procedure A. The product $\mathbf{1 f}$ was obtained in 44% yield ($579.3 \mathrm{mg}, 1.77 \mathrm{mmol}$, white solid) from the corresponding nitrile (4.0 mmol).
${ }^{1} \mathrm{H}$ NMR ($392 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~s}, 6 \mathrm{H}), 1.54-1.58$ $(\mathrm{m}, 2 \mathrm{H}), 2.46(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.38-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.89-7.94(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, ס): $14.8\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{2}\right), 22.1\left(\mathrm{~d}, J=13.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{3}\right), 43.5\left(\mathrm{CH}_{2}\right), 47.3(\mathrm{~d}, J=20.1 \mathrm{~Hz}$, $C), 128.4(\mathrm{~d}, J=12.5 \mathrm{~Hz}, C \mathrm{H}), 131.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C \mathrm{H}), 131.6(\mathrm{~d}, J=9.6 \mathrm{~Hz}, C \mathrm{H}), 135.1(\mathrm{~d}, J=$ 131.2 Hz, C), $197.7(\mathrm{~d}, J=12.4 \mathrm{~Hz}, C) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.159 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ 17.3. $\operatorname{HRMS}-E S I(m / z)$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NOP}, 328.1825$; found, 328.1823. mp 56-61 ${ }^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): $1203(\mathrm{P}=\mathrm{O})$, $1650(\mathrm{C}=\mathrm{N})$.

(E)-P,P-Diphenyl-N-[1-(1-phenylcyclobutyl)ethylidene]phosphinic amide (1g).

1 g
$\mathbf{1 g}$ was prepared from the corresponding nitrile according to procedure A. The product $\mathbf{1 g}$ was obtained in 28% yield ($416.6 \mathrm{mg}, 1.12 \mathrm{mmol}$, white solid) from the corresponding nitrile (4.0 mmol).
${ }^{1} \mathrm{H}$ NMR ($392 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 1.89 (quint, $J=13.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.23 (d, $J=2.0 \mathrm{~Hz}, 3 \mathrm{H}$), $2.50-2.57$ (m, 2H), 2.83-2.90 (m, 2H), 7.17-7.31 (m, 5H), 7.42-7.50 (m, 6H), 7.96 (ddd, $J=1.5,5.9,9.8 \mathrm{~Hz}$, $4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 15.9\left(\mathrm{CH}_{2}\right), 21.9\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 31.9\left(\mathrm{CH}_{2}\right), 59.1(\mathrm{~d}, J=$ $22.1 \mathrm{~Hz}, C), 126.4(\mathrm{CH}), 126.8(\mathrm{CH}), 128.4(\mathrm{CH}), 128.6(\mathrm{~d}, J=8.6 \mathrm{~Hz}, C \mathrm{H}), 131.5(\mathrm{~d}, J=2.8 \mathrm{~Hz}$, $C H), 131.6(\mathrm{~d}, J=8.6 \mathrm{~Hz}, C \mathrm{H}), 134.9(\mathrm{~d}, J=130.3 \mathrm{~Hz}, C), 144.0(C), 193.3(\mathrm{~d}, J=11.5 \mathrm{~Hz}, C)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (159 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right):$ 18.5. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NOPNa}$, 396.1488; found, 396.1486. mp 88-96 ${ }^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): $1204(\mathrm{P}=\mathrm{O}), 1655(\mathrm{C}=\mathrm{N})$.

(E)-P,P-Diphenyl-N-[1-(1-phenylcyclohexyl)ethylidene]phosphinic amide (1h).

1h

1h was prepared from the corresponding nitrile according to procedure A. The product $\mathbf{1 h}$ was obtained in 35% yield ($567.9 \mathrm{mg}, 1.41 \mathrm{mmol}$, white solid) from the corresponding nitrile (4.0 mmol).
${ }^{1} \mathrm{H}$ NMR ($396 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $1.37-1.58(\mathrm{~m}, 6 \mathrm{H}), 2.01-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H})$, 2.31-2.35 (m, 2H), 7.16-7.30 (m, 5H), 7.42-7.52 (m, 6H), 7.92-7.98 (m, 4H). ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 22.9\left(\mathrm{~d}, J=13.4 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 23.0\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{CH}_{2}\right), 34.4\left(\mathrm{CH}_{2}\right), 54.9(\mathrm{~d}, J=20.1 \mathrm{~Hz}, C)$, $126.8(C H), 126.9(C H), 128.5(\mathrm{~d}, J=12.4 \mathrm{~Hz}, C \mathrm{H}), 128.7(C H), 131.5(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C \mathrm{H}), 131.7(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, C \mathrm{H}), 134.6(\mathrm{~d}, J=130.3 \mathrm{~Hz}, C), 143.5(C), 194.5(\mathrm{~d}, J=12.5 \mathrm{~Hz}, C) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(159$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ 18.4. HRMS-EI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NOP}, 401.1909$; found, 401.1897. mp $103-106^{\circ} \mathrm{C}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1198,1211(\mathrm{P}=\mathrm{O}), 1651(\mathrm{C}=\mathrm{N})$.

$N-\{(E)-1-[(3 r, 5 r, 7 r)-A d a m a n t a n-1-\mathrm{y}]]$ ethylidene $\}-P, P$-diphenylphosphinic amide (1i).

$1 i$
$\mathbf{1 i}$ was prepared from the corresponding nitrile according to procedure A . The product $\mathbf{1 i}$ was obtained in 10% yield ($157.0 \mathrm{mg}, 0.42 \mathrm{mmol}$, white solid) from the corresponding nitrile (4.0 mmol).
${ }^{1} \mathrm{H}$ NMR ($392 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $1.75(\mathrm{q}, J=13.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.88(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 6 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H})$, $2.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.38-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.90-7.96(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 21.2$ (d, $\left.J=13.3 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 28.3(\mathrm{CH}), 36.7\left(\mathrm{CH}_{2}\right), 39.5\left(\mathrm{CH}_{2}\right), 45.9(\mathrm{~d}, J=19.8 \mathrm{~Hz}, C), 128.4(\mathrm{~d}, J=12.3$ $\mathrm{Hz}, C H), 131.2\left(\mathrm{~d}, J=2.8 \mathrm{~Hz}, C H_{3}\right), 131.6\left(\mathrm{~d}, J=9.4 \mathrm{~Hz}, C H_{3}\right), 135.3(\mathrm{~d}, J=130.3 \mathrm{~Hz}, C), 197.9(\mathrm{~d}$, $J=11.3 \mathrm{~Hz}, C) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.159 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 17.6$. HRMS-EI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NOP}$, 377.1909; found, 377.1908. mp 170-172 ${ }^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): $1202(\mathrm{P}=\mathrm{O}), 1651(\mathrm{C}=\mathrm{N})$.

(E)- N-(2,2-Dimethylheptan-3-ylidene)- P, P-diphenylphosphinic amide (1k).

1k
$\mathbf{1 k}$ was prepared from the corresponding nitrile according to the procedure A . The product $\mathbf{1 k}$ was obtained in 66% yield ($905.7 \mathrm{mg}, 2.65 \mathrm{mmol}$, white solid) from the corresponding nitrile (4.0 mmol).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(392 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.86(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.38$ (quint, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $1.45-1.53(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.84(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.91-7.96(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 13.7\left(\mathrm{CH}_{3}\right), 23.4\left(\mathrm{CH}_{2}\right), 28.0\left(\mathrm{CH}_{3}\right), 31.3\left(\mathrm{CH}_{2}\right), 35.3\left(\mathrm{~d}, J=11.5 \mathrm{~Hz}, C \mathrm{H}_{2}\right), 44.2(\mathrm{~d}, J=$ $21.1 \mathrm{~Hz}, C), 128.4(\mathrm{~d}, J=12.4 \mathrm{~Hz}, C \mathrm{H}), 131.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C \mathrm{H}), 131.6(\mathrm{~d}, J=8.6 \mathrm{~Hz}, C \mathrm{H}), 135.6$ (d, $J=132.2 \mathrm{~Hz}, C), 200.8(\mathrm{~d}, J=12.4 \mathrm{~Hz}, C) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.159 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ 15.6. HRMS-EI (m/z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NOP}, 341.1909$; found, 341.1912. mp $67-70{ }^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): 1199 $(\mathrm{P}=\mathrm{O}), 1650(\mathrm{C}=\mathrm{N})$.

(E)-N-(4-Methylpentan-2-ylidene)- P, P-diphenylphosphinic amide (11).

11
11 was prepared from the corresponding nitrile according to procedure A. The product $\mathbf{1 l}$ was obtained in 25% yield ($302.0 \mathrm{mg}, 1.0 \mathrm{mmol}$, white solid) from the corresponding nitrile (4.0 mmol).
${ }^{1} \mathrm{H}$ NMR ($392 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $0.94(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 2.17-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.45(\mathrm{~m}, 5 \mathrm{H})$, 7.39-7.48 (m, 6H), 7.89-7.95 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $22.7\left(\mathrm{CH}_{3}\right), 26.3(\mathrm{CH}), 27.6$ (d, $\left.J=15.4 \mathrm{~Hz}, C H_{3}\right), 53.2\left(\mathrm{~d}, J=28.1 \mathrm{~Hz}, C H_{2}\right), 128.4(\mathrm{~d}, J=12.4 \mathrm{~Hz}, C \mathrm{H}), 131.4(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $C H), 131.7(\mathrm{~d}, J=9.5 \mathrm{~Hz}, C H), 134.9(\mathrm{~d}, J=130.3 \mathrm{~Hz}, C), 191.9(\mathrm{~d}, J=10.6 \mathrm{~Hz}, C) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 22.3. HRMS-EI (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NOP}, 299.1439$; found, 299.1431. mp 166-168 ${ }^{\circ} \mathrm{C}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1180(\mathrm{P}=\mathrm{O}), 1555(\mathrm{C}=\mathrm{N})$.

Procedure B.

(E)-N-(1-Cyclopropylethylidene)-P,P-diphenylphosphinic amide (1j).

1-Cyclopropylethan-1-one ($841.0 \mathrm{mg}, 10 \mathrm{mmol}, 1.0$ equiv) was added to a stirred solution of $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}\left(1.04 \mathrm{~g}, 15 \mathrm{mmol}, 1.5\right.$ equiv) and $\mathrm{NaOAc}\left(1.23 \mathrm{~g}, 15 \mathrm{mmol}, 1.5\right.$ equiv) in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$ $(1 / 1,10 \mathrm{~mL})$, and then heated to reflux. When the reaction was completed, the mixture was cooled down to ambient temperature. The reaction mixture was then diluted with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ saturated aqueous solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ three times, and dried over MgSO_{4}. After filtration, the obtained oxime was dried under vacuum overnight and used directly for the next process without purification. A solution of chlorodiphenylphosphine ($1.04 \mathrm{~mL}, 6.0 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added to a stirred solution of the oxime ($597.5 \mathrm{mg}, 6.0 \mathrm{mmol}, 1.0$ equiv) and triethylamine ($836 \mu \mathrm{~L}, 6.0$ mmol, 1.0 equiv) in petroleum ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1,9 \mathrm{~mL})$ over 1 h at $-45^{\circ} \mathrm{C}$. After the addition was finished, the cooling bath was removed, and the reaction temperature was gradually increased. The mixture was then allowed to stir overnight at ambient temperature. The mixture was directly filtered through a short silica-gel column with EtOAc as an eluent; then the resultant solution was concentrated under reduced pressure. The residue was purified by GPC to afford the corresponding ketimine $\mathbf{1} \mathbf{j}$ $(130.2 \mathrm{mg}, 0.46 \mathrm{mmol}, 8 \%$ yield) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($\left.392 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.99-1.04(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{~d}$, $J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.38-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.83-7.89(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.99 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 12.3\left(\mathrm{CH}_{2}\right)$, $22.7(\mathrm{~d}, J=24.6 \mathrm{~Hz}, C \mathrm{H}), 26.9\left(\mathrm{~d}, J=13.3 \mathrm{~Hz}, C_{3}\right), 128.3(\mathrm{~d}, J=12.3 \mathrm{~Hz}, C \mathrm{H}), 131.2(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, C \mathrm{H}), 131.4(\mathrm{~d}, J=8.5 \mathrm{~Hz}, C H), 135.1(\mathrm{~d}, J=131.3 \mathrm{~Hz}, C), 194.1(\mathrm{~d}, J=7.5 \mathrm{~Hz}, C) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 18.4. HRMS-EI (m / z): $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NOP}, 283.1126$; found, 283.1120 . mp 118-122 ${ }^{\circ} \mathrm{C}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1183,1194(\mathrm{P}=\mathrm{O}), 1652(\mathrm{C}=\mathrm{N})$.

(E)-P,P-Diphenyl- N-(4-phenylbutan-2-ylidene)phosphinic amide (1m).

