				• • • •								
Group 1.1		Group 1.2		Group 1.3		Group 1.4		Group 1.5		Group 1.6		15000
CRO_T112238	73.8	CRO_T122239	7614.3	CRO_T110364	9645.0	CRO_T118542	2.8	CRO_T118079	7260.2	CRO_T123350	2679.5	15000
CRO_T132285	1900.4	CRO_T116828	2729.8	CRO_T110359	646.0	CRO_T117719	13.7	CRO_T130446	156.6	CRO_T105905	15847.1	10000
CRO_T127367	2229.1	CRO_T132027	13457.0	CRO_T110361	10477.5	CRO_T133384	3.9	CRO_T134559	4595.6	CRO_T116348	3.0	- 5000
CRO_T115526	1177.1	CRO_T109258	24.7			CRO_T131857	91.6	CRO_T129607	553.2			
												350
SGD	0.9	GES	15.7**	GES	82.0**	SGD	1.1	SGD	1.2	GES	59.8**	
GS1	1.5*	G8O	3.6*	G8O	6.7**	GS1	1.1	GS1	0.8	G8O	5.4**	
GS2	2.1**	8HGO	1.5	8HGO	2.0	GS2	2.4**	GS2	0.8	8HGO	6.9***	300
GO	5.0***	IS	110.2*	IS	341.9	GO	0.8	GO	0.5**	IS	159.9*	
Redox1	1.4	7DLGT	6.9*	7DLGT	12.1***	Redox1	0.9	Redox1	0.7	7DLGT	2.3**	
Redox2	1.4	LAMT	193.8***	LAMT	80.4***	Redox2	1.3	Redox2	0.8	LAMT	5.0*	- 250
SAT	1.2	SGD	1.3	SGD	0.8	SAT	1.0	SAT	0.8	SGD	1.5*	
PAS	1.1	GS1	1.4	GS1	4.5**	PAS	0.8*	PAS	0.6**	GS1	1.3	
DPAS	2.1**	GS2	0.9	GS2	12.7***	DPAS	0.9	DPAS	0.7*	GS2	3.1***	200
TS	5.5***	GO	2.0	GO	13.7***	TS	1.5*	TS	0.9	GO	2.1**	
T16H2	2.9	Redox1	0.7*	Redox1	1.5***	T16H2	1.0	T16H2	0.9	Redox1	0.8	- 150
16OMT	1.7*	PAS	0.4**	PAS	2.7**	16OMT	0.8*	16OMT	0.8	PAS	0.9	
T3O	1.6	DPAS	0.7*	DPAS	1.1	T3O	1.1	T3O	0.9	DPAS	1.5**	
T3R	0.6*	TS	1.5*	TS	1.9**	T3R	1.1	T3R	1.1	TS	1.8***	100
NMT	8.1**	NMT	1.3	NMT	2.7**	NMT	1.1	NMT	0.8	NMT	0.1	
D4H	1.7	D4H	2.5*	D4H	2.8**	D4H	1.2	D4H	1.0	D4H	1.5*	
DAT	3.1	DAT	0.7	DAT	1.2	DAT	1.4	DAT	1.3	DAT	0.6	50
CS	3.0***	T19H	1.4	T19H	16.9**	CS	1.1	CS	1.1	T19H	2.1**	
		MAT	0.8	MAT	2.6*					MAT	07	

MAT 0.7

(b)

CRO_T112897 12.8 CRO_T107533 1895.6 CRO_T110868 42.9 2000 CRO_T128811 803.7 CRO_T103361 12.9 CRO_T126752 2.3 1000 CRO_T100680 35.5 CRO_T100137 695.8 CRO_T127378 3.2 0 1000 GES 181.6* GES 2288.6*** GES 2.0 4000 GBO 20.7* GBO 213.1*** GBO 1.2 3500 SHGO 9.4*** 8HGO 49.7 8HGO 2.1*** 3500 IS 411.5** IS 3970.7*** IS 1.7 3000 Redox1 1.1 Redox1 1.2 Redox1 1.1 3000 Redox2 0.6** Redox2 0.9 Redox2 0.9 2500 TS 1.2* TS 1.0 TS 1.1 2000 2000 16OMT 0.7* 16OMT 0.6*** 16OMT 0.6*** 1000 2000 16OMT 0.7* 16OMT 0.6*** 16OMT 0.3** 15	Group 2.1		Group 2.2		Group 2.3			
CRO_T128811 803.7 CRO_T103361 12.9 CRO_T126752 2.3 1000 CRO_T100680 35.5 CRO_T100680 35.5 CRO_T134504 803.0 0 CRO_T101037 695.8 GES 181.6* GES 2288.6*** GES 2.0 0 GES 181.6* GES 2288.6*** GES 2.0 0 0 GES 181.6* GES 2288.6*** GES 2.0 0 0 GBO 20.7* G8O 213.1*** G8O 1.2 0 0 IS 411.5** IS 3970.7*** IS 1.7 7 3500 IS 411.5** IS 3970.7*** IS 1.7 7 3500 Redox1 1.1 Redox1 1.2 Redox1 1.1 7 3000 Redox2 0.6*** Redox2 0.9 Redox2 0.9 2000 2000 T6H2 0.4 T16H2 0.7 2000 160MT 0.6*** 1500 1500 T3O </td <td>CRO_T112897</td> <td>12.8</td> <td>CRO_T107533</td> <td>1895.6</td> <td>CRO_T110868</td> <td>42.9</td> <td></td> <td>2000</td>	CRO_T112897	12.8	CRO_T107533	1895.6	CRO_T110868	42.9		2000
CRO_T100680 35.5 CRO_T134504 803.0 0 CRO_T101037 695.8 CRO_T127378 3.2 0 GES 181.6* GES 2288.6*** GES 2.0 4000 GBO 20.7* GBO 213.1*** GBO 1.2 3500 BHGO 9.4*** 8HGO 49.7 8HGO 2.1:** IS 1.7 3500 IS 4111.5** IS 3970.7*** IS 1.7 3500 Redox1 1.1 Redox1 1.2 Redox1 1.1 3000 Redox2 0.6** Redox2 0.9 Redox2 0.9 2500 TS 1.2* TS 1.0 TS 1.1 2000 16OMT 0.6** 16OMT 0.6*** 16OMT 0.6*** 1500 T30 0.4* T30 0.4* T30 0.3** 1500 T3R 0.4** T3R 1.3* T3R 0.8 1000	CRO_T128811	803.7	CRO_T103361	12.9	CRO_T126752	2.3		1000
CRO_T101037 695.8 CRO_T127378 3.2 0 GES 181.6* GES 2288.6*** GES 2.0 4000 GBO 20.7* G80 213.1*** G80 1.2 3500 8HGO 9.4*** 8HGO 49.7 8HGO 2.1*** 3500 IS 411.5** Is 3970.7*** IS 1.7 3000 Redox1 1.1 Redox1 1.2 Redox1 1.1 7 3000 Redox2 0.6** Redox2 0.9 Redox2 0.9 2.1*** 3000 TS 1.5** PAS 1.2 PAS 1.4** 2500 TS 1.2* TS 1.0 TS 1.1 7 2000 160MT 0.7* 160MT 0.6*** 160MT 0.3** 1500 T33 0.4* T330 0.4* T330 0.3** 1500 T37 0.4** T37 0.4**	CRO_T100680	35.5			CRO_T134504	803.0		1000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CRO_T101037	695.8			CRO_T127378	3.2		0
GES 181.6* GES 2288.6*** GES 2.0 1000 GBO 20.7* G8O 213.1*** G8O 1.2 3500 8HGO 9.4*** 8HGO 49.7 8HGO 2.1*** 3500 IS 411.5** IS 3970.7*** IS 1.7 3000 Redox1 1.1 Redox1 1.2 Redox1 1.1 3000 Redox2 0.6** Redox2 0.9 Redox2 0.9 2500 3000 PAS 1.5** PAS 1.2 PAS 1.4** 2500 2500 TS 1.2* TS 1.0 TS 1.1 75 2000 16OMT 0.7* 16OMT 0.6*** 16OMT 0.6*** 1500 T33 0.4* T33O 0.4* T33O 0.3** 1500 T33 0.4** T33C 0.4* T33O 0.3** 1500 T33 0.4** T33C 0.4* T33O 0.3** 1000 D4T 0.3***							_	4000
G80 20.7* G80 213.1*** G80 1.2 3500 8HGO 9.4*** 8HGO 49.7 8HGO 2.1*** 3500 IS 4115** Is 3970.7*** IS 1.7 3000 Redox1 1.1 Redox1 1.2 Redox1 1.1 3000 Redox2 0.6** Redox2 0.9 Redox2 0.9 2500 PAS 1.5** PAS 1.2 PAS 1.4** 2500 TS 1.2* TS 1.0 TS 1.1 750 2500 T16H2 0.5 T16H2 0.4 T16H2 0.7 2000 2000 16OMT 0.7* 16OMT 0.6*** 16OMT 0.6*** 1500 1500 T3R 0.4* T3O 0.4* T3O 0.3** 1500 1500 T3R 0.4** T3R 0.4* T3R 0.8 1500 1500 MMT 0.3*** DAT 0.5* DAT 0.6** 1000 D4H	GES	181.6*	GES	2288.6***	GES	2.0		4000
8HGO 9.4*** 8HGO 49.7 8HGO 2.1**** 3300 IS 411.5** Is 3970.7*** IS 1.7 3000 Redox1 1.1 Redox1 1.2 Redox1 1.1 3000 Redox2 0.6** Redox2 0.9 Redox2 0.9 20.9 PAS 1.5** PAS 1.2 PAS 1.4** 2500 TS 1.2* TS 1.0 TS 1.1 2000 16OMT 0.5 T16H2 0.4 T16H2 0.7 2000 16OMT 0.4* T3O 0.4* T3O 0.3* 1500 T3R 0.4* T3R 0.4* T3O 0.3** 1000 D4H 1.0 D4H 0.9 D4H 0.8 1000 D4H 1.0 D4H 0.9 D4H 0.8* 500 MAT 0.3** DAT 0.5* DAT 0.6* 500 MAT 0.4* MAT 0.5 MAT 0.6* 500 </td <td>G8O</td> <td>20.7*</td> <td>G8O</td> <td>213.1***</td> <td>G8O</td> <td>1.2</td> <td></td> <td>2500</td>	G8O	20.7*	G8O	213.1***	G8O	1.2		2500
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8HGO	9.4***	8HGO	49.7	8HGO	2.1***		3000
Redox1 1.1 Redox1 1.2 Redox1 1.1 5000 Redox2 0.6** Redox2 0.9 Redox1 1.1 Redox1 1.1 Redox1 1.1 Redox2 0.9 Redox2 0.9 Redox2 0.9 Redox1 1.1 Redox1 Redox1 1.1 Redox1 1.1 Redox1 1.1 Redox1 1.1 Redox1 1.1 Redox1 1.1 Redox1 Redox1 1.1 Redox1 1.1 Redox1 1.1 Redox1 Redox1	IS	411.5**	/S	3970.7***	IS	1.7		
Redox2 0.6** Redox2 0.9 Redox2 0.9 2500 PAS 1.5** PAS 1.2 PAS 1.4** 2500 TS 1.2* TS 1.0 TS 1.1 2500 TS 1.2* TS 1.0 TS 1.1 2000 166MT 0.7* 160MT 0.6*** 160MT 0.6*** 2000 130 0.4* T30 0.4* T30 0.3* 1500 T3R 0.4** T3R 0.3* 1500 1500 1500 T3R 0.4** T3R 0.3* 1500 1500 1500 T3R 0.4** T3R 0.4* 1000 0.3*** 1000 D4H 1.0 D4H 0.9 D4H 0.8 1000 D4T 0.3** DAT 0.5* DAT 0.6** 500 MAT 0.4 MAT 0.9 BIST 0.9 BIST	Redox1	1.1	Redox1	1.2	Redox1	1.1		3000
PAS 1.5** PAS 1.2 PAS 1.4*** 2 2500 TS 1.2* TS 1.0 TS 1.1 1 </td <td>Redox2</td> <td>0.6**</td> <td>Redox2</td> <td>0.9</td> <td>Redox2</td> <td>0.9</td> <td></td> <td></td>	Redox2	0.6**	Redox2	0.9	Redox2	0.9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	PAS	1.5**	PAS	1.2	PAS	1.4**		2500
T16H2 0.5 T16H2 0.4 T16H2 0.7 5 2000 16OMT 0.7* 16OMT 0.6*** 16OMT 0.6*** 16OMT 0.6*** T3O 0.4* T3O 0.4* T3O 0.3* . 1500 T3R 0.4** T3R 1.3* T3R 0.8 . 1000 D4H 1.0 D4H 0.9 D4H 0.8 . . 1000 D4H 1.0 D4H 0.9 D4H 0.8 . . . 1000 D4H 0.3*** DAT 0.5* DAT 0.6** . . . 500 MAT 0.4 MAT 0.5 MAT 0.6* 500 BIS1 8 H*** BIS1 0.9 BIS1 2 0**** 	TS	1.2*	TS	1.0	TS	1.1		
160MT 0.7* 160MT 0.6*** 160MT 0.6*** T3O 0.4* T3O 0.4* T3O 0.3* . 1500 T3R 0.4** T3R 1.3* T3R 0.8* . 1500 MMT 0.3*** NMT 0.4* T3R 0.8 . . 1000 D4H 1.0 D4H 0.9 D4H 0.8 . . 1000 D4H 1.0 D4H 0.9 D4H 0.8 MAT 0.3** DAT 0.5* DAT 0.6* . <td< td=""><td>T16H2</td><td>0.5</td><td>T16H2</td><td>0.4</td><td>T16H2</td><td>0.7</td><td></td><td>2000</td></td<>	T16H2	0.5	T16H2	0.4	T16H2	0.7		2000
T3O 0.4* T3O 0.4* T3O 0.3* 1500 T3R 0.4** T3R 1.3* T3R 0.8 1500 MMT 0.3*** T3R 0.4* T3R 0.8 1000 D4H 1.0 D4H 0.9 D4H 0.8 1000 D4H 1.0 D4H 0.9 D4H 0.8 500 MAT 0.3** DAT 0.5* DAT 0.6* 500 MAT 0.4 MAT 0.5 MAT 0.5* 500	16OMT	0.7*	16OMT	0.6***	16OMT	0.6***		
T3R 0.4** T3R T3R 0.8 1.3* T3R 0.8 1.00	<i>T</i> 30	0.4*	T3O	0.4*	T3O	0.3*		1500
NMT 0.3*** NMT 0.4** NMT 0.3*** . 1000 D4H 1.0 D4H 0.9 D4H 0.8 . 500 DAT 0.3** DAT 0.5* DAT 0.6* 500 MAT 0.4 MAT 0.5 MAT 0.5 500	T3R	0.4**	T3R	1.3*	T3R	0.8		
D4H 1.0 D4H 0.9 D4H 0.8 DAT 0.3** DAT 0.5* DAT 0.6* 500 MAT 0.4 MAT 0.5 MAT 0.5 MAT 0.5 BIS1 B151 0.9 BIS1 2.0*** 0	NMT	0.3***	NMT	0.4**	NMT	0.3***		1000
DAT 0.3** DAT 0.5* DAT 0.6* 500 MAT 0.4 MAT 0.5 MAT 0.5 BIS1 2.0***	D4H	1.0	D4H	0.9	D4H	0.8		
MAT 0.4 MAT 0.5 MAT 0.5 BIS1 8.1*** BIS1 0.9 BIS1 2.0***	DAT	0.3**	DAT	0.5*	DAT	0.6*		500
RIST 8 1*** RIST 0.0 RIST 2 0***	MAT	0.4	MAT	0.5	MAT	0.5		500
	BIS1	8.1***	BIS1	0.9	BIS1	2.0***		