1m
$\mathbf{1 m}$ was prepared from the corresponding ketone according to procedure B. The product $\mathbf{1 m}$ was obtained in 7% yield ($127.7 \mathrm{mg}, 0.37 \mathrm{mmol}$, white solid) from the corresponding oxime (5.0 mmol). The spectroscopic data were matched in those reported ${ }^{6}$.
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 2.47(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.38-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.83-7.88(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.99 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$: $27.3\left(\mathrm{~d}, J=14.2 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 31.7\left(\mathrm{CH}_{2}\right), 45.1\left(\mathrm{~d}, J=20.7 \mathrm{~Hz}, C_{2}\right), 126.2(\mathrm{CH}), 128.31(\mathrm{CH}), 128.33$ $(C H), 128.5(\mathrm{~d}, J=11.4 \mathrm{~Hz}, C H), 131.4(\mathrm{~d}, J=2.8 \mathrm{~Hz}, C H), 131.6(\mathrm{~d}, J=9.4 \mathrm{~Hz}, C \mathrm{H}), 134.6(\mathrm{~d}, J=$ $130.3 \mathrm{~Hz}, C), 140.1(C), 190.8(\mathrm{~d}, J=10.3 \mathrm{~Hz}, C)$. HRMS-EI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NOP}$, 347.1439; found, 347.1430.

(E)-N-(Butan-2-ylidene)-P,P-diphenylphosphinic amide (1n).

1n was prepared from the corresponding ketone according to procedure B. The product $\mathbf{1 n}$ was obtained in 5% yield ($102.8 \mathrm{mg}, 0.38 \mathrm{mmol}$, white solid) from the corresponding oxime (8.0 mmol).
${ }^{1} \mathrm{H}$ NMR ($\left.392 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.20(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.58(\mathrm{q}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.39-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.90-7.96(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($99 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $10.2\left(\mathrm{CH}_{3}\right), 26.9(\mathrm{~d}$, $\left.J=14.2 \mathrm{~Hz}, C H_{3}\right), 37.4\left(\mathrm{~d}, J=20.8 \mathrm{~Hz}, C H_{2}\right), 128.5(\mathrm{~d}, J=12.3 \mathrm{~Hz}, C \mathrm{H}), 131.4(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C H)$, $131.7(\mathrm{~d}, J=9.5 \mathrm{~Hz}, C H), 135.0(\mathrm{~d}, J=131.3 \mathrm{~Hz}, C), 192.8(\mathrm{~d}, J=10.4 \mathrm{~Hz}, C) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(162$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ 22.4. HRMS-EI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NOP}$, 271.1126; found, 271.1121. mp $161-168^{\circ} \mathrm{C}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1179(\mathrm{P}=\mathrm{O}), 1557(\mathrm{C}=\mathrm{N})$.

3. General Experimental Procedures for Borylation of Ketimines

$\mathrm{CuCl}(1.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%),(R, S)-\mathrm{L} 1(4.4 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, and bis(pinacolato)diboron $(76.2 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) were placed in a vial with a screw cap containing a Teflon ${ }^{\circledR}$-coated rubber septum under air. The vial was put in a glove box, and then $\mathrm{Na}(\mathrm{O}-$ $t-\mathrm{Bu})(19.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) was also added to the vial in the glove box under an argon atmosphere. After the reaction, the vial was removed from the glove box, THF (0.6 mL) was added to the vial via a syringe. The resulting mixture was stirred for 10 min at room temperature, then a THF solution (1.4 mL) of ketimine $\mathbf{1 a}(65.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) was added dropwise to the vial. i $\operatorname{PrOH}(31 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.0$ equiv) was added to the reaction mixture. After the resulting mixture was stirred at room temperature for 2 h , the reaction mixture was analyzed by GC to check the completeness of the reaction. The mixture was directly filtered through a short silica-gel column with EtOAc as an eluent; then the resultant solution was concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography with hexane/EtOAc eluent (100:0 to $40: 60$). After silica-gel column purification, the mixture was further purified by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ three times to remove pinacol. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was dried over MgSO_{4}. After filtration, the corresponding product $\mathbf{3 a}$ was obtained in 86% yield ($78.0 \mathrm{mg}, 0.17 \mathrm{mmol}$) as a colorless oil. The racemic sample was prepared using ICy $\cdot \mathrm{HCl}$ for the ligand instead of $(R, S)-\mathbf{L} \mathbf{1}$.

(R)-N-[1-Cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]-P,P-

 diphenylphosphinic amide [(R)-3a].
(R)-3a

The reaction was conducted with $65.1 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 a}$. The product (R) - $\mathbf{3 a}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 100:0 $\left.\rightarrow 40: 60\right)$ and extracted with $\mathrm{H}_{2} \mathrm{O}$ to remove pinacol, and dried over MgSO_{4}. After filtration, (R)-3a was obtained in 86% yield (78.0 mg , 0.17 mmol , colorless oil) with 89% ee.
${ }^{1} \mathrm{H}$ NMR (396 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 1.01-1.26(\mathrm{~m}, 5 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H}) 1.30(\mathrm{~s}, 6 \mathrm{H}), 1.44-$ $1.50(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.89(\mathrm{~m}, 5 \mathrm{H}), 3.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.80-7.88(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (99 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 19.6\left(\mathrm{~d}, J=3.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 26.76\left(\mathrm{CH}_{2}\right), 26.81(\mathrm{~d}$, $\left.J=1.9 \mathrm{~Hz}, C \mathrm{H}_{2}\right), 28.5\left(\mathrm{~d}, J=42.6 \mathrm{~Hz}, C \mathrm{H}_{2}\right), 47.5(\mathrm{~d}, J=4.4 \mathrm{~Hz}, C \mathrm{H}), 49.5(\mathrm{br}, \mathrm{B}-C), 84.2(C), 128.2$ $(C H), 128.4(C H), 131.3(C H), 131.8(\mathrm{~d}, J=9.5 \mathrm{~Hz}, C H), 132.0(\mathrm{~d}, J=9.4 \mathrm{~Hz}, C \mathrm{H}), 135.3(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, C), 136.6(\mathrm{~d}, J=5.7 \mathrm{~Hz}, C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(127 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 33.1 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(159 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right):$ 21.9. $\mathrm{HRMS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{37}{ }^{11} \mathrm{BNO}_{3} \mathrm{PNa}, 476.2501$; found, 476.2496. $[\alpha]_{\mathrm{D}}{ }^{21.0}-6.59$ (c 1.10 in $\mathrm{CHCl}_{3}, 89 \%$ ee $)$. Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane $=10 / 90,0.5$ $\mathrm{mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=11.97 \mathrm{~min}$., R isomer: $t_{R}=15.01 \mathrm{~min}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1200(\mathrm{P}=\mathrm{O})$.

(R)-N-[1-Cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]-P,P-di-m-

tolylphosphinic amide [(R)-3b].

$(R)-\mathbf{3 b}$
The reaction was conducted with $71 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 b}$ for 2 h . The product $(R) \mathbf{- 3 b}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 100:0 $\left.\rightarrow 40: 60\right)$ and extracted with $\mathrm{H}_{2} \mathrm{O}$ to remove pinacol, and dried over MgSO_{4}. After filtration, (R)-3b was obtained in 74% yield (70.6 mg , 0.15 mmol , colorless oil) with 90% ee.
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 1.01-1.24(\mathrm{~m}, 5 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}), 1.43-$ $1.50(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.94(\mathrm{~m}, 5 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 3.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.57-7.62$ (m, 2H), $7.70(\mathrm{dd}, J=4.5,12.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $19.5\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C H_{3}\right)$,
$21.5\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 26.76\left(\mathrm{CH}_{2}\right), 26.82\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 28.4(\mathrm{~d}, J=47.9 \mathrm{~Hz}$, $C H_{2}$), $47.5(\mathrm{~d}, J=3.9 \mathrm{~Hz}, C H), 49.5(\mathrm{br}, \mathrm{B}-C), 84.2(C), 128.1(\mathrm{~d}, J=3.9 \mathrm{~Hz}, C H), 128.2(\mathrm{~d}, J=3.8$ $\mathrm{Hz}, C H), 128.8(\mathrm{~d}, J=10.6 \mathrm{~Hz}, C H), 128.9(\mathrm{~d}, J=10.5 \mathrm{~Hz}, C H), 131.98(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C H), 132.01$ (d, $J=2.8 \mathrm{~Hz}, C H), 135.2(\mathrm{~d}, J=13.4 \mathrm{~Hz}, C), 136.5(\mathrm{~d}, J=11.5 \mathrm{~Hz}, C), 138.0(\mathrm{~d}, J=12.4 \mathrm{~Hz}, C)$. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($127 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 33.5. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (159 MHz, $\mathrm{CDCl}_{3}, \delta$): 22.3. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{41}{ }^{11} \mathrm{BNO}_{3} \mathrm{PNa}$, 504.2814; found, 504.2814. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25.1}+1.24$ (c 1.45 in $\mathrm{CHCl}_{3}, 90 \%$ ee). Daicel CHIRALPAK $®$ OZ-3, 2-PrOH/Hexane $=10 / 90,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=10.21 \mathrm{~min} ., R$ isomer: $t_{R}=11.23 \mathrm{~min}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1193(\mathrm{P}=\mathrm{O})$.

(R)-N-[1-Cyclohexyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]-P,P-di-o-

 tolylphosphinic amide $[(R)-3 c]$.
(R)-3c

The reaction was conducted with $69.2 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 c}$ for 3 h . The product $(R)-\mathbf{3 a}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}, 100: 0 \rightarrow 80: 20\right)$ and obtained in 92% yield ($86.3 \mathrm{mg}, 0.18 \mathrm{mmol}$, colorless oil) with 95% ee.
${ }^{1} \mathrm{H}$ NMR (396 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 1.03-1.24(\mathrm{~m}, 5 \mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.60-$ $1.91(\mathrm{~m}, 6 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{q}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53(\mathrm{ddd}, J=1.0,7.9,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{ddd}, J=1.2,7.9,15.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (99 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 20.0\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C H_{3}\right), 21.7\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C H_{3}\right), 22.0\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 25.0$ $\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 26.76\left(\mathrm{CH}_{2}\right), 26.84\left(\mathrm{CH}_{2}\right), 28.7\left(\mathrm{~d}, J=64.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 48.1(\mathrm{~d}, J=3.8 \mathrm{~Hz}, \mathrm{CH})$, 49.6 (br, B-C), $84.1(C), 124.9(\mathrm{~d}, J=12.3 \mathrm{~Hz}, C \mathrm{H}), 125.1(\mathrm{~d}, J=12.3 \mathrm{~Hz}, C \mathrm{H}), 131.19(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, C \mathrm{H}), 131.23(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C \mathrm{H}), 131.5(\mathrm{~d}, J=12.3 \mathrm{~Hz}, C H), 131.7(\mathrm{~d}, J=11.3 \mathrm{~Hz}, C H), 132.9$ (d, $J=11.3 \mathrm{~Hz}, C \mathrm{H}), 133.61(\mathrm{~d}, J=29.2 \mathrm{~Hz}, C), 133.67(\mathrm{~d}, J=10.4 \mathrm{~Hz}, C H), 134.8(\mathrm{~d}, J=32.2 \mathrm{~Hz}$, $C), 142.0(\mathrm{~d}, J=9.4 \mathrm{~Hz}, C), 142.1(\mathrm{~d}, J=10.4 \mathrm{~Hz}, C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(127 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 33.6$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($159 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 27.2. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]{ }^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{41}{ }^{11} \mathrm{BNO}_{3} \mathrm{PNa}$, 504.2814; found, 504.2814. [$\alpha]_{\mathrm{D}}^{23.6}-26.5$ (c 0.26 in $\mathrm{CHCl}_{3}, 95 \%$ ee). Daicel CHIRALPAK® OZ-3, $2-\mathrm{PrOH} /$ Hexane $=10 / 90,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=8.77 \mathrm{~min} ., R$ isomer: $t_{R}=9.57 \mathrm{~min} . \mathrm{IR}$ (neat, cm^{-1}): $1192(\mathrm{P}=\mathrm{O})$.
(R)- N-[3-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-yl]-P,P-di-otolylphosphinic amide [(R)-3d].

(R)-3d

The reaction was conducted with $63.7 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 d}$ for 2 h . The product $(R)-\mathbf{3 d}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}, 100: 0 \rightarrow 80: 20\right)$ and extracted with $\mathrm{H}_{2} \mathrm{O}$ to remove pinacol, and dried over MgSO_{4}. After filtration, (R)-3d was obtained in 91% yield (81.8 $\mathrm{mg}, 0.19 \mathrm{mmol}$, colorless oil) with 97% ee.
${ }^{1} \mathrm{H}$ NMR ($\left.396 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 6 \mathrm{H}), 1.27$ $(\mathrm{s}, 6 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H}), 1.93-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 2.75(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-$ $7.24(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{ddd}, J=1.4,7.9,11.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{ddd}, J=1.2,5.9,13.9$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 18.3\left(\mathrm{CH}_{3}\right), 18.7\left(\mathrm{CH}_{3}\right), 19.7\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 21.8(\mathrm{~d}$, $\left.J=3.9 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 22.0\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 37.6(\mathrm{~d}, J=4.8 \mathrm{~Hz}, \mathrm{CH}), 49.8$ (br, B-C), $84.1(C), 124.9(\mathrm{~d}, J=13.4 \mathrm{~Hz}, C \mathrm{H}), 125.1(\mathrm{~d}, J=13.5 \mathrm{~Hz}, C \mathrm{H}), 131.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C \mathrm{H})$, $131.3(\mathrm{~d}, J=2.0 \mathrm{~Hz}, C \mathrm{H}), 131.5(\mathrm{~d}, J=11.5 \mathrm{~Hz}, C \mathrm{H}), 131.7(\mathrm{~d}, J=11.5 \mathrm{~Hz}, C \mathrm{H}), 132.9(\mathrm{~d}, J=11.5$ $\mathrm{Hz}, C \mathrm{H}), 133.6(\mathrm{~d}, J=25.9 \mathrm{~Hz}, C), 133.7(\mathrm{~d}, J=10.5 \mathrm{~Hz}, C \mathrm{H}), 134.8(\mathrm{~d}, J=27.8 \mathrm{~Hz}, C), 141.9(\mathrm{~d}, J$ $=9.6 \mathrm{~Hz}, C), 142.1(\mathrm{~d}, J=9.6 \mathrm{~Hz}, C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(127 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 33.1 \cdot{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(159$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ 27.2. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{37}{ }^{11} \mathrm{BNO}_{3} \mathrm{PNa}, 464.2501$; found, 464.2501. $[\alpha]_{\mathrm{D}}{ }^{27.4}+1.44$ (c 1.08 in $\mathrm{CHCl}_{3}, 97 \%$ ee). Daicel CHIRALPAK ${ }^{8}$ OZ-3, 2-PrOH/Hexane $=$ $10 / 90,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=9.57 \mathrm{~min} ., R$ isomer: $t_{R}=10.16 \mathrm{~min}$. IR (neat, cm^{-1}): 1191 $(\mathrm{P}=\mathrm{O})$.