SUPPLEMENTARY FIGURE S1 MIA gene expression levels upon bulk overexpression of TF candidates. Up to four TF candidates were bulk overexpressed via flower petal infiltration with A. tumefaciens in two rounds (a and b), and the expression level of MIA genes subsequently measured by qPCR. Gene expression levels are expressed as fold changes relative to that of the p35S::GUS control. *P<0.05, **P<0.01, ***P<0.001 calculated by twotailed Student's t-test of four biological replicates. Groups marked in green were chosen for subsequent separate infiltration of TF candidates. Gene IDs labeled in red were only mildly overexpressed (<5-fold) and not taken along for further analyses.

(a)

SUPPLEMENTARY FIGURE S2 Separate overexpression of positive TF candidates. TF candidates selected from results from bulk overexpression (Supplementary Figure S1) were infiltrated separately in independent infiltration series. Gene expression levels measured by qPCR are expressed as fold changes relative to the expression in the *p35S::GUS* control. *P<0.05, **P<0.01, ***P<0.001 calculated by two-tailed Student's *t*-test, four biological replicates. Gene IDs labeled in red were only mildly overexpressed (<5-fold).

(a) Genes from screening group 1.1 and 1.6 that were well overexpressed (see Supplementary Figure S1) were overexpressed separately. Overexpression of CRO_T132285 and CRO_T127367 (orange colored) led to a statistically significant >2-fold up-regulation of some vindoline genes. CRO_T123350 and CRO_T105905 can be classified as bHLH Clade IVa TFs due

to sequence homology, and were therefore additionally tested for up-regulation of iridoid pathway genes (Fig. 2).

(b) Separate overexpression of genes from screening group 1.2. The previously observed upregulation of early MIA pathway genes was not confirmed.

(c) Separate overexpression of TF candidates from bulk overexpression groups 2.1 and 2.2. + CRO_T107533 (re-named *BIS3*) was identified as a *BIS* paralog (see Fig. 3).

(d) and (e) These TF candidates had been previously selected as potential MIA pathway regulators by independent co-expression analyses and overexpressed separately.

(f) In order to clarify their up-regulation effect on MIA genes upon overexpression in flower petals (see a), candidates CRO_T132285 and CRO_T127367 were tested in promoter transactivation assays in *N. tabacum* protoplasts. The absence of a consistent activation of these promoter fragments does not support a direct involvement in vindoline pathway regulation. *P<0.05, **P<0.01, ***P<0.001 was calculated by two-tailed Student's *t*-test. Error bars depict SEM of four biological replicates.

SUPPLEMENTARY FIGURE S3 Promoter transactivation of iridoid pathway genes by combinations of BIS'.

It was previously shown that BIS1 and BIS2 physically interact and to a certain extent synergistically up-regulate iridoid pathway target gene (Van Moerkercke et al. 2016). Here, transactivation assays of selected iridoid pathway promoter fragments (*pGES*, *pIS* and *p7DLGT*) were tested combinations of BIS'. An increase in transactivation by different BIS TFs was limited to transactivation of *pIS* and *p7DLGT* by BIS1 and 3 only. *N. tabacum* protoplasts were co-transfected with constructs containing the *fLUC* gene to be expressed under control of the indicated promoter fragments and constructs for overexpression of *BIS'* or *GUS* as a control. For individual overexpression of BIS1, 2 or 3 protoplasts were transfected with the double amounts of BIS1, 2 or 3 expression plasmids in order to compare effects of potential homo-dimers versus hetero-dimers. The y-axis shows fold change in normalized fLUC activity relative to the control transfection with GUS, set at 1. The error bars depict SEM of four biological replicates. Asterisks indicate statistically significant differences in transactivation (*P < 0.05, **P < 0.01, ***P < 0.01) as calculated by Student's *t*-test.

NISPQLIAVELSSEESSTISSPGDNIFIYTEANGGDLGFNYVDSNSPTSTESQEEDMAGKKKKAGAAARGKNAPTDQWT

SUPPLEMENTARY FIGURE S4 Comparison of structural features and motifs of ORCA activation domains (ADs). While the DNA binding domain (DBD) is assumed to determine binding activity to specific DNA motifs, the AD is thought to confer the level of activation for instance by recruiting the transcriptional machinery and/or by interaction with other TFs or co-regulators. The observed differences in MIA target gene activation are only partly explained by differences in specific amino acid residues (AARs) in the DBD. In particular, a general lower activity (such as observed for the ORCA6 paralog) or the observed differences in synergistic up-regulation (i.e. higher for ORCA3 than for the other ORCAs) might be also caused by differences in the ADs. ADs commonly show a high level of disorder so that structural information by protein crystallization is scarce, and a very low level of AAR sequence conservation compared to the DBD, however structural features and motifs can be revealed using a combination of *in silico* methods (O'Shea et al., 2017). To compare ORCA AD sequences despite their low homology, we used different prediction and motif search programs. As expected, PONDR[®] VSL2 predicts long stretches of the ORCA ADs to be disordered (bold font); in case of ORCA3-5 practically the entire AD is predicted to be disordered (Xue et al., 2010). Within disordered regions, molecular recognition features (MoRFs) can occur. These short regions can undergo disorder-to-order transitions and bind protein partners, and can be predicted by MoRFpred (underlined sequence) (Disfani et al., 2012). The α -helices (gray cylinders above the sequence) predicted by PSIPRED 4.0 often coincide with MoRFs, further indicating that these short regions may indeed form secondary structures (Buchan and Jones, 2019). Moreover, we performed a MEME analysis to uncover motifs with sequence similarity (depicted by colors) (Bailey et al., 2015). In summary, the ADs of ORCA3, 4 and 5 share for instance in particular a motif at the N-terminus (pink), but they do not share any of the

predicted motifs or structural features with those of ORCA2 and 6. The observed differences in MIA gene up-regulation between the ORCA3 and 4 domain swaps (Fig. 7) may be due to specific motifs but this requires further future experimentation.

SUPPLEMENTARY FIGURE S5 Expression profiles of MIA biosynthesis genes and regulators in analyzed RNA-seq data.

Expression levels of MIA pathway genes and BIS and ORCA transcription factors are shown for all 81 RNA-seq samples included in the candidate selection analysis. TPM values were extracted from the expression atlas (Supporting dataset 1) and expression levels scaled from 0 (lowest TPM value) to 1 (highest TPM value) for each gene across all RNA-seq samples.

SUPPLEMENTARY FIGURE S6 MIA levels upon overexpression of ORCAs. Levels are expressed as log2 fold changes (FC) compared to the *p35S::GUS* control. Total ion current (TIC) values from this experiment, including statistical analysis, can be found in Supplementary Table S6.

SUPPLEMENTARY FIGURE S7 MIA gene expression levels upon overexpression of *ORCA3* **single mutants.** The indicated AARs of ORCA3 were mutated to correspond to those of other ORCA TFs (see Fig. 5a). Gene expression levels measured by qPCR are expressed as average log2 FC relative to the *p355::GUS* control. For each gene, different letters represent statistically significant differences (P<0.05, ANOVA with Tukey's correction for multiple comparisons).

SUPPLEMENTARY FIGURE S8 MIA levels upon overexpression of *ORCA3* **mutants.** Levels are expressed as log2 FC compared to the *p35S::GUS* control. Total ion current (TIC) values from this experiment including statistical analysis can be found in Supplementary Table S7.

SUPPLEMENTARY FIGURE S9 MIA levels upon combinatorial overexpression of *CrMYC2a*^{D126N} and *ORCAs*. Levels are expressed as log2 FC compared to the *p35S::GUS* control. Total ion current (TIC) values from this experiment including statistical analysis can be found in Supplementary Table S8.

SUPPLEMENTARY FIGURE S10 Orthologs of cuticular wax biosynthesis regulators upregulate the vindoline pathway gene T3R. The *A. thaliana* TFs MYB94 and 96 have been implicated in up-regulation of cuticular wax biosynthesis. When screening epidermis-enriched transcriptome data for potential epidermis-specific MIA biosynthesis regulators, the *C. roseus* orthologs CRO_T137796 and CRO_T131234 appeared and were renamed CrMYB96b and CrMYB96, respectively.

(a) MUSCLE protein sequence alignment of A. thaliana MYB94 and 96 and C. roseus orthologs.

(b) Transcripts Per Kilobase Million (TPM) values for *CrMYB96* and *96b* extracted from transcriptome data of macro-dissected stems of *C. roseus* (see Methods), showing that these transcripts are more abundant in the epidermis-enriched peel.

(c) Promoter transactivation assays in *N. tabacum* protoplasts by measuring luciferase activity upon co-transfection with constructs containing promoter fragments fused to *fLUC* and constructs for overexpression of Cr*MYB96/b* or *GUS* as a control. The y-axis shows fold change in normalized fLUC activity relative to the GUS control. The error bars depict SEM of four biological replicates. Upper panel: columns labelled with different letters represent statistically significant differences (P<0.05, ANOVA with Tukey's correction for multiple comparisons). Lower panel: MYB96 was tested for transactivation of other vindoline pathway promoters; for every promoter statistical significance was determined by the Student's *t*-test (*P < 0.05, **P < 0.01, ***P < 0.001) compared to GUS control.

(d) – (h) Transient overexpression of CrMYB96 and 96b in C. roseus flower petals.

(d) Overexpression level and MIA biosynthesis gene expression levels were measured by qPCR and are expressed as average log2 FC relative to the *p35S::GUS* control. For each gene, different letters represent statistically significant differences (P<0.05, ANOVA with Tukey's correction for multiple comparisons). In this experiment, overexpression of *CrMYB96* (or combination with *CrMYB96b*) leads to higher up-regulation of *T3R* than overexpression of *CrMYB96b* alone; therefore CrMYB96 was used in further experiments. Moreover, an ortholog of the cuticular wax gene *CER1* was also up-regulated, suggesting that the role in cuticular wax biosynthesis regulation is evolutionary conserved.

(e) PCA plot of metabolite profile data.

(f) Loading plot of PCA showing selected MIAs identified in previous studies (blue) and in this study (red).

(g) MIA levels are expressed as log2 FC compared to the *p35S::GUS* control. Total ion current (TIC) values from this experiment including statistical analysis can be found in Supplementary Table S9.

(h) TIC values for vindoline, vindorosine and catharanthine. Columns labelled with different letters represent statistically significant differences (P<0.05, ANOVA with Tukey's correction for multiple comparisons).

SUPPLEMENTARY FIGURE S11 Combinatorial overexpression of ORCA4, CrMYB96 and CrMYC2a^{D126N}.

(a) Gene expression levels were measured by qPCR and are expressed as average log2 FC relative to the *p35S::GUS* control. For each gene, different letters represent statistically significant differences (P<0.05, ANOVA with Tukey's correction for multiple comparisons).

(b) PCA metabolite profile data.

(c) Loading plot of PCA showing selected MIAs previously identified (blue) and in this study (red).

(d) MIA levels are expressed as log2 FC compared to the *p35S::GUS* control. Consistent with other experiments, the MIA profile significantly changes upon overexpression of *ORCA4* or *CrMYC2a*^{D126N} alone or in combination, as opposed to overexpression of *MYB96*. Total ion current (TIC) values from this experiment including statistical analysis can be found in Supplementary Table S10.

Dataset ID	Sample ID	Sample name (as in	Short sample description
(Reference)		Supporting Dataset 1)	
SRA030483	SRR122239	mich_flower	flowers
(Gongora- Castillo et al.,	SRR122240	mich_culture_AB	Suspension culture (yeast extract (YE) 0.3 mg/mL for 12 hours)
2012)	SRR122241	mich_culture_AC	Suspension culture (YE 0.3 mg/mL for 24 hours)
	SRR122242	mich_culture_AD	Suspension culture control
	SRR122243	mich_seedling_AE	Sterile seedlings
	SRR122244	mich_seedling_AF	Sterile seedlings (Methyl jasmonate(MeJA) 6uM 12 days)
	SRR122245	mich_seedling_AG	Sterile seedlings
	SRR122246	mich_culture_AH	Suspension culture (YE 0.3 mg/mL for 6 hours)
	SRR122247	mich_culture_AI	Suspension culture (MeJA 100uM for 6 hours)
	SRR122248	mich_culture_AJ	Suspension culture (MeJA 100uM for 12 hours)
	SRR122249	mich_culture_AK	Suspension culture (MeJA 100uM for 24 hours)
	SRR122250	mich_culture_AL	Suspension culture
	SRR122251	mich_leaf_AM	Mature leaves
	SRR122252	mich_leaf_AN	Immature leaves
	SRR122253	mich_stem_AO	Stem
	SRR122254	mich_root_AP	Root
	SRR122255	mich_hairy_TDCi_AQ	Hairy roots (TDCi)
	SRR122256	mich_hairy_RebHF_AR	Hairy roots (RebH_F)
	SRR122257	mich_hairy_WT_AS	Wild type (wt) hairy roots
	SRR122258	mich_hairy_WT_AT	Wt hairy roots (MeJA 250uM for o hours)
	SRR122259	mich_hairy_WT_AU	Wt hairy roots (MeJA 250uM for 24 hours)
	SRR122260	mich_hairy_TDCi_AV	TDCi hairy roots (MeJA 250uM for 0 hours)
	SRR122261	mich_hairy_TDCi_AW	TDCi hairy roots (MeJA 250uM for 24 hours)
SRA064724	SRS385814	smart_ccCTR	Cell suspension culture (CC) control
(Van Moerkerske	SRS385815	smart_ccMeJA	CC exposed to MeJA
et al., 2013)			
SRP026417	SRR924147	smart_ccORCA2	CC overexpressing ORCA2
(Van	SRR924148	smart_ccORCA3	CC overexpressing ORCA3
et al., 2015)			
SRA064076	SRS383709	smart_p24hMeJA	Plants 24 hours MeJA
(Van	SRS383671	smart_p6hCTR	Control plants 6 hours
Moerkercke et al., 2013)	SRS383701	smart_p6hMeJA	Plants 6 hours MeJA
ERA669805	ERR1512369	foli_6h_mse	Plants exposed to Manduca sexta (Ms) 6 hours
(Dugé de	ERR1512370	foli_6h_ctrl	Ms control plants 6 hours
ветпоnville et al., 2017)	ERR1512371	foli_8h_mse	Ms plants 8 hours
,,	ERR1512372	foli_8h_ctrl	Ms control plants 8 hours
	ERR1512373	foli_24h_mse1	Ms plants 24 hours
	ERR1512374	foli_24h_mse2	Ms plants 24 hours
	ERR1512375	foli_24h_ctrl	Ms control plants 24 hours

SUPPLEMENTARY TABLE S1 List of RNA-Seq datasets used.

	ERR1512376	foli_168h_mse	Ms plants 168 hours, new leaves
	ERR1512377	foli_168h_ctrl	Ms control plants 168 hours, new leaves
SRP095740	SRR5133632	ET_1-3	Seedlings exposed to ethylene (ET)
(Pan et al.,	SRR5133633	ET_2-3	
2018)	SRR5133635	ET_3-3	
	SRR5133629	MeJA_2-3	Seedlings exposed to MeJA
	SRR5133628	MeJA_1-3	
	SRR5133636	MeJA_3-3	
	SRR5133634	Control_3-3	Control seedlings
	SRR5133631	Control_2-3	
	SRR5133630	Control_1-3	
	SRR5944780	group_4_1-1	Seedlings
SRP055543	SRS858191	GUS_3	Control hairy root lines overexpressing GUS
(Van Maarkaraka	SRS858189	GUS_4	
et al., 2015)	SRS858216	GUS_5	
SRP055543	SRS858143	bHLH_14	Hairy root lines overexpressing BIS1
(Van	SRS858141	bHLH_18	
et al., 2015)	SRS858111	bHLH_19	
PRJEB40213	ERR4567494	ORCA3_23	Hairy root lines overexpressing ORCA3
(This study)	ERR4567495	ORCA3_7	
	ERR4567496	ORCA3_8	
PRJEB40216	ERR4567574	S01_WL1	Whole leaves
(This study)	ERR4567575	S02_WL2	
	ERR4567576	S03_WL3	
	ERR4567577	S04_CV1	Central vein
	ERR4567578	S05_CV2	
	ERR4567579	S06_CV2	
	ERR4567580	S07_VL1	Leaf without central vein
	ERR4567581	S08_VL2	
	ERR4567582	S09_VL3	
	ERR4567583	S10_WS1	Whole stem
	ERR4567584	S11_WS2	
	ERR4567585	S12_WSa5	
	ERR4567586	S13_PSa6	Peeled stem
	ERR4567587	S14_PS2	
	ERR4567588	S15_PS3	
	ERR4567589	S16_SE1	Stem epidermis
	ERR4567590	S17_SEa6	
	ERR4567591	S18_SE3	
PRJEB40214	ERR4567511	S1_CTR1	Mock infiltrated flower petals
(This study)	ERR4567512	S2_CTR2	
	ERR4567513	S3_CTR3	
	ERR4567514	S4_AGRO1	A. tumefaciens C58C1 infiltrated flower petals

ERR4567515	S5_AGRO2
ERR4567516	S6_AGRO3

SUPPLEMENTARY TABLE S2 Oligonucleotide primers used for cloning of coding sequences.

CRO_ID/	Sequence fw/
Gene or TF family	rev
CRO_T110359	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAGTTTTCAGCTACTAATTTTATC
ORCA5	GGGGACCACTTTGTACAAGAAAGCTGGGTATTACAATATTGTCTCCTGTTTCATCT
CRO_T110361	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGCTTGATGAAATTACTATTTCAGCC
ORCA4	GGGGACCACTTTGTACAAGAAAGCTGGGTATTAATTTCTTCTCTTCTTCGTCCCT
CRO_T110364	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGAATGAA
ORCA6	GGGGACCACTTTGTACAAGAAAGCTGGGTACTATTGTTTACGGCCAAGATGATT
CRO_T112238	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAGTGCTTCAAAAATCATCTTCC
GATA	GGGGACCACTTTGTACAAGAAAGCTGGGTACTAAGAATTAGATGGTGGGTG
CRO_T132285	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAGATGGAGAAATCTTGTGA
BBX	GGGGACCACTTTGTACAAGAAAGCTGGGTATCACTGAACGTTGGACAAACA
CRO_T112897	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCTTCTTGTTTAACTGGAGGTG
ССТ	GGGGACCACTTTGTACAAGAAAGCTGGGTACTATCCTTGCTCGCTC
CRO_T127367	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGTACAATCAAAGAAGTTCAGAGG
AP2/ERF	GGGGACCACTTTGTACAAGAAAGCTGGGTATCAATTTCTGTTCAAGAGTTCTTCA
CRO_T130446	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGTATCTTCTGATAATAATAAAAAG
BBX	GGGGACCACTTTGTACAAGAAAGCTGGGTATCATTTATTT
CRO_T118079	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCTCACATAGCAGTGGAAAGA
bHLH	GGGGACCACTTTGTACAAGAAAGCTGGGTACTACGGTTCTATTTGTTTG
CRO_T128811	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTGCCAAGGTCAGG
C2H2 ZF	GGGGACCACTTTGTACAAGAAAGCTGGGTATTATCTCGACCGGCCTAATCTC
CRO_T107533	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGATATGATGACGGATAATTCAGGA
bHLH	GGGGACCACTTTGTACAAGAAAGCTGGGTACTACCCAAGAAGTGACCGAAGA
CRO_T132027	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTATTGTAATTTTTGGTCAAGTAGT
bHLH	GGGGACCACTTTGTACAAGAAAGCTGGGTATCATAGATTGAATATCAAGCCCATCA
CRO_T109258	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAAAGCTTAGATATTCATGAAGAA
bHLH	GGGGACCACTTTGTACAAGAAAGCTGGGTATTACATACTCATGGGACTGTCTGG
CRO_T118542	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTGCCCAAGTTTTAGA
ARR	GGGGACCACTTTGTACAAGAAAGCTGGGTATTATGAGAATATCTGATTGTATCTTT
CRO_T103361	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGATGAAAATGAAGTTACTCAATCGT
TPR	GGGGACCACTTTGTACAAGAAAGCTGGGTACTATTGCAGATTATCTACAGTCAAGAG
CRO_T117719	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTGCTGAATCATCAAGC
AP2/ERF	GGGGACCACTTTGTACAAGAAAGCTGGGTATCAGCTGACCCATTTTACTGTGT
CRO_T133384	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCACTGAGGAGAAATTTTCTTT
TLP	GGGGACCACTTTGTACAAGAAAGCTGGGTATCACTCGCAGGCCAGTTTT
CRO_T122239	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGCAAAACCCTTCTCATAAACAT
NYF-YA	GGGGACCACTTTGTACAAGAAAGCTGGGTATCATTTTGGTGCACCTCCCT
CRO_T116828	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGGTAGTACTAGATTCATGAACA
WRKY	GGGGACCACTTTGTACAAGAAAGCTGGGTATCATCCGGTGGTGCCACA

CRO_ID/	Sequence fw/
Gene or TF family	rev
CRO_T123350	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGATCTTTTAGGAGCACATGAGT
bHLH	GGGGACCACTTTGTACAAGAAAGCTGGGTATTATTGCATGAGCTTTTGGATGGC
CRO_T105905	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAAGCTCCATCAACTTCTTG
bHLH	GGGGACCACTTTGTACAAGAAAGCTGGGTACTATCTGTTTTCTTTAGTGCTGA
CRO_T115526	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGAGAAGAGTAGTACTAGTACT
ZF	GGGGACCACTTTGTACAAGAAAGCTGGGTACTAGAGATGAAGGTCTAAACTCACA
CRO_T129607	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGGGAAGAAAATGAAGCTCC
OFP	GGGGACCACTTTGTACAAGAAAGCTGGGTACTAATTTCTCAGACACGAAGAAGAAGA
CRO_T131857	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTACGAAAACGGTGATTTTGA
AP2/ERF	GGGGACCACTTTGTACAAGAAAGCTGGGTATCACCATTCACTAAACAATCTCTGT
CRO_T134559	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGAAGAAAATGATGAGAAGTCAACT
Homeodomain	GGGGACCACTTTGTACAAGAAAGCTGGGTATTAGCTAATTTGACTACAAAGTTGATT
CRO_T116348	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGATAATTGTGAAATTAGCGAAAGA
HF	GGGGACCACTTTGTACAAGAAAGCTGGGTATTATTTGCACGATTGAAAGAGAAAAA
CRO_T100680	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGAAAGAGAGACAACGGTGGC
МҮВ	GGGGACCACTTTGTACAAGAAAGCTGGGTACTAATTAGGCTCATCCATTCGAGG
CRO_T101037	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGTCAAATTTTCCAAGTTT
ТСР	GGGGACCACTTTGTACAAGAAAGCTGGGTACTAATTTTGAAAATGGATTTGATTTTG
CRO_T110868	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGACTCTAAGAAGCTTGTTAATGG
AP2/B3	GGGGACCACTTTGTACAAGAAAGCTGGGTACTACCTACAAGTGACACCCTTGC
CRO_T126752	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGATCTCAAAAGGGTCGTCGT
ANAC	GGGGACCACTTTGTACAAGAAAGCTGGGTATTACTGAGCACAAATTAAGGTTCCA
CRO_T134504	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGGTAGAAAGTGCTCACATTG
МҮВ	GGGGACCACTTTGTACAAGAAAGCTGGGTATCAGATGACGCTGATAATTGGTC
CRO_T127378	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGCTGCAGAGTTGCAATT
ANAC	GGGGACCACTTTGTACAAGAAAGCTGGGTATTAAAATGGCTTCTGCAAGAACA
CRO_T110248	GGGGACAAGTTTGTACAAAAAAGCAGGCTCGATGTTATCGAGAGTTAACAGCATGG
bHLH	GGGGACCACTTTGTACAAGAAAGCTGGGTTTAAACCATCCCTTGGAAGCC
CRO_T124980	GGGGACAAGTTTGTACAAAAAAGCAGGCTCGATGGCTTTAGAAGCCCTTTCTTCC
bHLH	GGGGACCACTTTGTACAAGAAAGCTGGGTTCAACAAGTACGGGGTGGC
CRO_T110360	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGTCCGAAGAAATCATTTCCGT
ORCA3	GGGGACCACTTTGTACAAGAAAGCTGGGTATTAATATCGTCTCTTCCTTC
CRO_T110360	GATTGGAACCGGTATAGAGGCGTTAGACGGCGG
ORCA3K101R	CCGCCGTCTAACGCCTCTATACCGGTTCCAATC
CRO_T110360	GTTAGACGGCGGCTTTGGGGGAAGTTCG
ORCA3P107L	CGAACTTCCCCCAAAGCCGCCGTCTAAC
CRO_T110360	GCCGTGGGGGAGATTCGCGGCGGAG
ORCA3 ^{K110R}	CTCCGCCGCGAATCTCCCCCACGGC
CRO_T110360	GCCGTGGGGGACTTTCGCGGCGGAG
ORCA3 ^{K110T}	CTCCGCCGCGAAAGTCCCCCACGGC
CRO_T110360	CGGCGGAGATAAGGAATCCGAAAAAGAAAG
ORCA3D117N	CTTTCTTTTCGGATTCCTTATCTCCGCCG
CRO_T110360/1	GAGGAGGTTGTTCGAAGGATTGGAACCGGTACAGAGGCGTTAGACGG
ORCA3/4 swap	CCGTCTAACGCCTCTGTACCGGTTCCAATCCTTCGAACAACCTCCTC

CRO_ID/	Sequence fw/
Gene or TF family	rev
CRO_T110360/1	CGCCGTCTAACGCCCTTATACCGCTTCCATTCCTCAGAATTTTCTTCACTAC
ORCA4/3 swap	GTAGTGAAGAAAATTCTGAGGAATGGAAGCGGTATAAGGGCGTTAGACGGCG
CRO_T131234	GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGGAAGACCACCTTGCTGTGATA
MYB96	GGGGACCACTTTGTACAAGAAAGCTGGGTGTCMGAACAAATCAGTAGTTTCCCCT
CRO_T137796	GGGGACAAGTTTGTACAAAAAAGCAGGCTTAATGGGGAGACCTCCTTGCT
MYB96b	GGGGACCACTTTGTACAAGAAAGCTGGGTACTAAAACAAATCTTCATCATGATCAAA
CRO_T110365	GGGGACAAGTTTGTACAAAAAAGCAGGCTccATGTATCAATCAAATGCCCATAATTCCG
ORCA2	GGGGACCACTTTGTACAAGAAAGCTGGGTgTCMTTGAGGACGAAGATGACACGATGAA

SUPPLEMENTARY TABLE S3 Oligonucleotide primers used for cloning of promoter fragments.