(R)-N-[3,3-Dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-yl]-P,P-di-o-

 tolylphosphinic amide [(R)-3e].
(R)-3e

The reaction was conducted with $63.6 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 e}$ for 20 h . The product $(R)-\mathbf{3 e}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}, 100: 0 \rightarrow 80: 20\right)$ and obtained in 85% yield ($74.9 \mathrm{mg}, 0.16 \mathrm{mmol}$, white solid) with 99% ee.
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, $2.50(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{tq}, J=1.4,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.66$ (ddd, J $=1.3,7.8,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{ddd}, J=1.4,7.8,11.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 18.0$ (d, $\left.J=2.9 \mathrm{~Hz} \mathrm{CH}_{3}\right), 21.86\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 21.94\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3}\right)$, $26.5\left(\mathrm{CH}_{3}\right), 37.2(\mathrm{~d}, J=4.7 \mathrm{~Hz}, C), 52.7(\mathrm{br}, \mathrm{B}-C), 84.2(C), 124.6(\mathrm{~d} J=12.5 \mathrm{~Hz}, C \mathrm{H}), 125.1(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}, C H), 131.1(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C H), 131.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C \mathrm{H}), 131.5(\mathrm{~d}, J=7.7 \mathrm{~Hz}, C \mathrm{H}), 131.6$ (d, $J=7.7 \mathrm{~Hz}, C H), 132.9(\mathrm{~d}, J=10.5 \mathrm{~Hz}, C H), 133.5(\mathrm{~d}, J=10.5 \mathrm{~Hz}, C H), 133.9(\mathrm{~d}, J=28.8 \mathrm{~Hz}, C)$, $135.1(\mathrm{~d}, J=29.7 \mathrm{~Hz}, C), 141.5(\mathrm{~d}, J=9.5 \mathrm{~Hz}, C), 142.1(\mathrm{~d}, J=10.6 \mathrm{~Hz}, C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (127 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 33.3 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($159 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 26.9. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{40}{ }^{11} \mathrm{BNO}_{3} \mathrm{P}, 456.2839$; found, 456.2831 . $[\alpha]_{\mathrm{D}}{ }^{23.3}-11.68$ (c 1.01 in $\mathrm{CHCl}_{3}, 99 \%$ ee). Daicel CHIRALPAK $®$ IA-3, 2-PrOH $/ \mathrm{Hexane}=8 / 92,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=48.21 \mathrm{~min} ., R$ isomer: $t_{R}=51.56 \mathrm{~min} . \mathrm{mp} 114-120^{\circ} \mathrm{C}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1191(\mathrm{P}=\mathrm{O})$.
(\boldsymbol{R})- N-[3,3-Dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)hexan-2-yl]-P,Pdiphenylphosphinic amide $[(R)-3 f]$.

(R)-3f

The reaction was conducted with $64.8 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 f}$ for 3 h . The product (R) - $\mathbf{3 f}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 100:0 $\left.\rightarrow 50: 50\right)$ and extracted with $\mathrm{H}_{2} \mathrm{O}$ to remove pinacol, and dried over MgSO_{4}. After filtration, (R) - $\mathbf{3 f}$ was obtained in 82% yield (73.9 mg , 0.16 mmol , colorless oil) with 99% ee.
${ }^{1} \mathrm{H}$ NMR ($\left.392 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 0.91(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.955(\mathrm{~s}, 3 \mathrm{H}), 0.961(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H})$, $1.21-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H}), 3.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.79-7.89$ $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(99 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 15.3\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{~d}, J=4.8 \mathrm{~Hz} \mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{2}\right), 22.0(\mathrm{~d}, J$ $\left.=28.4 \mathrm{~Hz}, C_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 39.3(\mathrm{~d}, J=4.8 \mathrm{~Hz}, \mathrm{C}), 39.9\left(\mathrm{CH}_{2}\right), 53.5(\mathrm{br}, \mathrm{B}-\mathrm{C}), 128.3$ $(C H), 128.4(C H), 131.19(\mathrm{~d}, J=2.8 \mathrm{~Hz}, C H), 131.23(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C H), 131.7(\mathrm{~d}, J=9.4 \mathrm{~Hz}, C H)$, $131.9(\mathrm{~d}, J=9.4 \mathrm{~Hz}, C H), 135.5(C), 136.8(\mathrm{~d}, J=5.6 \mathrm{~Hz}, C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(127 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$: 33.7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($159 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 22.5. HRMS-ESI $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{26} \mathrm{H}_{40}{ }^{11} \mathrm{BNO}_{3} \mathrm{P}$, 456.2838; found, 456.2834. $[\alpha]_{\mathrm{D}}{ }^{27.9}+2.15$ (c 0.93 in $\mathrm{CHCl}_{3}, 99 \%$ ee). Daicel CHIRALPAK® OZ-3, $2-\mathrm{PrOH} / \mathrm{Hexane}=10 / 90,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=9.39 \mathrm{~min} ., R$ isomer: $t_{R}=12.77 \mathrm{~min} . \mathrm{IR}$
(neat, cm^{-1}): $1199(\mathrm{P}=\mathrm{O})$.

(R)-P,P-Diphenyl- N-[1-(1-phenylcyclobutyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

 $\mathrm{yl})$ ethyl)phosphinic amide $[(\boldsymbol{R})-3 \mathrm{~g}]$.
(R)-3g

The reaction was conducted with $74.2 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 g}$ for 2 h . The product $(R)-\mathbf{3 g}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $\left.100: 0 \rightarrow 0: 100\right)$ and extracted with $\mathrm{H}_{2} \mathrm{O}$ to remove pinacol, and dried over MgSO_{4}. After filtration, $(R)-3 \mathrm{~g}$ was obtained in 74% yield ($73.4 \mathrm{mg}, 0.15 \mathrm{mmol}$, colorless oil) with 98% ee.
${ }^{1} \mathrm{H}$ NMR (396 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 6 \mathrm{H}), 1.75-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.37-$ $2.44(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.48(\mathrm{~m}, 13 \mathrm{H})$, 7.78-7.83 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($\left.99 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 15.5\left(\mathrm{CH}_{2}\right), 17.7\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 25.3\left(\mathrm{CH}_{3}\right)$, $30.4\left(\mathrm{~d}, J=31.1 \mathrm{~Hz}, C \mathrm{H}_{2}\right), 51.8(\mathrm{br}, \mathrm{B}-C), 52.6(\mathrm{~d}, J=6.5 \mathrm{~Hz}, C), 84.3(\mathrm{C}), 125.9(\mathrm{CH}), 127.3(\mathrm{CH})$, $128.1(\mathrm{~d}, J=12.3 \mathrm{~Hz}, C \mathrm{H}), 128.3(\mathrm{~d}, J=13.3 \mathrm{~Hz}, C \mathrm{H}), 128.9(C \mathrm{H}), 131.1(\mathrm{~d}, J=1.9 \mathrm{~Hz}, C \mathrm{H}), 131.2$ (d, $J=2.8 \mathrm{~Hz}, C \mathrm{H}), 131.7(\mathrm{~d}, J=9.5 \mathrm{~Hz}, C \mathrm{H}), 135.3(\mathrm{~d}, J=34.0 \mathrm{~Hz}, C), 136.6(\mathrm{~d}, J=28.3 \mathrm{~Hz}, C)$, $147.1(C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($127 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 32.7. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($159 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 22.4. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{37}{ }^{11} \mathrm{BNO}_{3} \mathrm{PNa}$, 524.2502; found, 524.2501. $[\alpha]_{\mathrm{D}}{ }^{28.0}+1.67$ (c 1.50 in $\mathrm{CHCl}_{3}, 98 \%$ ee). Daicel CHIRALPAK® OZ-3, 2-PrOH$/ H e x a n e ~=10 / 90,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}$, S isomer: $t_{S}=10.85 \mathrm{~min}$., R isomer: $t_{R}=15.55 \mathrm{~min}$. IR (neat, cm^{-1}): $1200(\mathrm{P}=\mathrm{O})$.
(R)-P,P-Diphenyl- N-[1-(1-phenylcyclohexyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)ethyl]phosphinic amide [(R)-3h].

(R)-3h

The reaction was conducted with $79.4 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 h}$ for 3 h . The product $(R) \mathbf{- 3 h}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}, 100: 0 \rightarrow 90: 10\right.$ to SiO_{2}, EtOAc
$/ \mathrm{MeOH}, 100: 0 \rightarrow 50: 50$) and extracted with $\mathrm{H}_{2} \mathrm{O}$ to remove pinacol, and dried over MgSO_{4}. . After filtration, (R) - $\mathbf{3 h}$ was obtained in 72% yield ($75.3 \mathrm{mg}, 0.14 \mathrm{mmol}$, white solid) with 97% ee.
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.13-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}), 1.50-$ $1.60(\mathrm{~m}, 4 \mathrm{H}), 1.73(\mathrm{t}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{t}, J=13.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{td}, J$ $=3.1,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.45(\mathrm{~m}, 11 \mathrm{H}), 7.77(\mathrm{ddd}, J=1.5,7.8,11.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 18.0\left(\mathrm{~d}, J=3.9 \mathrm{~Hz}, C H_{3}\right), 22.5\left(\mathrm{~d}, J=2.8 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3}\right), 26.9\left(\mathrm{CH}_{2}\right)$, $31.5\left(\mathrm{~d}, J=70.9 \mathrm{~Hz}, C \mathrm{H}_{2}\right), 48.8(\mathrm{~d}, J=6.7 \mathrm{~Hz}, C), 53.8(\mathrm{br}, \mathrm{B}-C), 84.3(\mathrm{C}), 125.8(\mathrm{CH}), 127.8(\mathrm{CH})$, $128.0(\mathrm{~d}, J=13.4 \mathrm{~Hz}, C H), 128.3(\mathrm{~d}, J=12.5 \mathrm{~Hz}, C H), 130.0(C H), 130.9(\mathrm{~d}, J=1.9 \mathrm{~Hz}, C H), 131.1$ (d, $J=1.9 \mathrm{~Hz}, C H), 131.5(\mathrm{~d}, J=9.6 \mathrm{~Hz}, C H), 131.7(\mathrm{~d}, J=9.6 \mathrm{~Hz}, C H), 135.5(\mathrm{~d}, J=38.3 \mathrm{~Hz}, C)$, 136.7 (d, $J=32.6 \mathrm{~Hz}, C), 140.7(C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($127 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 32.9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (159 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ 22.7. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{42}{ }^{11} \mathrm{BNO}_{3} \mathrm{P}, 530.2996$; found, 530.2998. $[\alpha]_{\mathrm{D}}{ }^{27.9}+0.48$ (c 1.05 in $\mathrm{CHCl}_{3}, 97 \%$ ee). Daicel CHIRALPAK $®$ OZ-3, 2-PrOH/Hexane $=$ $10 / 90,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=9.92 \mathrm{~min} ., R$ isomer: $t_{R}=12.13 \mathrm{~min} . \mathrm{mp} 79-81{ }^{\circ} \mathrm{C}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1196(\mathrm{P}=\mathrm{O})$.

$N-\{(R)-1-[(3 R, 5 R, 7 R)$-Adamantan-1-yl]-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl\}P, P-diphenylphosphinic amide $[(R)$-3i].