CRO_ID/ Gene or TF family	Sequence fw/ rev	Length -ATG (0)
рТЗО	GGGGACAAGTTTGTACAAAAAGCAGGCTTAGAAACGATAGATTTCTTTTGATGCCT	-1982
CRO_T113994	GGGGACCACTTTGTACAAGAAAGCTGGGTAAATCAAAGCTTACTAATTATGAATCTC	0
pT3R	GGGGACAAGTTTGTACAAAAAGCAGGCTTAAGGCTTCCTTTCTTT	-1992
CRO_T124298	GGGGACCACTTTGTACAAGAAAGCTGGGTATAAGGAAAAGACAAGCAAAGCCA	0
pD4H	GGGGACAAGTTTGTACAAAAAGCAGGCTTAGATCTTATCTCCTAAACCCTAAACC	-1241
CRO_T127167	GGGGACCACTTTGTACAAGAAAGCTGGGTATAGGATTACAGACAG	-79
pDAT	GGGGACAAGTTTGTACAAAAAGCAGGCTTAGCATCCAACCATAAAACATTACCCT	-934
CRO_T120021	GGGGACCACTTTGTACAAGAAAGCTGGGTAATTCAGACCCCAACACACAAC	-17
pGO	GGGGACAAGTTTGTACAAAAAGCAGGCTTATAATTTTTTATATGCTCGAGTACACT	-2000
CRO_T127440	GGGGACCACTTTGTACAAGAAAGCTGGGTATGTGTTTTGTTCAAGAGAGAG	0
рТАТ	GGGGACAAGTTTGTACAAAAAGCAGGCTTATGATAAATAA	-2000
CRO_T120026	GGGGACCACTTTGTACAAGAAAGCTGGGTATTTGCTCATGCCATTATTATGAACTCA	0
рМАТ	GGGGACAAGTTTGTACAAAAAGCAGGCTTAAAAGTAATTGTTATCAATTTATTGA	-2000
CRO_T120028	GGGGACCACTTTGTACAAGAAAGCTGGGTATTTGCTCAATATGCTGCTTTCCA	0

SUPPLEMENTARY TABLE S4 List of Genebank IDs of all cloned TFs and promoter fragments.

Genebank accession	CRO_ID	Name
MT414967	CRO_T127167	pD4H
MT414968	CRO_T120021	pDAT
MT414969	CRO_T127440	pGO
MT414970	CRO_T120028	pMAT
MT414971	CRO_T113994	рТЗО
MT414972	CRO_T124298	pT3R
MT414973	CRO_T120026	рТАТ
MT414974	CRO_T100680	MYB type TF
MT414975	CRO_T101037	TCP type TF
MT414976	CRO_T103361	TPR type TF
MT414977	CRO_T105905	bHLH type TF

MT414979 CRO_T109258 bHLH type TF MT414980 CRO_T110248 bHLH type TF MT414981 CRO_T110359 ORCA5 MT414982 CRO_T110361 ORCA4 MT414983 CRO_T110364 ORCA6 MT414983 CRO_T110264 ORCA6 MT414983 CRO_T110268 AP2/B3 type TF MT414984 CRO_T112238 GATA type TF MT414985 CRO_T112897 CCT type TF MT414986 CRO_T116348 HF type TF MT414989 CRO_T116348 HF type TF MT414990 CRO_T118079 bHLH type TF MT414990 CRO_T118079 bHLH type TF MT414991 CRO_T12239 NYF-YA type TF MT414992 CRO_T122350 bHLH type TF MT414993 CRO_T12350 bHLH type TF MT414994 CRO_T127367 AP2/ERF type TF MT414995 CRO_T127367 AP2/ERF type TF MT414999 CRO_T127378 ANAC type TF MT414999 CRO_T132811 C2H2 ZF type TF </th <th>MT414978</th> <th>CRO_T107533</th> <th>BIS3</th>	MT414978	CRO_T107533	BIS3
MT414980 CRO_T110248 bHLH type TF MT414981 CRO_T110359 ORCA5 MT414982 CRO_T110361 ORCA4 MT414983 CRO_T110364 ORCA6 MT414983 CRO_T110868 AP2/B3 type TF MT414984 CRO_T112238 GATA type TF MT414985 CRO_T112897 CCT type TF MT414986 CRO_T116348 HF type TF MT414988 CRO_T116348 HF type TF MT414990 CRO_T116348 WRKY type TF MT414990 CRO_T118079 bHLH type TF MT414991 CRO_T118079 bHLH type TF MT414991 CRO_T12239 NYF-YA type TF MT414992 CRO_T12350 bHLH type TF MT414993 CRO_T12350 bHLH type TF MT414994 CRO_T12350 bHLH type TF MT414995 CRO_T127367 AP2/ERF type TF MT414996 CRO_T127378 ANAC type TF MT414999 CRO_T132841 C2H2 ZF type TF MT415000 CRO_T132285 BBX type TF<	MT414979	CRO_T109258	bHLH type TF
MT414981 CRO_T110359 ORCA5 MT414982 CRO_T110361 ORCA4 MT414983 CRO_T110364 ORCA6 MT414984 CRO_T110868 AP2/B3 type TF MT414985 CRO_T112238 GATA type TF MT414986 CRO_T112897 CCT type TF MT414987 CRO_T115526 ZF type TF MT414988 CRO_T116348 HF type TF MT414989 CRO_T116328 WRKY type TF MT414990 CRO_T11719 AP2/ERF type TF MT414991 CRO_T118079 bHLH type TF MT414992 CRO_T122239 NYF-YA type TF MT414993 CRO_T122350 bHLH type TF MT414994 CRO_T127350 bHLH type TF MT414995 CRO_T127367 AP2/ERF type TF MT414996 CRO_T127367 AP2/ERF type TF MT414999 CRO_T127367 AP2/ERF type TF MT414999 CRO_T128010 CHP type TF MT414999 CRO_T12807 OFP type TF MT414999 CRO_T130446 BX typ	MT414980	CRO_T110248	bHLH type TF
MT414982 CR0_T110361 ORCA4 MT414983 CR0_T110364 ORCA6 MT414984 CR0_T110868 AP2/B3 type TF MT414985 CR0_T112238 GATA type TF MT414986 CR0_T112897 CCT type TF MT414987 CR0_T116348 HF type TF MT414988 CR0_T116348 HF type TF MT414990 CR0_T117719 AP2/ERF type TF MT414991 CR0_T118079 bHLH type TF MT414992 CR0_T12239 NYF-YA type TF MT414993 CR0_T122350 bHLH type TF MT414994 CR0_T12350 bHLH type TF MT414995 CR0_T127367 AP2/ERF type TF MT414996 CR0_T127367 AP2/ERF type TF MT414997 CR0_T127367 AP2/ERF type TF MT414998 CR0_T127378 ANAC type TF MT414999 CR0_T132350 bHLH type TF MT415000 CR0_T13267 AP2/ERF type TF MT414999 CR0_T127378 ANAC type TF MT415001 CR0_T132027	MT414981	CRO_T110359	ORCA5
MT414983 CRO_T110364 ORCA6 MT414984 CRO_T110868 AP2/B3 type TF MT414985 CRO_T112238 GATA type TF MT414986 CRO_T112897 CCT type TF MT414987 CRO_T115526 ZF type TF MT414988 CRO_T116348 HF type TF MT414989 CRO_T116828 WRKY type TF MT414990 CRO_T118079 bHLH type TF MT414991 CRO_T118542 ARR type TF MT414992 CRO_T12239 NYF-YA type TF MT414993 CRO_T122350 bHLH type TF MT414994 CRO_T126752 ANAC type TF MT414995 CRO_T127367 AP2/ERF type TF MT414996 CRO_T127378 ANAC type TF MT414999 CRO_T13240 bHLH type TF MT414999 CRO_T13244 B8X type TF MT414999 CRO_T127378 ANAC type TF MT414999 CRO_T13244 MYB96 MT415001 CRO_T132027 DFF MT415003 CRO_T13225 B8X type TF	MT414982	CRO_T110361	ORCA4
MT414984 CRO_T110868 AP2/B3 type TF MT414985 CRO_T112238 GATA type TF MT414986 CRO_T112897 CCT type TF MT414987 CRO_T115526 ZF type TF MT414988 CRO_T116348 HF type TF MT414989 CRO_T116828 WRKY type TF MT414990 CRO_T117719 AP2/ERF type TF MT414991 CRO_T118542 ARR type TF MT414992 CRO_T118542 ARR type TF MT414993 CRO_T12239 NYF-YA type TF MT414994 CRO_T123350 bHLH type TF MT414995 CRO_T126752 ANAC type TF MT414996 CRO_T127367 AP2/ERF type TF MT414997 CRO_T127378 ANAC type TF MT414998 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T131857 AP2/ERF type TF MT415001 CRO_T131857 AP2/ERF type TF MT415003 CRO_T132027 bHLH type TF MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T13338	MT414983	CRO_T110364	ORCA6
MT414985 CRO_T112238 GATA type TF MT414986 CRO_T112897 CCT type TF MT414987 CRO_T115526 ZF type TF MT414988 CRO_T116348 HF type TF MT414989 CRO_T116828 WRKY type TF MT414990 CRO_T117719 AP2/ERF type TF MT414991 CRO_T118542 ARR type TF MT414992 CRO_T112239 NYF-YA type TF MT414993 CRO_T122350 bHLH type TF MT414994 CRO_T123350 bHLH type TF MT414995 CRO_T126752 ANAC type TF MT414996 CRO_T127367 AP2/ERF type TF MT414997 CRO_T127378 ANAC type TF MT414998 CRO_T128811 C2H2 ZF type TF MT415001 CRO_T130446 BBX type TF MT415002 CRO_T13234 MYB96 MT415003 CRO_T132285 BBX type TF MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T133384 TLP type TF MT415006 CRO_T133384 <t< td=""><td>MT414984</td><td>CRO_T110868</td><td>AP2/B3 type TF</td></t<>	MT414984	CRO_T110868	AP2/B3 type TF
MT414986 CRO_T112897 CCT type TF MT414987 CRO_T115526 ZF type TF MT414988 CRO_T116348 HF type TF MT414989 CRO_T116828 WRKY type TF MT414990 CRO_T117719 AP2/ERF type TF MT414991 CRO_T118542 ARR type TF MT414992 CRO_T112239 NYF-YA type TF MT414993 CRO_T122350 bHLH type TF MT414994 CRO_T123350 bHLH type TF MT414995 CRO_T126752 ANAC type TF MT414996 CRO_T127367 AP2/ERF type TF MT414997 CRO_T127367 AP2/ERF type TF MT414998 CRO_T127378 ANAC type TF MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T130446 BBX type TF MT415001 CRO_T13224 MYB96 MT415003 CRO_T132027 bHLH type TF MT415004 CRO_T132285 BBX type TF MT415005 CRO_T133384 TLP type TF MT415006 CRO_T133504	MT414985	CRO_T112238	GATA type TF
MT414987 CRO_T115526 ZF type TF MT414988 CRO_T116348 HF type TF MT414989 CRO_T116828 WRKY type TF MT414990 CRO_T117719 AP2/ERF type TF MT414991 CRO_T118079 bHLH type TF MT414992 CRO_T118542 ARR type TF MT414993 CRO_T122239 NYF-YA type TF MT414994 CRO_T123350 bHLH type TF MT414995 CRO_T126752 ANAC type TF MT414996 CRO_T127367 AP2/ERF type TF MT414997 CRO_T128811 C2H2 ZF type TF MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T130446 BBX type TF MT415001 CRO_T13243 MYB96 MT415003 CRO_T132027 bHLH type TF MT415004 CRO_T13384 TLP type TF MT415005 CRO_T13384 TLP type TF MT415006 CRO_T1334504 MYB type TF MT415003 CRO_T1334504 MYB type TF MT415006 CRO_T13325 <	MT414986	CRO_T112897	CCT type TF
MT414988 CRO_T116348 HF type TF MT414989 CRO_T116828 WRKY type TF MT414990 CRO_T117719 AP2/ERF type TF MT414991 CRO_T118079 bHLH type TF MT414992 CRO_T1122239 NYF-YA type TF MT414993 CRO_T122239 NYF-YA type TF MT414994 CRO_T123350 bHLH type TF MT414995 CRO_T126752 ANAC type TF MT414996 CRO_T127367 AP2/ERF type TF MT414997 CRO_T127378 ANAC type TF MT414999 CRO_T128811 C2H2 ZF type TF MT414999 CRO_T130446 BBX type TF MT415001 CRO_T13234 MYB96 MT415002 CRO_T132027 bHLH type TF MT415003 CRO_T132027 bHLH type TF MT415006 CRO_T13384 TLP type TF MT415005 CRO_T13384 TLP type TF MT415006 CRO_T13384 TLP type TF MT415003 CRO_T13384 TLP type TF MT415006 CRO_T13365 <t< td=""><td>MT414987</td><td>CRO_T115526</td><td>ZF type TF</td></t<>	MT414987	CRO_T115526	ZF type TF
MT414989 CRO_T116828 WRKY type TF MT414990 CRO_T117719 AP2/ERF type TF MT414991 CRO_T118079 bHLH type TF MT414992 CRO_T118542 ARR type TF MT414993 CRO_T122239 NYF-YA type TF MT414994 CRO_T123350 bHLH type TF MT414995 CRO_T126752 ANAC type TF MT414996 CRO_T127367 AP2/ERF type TF MT414997 CRO_T127378 ANAC type TF MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T130446 BBX type TF MT415001 CRO_T13234 MYB96 MT415003 CRO_T132027 bHLH type TF MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T13384 TLP type TF MT415006 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365	MT414988	CRO_T116348	HF type TF
MT414990 CRO_T117719 AP2/ERF type TF MT414991 CRO_T118079 bHLH type TF MT414992 CRO_T118542 ARR type TF MT414993 CRO_T122239 NYF-YA type TF MT414994 CRO_T123350 bHLH type TF MT414995 CRO_T124980 bHLH type TF MT414996 CRO_T126752 ANAC type TF MT414997 CRO_T127367 AP2/ERF type TF MT414998 CRO_T127378 ANAC type TF MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T130446 BBX type TF MT415001 CRO_T130446 BBX type TF MT415002 CRO_T131857 AP2/ERF type TF MT415003 CRO_T132027 bHLH type TF MT415004 CRO_T13285 BBX type TF MT415005 CRO_T13384 TLP type TF MT415006 CRO_T134504 MYB type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T1377	MT414989	CRO_T116828	WRKY type TF
MT414991 CRO_T118079 bHLH type TF MT414992 CRO_T118542 ARR type TF MT414993 CRO_T12239 NYF-YA type TF MT414994 CRO_T123350 bHLH type TF MT414995 CRO_T124980 bHLH type TF MT414996 CRO_T126752 ANAC type TF MT414997 CRO_T127367 AP2/ERF type TF MT414998 CRO_T127378 ANAC type TF MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T130446 BBX type TF MT415001 CRO_T131234 MYB96 MT415003 CRO_T132027 bHLH type TF MT415004 CRO_T132285 BBX type TF MT415005 CRO_T13384 TLP type TF MT415006 CRO_T13384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b Al238740 CRO_T110365 ORCA2 Al251249 CRO_T110360 ORCA3<	MT414990	CRO_T117719	AP2/ERF type TF
MT414992 CRO_T118542 ARR type TF MT414993 CRO_T12239 NYF-YA type TF MT414994 CRO_T123350 bHLH type TF MT414995 CRO_T124980 bHLH type TF MT414996 CRO_T126752 ANAC type TF MT414997 CRO_T127367 AP2/ERF type TF MT414998 CRO_T127378 ANAC type TF MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T130446 BBX type TF MT415001 CRO_T131234 MYB96 MT415002 CRO_T132027 bHLH type TF MT415003 CRO_T132027 bHLH type TF MT415004 CRO_T13384 TLP type TF MT415005 CRO_T13384 TLP type TF MT415006 CRO_T134504 MYB type TF MT415007 CRO_T134504 MYB type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110360 ORCA3	MT414991	CRO_T118079	bHLH type TF
MT414993 CRO_T122239 NYF-YA type TF MT414994 CRO_T123350 bHLH type TF MT414995 CRO_T124980 bHLH type TF MT414996 CRO_T126752 ANAC type TF MT414997 CRO_T127367 AP2/ERF type TF MT414998 CRO_T127378 ANAC type TF MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T130446 BBX type TF MT415001 CRO_T1310346 BBX type TF MT415002 CRO_T131857 AP2/ERF type TF MT415003 CRO_T132027 bHLH type TF MT415004 CRO_T132285 BBX type TF MT415005 CRO_T133384 TLP type TF MT415006 CRO_T134504 MYB type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T137796 MYB96b Al238740 CRO_T110365 ORCA3	MT414992	CRO_T118542	ARR type TF
MT414994 CRO_T123350 bHLH type TF MT414995 CRO_T124980 bHLH type TF MT414996 CRO_T126752 ANAC type TF MT414997 CRO_T127367 AP2/ERF type TF MT414998 CRO_T127378 ANAC type TF MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T129607 OFP type TF MT415001 CRO_T130446 BBX type TF MT415002 CRO_T131234 MYB96 MT415003 CRO_T132027 bHLH type TF MT415004 CRO_T132285 BBX type TF MT415005 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134504 MYB type TF MT415009 CRO_T137796 MYB96b Al238740 CRO_T110365 ORCA2 Al251249 CRO_T110360 ORCA3	MT414993	CRO_T122239	NYF-YA type TF
MT414995 CRO_T124980 bHLH type TF MT414996 CRO_T126752 ANAC type TF MT414997 CRO_T127367 AP2/ERF type TF MT414998 CRO_T127378 ANAC type TF MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T129607 OFP type TF MT415001 CRO_T130446 BBX type TF MT415002 CRO_T131234 MYB96 MT415003 CRO_T132027 bHLH type TF MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T13384 TLP type TF MT415006 CRO_T13384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT414994	CRO_T123350	bHLH type TF
MT414996 CRO_T126752 ANAC type TF MT414997 CRO_T127367 AP2/ERF type TF MT414998 CRO_T127378 ANAC type TF MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T129607 OFP type TF MT415001 CRO_T130446 BBX type TF MT415002 CRO_T131234 MYB96 MT415003 CRO_T131857 AP2/ERF type TF MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T132285 BBX type TF MT415006 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134504 MYB type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT414995	CRO_T124980	bHLH type TF
MT414997 CRO_T127367 AP2/ERF type TF MT414998 CRO_T127378 ANAC type TF MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T129607 OFP type TF MT415001 CRO_T130446 BBX type TF MT415002 CRO_T131234 MYB96 MT415003 CRO_T131857 AP2/ERF type TF MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T132285 BBX type TF MT415006 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT414996	CRO_T126752	ANAC type TF
MT414998 CRO_T127378 ANAC type TF MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T129607 OFP type TF MT415001 CRO_T130446 BBX type TF MT415002 CRO_T131234 MYB96 MT415003 CRO_T131857 AP2/ERF type TF MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T13285 BBX type TF MT415006 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT414997	CRO_T127367	AP2/ERF type TF
MT414999 CRO_T128811 C2H2 ZF type TF MT415000 CRO_T129607 OFP type TF MT415001 CRO_T130446 BBX type TF MT415002 CRO_T131234 MYB96 MT415003 CRO_T131857 AP2/ERF type TF MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T132285 BBX type TF MT415006 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT414998	CRO_T127378	ANAC type TF
MT415000 CRO_T129607 OFP type TF MT415001 CRO_T130446 BBX type TF MT415002 CRO_T131234 MYB96 MT415003 CRO_T131857 AP2/ERF type TF MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T132285 BBX type TF MT415006 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT414999	CRO_T128811	C2H2 ZF type TF
MT415001 CRO_T130446 BBX type TF MT415002 CRO_T131234 MYB96 MT415003 CRO_T131857 AP2/ERF type TF MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T132285 BBX type TF MT415006 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA3	MT415000	CRO_T129607	OFP type TF
MT415002 CRO_T131234 MYB96 MT415003 CRO_T131857 AP2/ERF type TF MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T132285 BBX type TF MT415006 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT415001	CRO_T130446	BBX type TF
MT415003 CRO_T131857 AP2/ERF type TF MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T132285 BBX type TF MT415006 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT415002	CRO_T131234	MYB96
MT415004 CRO_T132027 bHLH type TF MT415005 CRO_T132285 BBX type TF MT415006 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT415003	CRO_T131857	AP2/ERF type TF
MT415005 CRO_T132285 BBX type TF MT415006 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT415004	CRO_T132027	bHLH type TF
MT415006 CRO_T133384 TLP type TF MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT415005	CRO_T132285	BBX type TF
MT415007 CRO_T134504 MYB type TF MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT415006	CRO_T133384	TLP type TF
MT415008 CRO_T134559 Homeodomain type TF MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT415007	CRO_T134504	MYB type TF
MT415009 CRO_T137796 MYB96b AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT415008	CRO_T134559	Homeodomain type TF
AJ238740 CRO_T110365 ORCA2 AJ251249 CRO_T110360 ORCA3	MT415009	CRO_T137796	MYB96b
AJ251249 CRO_T110360 ORCA3	AJ238740	CRO_T110365	ORCA2
	AJ251249	CRO_T110360	ORCA3

SUPPLEMENTARY TABLE S5 Oligonucleotide primers used for qPCR

Gene name or TF family name	Gene ID	fw	rev
GES	CRO_T119458	GGGCAAGGTGTCACTGAAGA	CCCAAATCATCCCAAAGGCG
G80	CRO_T133061	TGCTTTGGCATTCAAACCCG	GCAAATTCTTCGGCCAGCAC
8HGO	CRO_T107879	GCATTCCTGGACACGAAGGA	GCATTCCCCACATTCTCCCA
IS	CRO_T130026	AGTAGTAGGAGTCACCGGCA	CTTGCCACGCCGTATACCTT
ю	CRO_T138994	TCAAGTCCAAATACGGGCCG	CGGCGGAAACTGCATTTTGA
7DLGT	CRO_T106494	GCAGAGGGAGTTCTCAAGGC	TGGCCAATGCACATTCTTGG

Gene name or TF family name	Gene ID	fw	rev
7DLH	CRO_T131714	GGTCTTGAATCACCCTGCCA	TGGGACACCAGCCACAATAC
LAMT	CRO_T103723	TGGAAGCCCACCCAATGAAA	ACTGCCTTGGCTGCATCAAT
SLS1	CRO_T113655	CCCTGCAGGAACACAAGTGA	GCATTGGCAACTCCATCAGC
SLS2	CRO_T109472	CCACTGGAGTTTTGCTCACA	TTATTCCTGCCAAAGGCTTC
TSB	CRO_T127328	TGTGTCGGTGGTGGTTCAAA	CCAAAACCAGCAGCTTCCAC
TDC	CRO_T125328	GGTCGCTGAAACTTTGGCTC	ATTTTGCCCATTGCGACGTC
STR1	CRO_T125329	CGTCCAAGATGGCCGAGTTA	CTGGATCGGTGCTGTTCTCA
SGD	CRO_T111319*	GGATGGAGCCTCTCAATGAA	CACCCGTTGTTAATGGCTCT
GS1	CRO_T113154	TCAAGGCGTAAGGAGAAGGA	AGTACCTGCCAGAGCCTTCA
GS2	CRO_T113153	GGTCTTGGTTCCATTGCTGT	TGCTCTTCAATGGCTTCCTT
GO	CRO_T127440	TCCTTTGATGCACGTGAAAA	TTACTGACCGATCTGCAACG
Redox1	CRO_T129272	GAAGTGACGGAAGTGGGGAACAAA	TCGCATTCGCCACATGAGTCAA
Redox2	CRO_T132421	TCGCTTGGGGAAGTAATGCTGT	TGAGACTTGCTCCTTGCTCGTA
SAT	CRO_T109653	GGATGGGGAAAGCCTGTTTCTGTT	CTTCAGCCATGCTGATCCATGCTT
PAS	CRO_T113148	CTTCACTCCCATGTCCAATCT	CGATAGGATAAGCCCTCGTAATC
DPAS	CRO_T129267	GAAATAGCGGCATCGACAAAC	GCTGGGAGTGGTGCTAATAA
TS	CRO_T110304	TGCTCCTGGTGGAAATGATAACCC	AATCAGCAACCTCGAGCAACCA
T16H1	CRO_T110599	AGGCTTCATCCACCAGTTCC	CCTTCCGATAGCCCATGCAT
T16H2	CRO_T110598	GATCAACTCACAGTGGCAGTC	GACTTGAGGACTTGTGATTGGC
160MT	CRO_T110596	CTCTTGTGCCCCCAGTTCAC	CGACTTGATGGGGTAAGGGA
T3O	CRO_T113994	CCCATGTGATGAGCAAAGCG	AACAATGGAGCAGGAGGGTG
T3R	CRO_T124298	GAAGGGCTACAGGGGAACAC	CACCCACAATTTCATGCCCG
Т19Н	CRO_T119486	TGAGTTGCCAAATGGAGTCA	CAAACGAGAGAGGGTTTTGG
ТАТ	CRO_T120026	CCACAGACTTGGTCCTTCCC	ATGACTGAGCTGCACGATCA
MAT	CRO_T120028	ATCGAAGGCCATTGAGTTTG	GCTGCTGATTTCCCTGCTAC
TEX1	CRO_T122015	AGGAAGGCGTATTTGTCCGG	TCTTCTGGCTTCATTCCGCC
TEX2	CRO_T120417	CCGTTGGCGCAACTTTTGTA	ACCCAAAATCTCCGCCATGT
THAS1	CRO_T113666	TGTGGCAAATGTGAAATGTGT	ATTTGAACATGCCCCGTAAT
AS	CRO_T116107	GAATCGGCCAACTTTCAGCC	AGTAGTTTGTGGCCTGTCCG
HYS	CRO_T140758	AAGTTGGTGTAGGGGGCTTC	CAAAATGGCCATCTGTTGATT
VAS	CRO_T112618	GTGTTTGTCCAGGGTTTGCC	GCAGCAAAGCGAGTTTCACA
NMT	CRO_T111273	TTCGTGAGATGGTTCGGGTG	CGGCGCCGTCACATATTTT
CS	CRO_T139139	TGGGGCTGGCTTTTGTCTAGAATC	TAAGCTGCGGGTAAAAGGTGCTCT
TPT2	CRO_T137586	CCAATGTCACCGGTGCATTC	TCCACCTGTTTTCCGTCCAG
D4H	CRO_T127167	ACAGCTGATCACGAACGACA	TCTTGGCGAAACCCCTTCTT
DAT	CRO_T120021	GGTTTCAATTTATTTCTCACGTAC	AACTATCAGAAAGGTAAGCATCGA
PRX1	CRO_T141131	TAACGGGGAATCAAGGTGAA	AATTTCAGCAGCCTCTTCCA
V19H	CRO_T135744	GCTCAGAAACATGGGCCTCT	TTGGCCATTTCGGGTGATGA
BIS1	CRO_T107535	ATGGAATCAGTGGTGCTAGTGA	TTCAATTTCAGGGAGCTGTGAC
BIS2	CRO_T107539	TGTGCAGTTCTTGGTCAAGACT	AGTGGAATTTGGATCCAAGTTTG
MYC2a	CRO_T124533	AGTGGTGAAGGAGGCAGAGA	ATGGCTCTTCCCTTCCATTT
N2227	CRO_T133527/8*	GGTTGCTCTTCATTACGGATTT	TGCAGCATAGTAATGGTTTTGC
SAND	CRO_T130722	CAGTTCCACAATGCTTTCTGAC	GGGACTGATCAATCGAAGTAGC