(R)-3i

The reaction was conducted with $74.2 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 i}$ for 5 h . The product (R)-3i was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 100:0 $\left.\rightarrow 20: 80\right)$ and extracted with $\mathrm{H}_{2} \mathrm{O}$ to remove pinacol, and dried over MgSO_{4}. After filtration, (R)-3i was obtained in 87% yield (86.8 mg , 0.17 mmol , white solid) with 99% ee.
${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(396 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}), 1.60-1.77(\mathrm{~m}, 12 \mathrm{H}), 2.02$ $(\mathrm{s}, 3 \mathrm{H}), 3.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.80-7.88(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\delta): 15.5\left(\mathrm{~d}, ~ J=4.8 \mathrm{~Hz} \mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3}\right), 28.8(\mathrm{CH}), 37.35\left(\mathrm{CH}_{2}\right), 37.44\left(\mathrm{CH}_{2}\right), 38.3(\mathrm{~d}, J$ $=4.8 \mathrm{~Hz}, C), 53.0(\mathrm{br}, \mathrm{B}-C), 84.3(C), 128.3(\mathrm{~d}, J=1.9 \mathrm{~Hz}, C \mathrm{H}), 128.4(\mathrm{~d}, J=1.9 \mathrm{~Hz}, C \mathrm{H}), 131.16$ (d, $J=2.9 \mathrm{~Hz}, C \mathrm{H}), 131.23(\mathrm{~d}, J=1.9 \mathrm{~Hz}, C \mathrm{H}), 131.7(\mathrm{~d}, J=9.6 \mathrm{~Hz}, C \mathrm{H}), 132.0(\mathrm{~d}, J=9.6 \mathrm{~Hz}, C \mathrm{H})$, $135.7(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C \mathrm{H}), 137.0(C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(127 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 33.7 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(159$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ 22.5. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{42}{ }^{11} \mathrm{BNO}_{3} \mathrm{P}, 506.2995$; found,
506.2989. $[\alpha]_{\mathrm{D}} 27.8-1.34$ (c 1.12 in $\mathrm{CHCl}_{3}, 99 \%$ ee $)$. Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane $=$ $10 / 90,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=11.28 \mathrm{~min} ., R$ isomer: $t_{R}=13.47 \mathrm{~min} . \mathrm{mp} 194-197{ }^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): $1202(\mathrm{P}=\mathrm{O})$.

(R)- N-[1-Cyclopropyl-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]-P,P-

 diphenylphosphinic amide $[(R)-3 \mathrm{j}]$.
(R)-3j

The reaction was conducted with $56.3 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1} \mathbf{j}$ for $\mathbf{2} \mathrm{h}$. The product $(R)-\mathbf{3} \mathbf{j}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 100:0 $\left.\rightarrow 20: 80\right)$ and extracted with $\mathrm{H}_{2} \mathrm{O}$ to remove pinacol, and dried over MgSO_{4}. After filtration, $(R)-\mathbf{3 j}$ was obtained in 50% yield $(40.5 \mathrm{mg}$, 0.10 mmol , colorless oil) with 86% ee.
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 0.29-0.32(\mathrm{~m}, 2 \mathrm{H}), 0.34-0.46(\mathrm{~m}, 2 \mathrm{H}), 1.04-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~s}$, $3 \mathrm{H}), 1.25(\mathrm{~s}, 6 \mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H}), 3.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.82-7.90(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (99 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 1.93\left(\mathrm{CH}_{2}\right), 2.56\left(\mathrm{CH}_{2}\right), 21.6(\mathrm{~d}, J=5.6 \mathrm{~Hz}, C \mathrm{H}), 22.9(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $\left.C \mathrm{H}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 84.3(C), 128.2(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C \mathrm{H}), 128.4(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C \mathrm{H}), 131.29$ $(C H), 131.31(C H), 131.9(\mathrm{~d}, J=9.6 \mathrm{~Hz}, C \mathrm{H}), 132.0(\mathrm{~d}, J=8.5 \mathrm{~Hz}, C H), 135.1(C), 136.4(C)$. The carbon directly attached to the boron atom was not detected, likely because of quadrupolar relaxation. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (127 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 33.0 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($159 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 22.2. HRMS-ESI $(m / z):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{31}{ }^{11} \mathrm{BNO}_{3} \mathrm{PNa}, 434.2031$; found, 434.2029. [$\left.\alpha\right]_{\mathrm{D}}{ }^{25.2}-2.44$ (c 1.17 in $\mathrm{CHCl}_{3}, 86 \%$ ee). Daicel CHIRALPAK® OZ-3, 2-PrOH$/$ Hexane $=10 / 90,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=21.95 \mathrm{~min} ., R$ isomer: $t_{R}=28.56 \mathrm{~min} . \mathrm{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 1197(\mathrm{P}=\mathrm{O})$.

(R)- N-[2,2-Dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)heptan-3-yl]-P,P-

 diphenylphosphinic amide [(R)-3k].
(R)-3k

The reaction was conducted with $67.2 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 k}$ for 2 h . The product $(R) \mathbf{- 3 k}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 100:0 $\left.\rightarrow 20: 80\right)$ and extracted with $\mathrm{H}_{2} \mathrm{O}$ to remove pinacol, and dried over MgSO_{4}. After filtration, (R) - $\mathbf{3 k}$ was obtained in 80% yield ($73.6 \mathrm{mg}, 0.16 \mathrm{mmol}$, colorless oil) with 86% ee.
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 0.63(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.84-1.21(\mathrm{~m}, 4 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~s}$, $6 \mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H}), 1.62(\mathrm{dt}, J=6.5,18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.94(\mathrm{~m}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-$ $7.46(\mathrm{~m}, 6 \mathrm{H}), 7.73-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.91(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.99 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 14.1\left(\mathrm{CH}_{3}\right), 23.5$ $\left(\mathrm{CH}_{2}\right), 25.0\left(\mathrm{CH}_{3}\right), 25.2\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right), 29.7\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{~d}, J=2.8 \mathrm{~Hz}, C \mathrm{H}_{2}\right), 37.9(C), 60.0(\mathrm{br}$, B-C), $84.4(C), 128.0(\mathrm{~d}, J=13.2 \mathrm{~Hz}, C \mathrm{H}), 128.3(\mathrm{~d}, J=12.3 \mathrm{~Hz}, C \mathrm{H}), 130.9(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C \mathrm{H})$, $131.0(\mathrm{~d}, J=1.9 \mathrm{~Hz}, C \mathrm{H}), 131.3(\mathrm{~d}, J=10.4 \mathrm{~Hz}, C \mathrm{H}), 132.2(\mathrm{~d}, J=10.4 \mathrm{~Hz}, C \mathrm{H}), 136.6(\mathrm{~d}, J=61.4$ $\mathrm{Hz}, C), 137.9(\mathrm{~d}, J=59.5 \mathrm{~Hz}, C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(127 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 33.0 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (159 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):$ 22.2. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{42}{ }^{11} \mathrm{BNO}_{3} \mathrm{P}, 470.2995$; found, 470.2989. $[\alpha]_{\mathrm{D}}{ }^{25.7}+1.40$ (c 3.67 in $\mathrm{CHCl}_{3}, 88 \%$ ee). Daicel CHIRALPAK $®$ OZ-3, 2-PrOH/Hexane $=$ $10 / 90,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=9.49 \mathrm{~min} ., R$ isomer: $t_{R}=12.08 \mathrm{~min}$. IR (neat, cm^{-1}): 1204 $(\mathrm{P}=\mathrm{O})$.

(R)-N-[4-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentan-2-yl]-P,P-

diphenylphosphinic amide $[(R)-31]$.

(R)-3I

The reaction was conducted with $60.2 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 i}$ for 2 h . The product (R) - $\mathbf{3 i}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, 100:0 $\left.\rightarrow 40: 60\right)$ and extracted with $\mathrm{H}_{2} \mathrm{O}$ to remove pinacol, and dried over MgSO_{4}. After filtration, (R) - $\mathbf{3 1}$ was obtained in 86% yield (73.5 mg , 0.17 mmol , colorless oil) with 88% ee.
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 0.90(\mathrm{~d}, J=6.7, \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=6.7, \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{~s}, 6 \mathrm{H}), 1.28(\mathrm{~s}, 6 \mathrm{H}), 1.44(\mathrm{dd}, J=7.6,13.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=5.5,13.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.97$ $(\mathrm{m}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.50(\mathrm{~m}, 6 \mathrm{H}), 7.77-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.87-7.93(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (99 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 23.7\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{3}\right), 24.6\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 25.3(\mathrm{CH}), 45.7$ (br, B-C), $50.6\left(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C \mathrm{H}_{2}\right), 84.4(C), 128.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C \mathrm{H}), 128.4(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C \mathrm{H})$, $131.3(C H), 131.7(\mathrm{~d}, J=9.5 \mathrm{~Hz}, C H), 132.1(\mathrm{~d}, J=9.4 \mathrm{~Hz}, C H), 135.2(C), 136.5(C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($127 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 33.8. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($159 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 21.9. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{35}{ }^{11} \mathrm{BNO}_{3} \mathrm{P}$, 450.2344; found, 450.2340 . $[\alpha]_{\mathrm{D}}{ }^{25.9}+1.34$ ($c 4.28$ in $\mathrm{CHCl}_{3}, 88 \%$ ee). Daicel CHIRALPAK® ${ }^{\circledR}$ OZ-3, 2-PrOH/Hexane $=10 / 90,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=13.73 \mathrm{~min} ., R$ isomer: $t_{R}=17.52 \mathrm{~min}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1198(\mathrm{P}=\mathrm{O})$.
(R)-P,P-Diphenyl- N-[4-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2yl]phosphinic amide $[(R)-3 \mathrm{~m}]$.

(R)-3m

The reaction was conducted with $69.1 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 m}$ for 6 h . The product $(R) \mathbf{- 3 m}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $\left.100: 0 \rightarrow 40: 60\right)$ and extracted with $\mathrm{H}_{2} \mathrm{O}$ to remove pinacol, and dried over MgSO_{4}. After filtration, $(R) \mathbf{~} \mathbf{3 m}$ was obtained in 44% yield $(41.4 \mathrm{mg}, 0.09 \mathrm{mmol}$, colorless oil) with 89% ee.
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 1.285-1.294(\mathrm{~m}, 15 \mathrm{H}), 1.82(\mathrm{td}, J=4.3,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{td}, J=$ $5.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{td}, J=4.7,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{td}, J=4.8,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.52(\mathrm{~m}, 6 \mathrm{H}), 7.83-7.92(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (99 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 24.2\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 25.0\left(\mathrm{CH}_{3}\right), 32.3\left(\mathrm{CH}_{2}\right), 43.5(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $C \mathrm{H}_{2}$), $46.1(\mathrm{br}, \mathrm{B}-\mathrm{C}), 84.5(C), 125.8(\mathrm{CH}), 128.3(\mathrm{~d}, J=2.9 \mathrm{~Hz}, C \mathrm{H}), 128.40(C \mathrm{H}), 128.45(\mathrm{~d}, J=1.9$ $\mathrm{Hz}, C \mathrm{H}), 128.55(C \mathrm{H}), 135.0(\mathrm{~d}, J=5.7 \mathrm{~Hz}, C), 136.3(\mathrm{~d}, J=6.6 \mathrm{~Hz}, C), 142.7(C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($127 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 32.6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($159 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 22.1. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{28} \mathrm{H}_{35}{ }^{11} \mathrm{BNO}_{3} \mathrm{PNa}, 498.2345$; found, 498.2339. [$\left.\alpha\right]_{\mathrm{D}}{ }^{22.0}-13.9$ (c 0.85 in $\mathrm{CHCl}_{3}, 89 \%$ ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane $=5 / 95,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=32.80 \mathrm{~min}$., R isomer: $t_{R}=47.56 \mathrm{~min}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1196(\mathrm{P}=\mathrm{O})$.
(R)-P,P-Diphenyl- N-[2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)butan-2-yl]phosphinic amide [(R)-3n].

(R)-3n

The reaction was conducted with $53.8 \mathrm{mg}(0.20 \mathrm{mmol})$ of $\mathbf{1 n}$ for 1 h . The product $(R) \mathbf{- 3 n}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $\left.100: 0 \rightarrow 50: 50\right)$ and extracted with $\mathrm{H}_{2} \mathrm{O}$ to remove pinacol, and dried over MgSO_{4}. After filtration, (R) - $\mathbf{3 n}$ was obtained in 28% yield ($22.3 \mathrm{mg}, 0.06 \mathrm{mmol}$, colorless oil) with 69% ee.
${ }^{1} \mathrm{H}$ NMR (392 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right): 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H}), 1.27(\mathrm{~s}, 6 \mathrm{H})$, 1.57 (sxt, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{sxt}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.49(\mathrm{~m}, 6 \mathrm{H})$, 7.82-7.91 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($\left.99 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 10.1\left(\mathrm{CH}_{3}\right), 23.6\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C \mathrm{H}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right)$, $25.0\left(\mathrm{CH}_{3}\right), 34.2\left(\mathrm{~d}, J=3.8 \mathrm{~Hz}, C \mathrm{H}_{2}\right), 46.7(\mathrm{br}, \mathrm{B}-\mathrm{C}), 84.3(\mathrm{C}), 128.2(\mathrm{CH}), 128.4(\mathrm{CH}), 131.3(\mathrm{CH})$, $131.8(\mathrm{~d}, J=10.4 \mathrm{~Hz}, C \mathrm{H}), 132.1(\mathrm{~d}, J=10.4 \mathrm{~Hz}, C \mathrm{H}), 135.1(C), 136.4(C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(127$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 32.5 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 22.0. HRMS-ESI (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{31}{ }^{11} \mathrm{BNO}_{3} \mathrm{P}, 422.2031$; found, 422.2026. $[\alpha]_{\mathrm{D}}{ }^{25.0}+18.9$ (c 0.12 in $\mathrm{CHCl}_{3}, 69 \%$ ee). Daicel CHIRALPAK® OZ-3, 2-PrOH/Hexane $=10 / 90,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}, S$ isomer: $t_{S}=19.49 \mathrm{~min} ., R$ isomer: $t_{R}=24.40 \mathrm{~min}$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 1196(\mathrm{P}=\mathrm{O})$.