Gene name or TE family name	Gene ID	fw	rev
NPF2.4	CRO T131105	ACAAATATTGGATGAGCCCAAG	CCCTGTTTTTATTCTTGGAAGC
NPF2.5	CRO T131100	AAAGAATGGGAATTGGAATGG	TTCGTGGCTCAAAGCCTAAT
NPF2.6	CRO T131101	CGATTATCGATCAATTGCAAGG	CTTCTGAGGTACCCAAGATTACG
NPF2.9	CRO T105710	CCTCCTCCATTTTCATTTTCTG	GATGCGGTTGGATTTGTGAGTC
ORCA2	 CRO T110365	GTTGCGGGAGAACAAGAAGA	AACGCCACGGTACCTAATCC
ORCA3	 CRO T110360	CGGAAAGCTGTCAGGAGGAT	CGTCTAACGCCCTTATACCGG
ORCA3 alt	 CRO_T110360	CGGAAAGCTGTCAGGAGGAT	TCGTATGTACCCAACCAAATCC
ORCA4	CRO_T110361	TCAGCCTCCGATCTAGCTCT	GATTCGAGCTGCTGTCGTCA
ORCA5	CRO_T110359	CCACGGAGGCTAATAGGGGA	TTCTTCTTCCCGGCCATGTC
ORCA6	CRO_T110364	TTATTATTAATTCCCCCAAATGCAGGT	TGCTAATGCAGTCAACTCTTGT
CER1	CRO_T110442	GCTCGCTCCTTCATCTCTCC	CCTGCTACTCTGCTTGCACT
BIS3	CRO_T107533	TCCTCATGATTAACAATGATGATGAA	TTGACCAACAGTTGCTGCAC
GATA	CRO_T112238	GAGGAGGGGGATATGGCTCT	GGGGGTGTAGTTTTGGTGGT
BBX	CRO_T132285	CACATTCTGCTAATCGCGGC	ACAACGAGGTTCCTTGCTGT
ССТ	CRO_T112897	ACTCTCCGACTTCAGAGGCT	TTCCCCCGCTTTCTGAGAAC
AP2/ERF	CRO_T127367	GGGCCTCGTTCTGATTCCAA	GGTTGCTGCGACGTTTGATT
BBX	CRO_T130446	TATGGGCGCGGTATTCAACA	CATGCACAGTGTCCTGCAAC
bHLH	CRO_T118079	GGCTTGAATGTCAGCTGAGC	TGGAGCAAACCACTTGTTCTG
C2H2 ZF	CRO_T128811	TGGCAACATCACTTGGCCTC	GCGGTGGACATTCATATGGC
bHLH	CRO_T132027	AAGGAAGAAGGCGTCGTCAA	AGAGCAGCCATTTCTTGCCT
bHLH	CRO_T109258	ACGGACACAATGGTAAAGCT	GGCTACCTGAGAAAGCAGTGA
ARR	CRO_T118542	TGGGTTTGCTGGATGAGGAA	AGCCAGTCATTCCAGGCATG
TPR	CRO_T103361	CGGTCAGCAGAAGAAGCAGA	TCAACCCACTTCTCCAGCAC
AP2/ERF	CRO_T117719	ATGAGCGAATCGACGAGGAC	CGGACGAGTCGTAGCAACTT
TLP	CRO_T133384	CTTACCCCGCTGTTTCTGGT	TCACTGATGCCACTGTCACC
NYF-YA	CRO_T122239	TACGAGCATCTTCAGTGGCG	TCCAACATGCGCGTCCATAT
WRKY	CRO_T116828	CAAGGGAGAGATGGGTGCTC	TGGATAGGGGGAGCCTTTGA
bHLH	CRO_T123350	GTCTACCATGGTTCCTGGCC	TGCGTTCTTGGAGCTGTTCT
bHLH	CRO_T105905	TGCAGCAAAAATGGCACCAA	GACTGAGCTGCTCCCTTCTC
ZF	CRO_T115526	CCAAAACCACCAACACCACC	CGGAATTCTCCACAACCCCA
OFP	CRO_T129607	TGGAAGCCCCAAAACCCTTT	TCCGGAAGAGGGTCAATCGA
AP2/ERF	CRO_T131857	GAGATCCAGCGAAGAACGGA	CCGATAAGCTGCTCGATCGT
Homeodomain	CRO_T134559	AGGATGGTGGAATTGGCTGG	GCCACTTCCACCAATGCATC
HF	CRO_T116348	TCCACGAGAACAAACGCCTC	CAGAACTAGAGTGGGCAGCC
МҮВ	CRO_T100680	CAACCTGACCGAAGCAGTCT	TGCAGCATTCCAGAAGCTCA
ТСР	CRO_T101037	CCGCATTGTTCGATCCACAG	CTCACCCGTCGATCTCTTGG
AP2/B3	CRO_T110868	CGCCCCTTTTTGTATCGACG	CCTTCCAGCAATCGCCTTCT
ANAC	CRO_T126752	CGTGACCCTTTCTTTTGGCG	TGTTGGGGAGACTGCCTTTC
МҮВ	CRO_T134504	CACAAGAACGCCAACCCAAG	TGGAACGCCTCTTGAGCTTT
ANAC	CRO_T127378	GGAAATGTGCGTCTCAACCG	CGCCATACCAGGAAGATCCC
bHLH	CRO_T110248	CGGGTTTGGAGAGGGTTCAG	CCTCAGTGCAGCCCTCTTTT
bHLH	CRO_T124980	TTCAGCGGATGACATAGCGG	TAGCCCTCCTCCTCCTA
MYB96	CRO_T131234	AATGATCAGCAAGGAGGCGG	AATTTACAGCTGCTTCATCCACA

Gene name or TF family name	Gene ID	fw	rev
MYB96b	CRO_T137796	TGCATCTAAAGGCCAGTGGG	CCAGTGTCAAGGCATCCTGT
GUN4	CRO_T139058	GCCATCCTGCTTTTGAAGGC	GCAGCAGATAAACCCCCACT
CHLI1	CRO_T103461	ATTTCACATCCTGCCCGGTT	TGTGCATGCATTCCAAACCG
GLU1	CRO_T100999	ATTTTGCCCTGAGGATGCCA	CACAGCAAAACGTTCCCCAG
PLT6	CRO_T121364	GCACAAGGGGCTTCAATTGG	TAGCTCCCGCCAATGACAAG

*ID not correct in Reference Genome, manually corrected based on other transcriptomes.

SUPPLEMENTARY TABLES S6-S10 MIA levels of different flower petal infiltration experiments as indicated. Values labelled with different letters indicate statistically significant differences (P < 0.05 calculated by ANOVA with Tukey's correction for multiple comparisons.

	<i>p35S::GUS</i> ± SEM		<i>p35S::ORCA2</i> ± SEM		p35S::ORCA3 ± SEM		<i>p35S::ORCA4</i> ± SEM		p35S::ORCA5 ± SEM		p35S::ORCA6 ± SEM	
Loganin	17625.38 ± 2167.60	а	16810.58 ± 1795.08	а	17077.22 ± 2058.43	а	15206.09 ± 1843.48	а	15801.42 ± 518.64	а	18963.89 ± 922.95	а
Secologanin	171180.14 ± 14499.32	а	168473.28 ± 16717.87	а	179176.07 ± 8601.95	а	142409.56 ± 9877.43	а	171930.23 ± 10586.70	а	184295.65 ± 5698.73	а
Strictosidine	3258939.47 ± 269524.31	а	3893459.39 ± 390430.99	ab	4310460.85 ± 243889.15	ab	5367515.97 ± 589468.00	b	3268640.37 ± 262797.49	а	2851583.99 ± 167540.26	а
Strictosidine secologanoside	n.d.	а	143.26 ± 100.39	a (n.d in 50%)	n.d.	а	1180.63 ± 504.45	b	n.d.	а	27.83 ± 27.83	a (n.d. in 75%)
Unknown 2 (strictosidine aglycone isomer)	61474.47 ± 2087.38	а	87104.91 ± 8849.05	ab	115825.82 ± 10617.37	b	68817.73 ± 10988.09	а	73601.77 ± 6369.61	а	84033.37 ± 5165.24	ab
Strictosidinic Acid	281585.82 ± 21757.76	а	496624.55 ± 69389.41	а	1276110.50 ± 133520.65	b	1151321.40 ± 242493.25	b	422227.44 ± 35179.04	а	318509.81 ± 17158.80	а
Serpentine	2324902.62 ± 197161.98	а	1982141.11 ± 208396.21	а	2475673.54 ± 195546.70	а	2077741.85 ± 534684.92	а	2339104.21 ± 545604.89	а	2298310.64 ± 117079.01	а
Unknown MIA (serpentine isomer)	647187.00 ± 17487.69	а	661450.03 ± 64300.37	а	738198.07 ± 50320.83	а	735765.70 ± 177241.83	а	571635.81 ± 130560.67	а	740626.38 ± 57117.53	а
Geissoschizine	484273.85 ± 56276.89	а	1255979.65 ± 126167.58	b	2543671.29 ± 208974.63	с	852073.67 ± 142919.64	ab	965583.71 ± 93937.07	ab	868932.16 ± 44977.13	ab
Unknown MIA (geissoschizine isomer 1)	1004629.00 ± 107253.68	а	3021401.96 ± 297899.88	b	6758134.73 ± 574717.66	с	1881703.04 ± 360679.97	ab	2393413.70 ± 242716.16	ab	2077270.86 ± 116204.00	ab
Unknown MIA (geissoschizine isomer 2)	59467.49 ± 6427.65	а	120020.73 ± 15061.36	bc	155534.40 ± 11283.00	с	83274.46 ± 19253.96	ab	52809.09 ± 3870.09	а	65797.87 ± 7522.57	а
Unknown 1 (isositsirikine isomer)	313491.34 ± 13274.63	а	425925.05 ± 43974.76	а	680951.70 ± 64148.28	b	438919.85 ± 68368.05	а	401676.62 ± 36671.16	а	426616.49 ± 16766.70	а
Isositsirikine	278013.65 ± 16846.72	а	373626.86 ± 36350.64	а	422133.20 ± 30465.74	а	423987.85 ± 67857.06	а	280666.38 ± 25145.25	а	371290.32 ± 17316.57	а
Perivine	106630.91 ± 4362.20	а	191979.35 ± 19670.21	ab	168940.09 ± 17215.88	ab	231511.27 ± 46723.09	b	125292.97 ± 11991.40	а	147817.61 ± 10341.48	ab
Akuammicine	217149.15 ± 14251.41	а	431327.39 ± 44961.30	b	301704.50 ± 12925.86	ab	494667.49 ± 96705.10	b	212423.58 ± 21861.19	а	267564.80 ± 16382.93	а
O-acetylstemmadenine	285384.26 ± 33981.10	а	396035.90 ± 32906.25	ab	354546.47 ± 12288.51	ab	408649.32 ± 33199.65	b	291303.13 ± 16727.28	а	331319.86 ± 17340.03	ab
16-hydroxytabersonine	236505.11 ± 29528.00	а	980025.80 ± 100088.65	b	709016.29 ± 49945.59	ab	1617549.55 ± 256250.18	с	351625.97 ± 35739.56	а	378565.15 ± 35153.62	а
16-hydroxytabersonine glucoside	21106.33 ± 3070.29	а	59935.16 ± 5721.10	b	56817.49 ± 7688.34	ab	114752.23 ± 18055.98	с	24312.50 ± 2235.73	а	22916.85 ± 2618.79	а
Catharanthine	9502483.18 ± 527452.99	а	10185635.15 ± 954787.04	а	10539400.36 ± 436607.75	а	11204859.70 ± 1504637.03	а	8055529.92 ± 1120877.53	а	11840581.16 ± 854946.78	а
Unknown MIA (catharanthine isomer 1)	5817169.65 ± 261033.71	а	6061133.04 ± 614549.65	а	7119639.59 ± 500279.02	а	6458861.81 ± 954773.77	а	5475778.74 ± 656023.90	а	7510768.69 ± 615668.52	а

SUPPLEMENTARY TABLE S6 MIA levels upon overexpression of *ORCAs*.

Unknown MIA (catharanthine isomer 2) 3651172.35 ± 205625.52	а	3981720.74 ± 405962.48	а	4591785.48 ± 318612.76	а	4171041.45 ± 662515.76	а	3416365.32 ± 389145.48	а	4618904.46 ± 376395.55	а
Unknown MIA (catharanthine isomer 3)) 597799.07 ± 11818.06	а	655548.05 ± 68935.66	а	794130.57 ± 68009.74	а	746452.70 ± 111931.08	а	552713.43 ± 62861.96	а	800013.94 ± 52882.85	а
Desacetoxyvindoline	617731.34 ± 87917.14	ab	880009.31 ± 70912.99	b	647521.57 ± 74506.27	ab	606161.19 ± 48638.01	ab	597575.29 ± 16299.77	а	871300.66 ± 43245.92	ab
Deacetylvindoline	299605.96 ± 10440.08	а	320925.21 ± 27968.21	а	331481.32 ± 17608.41	а	278500.01 ± 19193.34	а	285962.34 ± 22800.68	а	367904.07 ± 17380.97	а
Vindoline	9351770.86 ± 777129.99	а	10071645.17 ± 746508.98	а	11196624.74 ± 1053443.15	а	9325684.41 ± 538140.76	а	9458499.26 ± 869042.83	а	11205775.39 ± 641733.96	а
Anhydrovinblastine	315768.67 ± 17360.80	а	382207.33 ± 79352.70	а	391216.31 ± 31360.38	а	313096.30 ± 68086.04	а	243123.80 ± 41568.43	а	381113.21 ± 33507.31	а
Vinblastine	66451.18 ± 9908.89	а	92626.23 ± 18912.39	а	86120.06 ± 8138.94	а	70784.57 ± 22432.29	а	54781.73 ± 11424.54	а	78097.39 ± 20789.89	а
Vincristine	137836.62 ± 11676.38	а	150443.44 ± 15443.39	а	159327.51 ± 6368.79	а	120598.52 ± 26465.96	а	106538.64 ± 14690.10	а	143140.55 ± 15745.80	а
Desacetoxyvindorosine	6304.61 ± 1171.30	а	10647.66 ± 892.74	ab	6832.81 ± 1165.50	а	8631.06 ± 1343.06	ab	7049.38 ± 693.49	а	12712.49 ± 1340.31	b
Desacetylvindorosine	17748.33 ± 1093.51	а	19353.01 ± 1775.73	а	19273.81 ± 1722.43	а	18358.39 ± 2715.84	а	20048.62 ± 2283.52	а	25428.98 ± 1315.57	а
Demethoxyvindoline = vindorosine	433708.03 ± 18099.78	а	504526.26 ± 50526.80	а	534409.28 ± 39973.28	а	521432.17 ± 94984.45	а	416491.63 ± 65335.37	а	619774.63 ± 48058.47	а
Vincadifformine	3510.84 ± 197.70	а	5777.01 ± 899.43	ab	4524.39 ± 531.70	ab	10041.78 ± 2745.91	b	2710.44 ± 771.11	а	5298.57 ± 1163.96	ab
16-Hydroxyvincadifformine	2628.81 ± 276.42	а	7880.72 ± 1207.24	а	17880.15 ± 2712.05	b	4279.05 ± 1487.13	а	5257.53 ± 876.93	а	5117.18 ± 697.47	а
Minovincinine	1537.25 ± 245.75	а	2710.81 ± 292.72	а	5332.97 ± 868.25	b	3413.38 ± 802.19	ab	1274.11 ± 176.90	а	2060.31 ± 180.76	а
19-hydroxytabersonine	40201.69 ± 3409.83	а	57404.81 ± 7499.03	а	56188.74 ± 6908.92	а	49478.63 ± 6201.54	а	41563.00 ± 2818.75	а	56217.78 ± 3284.85	а
19-O-acetyltabersonine	83672.73 ± 7433.12	а	215233.42 ± 16510.63	b	167834.01 ± 12321.07	с	300473.30 ± 35168.08	d	116404.38 ± 9199.83	ас	129030.59 ± 6893.00	ас
16-hydroxy-19-O-acetyltabersonine	41.43 ± 16.00	а	152.11 ± 39.56	а	19.37 ± 12.29	а	55.73 ± 36.25	а	91.94 ± 38.29	а	146.98 ± 53.37	а
16-hydroxylochnericine	181233.31 ± 7502.30	а	530591.48 ± 56142.18	а	384911.78 ± 29794.10	а	1208983.16 ± 212690.52	b	237525.87 ± 26963.13	а	243321.33 ± 11289.52	а
16-hydroxylochnericine glucoside	16762.93 ± 3093.86	а	58792.03 ± 5408.12	а	35975.42 ± 4500.69	а	225106.48 ± 35746.05	b	20360.30 ± 2786.09	а	8507.11 ± 1746.77	а
Hörhammericine	30101.62 ± 1432.96	а	44844.42 ± 4560.43	а	52316.87 ± 5020.81	а	54981.20 ± 11522.39	а	32818.98 ± 2988.17	а	38820.64 ± 1952.01	а
16-hydroxyhörhammericine	71.52 ± 22.88	а	363.28 ± 123.21	ab	870.56 ± 296.20	ab	998.66 ± 364.73	b	115.80 ± 14.86	ab	99.56 ± 27.42	а
16-methoxyhörhammericine	8104.56 ± 582.99	а	29086.91 ± 2857.31	а	117435.00 ± 20099.66	b	16640.37 ± 2720.54	а	42251.69 ± 2803.09	а	12349.81 ± 533.10	а
Vandrikidine	139663.86 ± 4134.40	а	155217.11 ± 16344.87	а	161911.98 ± 10945.14	а	148383.13 ± 26667.18	а	110917.30 ± 14011.74	а	178893.60 ± 13500.38	а

	m2ESUGUS + SEM		p35S:ORCA3 ±		p355::ORCA3K101R ±	:	p35S::ORCA3P107	'L	p35S::ORCA3K101RP107L		p35S::ORCA3K101RK110R	1	p35S::ORCA3K101RK110T	
	<i>µ555</i> 005 ± 5EIVI		SEM		SEM		± SEM		± SEM		± SEM		± SEM	
Loganin	15870.77 ± 1458.96	ab	12864.96 ± 1192.62	а	14891.98 ± 883.49	ab	19717.96 ± 1211.98	ab	16149.62 ± 843.79	b	16490.56 ± 1042.61	ab	15609.33 ± 1390.84	ab
Secologanin	69445.44 ± 3537.49	а	68481.76 ± 3403.10	а	71583.40 ± 4175.36	а	68643.41 ± 3326.18	а	69928.17 ± 796.63	а	74543.71 ± 3737.52	а	69267.73 ± 2913.20	а
Strictosidine	2491704.50 ± 220688.23	а	2846468.72 ± 148459.61	ab	2905514.79 ± 296430.80	ab	3757294.17 ± 431858.18	b	3182636.10 ± 107286.62	ab	3261658.62 ± 143333.09	ab	3068013.90 ± 170395.59	ab
Strictosidine secologanoside	9.69 ± 9.69	а	39.89 ± 28.45	а	70.19 ± 46.78	а	85.82 ± 41.42	а	65.64 ± 23.14	а	410.58 ± 167.91	b	47.60 ± 47.60	а
Unknown 2 (strictosidine aglycone isomer)	102405.25 ± 13429.58	а	118696.97 ± 8931.98	а	170719.70 ± 11907.70	b	139602.81 ± 14258.81	ab	127566.68 ± 4744.53	ab	172485.40 ± 11443.52	b	129926.43 ± 10934.42	ab
Strictosidinic Acid	38752.78 ± 5734.89	а	346478.86 ± 25775.03	b	693798.12 ± 92274.52	с	451479.73 ± 33725.08	bd	603865.82 ± 41936.16	cd	641522.64 ± 55062.92	cd	257901.12 ± 13609.91	b
Serpentine	2212345.63 ± 374693.27	ab	1675881.74 ± 219310.15	а	3556228.66 ± 780828.03	b	2753236.80 ± 338911.27	ab	2869463.86 ± 189678.55	ab	2597008.84 ± 156549.08	ab	2314128.20 ± 293452.54	ab
Unknown MIA (serpentine isomer)	747125.34 ± 110960.56	ab	597302.38 ± 75465.39	а	1190529.90 ± 198473.19	b	1063275.12 ± 127753.32	ab	917204.08 ± 53889.42	ab	1009392.84 ± 68169.01	ab	870255.96 ± 98521.43	ab
Geissoschizine	1340801.46 ± 201855.89	а	6714390.87 ± 269268.96	be	8590381.24 ± 481830.05	ce	4961214.37 ± 440360.75	bd	4333031.51 ± 140386.18	d	10251251.59 ± 675868.73	с	6172585.80 ± 569228.45	bd
Unknown MIA (geissoschizine isomer 1)	855433.79 ± 131489.70	а	4446439.46 ± 196721.59	bc	5777104.99 ± 342575.90	ce	3398546.65 ± 311671.66	bd	2752421.45 ± 88262.99	d	6892975.47 ± 445481.03	e	4200659.74 ± 411108.28	b
Unknown MIA (geissoschizine isomer 2)	60771.73 ± 13974.72	а	126852.38 ± 9214.37	b	259793.66 ± 14916.38	с	154433.19 ± 19183.68	b	159054.48 ± 6013.53	b	235498.41 ± 8204.45	с	134505.10 ± 17189.43	b
Isositsirikine	225522.02 ± 29611.46	а	259818.09 ± 17884.46	ac	421237.32 ± 34205.50	b	380875.60 ± 44377.34	bc	405217.16 ± 15165.71	b	437540.27 ± 28321.47	b	304004.78 ± 20724.26	а
Unknown 1 (isositsirikine isomer)	372859.26 ± 44916.38	а	502353.99 ± 34064.79	b	811497.66 ± 77791.17	cd	652790.17 ± 73439.55	bcd	586669.12 ± 23184.49	ab	850643.18 ± 55711.20	d	572485.94 ± 46757.00	abc
Perivine	107276.55 ± 14116.95	ас	118061.78 ± 10883.12	ac	226905.69 ± 13662.81	b	176003.82 ± 13725.48	bc	197001.11 ± 8529.24	bc	202893.73 ± 14417.91	b	144921.25 ± 11817.69	с
Akuammicine	182818.89 ± 31162.33	а	226540.97 ± 21275.02	ab	495310.09 ± 29322.20	с	338896.06 ± 32715.98	bd	477632.31 ± 12708.58	с	421485.92 ± 30392.35	cd	253736.88 ± 27036.65	ab
O-acetylstemmadenine	155778.26 ± 16492.71	а	197183.36 ± 7772.73	ab	266716.01 ± 17228.75	b	225984.02 ± 14768.30	ab	255672.33 ± 7109.68	b	272375.70 ± 23637.06	b	242422.61 ± 20731.94	b
16-hydroxytabersonine	139850.08 ± 26678.16	а	473944.09 ± 39684.32	b	820746.25 ± 19538.23	с	1121219.85 ± 80115.30	d	1765345.30 ± 93684.63	e	926990.57 ± 69380.26	cd	482094.73 ± 48926.74	b
16-hydroxytabersonine glucoside	12181.32 ± 2315.99	а	38736.11 ± 4627.69	b	71702.11 ± 7653.54	с	79750.27 ± 4025.20	с	188769.17 ± 9185.22	d	84504.62 ± 5867.19	с	34703.94 ± 2010.77	ab
Catharanthine	7827404.24 ± 1157412.25	ab	6461724.23 ± 603424.79	а	11445467.34 ± 1314038.95	b	10871245.25 ± 1429655.87	ab	9269471.35 ± 404395.32	ab	10169822.82 ± 740937.60	ab	9544521.27 ± 868385.03	ab
Unknown MIA (catharanthine isomer 1)	4675344.47 ± 508500.49	ab	3924921.19 ± 289243.66	b	5972668.89 ± 638619.11	а	6050521.54 ± 495682.65	а	4915187.19 ± 204238.95	ab	5554826.41 ± 392778.00	ab	5159076.44 ± 283324.84	ab

SUPPLEMENTARY TABLE S7 MIA levels upon overexpression of *ORCA3* mutants.