4. Experimental Procedures for the Synthesis of Peptydilboronic Acid Derivatives

d.r. $>99: 1$

The borylation product $(R)-3 \mathbf{i}$ ($177 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.0$ equiv) was placed in a vial with a screw cap containing a Teflon ${ }^{\circledR}$-coated rubber septum under air. A MeOH solution of $\mathrm{HCl}(0.1 \mathrm{M}, 3.5 \mathrm{~mL})$ was added to the vial via a syringe. The resulting mixture was stirred for 3 h at room temperature. The solvents are removed under reduced pressure to afford the deprotection product. The product was used in the next step without further purification. The condensation reaction was performed according to the literature. ${ }^{7}$. Boc-L-Ala-OH ($85.9 \mathrm{mg}, 0.46 \mathrm{mmol}, 1.3$ equiv) and TCFH ($118 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.2$ equiv) were placed in a vial with a screw cap containing a Teflon ${ }^{\circledR}$-coated rubber septum under air. $\mathrm{MeCN}(100 \mu \mathrm{~L})$ was added to the vial via a syringe. The resulting mixture was stirred for 5 min at room temperature. A THF solution $(250 \mu \mathrm{~L})$ of the deprotection product was then added dropwise to the vial. N-Metylimidazole ($94 \mu \mathrm{~L}, 1.2 \mathrm{mmol}, 3.5$ equiv) was added dropwise to the vial. The reaction mixture was stirred for 24 h . The reaction mixture was analyzed by TLC to check the completeness of the reaction. The mixture was directly filtered through a short silica-gel column with EtOAc as an eluent, then the resultant solution was concentrated under reduced pressure. The crude product was purified by silica-gel column chromatography with hexane/EtOAc eluent (100:0 to $40: 60$) to give the corresponding product $\mathbf{4 a}$ in 71% yield ($118.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) as white solid. The diastereomeric ratio was determined by HPLC analysis (d.r. >99:1).

dioxaborolan-2-yl)ethyl\}amino)-1-oxopropan-2-yl]carbamate (4a).

4a
minor isomer

4a'

NMR spectra for $\mathbf{4 a}$ contains conformational isomers, which is caused by the restricted $\mathrm{C}-\mathrm{N}$ bond rotation around the carbamate group. ${ }^{1} \mathrm{H}$ NMR ($392 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $1.14(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 6 \mathrm{H}), 1.24$ $(\mathrm{s}, 6 \mathrm{H}), 1.35(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.60-1.76(\mathrm{~m}, 12 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 4.09-4.29(\mathrm{~m}, 1 \mathrm{H})$, 4.73-5.01 (m, 1H), 6.59-6.87 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($\left.99 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 16.4\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 25.2$ $\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 28.7(\mathrm{CH}), 36.9\left(\mathrm{CH}_{2}\right), 37.2\left(\mathrm{CH}_{2}\right), 37.5(\mathrm{C}), 48.0(\mathrm{CH}), 51.1(\mathrm{br}, \mathrm{B}-$ C), 75.1 and 80.5 (a pair of s,C), $81.9(C), 155.8(C), 173.8(C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(127 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, §): 25.5. HRMS-ESI (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{11} \mathrm{BNa}, 499.3319$; found, 499.3313. $[\alpha]_{\mathrm{D}}{ }^{22.3}$ -25.3 (c 0.39 in CHCl_{3}). The diastereomeric ratio was determined by HPLC analysis (d.r. $>99: 1$, right side in Figure S1) by comparison with a mixture of the diastereomers that was obtained by the reaction of racemic 3i with Boc-L-Ala-OH (d.r. 80:20, left side in Figure S1). Daicel CHIRALPAK® ID-3, 2$\mathrm{PrOH} /$ Hexane $=3 / 97,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}$, minor isomer $=11.88 \mathrm{~min}$. , major isomer $=15.07 \mathrm{~min} . \mathrm{mp}$ $82-92{ }^{\circ} \mathrm{C}$. IR (neat, cm^{-1}): 1699 ($\mathrm{C}=\mathrm{O}$, amide).

Figure S1. Determination of the diastereomeric ratio of $\mathbf{4 a}$ by HPLC analysis.
tert-Butyl ((S)-1-oxo-3-phenyl-1-\{[(R)-1-(1-phenylcyclobutyl)-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl]amino\}propan-2-yl)carbamate (4b).

$\mathbf{4 b}$ was synthesized according to the procedure for the synthesis of $\mathbf{4 a}$. The reaction was conducted with $100.5 \mathrm{mg}(0.20 \mathrm{mmol})$ of $(R)-\mathbf{3 g}$ using Boc-L-Phe-OH ($79.9 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) and TCFH ($78.2 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.4$ equiv). The product $\mathbf{4 b}$ was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc, $100: 0 \rightarrow 70: 30$) to give the corresponding product $\mathbf{4 b}$ in 62% yield (69.3 mg , 0.12 mmol) as white solid. The diastereomeric ratio was determined by HPLC analysis (d.r. $>99: 1$).

NMR spectra for $\mathbf{4 b}$ contains conformational isomers, which is caused by the restricted $\mathrm{C}-\mathrm{N}$ bond rotation around the carbamate group. ${ }^{1} \mathrm{H}$ NMR ($396 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $0.82(\mathrm{brs}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H}), 1.35$ $(\mathrm{s}, 6 \mathrm{H}), 1.35-1.39(\mathrm{~m}, 9 \mathrm{H}), 1.66-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.58(\mathrm{~m}$, $1 \mathrm{H}), 2.72-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=6.9,13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=6.1,14.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.33$ $(\mathrm{m}, 1 \mathrm{H}), 4.88-4.97(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.86(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.31(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right)$: $15.3\left(\mathrm{CH}_{2}\right), 18.6\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{3}\right), 31.0\left(\mathrm{CH}_{2}\right), 38.2\left(\mathrm{CH}_{2}\right), 48.8(\mathrm{br}, \mathrm{B}-\mathrm{C})$, $51.0(C), 54.7(C H), 80.2(C), 82.9(C), 126.0(C H), 127.0(C H), 127.6(C H), 128.6(C H), 128.7(C H)$, $129.6(C H), 136.4(C), 145.9(C), 155.2(C), 171.8(C) .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(127 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 29.1$. HRMS-ESI $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{11} \mathrm{BNa}$, 571.3319; found, 571.3316. [$\left.\alpha\right]_{\mathrm{D}}{ }^{22.0}-5.94$ (c 1.10 in CHCl_{3}). The diastereomeric ratio was determined by HPLC analysis (d.r. >99:1). Daicel CHIRALPAK® $®$ ID-3, 2- $\mathrm{PrOH} /$ Hexane $=3 / 97,0.5 \mathrm{~mL} / \mathrm{min}, 40^{\circ} \mathrm{C}$, minor isomer $=8.65 \mathrm{~min}$, , major isomer $=12.01 \mathrm{~min} . \mathrm{mp} 62-70^{\circ} \mathrm{C} . \mathrm{IR}\left(\right.$ neat, $\left.\mathrm{cm}^{-1}\right): 1708(\mathrm{C}=\mathrm{O}$, amide $)$.

Figure S2. Determination of the diastereomeric ratio of $\mathbf{4 b}$ by HPLC analysis.

5. Additional Experimental Results

Unsuccessful examples of the borylation of ketimines with $\mathbf{P}(\mathbf{O})(o \text {-tol })_{2}$ as the protecting group

(R)-3f'
no reaction

$(R)-\mathbf{3} \mathbf{g}^{\prime}$ no reaction

(R)-3h'
no reaction

(R)-3i' no reaction

(R)-3k' no reaction

An unsuccessful example of the borylation of aromatic ketimine 10

Unsuccessful synthesis of the substrate 1n'

Neither procedure A nor B could synthesize the ketimine 1n'.

Condensation reactions with Boc-Ala-OH

Hydrolysis of 4a with NaIO_{4}

$4 \mathbf{a}\left(71.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.0\right.$ equiv) and $\mathrm{NaIO}_{4}(121.9 \mathrm{mg}, 0.57 \mathrm{mmol}, 3.8$ equiv) were placed in a vial with a screw cap containing a Teflon ${ }^{\circledR}$-coated rubber septum under air. THF (1.0 mL) and $\mathrm{H}_{2} \mathrm{O}$
$(250 \mu \mathrm{~L})$ were added to the vial via a syringe. The resulting mixture was stirred for 24 h at room temperature. The reaction mixture was then diluted with brine and extracted with EtOAc three times, and dried over MgSO_{4}, and concentrated under reduced pressure. The combined mixture was washed cold pentane to give the boroxine 5 in 70% yield ($41.3 \mathrm{mg}, 0.105 \mathrm{mmol}$) as white solid. The corresponding boronic acid was not detected.

6. Determination of Absolute Configuration of Borylation Product

The absolute configuration of the product was determined based on X-ray crystallographic analysis of the compound $(R) \mathbf{- 3}$. The absolute configurations of other borylation products were deduced by this product. The details were summarized in Figure S3 and Table S1.

Figure S3. Molecular structure of (R)-3e. Thermal ellipsoids set at 50\% probability; hydrogen atoms omitted for clarity.

Table S1. Summary of X-ray crystallographic data

CCDC Name	2052090
Empirical Formula	$\mathrm{C}_{52} \mathrm{H}_{78} \mathrm{~B}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{P}_{2}$
Formula Weight	910.72
Crystal System	monoclinic
Crystal Size / mm ${ }^{3}$	$0.15 \times 0.15 \times 0.1$
a / \AA	7.83470(10)
b / \AA	33.8529(3)
c / \AA	10.56040(10)
$\beta{ }^{\circ}$	111.6360(10)
$V / \AA 3$	2603.57(5)
Space Group	P 21
Z value	2
Dcalc / g cm ${ }^{-3}$	1.162
Temperature / K	123
$2 \theta_{\text {max }} /^{\circ}$	147.536
$\mu(\mathrm{MoK} \alpha) / \mathrm{cm}^{-1}$	11.32
No. of Reflections Measured	Total: 12604 Unique: 7917 $\left(R_{\text {int }}=0.0223\right)$
No. of Observations (All reflections)	7917
Residuals: R_{1} $(\mathrm{I}>2.00 \sigma(\mathrm{I}))$	0.0324
Residuals: $w R_{2}$ (All reflections)	0.0939
Goodness of Fit Indicator (GOF)	1.109
Maximum Peak in Final Diff. Map / \AA^{3}	$0.23 \mathrm{e}^{-}$
Minimum Peak in Final Diff. Map / \AA^{3}	$-0.24 \mathrm{e}^{-}$
Flack Parameter	0.075(10)

7. Plausible Catalytic Cycle

Based on the theoretical and experimental results, we have proposed a plausible mechanism for the enantioselective borylation of aliphatic ketimines (Figure S4). First, $\mathrm{CuCl},(R, S)-\mathbf{L} 1$ and $\mathrm{Na}(\mathrm{O}-t-\mathrm{Bu})$ would react to form the copper(I)/NHC complex \mathbf{A}, which would undergo sigma-bond metathesis with $\mathbf{2}$ to give borylcopper(I) B. The subsequent insertion to $\mathbf{1}$ would lead to the formation of the copper(I) intermediate \mathbf{D}, which would be protonated in the presence of an alcohol to afford the borylated product 3. This step would also result in the formation of copper alkoxide \mathbf{A}.

Figure S4. Proposed mechanism for the copper(I)-catalyzed enantioselective borylation of aliphatic ketimines.

8. DFT Calculations

All calculations were performed using the Gaussian 09W (revision C.01) program package. ${ }^{8}$ Geometry optimizations and transition states (TS) calculations were performed with wB97XD/def2tzvp//wB97XD/Def2svp/THF(SMD). Molecular structures were drawn using the Mercury 3.5 program. ${ }^{9}$ Frequency calculations were conducted on gas-phase optimized geometries to check all the stationary points as either minima or transition states. Intrinsic reaction coordinate (IRC) calculations were carried out to confirm the transition state connecting the correct reactant and product on the potential energy surface.

We conducted the DFT calculations on the addition of the (R, S)-L1/borylcopper(I) complex (II) to ketimine $\mathbf{1 p}$ (I) to investigate the reaction mechanism and the origin of the enantioselectivity. The copper(I)-catalyzed borylation of dialkyl ketimine 1p proceeded to give $(R) \mathbf{- 3 p}$ in 74% yield with 90% ee. As shown in Figure S3, The energy of the transition state (TS1) in the Si-face addition is lower than that of the transition state (TS3) in the Re-face addition by $1.93 \mathrm{kcal} / \mathrm{mol}$. This calculation result is in good agreement with the experimental result (calc. 92% ee versus exp. 90% ee).

Figure S5. DFT calculations (wB97XD/def2tzvp//wB97XD/Def2svp THF(SMD)) of the addition of the $(R, S)-\mathbf{L} \mathbf{1} /$ borylcopper (I) complex to ketimine $\mathbf{1 p}$. Gibbs free energy values relative to I and II are shown in $\mathrm{kcal} / \mathrm{mol}$ at 298 K and 1.0 atm in the gas phase.

9. Analysis for Non-Covalent Interactions in the Transition States

Non-covalent interactions (NCIs) in the transition states were computed using the non-covalent interaction index from the optimized electron density at the same level of theory as the geometry optimizations. The wave function files (.wfn) were obtained from the corresponding formatted gaussian checkpoint files (.fchk) using the Multiwfn program. ${ }^{10}$ The following thresholds were applied to S33 to generate the NCI plot isosurface with NCIPLOT program, ${ }^{11,12} \operatorname{sign}(\lambda 2) \rho$ ranging from -0.2 to 0.2 au and reduced density gradient $(R D G)=0.60 \mathrm{au}$. The surfaces were colored on a blue-greenred (BGR) scale using VMD program ${ }^{13}$ according to values of $\operatorname{sign}(\lambda 2) \rho$ ranging from -0.01 to 0.01 au . The blue region indicates strong attractive interactions and the red region indicates strong repulsive interactions.

Detailed Analysis of Transition State Structures

The detailed analysis of both transition states TS1 and TS3 was carried out by the combination of structural analysis based on the transition state structures and the non-covalent interaction (NCI) plot. As shown in Figure $\mathrm{S} 6, \mathrm{C}\left(\mathrm{sp}_{3}\right)-\mathrm{H} / \pi$ interaction between the phenyl group of DPP and the methyl group of the mesityl group was found, and $\mathrm{C}\left(\mathrm{sp}_{3}\right)-\mathrm{H} / \mathrm{O}$ interaction between the camphor moiety and an oxygen atom of $\mathrm{P}=\mathrm{O}$ also existed. These interactions stabilize TS1 to afford the major enantiomer (R) 3p. We also performed a non-covalent interaction (NCI) plot analysis of TS3. As shown Figure S7, an $\mathrm{C}\left(\mathrm{sp}_{3}\right)-\mathrm{H} / \pi$ interaction between the phenyl and the methyl group of the mesityl group was found. However, a steric hindrance between the isopropyl group of the substrate (1p) and camphor moiety might destabilize TS3 to produce minor enantiomer (S) - 3p.

Figure S6. Detailed structural analysis of transition state structure for TS1.

Figure S7. Detailed structural analysis of transition state structure for TS3.

Coordination profiles

Si-face TS1

$\mathrm{Cu} \longrightarrow-0$
$-0.06392 \quad 0.2486 \quad 0.59795$
$\begin{array}{llll}\mathrm{C} & 2.87951 & -1.15702 & 3.23617\end{array}$
$\begin{array}{llll}\mathrm{O} & 1.29464 & 0.5591 & 3.24174\end{array}$
$\begin{array}{llll}\mathrm{O} & 2.01939 & -1.25353 & 2.08168\end{array}$
$\begin{array}{llll}B & 1.04317 & -0.28889 & 2.18544\end{array}$
C
$-1.0933 \quad-0.96821 \quad 1.84609$
C
$\begin{array}{lll}-0.75084 & -2.44169 & 2.04232\end{array}$
C
H
H
N
P
O
H
H
C
$-1.68923-0.3093 \quad 3.11189$
-0.9697 -0.47892 3.92995
$\begin{array}{lll}-0.14322 & -2.82482 & 1.21353\end{array}$
$-1.83164 \quad-0.63708 \quad 0.67825$
$-2.18939-1.61919-0.58055$
$\begin{array}{lll}-1.14826 & -2.50003 & -1.23821\end{array}$

-1.68147	-3.03196	2.07221

-0.21208	-2.61301	2.98439

$\begin{array}{lll}-1.87627 & 1.19714 & 2.95777\end{array}$

-2.25155	1.64199	3.89294

-0.92457 $1.69079 \quad 2.71302$
$-2.59698 \quad 1.42576 \quad 2.15807$
$\begin{array}{lll}-3.01283 & -0.97346 & 3.5003\end{array}$
$\begin{array}{lll}-3.75729 & -0.85034 & 2.69961\end{array}$
$\begin{array}{llll}-2.90109 & -2.05063 & 3.69406\end{array}$
$\begin{array}{llll}\mathrm{H} & -3.42005 & -0.51345 & 4.41461\end{array}$
$\begin{array}{llll}\text { C } & 2.64568 & 0.3261 & 3.68469\end{array}$
$2.72898 \quad 0.56528 \quad 5.18235$
$3.73022 \quad 0.30918 \quad 5.56097$
$2.54517 \quad 1.6281 \quad 5.39851$
$1.98424-0.02586 \quad 5.73095$
$3.54084 \quad 1.31665 \quad 2.9395$
$3.487571 .16075 \quad 1.85083$
$3.20309 \quad 2.34105 \quad 3.15271$
$4.59057 \quad 1.23045 \quad 3.25488$
2.38469 -2.17532 4.26024
$2.366 \quad-3.17123 \quad 3.79408$
$3.04698 \quad-2.21731 \quad 5.13727$
$1.36656-1.94044 \quad 4.60419$
$\begin{array}{lll}4.30811 & -1.47579 & 2.82866\end{array}$
$4.39611-2.53753 \quad 2.55622$
$4.62922-0.87542 \quad 1.96714$
4.99762 -1.28291 3.66464
$-2.92196 \quad-0.458 \quad-1.78315$
$-2.7738 \quad-0.74164 \quad-3.14484$
-3.64742 $0.67577 \quad-1.39414$
$-3.35071 \quad 0.08938 \quad-4.10613$
$-2.19729-1.62052 \quad-3.44393$
$-4.23789 \quad 1.49549 \quad-2.35389$
$-3.73851 \quad 0.91763-0.33312$
$-4.09152 \quad 1.20311 \quad-3.71116$
$-3.22276-0.13496-5.16791$
$-4.8079 \quad 2.37357 \quad-2.04091$
$-4.54893 \quad 1.85123-4.4629$
$-3.58862 \quad-2.6952 \quad-0.06787$
$\begin{array}{lll}-4.76665 & -2.18143 & 0.48862\end{array}$
$-3.45406 \quad-4.07902-0.21977$
-5.78903 -3.03837 0.89285
$-4.8908 \quad-1.10191 \quad 0.60691$
$-4.47413 \quad-4.9389 \quad 0.18943$

-2.53434	-4.46926	-0.66186
-5.64227	-4.41959	0.74712
-6.70419	-2.62731	1.32606
-4.35672	-6.01876	0.06896
-6.44235	-5.09178	1.06711
1.05626	1.3705	-0.47651
2.25734	1.06015	-1.01757
0.95613	2.68375	-0.72206
2.90352	-0.23962	-1.01321
2.81041	2.18623	-1.55525
2.02569	3.20851	-1.39189
-0.18498	3.47823	-0.39031
2.00813	-1.41187	-1.42676
4.07547	-0.29638	-2.05083
3.2779	-0.40376	0.00536
4.12657	2.05888	-2.25142
-1.19505	3.61619	-1.34804
-0.2726	4.03412	0.89315
1.3816	-1.10722	-2.79548
1.27373	-1.69966	-0.66295
3.08429	-2.47912	-1.76319
3.76583	-1.58502	-2.85557
5.03832	-0.38654	-1.51727
4.15116	0.82125	-2.90888
4.95292	2.14859	-1.51998
4.24131	2.85378	-2.99879
-2.333	4.34318	-0.98605
-1.06632	2.9688	-2.69813
-1.43266	4.7408	1.21109
0.84101	3.84775	1.88586
0.56848	-1.8184	-2.9837
0.9258	-0.10712	-2.82631
2.571	-1.25371	-3.77617

3.99312	-2.86037	-0.58601
2.48647	-3.78478	-2.29473
4.97948	-2.14996	-3.56714
-2.47207	4.90357	0.28619
-3.13443	4.46573	-1.71957
-0.08247	3.16706	-3.14862
-1.17723	1.8749	-2.61247
-1.8416	3.33167	-3.38515
-1.5301	5.177	2.20948
0.96767	2.78568	2.14883
1.79981	4.19825	1.47251
0.63921	4.40246	2.81204
2.41367	-2.07237	-4.49362
2.76183	-0.34367	-4.3578
3.38	-3.19474	0.26458
4.65749	-3.69095	-0.87102
4.63819	-2.04944	-0.22287
3.2815	-4.45514	-2.65777
1.96073	-4.30631	-1.4795
1.76411	-3.65019	-3.10928
4.72393	-3.06684	-4.12059
5.37879	-1.42285	-4.29172
5.78539	-2.3934	-2.85637
-3.70785	5.6745	0.66571
-3.46886	6.73253	0.8584
-4.46665	5.63813	-0.12834
-4.15599	5.27062	1.58668

Si-face TS2

Cu	-0.32131	0.33266	0.12578
C	-3.96906	1.77265	1.73222
O	-2.17371	0.44923	2.44747
O	-2.91943	1.75152	0.74534
B	-1.8472	1.06861	1.26116
C	0.00828	2.12728	1.09581
C	-0.58113	3.40828	0.5008
C	0.22592	2.24726	2.62941
H	-0.76223	2.4074	3.08942
H	-0.9553	3.24566	-0.51597
N	1.17075	1.62204	0.43376
P	1.81529	2.15062	-0.97157
O	0.93987	2.56239	-2.13733
H	0.21027	4.17287	0.44004
H	-1.39661	3.80546	1.11877
C	0.82759	0.98938	3.24379
H	0.92095	1.09965	4.3356
H	0.19547	0.11143	3.05054
H	1.82951	0.79856	2.83034
C	1.08432	3.46835	2.97296
H	2.064	3.41597	2.47756
H	0.60774	4.41482	2.6795
H	1.25841	3.51316	4.05962
C	-3.60029	0.53551	2.62565

-3.9048	0.7004	4.10512
-4.9815	0.86444	4.26371
-3.61701	-0.21259	4.64743
-3.35358	1.543	4.5427
-4.19401	-0.7681	2.09964
-4.00431	-0.87203	1.02353
-3.71757	-1.61545	2.61447
-5.27869	-0.82288	2.27202
-3.86647	3.1022	2.47768
-3.93986	3.92588	1.75254
-4.67833	3.21609	3.21063
-2.90646	3.19888	3.00589
-5.31289	1.67373	1.0286
-5.48675	2.5827	0.43393
-5.34785	0.81372	0.34846
-6.12854	1.58446	1.7621
2.8889	0.75213	-1.47507
3.98509	0.31246	-0.72354
2.57985	0.09628	-2.67174
4.76109	-0.75828	-1.16452
4.24506	0.80789	0.21377
3.33966	-0.993	-3.1011
1.73442	0.45313	-3.26437
4.43533	-1.41957	-2.34997
5.62176	-1.08282	-0.57523
3.08268	-1.50164	-4.03372
5.04073	-2.26307	-2.69108
2.97009	3.53167	-0.61436
3.01574	4.60534	-1.51083
3.8029	3.55108	0.51212
3.88277	5.67611	-1.29046
2.3547	4.58753	-2.38049
4.67406	4.61709	0.73092

3.76759	2.72963	1.23128
4.71531	5.68167	-0.17122
3.9084	6.50955	-1.99692
5.32032	4.62005	1.6122
5.39754	6.5179	0.00092
-0.48573	-1.261	-0.957
0.37088	-2.31302	-0.95943
-1.34851	-1.59058	-1.93319
1.51098	-2.53597	-0.08492
-0.01044	-3.20012	-1.92444
-1.07413	-2.78294	-2.53857
-2.57064	-0.90495	-2.22373
1.26752	-2.20355	1.39305
1.91451	-4.05329	-0.0484
2.33978	-1.93429	-0.47718
0.74492	-4.4817	-2.04738
-3.75288	-1.42717	-1.67415
-2.54881	0.25243	-3.0067
-0.0052	-2.92562	1.86445
1.28865	-1.12419	1.58661
2.39702	-3.02299	2.07551
1.91038	-4.38001	1.46441
2.92652	-4.16895	-0.47449
1.04607	-4.91458	-0.74727
1.66192	-4.33382	-2.64913
0.12628	-5.24313	-2.53777
-4.93449	-0.72108	-1.89026
-3.73731	-2.70792	-0.88522
-3.7607	0.93234	-3.18253
-1.27921	0.75168	-3.63347
-0.31261	-2.55428	2.85147
-0.85731	-2.74941	1.19425
0.42979	-4.41194	1.90615

C

3.81816	-2.61484	1.67103
2.34097	-2.96062	3.60503
2.6989	-5.62801	1.80939
-4.9544	0.47021	-2.62766
-5.86513	-1.10475	-1.46184
-3.52896	-3.56771	-1.54103
-2.95361	-2.69523	-0.11189
-4.70396	-2.87847	-0.39295
-3.76499	1.85007	-3.7774
-0.65848	1.33408	-2.92962
-0.66468	-0.08477	-3.99953
-1.50563	1.408	-4.48557
0.34718	-4.836	2.91716
-0.16507	-5.0469	1.23801
3.99595	-1.55902	1.92871
4.55688	-3.21939	2.21976
4.03626	-2.72899	0.60227
3.09901	-3.62818	4.04357
2.56852	-1.93684	3.94242
1.36975	-3.23789	4.03384
2.69163	-5.81394	2.89455
2.2636	-6.51089	1.31589
3.74774	-5.544	1.48329
-6.24768	1.21448	-2.8221
-6.74846	1.39169	-1.85774
-6.08591	2.18654	-3.30836
-6.94402	0.63316	-3.44752

Re-face TS3

Cu	0.00263	-0.39312	0.29451
C	2.9024	-2.96928	1.70614
C	1.83232	-3.22448	2.82873
O	0.79172	-2.29673	2.46943
O	2.09154	-2.47938	0.61919
B	0.91833	-1.97684	1.14087
C	-1.01164	-2.13846	0.0175
C	2.29988	-2.91306	4.24125
H	2.58272	-1.85827	4.35433
H	1.48909	-3.12307	4.95437
H	3.16223	-3.54065	4.51321
C	1.22586	-4.62505	2.77261
H	1.94758	-5.39054	3.09213
H	0.35951	-4.66695	3.44892
H	0.8783	-4.87405	1.7592
C	3.89462	-1.86518	2.06939
H	4.56937	-2.17905	2.87863
H	4.51277	-1.63201	1.18954
H	3.37694	-0.94591	2.38249
C	3.65056	-4.20885	1.24363
H	4.37571	-3.93535	0.46292
H	4.20433	-4.66233	2.0796
H	2.96876	-4.96058	0.82517
C	-0.54247	-3.30203	-0.89109
C	-1.83718	-2.63445	1.20427

-2.84384	-2.91815	0.85765
-1.37263	-3.51133	1.67492
-1.96698	-1.85338	1.96213
0.35999	-2.85155	-2.03194
-0.15099	-2.10497	-2.65868
1.28852	-2.41391	-1.64311
0.63549	-3.70564	-2.67039
0.03207	-3.99981	-0.25816
-1.75154	-4.06485	-1.44414
-1.4167	-4.88559	-2.09788
-2.37064	-4.50763	-0.6507
-2.39284	-3.39876	-2.04108
-1.55126	-1.04831	-0.7182
-2.97752	-0.28642	-0.47111
-3.51718	-0.01347	0.91276
-4.2424	-1.22675	-1.41343
-5.34927	-1.74439	-0.73501
-4.10422	-1.47259	-2.78554
-6.30107	-2.50751	-1.41434
-5.45319	-1.53997	0.33347
-5.05785	-2.22558	-3.46708
-3.24074	-1.073	-3.32493
-6.15649	-2.74833	-2.78018
-7.16134	-2.91284	-0.87571
-4.94299	-2.41017	-4.53802
-6.90234	-3.3426	-3.31399
-2.79406	1.26576	-1.41588
-1.79963	1.46869	-2.37896
-3.70916	2.29103	-1.14979
-1.72686	2.67785	-3.07092
-1.0732	0.67599	-2.56904
-3.64279	3.49592	-1.84802
-4.46997	2.13974	-0.37981

C

-2.65164	3.69045	-2.81104
-0.94366	2.83071	-3.81775
-4.36179	4.29024	-1.63288
-2.59445	4.6368	-3.35449
0.98903	1.18742	0.7657
2.25213	1.45414	0.35305
0.76137	2.16988	1.64932
3.04305	0.66262	-0.56743
2.71797	2.55731	1.00574
1.81463	3.02795	1.81045
-0.46767	2.39549	2.34493
2.36558	0.31876	-1.89422
4.34014	1.41423	-1.00873
3.2942	-0.26572	-0.04376
4.10077	3.0336	0.69625
-1.36785	3.32526	1.80829
-0.72595	1.68269	3.52143
1.92485	1.61492	-2.59206
1.57083	-0.42798	-1.77539
3.60299	-0.13141	-2.71811
4.32701	1.24942	-2.552
5.22499	0.92565	-0.56323
4.36283	2.77997	-0.65683
4.82995	2.52333	1.35496
4.18125	4.1138	0.87062
-2.57405	3.52281	2.48162
-1.03868	4.06435	0.54208
-1.94846	1.91324	4.15751
0.27044	0.69857	4.06955
1.24092	1.39215	-3.42255
1.37656	2.27923	-1.90876
3.25912	2.22757	-3.08475
4.36556	-1.3275	-2.12795

C

3.25388	-0.50077	-4.16218
5.6968	1.40416	-3.18277
-2.88446	2.82007	3.6505
-3.2945	4.23871	2.076
-0.94531	3.36387	-0.30324
-1.82231	4.79187	0.29499
-0.0818	4.60109	0.6314
-2.17534	1.36606	5.07697
0.27255	-0.23696	3.48743
1.29275	1.10579	4.03986
0.03333	0.44348	5.11156
3.30901	2.27281	-4.18208
3.42698	3.24252	-2.70624
3.67901	-2.17447	-1.97568
5.15144	-1.6556	-2.82537
4.85726	-1.1296	-1.16563
4.1697	-0.65209	-4.75468
2.69447	-1.44994	-4.17336
2.64032	0.2463	-4.6817
5.64651	1.27764	-4.2753
6.10625	2.40638	-2.98131
6.40985	0.66415	-2.78555
-4.21641	3.00305	4.32548
-4.62556	4.00855	4.15077
-4.94444	2.276	3.92918
-4.14477	2.83898	5.41047
-2.		

$R e$-face TS4

Cu	0.38065	-0.55231	-0.04231
C	3.52854	-1.39344	2.52424
C	2.52477	-0.7389	3.5422
O	1.41266	-0.39829	2.69086
O	2.64439	-1.88684	1.499
B	1.4829	-1.15425	1.54584
C	-0.3318	-2.22476	0.88826
C	3.03356	0.52759	4.21313
H	3.24747	1.31777	3.48203
H	2.27479	0.90776	4.91342
H	3.95074	0.32158	4.78573
C	2.0172	-1.71817	4.59772
H	2.79153	-1.9335	5.34845
H	1.15147	-1.27447	5.11087
H	1.69688	-2.66963	4.15061
C	4.45092	-0.37328	1.8624
H	5.20822	0.00641	2.56354
H	4.96605	-0.85137	1.01643
H	3.87661	0.47696	1.4702
C	4.34001	-2.55185	3.08058
H	5.01272	-2.94134	2.30207
H	4.95832	-2.21948	3.9283
H	3.69771	-3.37606	3.41711
C	0.33576	-3.55452	0.45823

C

-0.87487	-2.29046	2.31458
-1.79029	-2.90455	2.32512
-0.15084	-2.75663	2.99673
-1.14269	-1.30013	2.69659
1.00493	-3.46617	-0.9086
0.25454	-3.31206	-1.69884
1.72737	-2.63581	-0.9477
1.55305	-4.39395	-1.13601
1.11664	-3.77454	1.20228
-0.67676	-4.70327	0.47867
-0.19685	-5.64039	0.15476
-1.09507	-4.87782	1.48093
-1.51498	-4.49886	-0.20508
-1.22323	-1.73135	-0.1068
-2.72202	-1.12849	0.13375
-3.07552	-0.33534	1.37463
-3.89392	-2.53087	-0.0084
-4.83775	-2.73368	1.00229
-3.85159	-3.41265	-1.09609
-5.7269	-3.8077	0.93175
-4.86262	-2.03704	1.84371
-4.74252	-4.48129	-1.17065
-3.11311	-3.26263	-1.8888
-5.68059	-4.68105	-0.15441
-6.46126	-3.96102	1.72659
-4.70538	-5.1653	-2.02211
-6.37866	-5.51995	-0.21188
-3.04404	-0.10929	-1.3512
-2.2237	-0.11824	-2.48302
-4.11795	0.78797	-1.29572
-2.44662	0.77938	-3.52698
-1.3914	-0.8196	-2.52731
-4.34631	1.68305	-2.33979

-4.75979	0.80399	-0.41173
-3.50303	1.68825	-3.45269
-1.78961	0.77173	-4.40039
-5.17879	2.38841	-2.28051
-3.67381	2.39855	-4.26546
0.87977	1.01722	-1.04683
0.23587	2.20905	-1.05832
1.83065	1.19317	-1.98048
-0.89716	2.60929	-0.23959
0.81372	3.02274	-1.99026
1.80767	2.42424	-2.57138
2.8774	0.26574	-2.28094
-0.78703	2.25676	1.25013
-1.0698	4.16889	-0.22924
-1.78652	2.13669	-0.67375
0.29486	4.41521	-2.13459
4.15208	0.51048	-1.75293
2.59234	-0.85804	-3.06601
0.53806	2.81199	1.79568
-0.97286	1.19285	1.45173
-1.84494	3.22756	1.84651
-1.13715	4.50335	1.28028
-2.01523	4.43187	-0.73487
-0.0259	4.88258	-0.85285
-0.58553	4.42684	-2.80597
1.06555	5.06701	-2.56403
5.14904	-0.43618	-1.99962
4.44155	1.76158	-0.97127
3.61973	-1.7794	-3.27888
1.22092	-1.07249	-3.63847
0.74399	2.38998	2.78737
1.39374	2.53255	1.16504
0.29533	4.34178	1.83435

C
-3.2737 $2.99837 \quad 1.33498$
$-1.91244 \quad 3.16569 \quad 3.37519$
$-1.78017 \quad 5.84657 \quad 1.56416$
$4.89876-1.59228-2.74547$
$6.14839-0.26768-1.58835$
$4.49822 \quad 2.6326 \quad-1.64314$
$3.65005 \quad 1.97483-0.23728$
$5.39711 \quad 1.67887 \quad-0.43672$
$3.41177-2.6704 \quad-3.87803$
$\begin{array}{lll}0.51605 & -1.35296 & -2.84254\end{array}$
$0.83534-0.15707-4.11174$
$1.22588 \quad-1.8784 \quad-4.384$
$0.34706 \quad 4.73895 \quad 2.85853$
1.016834 .905271 .22983
$-3.54221 \quad 1.94251 \quad 1.49226$
-3.98214 $3.63401 \quad 1.88894$
$\begin{array}{lll}-3.41533 & 3.21826 & 0.26797\end{array}$
$\begin{array}{lll}-2.57041 & 3.95914 & 3.76339\end{array}$
$-2.34387 \quad 2.20086 \quad 3.68425$
$-0.940523 .26641 \quad 3.8751$
$\begin{array}{lll}-1.82961 & 6.04245 & 2.6465\end{array}$
$-1.20116 \quad 6.66168 \quad 1.10225$
$-2.80463 \quad 5.89402 \quad 1.16156$
$5.9722 \quad-2.62754 \quad-2.94714$
$5.87728 \quad-3.12013-3.9257$
$6.97664-2.18667-2.87411$
$\begin{array}{lll}5.89813 & -3.41213 & -2.17609\end{array}$

10. Reference

(1) Shintani, R.; Takatsu, K.; Takeda, M.; Hayashi, T. Copper-Catalyzed Asymmetric Allylic Substitution of Allyl Phosphates with Aryl- and Alkenylboronates. Angew. Chem., Int. Ed. 2011, 50, 8656-8659.
(2) Winn, C. L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P.; Alexakis, A. Enantioselective copper catalysed 1,4-conjugate addition reactions using chiral N-heterocyclic carbenes. J. Org. Met. Chem. 2005, 690, 5672-5695.
(3) Harada, A.; Makida, Y.; Sato, T.; Ohmiya, H.; Sawamura, M. Copper-Catalyzed Enantioselective Allylic Alkylation of Terminal Alkyne Pronucleophiles. J. Am. Chem. Soc. 2014, 136, 1393213939.
(4) Núñez, M. G.; Farley, A. J. M.; Dixon, D. J. Bifunctional Iminophosphorane Organocatalysts for Enantioselective Synthesis: Application to the Ketimine Nitro-Mannich Reaction. J. Am. Chem. Soc. 2013, 135, 16348-16351.
(5) Abell, J. P.; Yamamoto, H. Dual-Activation Asymmetric Strecker Reaction of Aldimines and Ketimines Catalyzed by a Tethered Bis(8-quinolinolato) Aluminum Complex. J. Am. Chem. Soc. 2009, 131, 15118-15119.
(6) Masumoto, S., Usuda, H., Suzuki, M., Kanai, M., \& Shibasaki, M. Catalytic Enantioselective Strecker Reaction of Ketoimines. J. Am. Chem. Soc. 2003, 125, 5634-5635.
(7) Beutner, G. L.; Young, I. S.; Davies, M. L.; Hickey, M. R.; Park, H.; Stevens, J. M.; Ye, Q. TCFHNMI: Direct Access to N-Acyl Imidazoliums for Challenging Amide Bond Formations. Org. Lett. 2018, 20, 4218-4222.
(8) Gaussian 09, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT, 2009.
(9) Mercury: http://www.ccdc.cam.ac.uk/Solutions/CSDSystem/Pages/Mercury.aspx
(10)Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580-592.
(11)Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498-6506.
(12)Contreras-García, J.; Johnson, E. R.; Keinan, S.; Chaudret, R.; Piquemal, J. P.; Beratan, D. N.; Yang, W. NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. J. Chem. Theory Comput. 2011, 7, 625-632.
(13)Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-38.

S147

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2021/01/06 16:13

Reported Date and Time: 2021/01/06 18:55

Processed Date and Time: 2021/01/06 18:55
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3131\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition) : Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-363-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Series: 3131
Vial Number: 142
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2
Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH

Pump A Solvent D: iProH

Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	12.08	190883	5.296
2	15.23	3413518	94.704
		3604401	100.000

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2021/01/06 17:10

Reported Date and Time: 2021/01/06 18:56

Processed Date and Time: 2021/01/06
18:56
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3132\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1 Application(data): Isocratic HPLC Sample Name: MUR-3a-rac Injection from this vial: 1 of 1 Sample Description:

Series: 3132
Vial Number: 143
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2
Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iProH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	11.97	6017014	49.859
2	15.23	6051054	50.141
		12068068	100.000

[^0]
D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/04/15
Reported Date and Time: 2020/04/15

$$
15: 22
$$

Processed Date and Time: 2020/04/15 16:07
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\2970\} Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1 Application(data): Isocratic HPLC Sample Name: MUR-210-L22-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Series: 2970
Vial Number: 145
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area $\%$
1	10.21	103654	5.043
2	11.23	1951737	94.957
		2055391	100.000

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/04/15 13:41

Processed Date and Time: 2020/04/15 15:23
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\2969\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1 Application(data) : Isocratic HPLC Sample Name: MUR-211-rac-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Reported Date and Time: 2020/04/15
15:24

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH
Series: 2969
Vial Number: 144
Vial Type: UNK
Volume: 10.0 ul

Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	10.16	556458	50.696
2	11.28	541170	49.304
		1097628	100.000

[^1]
D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/11/22 14:47
Processed Date and Time: 2020/11/22 16:54
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3104\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-145-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Reported Date and Time: 2020/11/22
17:25

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iProH Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area $\%$
1	8.77	33527	2.474
2	9.57	1321638	97.526
		1355165	100.000

[^2]
D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/11/22
Reported Date and Time: 2020/11/24 18:28 09:29

Processed Date and Time: 2020/11/24 09:28
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3105\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-1c-rac Injection from this vial: 1 of 1 Sample Description:

Series: 3105
Vial Number: 150
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2
Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iProH/Hexane
Pump A Solvent C: iProH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	8.75	513150	49.633
2	9.52	520740	50.367
		1033890	100.000

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2019/12/21
Reported Date and Time: 2019/12/21 13:35

Processed Date and Time: 2019/12/21
13:35
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\2939\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition) : Sys 1
Application(data): Isocratic HPLC
Sample Name: MUR-146-OZ3-10\%
Injection from this vial: 1 of 1 Sample Description:

Series: 2939
Vial Number: 143
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH Pump A Solvent D: iPrOH

Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	9.57	13704	1.315
2	10.16	1028406	98.685
		1042110	100.000

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2019/12/21
Reported Date and Time: 2020/01/23 13:42

19:58
Processed Date and Time: 2020/01/23 19:58
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\2940\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-rac $1 \nmid 7$
Injection from this vial: 1 of 1 Sample Description:

Series: 2940
Vial Number: 144
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iProH/Hexane
Pump A Solvent C: iProH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	9.55	260109	49.572
2	10.16	264602	50.428
		524711	100.000

[^3]
Chromaster System Manager Report

Analyzed Date and Time: 2019/12/24 00:17

Reported Date and Time: 2019/12/24 09:55:33

Processed Date and Time: 2019/12/24
09:55
Data Path: C:\WIN32APP\CHROMASTER\MUR\DATA\0002\
Processing Method: column1 (IA-3)
System (acquisition): Sys 1
Application(data): MUR Sample Name: MUR-148-IA-8\%
Injection from this vial: 1 of 1

Series: 0002
Vial Number: 10
Vial Type: UNK
Volume: 10.0 ul

Sample Description:
Chrom Type: Fixed WL Chromatogram, 250 nm

Processing Method: column1 (IA-3)
Method Developer:
Pump 1: 5110
Pump 1 Solvent A: hexane Pump 1 Solvent B: 2-propanol
Pump 1 Solvent C:
Pump 1 Solvent D:
Method Description:
Chrom Type: Fixed WL Chromatogram, 250 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Conc 1	BC
1	48.207	25084	0.607	BB
2	51.560	4108822	99.393	BB
	4133906	100.000		

Peak rejection level: 0

Chromaster System Manager Report

Analyzed Date and Time: 2019/12/23
Reported Date and Time: 2019/12/24 22:05 09:54:25

Processed Date and Time: 2019/12/24 09:53
Data Path: C:\WIN32APP\CHROMASTER\MUR\DATA\0001
Processing Method: column1(IA-3)

System (acquisition): Sys 1
Application(data): MUR Sample Name: MUR-149-IA-8\% Injection from this vial: 1 of 1 Sample Description:

Series: 0001
Vial Number: 9
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: Fixed WL Chromatogram, 250 nm

Processing Method: column1 (IA-3)
Method Developer:
Pump 1: 5110
Pump 1 Solvent A : hexane
Pump 1 Solvent B: 2-propanol
Pump 1 Solvent C:
Pump 1 Solvent D:
Method Description:
Chrom Type: Fixed WL Chromatogram, 250 nm
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Conc 1	BC
	46.973	3579983	49.938	BB
2	50.367	3588904	50.062	BB
		7168887	100.000	

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/06/24 14:22

Reported Date and Time: 2020/06/24 15:43

Processed Date and Time: 2020/06/24 15:43
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3017\}
Processing Method: 10/90 iPrOH/Hexane
System (acquisition) : Sys 1 Series: 3017
Application(data): Isocratic HPLC Vial Number: 142 Sample Name: MUR-249-OZ3-10\%
Injection from this vial: 1 of 1
Vial Type: UNK

Sample Description:
Volume: 10.0 ul

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iProH/Hexane
Pump A Solvent C: iProH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area $\%$
1	9.39	10442	0.652
2	12.77	1591567	99.348
		1602009	100.000

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/06/24 15:29

Reported Date and Time: 2020/06/24 17:13
Processed Date and Time: 2020/06/24

$$
17: 12
$$

Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3018\} Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-247-rac-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Series: 3018
Vial Number: 143
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Retention Time (min)
Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2
Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH Pump A Solvent D: iProH

Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	9.39	1096412	49.797
2	12.77	1105356	50.203
		2201768	100.000

[^4]
D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/07/04 17:44
Processed Date and Time: 2020/09/02 20:47
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3030\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-265-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Reported Date and Time: 2020/09/02 20:47

Series: 3030
Vial Number: 142
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iProH
Pump A Solvent D: iProH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	10.85	19208	0.835
2	15.55	2281467	99.165
		2300675	100.000

[^5]
D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/07/04 16:52

Reported Date and Time: 2020/09/02 20:47

Processed Date and Time: 2020/09/02 20:47
Data Path: C:\WIN32APP\D2000HSM\Isocratic \DATA\3029\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-262-rac-OZ3-10\% Injection from this vial: 1 of. 1 Sample Description:

Series: 3029
Vial Number: 141
Vial Type: UNK
Volume: 10.0 ul

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iProH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	10.91	343783	49.658
2	15.65	348518	50.342
		692301	100.000

[^6]
D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/08/03 16:39

Reported Date and Time: 2020/08/03 18:22
Processed Date and Time: 2020/08/03 18:21
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3040\} Processing Method: 10/90 iPrOH/Hexane

System (acquisition) : Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-279-L22-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Series: 3040
Vial Number: 142
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iProH
Pump A Solvent D: iProH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area $\%$
1	9.92	21570	1.323
2	12.13	1609115	98.677
		1630685	100.000

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/08/03 15:27
Processed Date and Time: 2020/08/03 16:48
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3039\} Processing Method: 10/90 iPrOH/Hexane

System (acquisition) : Sys 1 Application(data): Isocratic HPLC Sample Name: MUR-280-rac-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Reported Date and Time: 2020/08/03
16:48

00 HSM \Isocr
iPrOH/Hexane
Series: 3039
Vial Number: 141
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iProH Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area $\%$
1	9.92	622387	50.011
2	12.19	622112	49.989
		1244499	100.000

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/06/29
Reported Date and Time: 2020/06/29 17:39

Processed Date and Time: 2020/06/29 17:39
Data Path: C:\WIN32APP\D2000HSM\Isocratic \backslash DATA $3025 \backslash$ Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-260-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Series: 3025
Vial Number: 141
Vial Type: UNK
Volume: 10.0 ul

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2
Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	11.28	10652	0.683
2	13.47	1547976	99.317
		1558628	100.000

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/06/29

$$
17: 26
$$

Reported Date and Time: 2020/06/29 18:55

Processed Date and Time: 2020/06/29
18:55
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3026\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1 Application(data): Isocratic HPLC Sample Name: MUR-255-rac-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Series: 3026
Vial Number: 142
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	11.23	427089	49.482
2	13.41	436037	50.518
		863126	100.000

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/06/13 13:10

Processed Date and Time: 2020/06/13
14:33
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3003\} Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1 Application(data): Isocratic HPLC Sample Name: MUR-232-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Reported Date and Time: 2020/06/13 14:33

Series: 3003
Vial Number: 141
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2
Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	21.95	95837	7.014
2	28.56	1270464	92.986
		1366301	100.000

[^7]
D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/06/13

$$
14: 32
$$

Processed Date and Time: 2020/06/13

$$
16: 51
$$

Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3004\} Processing Method: 10/90 iPrOH/Hexane

System (acquisition) : Sys 1 Application(data): Isocratic HPLC Sample Name: MUR-231-rac-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Reported Date and Time: 2020/06/13 16:51

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iProH/Hexane
Pump A Solvent C: iPrOH Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No .	RT	Area	Area \%
1	21.63	5484438	49.817
2	28.45	5524810	50.183
		11009248	100.000

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/07/02
Reported Date and Time: 2020/07/02 16:42
Processed Date and Time: 2020/07/02 16:40
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3027\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-264-OZ3-10\%
Injection from this vial: 1 of 1 Sample Description:

Series: 3027
Vial Number: 141
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2
Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iProH/Hexane
Pump A Solvent C: iProH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	9.49	213581	5.956
2	12.08	3372492	94.044
		3586073	100.000

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/07/02 16:46

Reported Date and Time: 2020/07/02 17:28
Processed Date and Time: 2020/07/02

$$
17: 28
$$

Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3028\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-263-rac-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Series: 3028
Vial Number: 142
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane Column Type: OD-H 2

Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area $\%$
1	9.47	675850	49.779
2	12.13	681852	50.221
		1357702	100.000

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/09/25 10:22

Reported Date and Time: 2020/09/25

Processed Date and Time: 2020/09/25

$$
11: 05
$$

Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3079\} Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-313-L22-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Series: 3079
Vial Number: 145
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane Column Type: OD-H 2
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	13.73	309747	5.941
2	17.52	4904361	94.059
		5214108	100.000

[^8]
D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/09/25 17:34

Reported Date and Time: 2020/09/25 19:57

Processed Date and Time: 2020/09/25 19:57
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3081\}
Processing Method: 03/97 iPrOH/Hexane

System (acquisition) : Sys 1 Application(data): Isocratic HPLC Sample Name: MUR-314-rac-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Series: 3081
Vial Number: 146
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 03/97 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iProH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA Calculation Method: AREA\%

No.	RT	Area	Area \%
1	13.73	597437	50.588
2	17.63	583538	49.412
		1180975	100.000

[^9]
D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/10/16
Reported Date and Time: 2020/10/16 21:24
Processed Date and Time: 2020/10/16 23:15
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3097\}
Processing Method: 05/95 iPrOH/Hexane

System (acquisition) : Sys 1 Application(data): Isocratic HPLC Sample Name: MUR-326-2-OZ3-5\% Injection from this vial: 1 of 1 Sample Description:

Series: 3097
Vial Number: 143
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 05/95 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH

Pump A Solvent D: iProH

Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	32.80	159200	5.574
2	47.56	2696784	94.426
		2855984	100.000

[^10]
D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/10/16
Reported Date and Time: 2020/10/17 22:56
Processed Date and Time: 2020/10/17 00:18
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3098\}
Processing Method: 05/95 iProH/Hexane

System (acquisition) : Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-327-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Series: 3098
Vial Number: 141
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 05/95 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
		32.79	569684
27.96	570629	49.959	
		1140313	50.041

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/10/31 18:04

Reported Date and Time: 2020/10/31 19:33

Processed Date and Time: 2020/10/31 19:33
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3102\} Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-333-rac-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Series: 3102
Vial Number: 148
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator
Pump A: L-2130
Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iProH
Pump A Solvent D: iPrOH
Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
		19.49	325360
24.40	1796469	15.334	
		2121829	84.666

Peak rejection level: 0

D-2000 Elite HPLC System Manager Report

Analyzed Date and Time: 2020/10/31
Reported Date and Time: 2020/10/31 15:25

16:49
Processed Date and Time: 2020/10/31 16:48
Data Path: C:\WIN32APP\D2000HSM\Isocratic\DATA\3101\}
Processing Method: 10/90 iPrOH/Hexane

System (acquisition): Sys 1
Application(data): Isocratic HPLC Sample Name: MUR-332-rac-OZ3-10\% Injection from this vial: 1 of 1 Sample Description:

Series: 3101
Vial Number: 148
Vial Type: UNK
Volume: 10.0 ul

Chrom Type: HPLC Channel : 1

Processing Method: 10/90 iPrOH/Hexane
Column Type: OD-H 2 Method Developer: Administrator Pump A: L-2130

Pump A Solvent A: Hexane Pump A Solvent B: 10/90 iPrOH/Hexane
Pump A Solvent C: iPrOH Pump A Solvent D: iPrOH

Method Description:
Chrom Type: HPLC Channel : 1
Peak Quantitation: AREA
Calculation Method: AREA\%

No.	RT	Area	Area \%
1	19.55	699405	50.279
2	24.56	691632	49.721
		1391037	100.000

[^11]
[^0]: Peak rejection level: 0

[^1]: Peak rejection level: 0

[^2]: Peak rejection level: 0

[^3]: Peak rejection level: 0

[^4]: Peak rejection level: 0

[^5]: Peak rejection level: 0

[^6]: Peak rejection level: 0

[^7]: Peak rejection level: 0

[^8]: Peak rejection level: 0

[^9]: Peak rejection level: 0

[^10]: Peak rejection level: 0

[^11]: Peak rejection level: 0