Unknown MIA (catharanthine isomer 2)	3434250.89 ± 418890.54	а	2923654.64 ± 247024.68	а	4195981.83 ± 406126.08	а	4296896.47 ± 381370.45	а	3682735.71 ± 141818.72	а	4061934.51 ± 241342.34	а	3613899.63 ± 222877.46	а
Unknown MIA (catharanthine isomer 3)	779360.78 ± 88000.19	ab	648889.45 ± 56062.97	а	951707.83 ± 90936.85	ab	1032899.35 ± 71090.50	b	812171.66 ± 34075.56	ab	909199.58 ± 56347.59	ab	836293.76 ± 55638.03	ab
Desacetoxyvindoline	873307.73 ± 99443.72	ab	772870.24 ± 49877.56	а	1031084.28 ± 66680.13	ab	1232873.85 ± 142466.49	b	1006326.28 ± 22033.45	ab	1060440.89 ± 46672.71	ab	1021962.40 ± 77824.72	ab
Deacetylvindoline	282304.45 ± 36056.18	а	199391.47 ± 19902.41	а	290925.18 ± 31137.29	а	313968.47 ± 38603.71	а	283389.48 ± 6843.87	а	275346.99 ± 10809.87	а	251926.67 ± 14220.10	а
Vindoline	11412219.14 ± 1402156.05	а	9818761.90 ± 690921.49	а	14008785.58 ± 1136842.77	а	14299655.06 ± 1534231.47	а	12189220.94 ± 267256.00	а	13787601.18 ± 529149.77	а	12030213.36 ± 801941.91	а
Anhydrovinblastine	305391.19 ± 33897.09	ab	162595.95 ± 25510.34	а	599733.78 ± 119951.26	b	446950.70 ± 99067.32	ab	407433.11 ± 35961.87	ab	595111.47 ± 66088.50	b	460606.97 ± 72688.60	ab
Vinblastine	245242.70 ± 27857.46	ab	123628.04 ± 12910.92	а	275905.49 ± 45990.33	ab	289032.11 ± 42902.01	ab	298203.22 ± 22738.05	b	294603.35 ± 27493.79	b	270721.22 ± 54741.81	ab
Vincristine	129534.57 ± 14596.21	ab	102900.24 ± 10925.07	а	159258.96 ± 14970.01	ab	144193.73 ± 19649.85	ab	147159.05 ± 7818.60	ab	170893.80 ± 10760.00	b	136680.70 ± 12330.71	ab
Desacetoxyvindorosine	11547.06 ± 1402.21	а	13557.14 ± 658.16	а	14863.69 ± 1833.83	ab	21372.32 ± 2339.35	b	15057.58 ± 928.01	ab	14106.74 ± 864.10	а	14629.20 ± 1225.25	а
Desacetylvindorosine	17564.11 ± 2199.54	а	11931.95 ± 1376.64	а	15365.79 ± 1212.46	а	16420.60 ± 1459.65	а	16468.11 ± 302.60	а	14751.65 ± 587.90	а	13622.95 ± 584.91	а
Demethoxyvindoline = vindorosine	591352.75 ± 92196.44	ab	459187.72 ± 46216.12	а	753659.92 ± 73507.83	ab	838896.04 ± 87617.59	b	630500.96 ± 22195.72	ab	704585.27 ± 35178.09	ab	639932.25 ± 72269.23	ab
Vincadifformine	909.06 ± 218.94	а	782.79 ± 235.22	ас	3824.19 ± 227.83	b	2455.34 ± 453.71	bc	3630.81 ± 558.72	bd	3294.33 ± 468.95	bd	1719.91 ± 458.28	ac
16-Hydroxyvincadifformine	3740.93 ± 557.65	а	19104.21 ± 1571.42	bc	26752.85 ± 1721.56	cd	14668.58 ± 1947.46	b	12185.37 ± 916.35	b	32663.51 ± 2301.73	d	19068.63 ± 2712.30	bc
Minovincinine	549.12 ± 131.16	а	464.20 ± 49.99	а	1432.51 ± 142.17	bc	1541.26 ± 79.89	b	1242.01 ± 100.75	bc	1296.04 ± 84.49	bc	1012.06 ± 138.30	с
19-hydroxytabersonine	5754.82 ± 1216.82	ab	4104.39 ± 556.15	а	9421.75 ± 1183.57	b	9258.87 ± 770.72	b	7286.51 ± 721.66	ab	8179.48 ± 688.02	ab	8717.72 ± 1125.51	b
19-O-acetyltabersonine	64850.36 ± 7959.88	а	99771.33 ± 5864.43	ace	175342.85 ± 5437.02	bcd	138808.79 ± 10829.95	ce	209987.89 ± 6073.83	d	180903.49 ± 12961.44	bd	114192.10 ± 7599.20	e
16-hydroxy-19-O-acetyltabersonine	67.81 ± 32.99	а	14.01 ± 7.35	а	35.72 ± 21.12	а	211.52 ± 34.48	b	59.06 ± 26.21	а	43.88 ± 25.56	а	108.49 ± 45.56	ab
16-hydroxylochnericine	80527.82 ± 9328.14	а	156266.70 ± 12522.67	ab	787393.21 ± 14979.19	с	248122.97 ± 5842.84	ab	915934.04 ± 57154.44	с	771615.35 ± 73858.75	с	260917.60 ± 31555.44	b
16-hydroxylochnericine glucoside	12595.60 ± 2218.97	а	40952.93 ± 5451.75	а	339628.02 ± 19586.33	b	61257.70 ± 8489.74	а	349901.85 ± 22402.43	b	329299.04 ± 18942.78	b	69562.16 ± 5871.19	а
Hörhammericine	6585.21 ± 1179.33	а	8275.07 ± 1190.44	а	25026.61 ± 2402.81	b	9944.88 ± 742.43	а	9224.02 ± 712.22	а	31158.05 ± 3187.54	b	27232.76 ± 3771.75	b
16-hydroxyhörhammericine	143.34 ± 17.26	а	418.33 ± 44.04	а	3662.33 ± 447.86	b	463.16 ± 238.07	а	602.59 ± 66.16	а	6963.80 ± 789.78	с	6348.52 ± 927.50	с
16-methoxyhörhammericine	7915.35 ± 1058.97	а	97351.04 ± 7232.23	b	132958.96 ± 13980.19	bd	16566.13 ± 1273.76	а	26288.89 ± 1448.74	а	177294.42 ± 16041.10	cd	191384.58 ± 19700.40	с
Vandrikidine	102280.39 ± 18475.32	ab	79259.74 ± 10682.92	а	144809.09 ± 20418.22	ab	156512.31 ± 16583.05	b	113597.73 ± 8984.76	ab	120366.81 ± 9606.25	ab	114911.85 ± 12721.81	ab

	<i>p35S::GUS</i> ± SEM		<i>p35S::CrMYC2a</i> ^{D120} ^N ± SEM	5	p35S::CrMYC2a ^{D126N} / ORCA2 ± SEM		p35S::CrMYC2a ^{D126} ^N /ORCA3 ± SEM	;	p35S::CrMYC2a ^{D126N} / ORCA4 ± SEM	,	p35S::CrMYC2a ^{D126N} / ORCA5 ± SEM	,	p35S::CrMYC2a ^{D126N} / ORCA6 ± SEM	,
Loganin	8626.83 ± 1039.10	ас	7584.28 ± 799.17	ас	12854.25 ± 791.31	b	11760.92 ± 454.11	ab	11271.50 ± 2170.71	ab	6117.48 ± 793.40	С	10601.46 ± 740.24	abc
Secologanin	78983.28 ± 4724.84	а	77621.66 ± 5088.83	а	89818.44 ± 4344.08	а	90499.88 ± 2547.67	а	85320.19 ± 4098.18	а	73663.00 ± 6000.27	а	75629.66 ± 2121.52	а
Strictosidine	2237933.30 ± 227357.62	а	4749196.11 ± 385463.70	bd	4841076.75 ± 220047.52	bd	6653028.42 ± 345263.64	bc	7252442.05 ± 1092499.36	с	3232112.01 ± 333184.30	ad	3566567.54 ± 371696.25	ad
Strictosidine secologanoside	64.91 ± 38.14	а	519.48 ± 219.62	ab	754.22 ± 290.80	ab	656.86 ± 229.69	ab	2739.79 ± 1262.53	b	81.39 ± 81.39	а	123.62 ± 61.47	а
Unknown 2 (strictosidine aglycone	93556.02 ±	_	157727.33 ±		191299.49 ±	4	216536.96 ±	6	168298.82 ±	h	117386.26 ±	_	138837.70 ±	
isomer)	10753.51	а	14473.97	арс	11714.30	b	15089.17	b	21825.60	DC	15017.37	С	11799.74	с
Strictosidinic Acid	98768.62 ± 20453.62	а	498913.63 ± 56348.38	b	672303.51 ± 59814.35	b	980259.26 ± 70420.12	с	1002079.78 ± 112055.50	d	423561.61 ± 54153.46	b	267124.42 ± 34853.44	ab
Serpentine	1630727.39 ± 393739.56	а	2138763.52 ± 441653.75	а	2444748.14 ± 458244.53	а	2856104.91 ± 557111.68	а	2876271.98 ± 666233.06	а	1290570.91 ± 480503.73	а	1463399.19 ± 126682.43	а
Unknown MIA (serpentine isomer)	552494.43 ± 106460.31	ab	647786.31 ± 117665.42	ab	900296.47 ± 131434.68	а	995167.63 ± 137181.30	ab	958369.30 ± 186734.28	ab	391519.79 ± 112458.42	b	612073.16 ± 43479.30	ab
Geissoschizine	1684870.16 ± 260410.12	а	4656122.57 ± 431585.56	bc	9501071.02 ± 560489.48	с	13470663.44 ± 374367.60	d	5290417.91 ± 711635.26	d	5429048.70 ± 697783.78	bc	5580237.01 ± 372427.90	b
Unknown MIA (geissoschizine isomer 1)	1085340.19 ± 168209.90	а	2760815.32 ± 249803.13	b	6089576.41 ± 349748.99	с	8926383.61 ± 231247.90	d	3321401.52 ± 495045.64	b	3549753.38 ± 476536.66	b	3568594.57 ± 237245.21	b
Unknown MIA (geissoschizine isomer 2)	42488.73 ± 10638.50	а	276082.65 ± 26894.19	bcd	360865.35 ± 39508.28	b	377381.19 ± 15620.14	b	233250.30 ± 34081.94	cd	135202.28 ± 15750.90	ас	247215.81 ± 8607.02	d
Isositsirikine	228517.06 ± 28439.04	а	403108.56 ± 42075.05	ab	579377.20 ± 37935.19	bc	575872.36 ± 37374.66	bc	651175.38 ± 74752.76	с	300657.94 ± 41243.21	а	361984.26 ± 25136.82	а
Unknown 1 (isositsirikine isomer)	374539.78 ± 58952.37	а	562563.80 ± 69036.18	ab	781996.45 ± 67027.10	bc	1005580.86 ± 97544.60	с	731807.25 ± 122872.58	abc	470878.67 ± 78838.86	а	517133.91 ± 20228.66	а
Perivine	85247.92 ± 13341.86	а	480932.83 ± 63318.36	bc	480935.77 ± 42850.18	bc	372181.94 ± 33514.28	b	656746.96 ± 76721.27	с	255415.21 ± 40294.36	ab	405010.52 ± 52917.02	b
Akuammicine	122022.54 ± 16925.89	а	937559.91 ± 137598.51	b	1201065.95 ± 81081.86	bc	773372.22 ± 37980.45	bd	1428134.23 ± 167892.85	с	412781.48 ± 50887.77	ad	818158.19 ± 113077.32	bd
O-acetylstemmadenine	129894.59 ± 16235.56	а	444404.01 ± 30554.41	bc	501219.93 ± 29178.61	b	402740.03 ± 15511.38	bc	428924.91 ± 60737.86	bc	226261.13 ± 26047.47	ad	319438.58 ± 39559.44	cd
16-hydroxytabersonine	69239.25 ± 8369.88	а	643021.06 ± 88175.95	b	1962267.77 ± 59154.15	с	1531087.36 ± 43751.08	с	2746220.62 ± 109314.44	d	614433.51 ± 78918.72	b	792531.63 ± 75621.81	b
16-hydroxytabersonine glucoside	7291.49 ± 963.53	а	81335.81 ± 7017.24	bd	148596.15 ± 10954.46	cd	109070.65 ± 4671.16	d	273654.33 ± 16100.37	е	65262.88 ± 9274.26	b	62013.47 ± 6610.35	b
Catharanthine	6264287.65 ± 858352.19	ab	6304859.74 ± 895297.28	ab	9679809.00 ± 758529.24	а	10121644.32 ± 757858.39	а	9348679.55 ± 1237803.54	а	4383851.24 ± 886201.96	b	6988862.90 ± 499854.43	ab
Unknown MIA (catharanthine isomer 1)	4337315.88 ± 600986.07	а	4502610.17 ± 534354.00	а	6042148.63 ± 667862.27	а	6285607.40 ± 559530.27	а	6068825.67 ± 933979.83	а	3497648.91 ± 615798.46	а	4418897.74 ± 257472.39	а
Unknown MIA (catharanthine isomer 2)	3071725.14 ± 484810.49	а	3632875.97 ± 459108.94	а	4584953.73 ± 395268.04	а	4738077.44 ± 372650.22	а	4815156.61 ± 673990.72	а	2625682.63 ± 524244.26	а	3478928.06 ± 163659.70	а

SUPPLEMENTARY TABLE S8 MIA levels upon combinatorial overexpression of *CrMYC2a*^{D126N} and *ORCAs*.

Unknown MIA (catharanthine isomer 3)	572257.89 ± 75777.88	abc	565097.84 ± 73502.17	ac	892989.29 ± 76012.39	abc	915786.34 ± 72507.02	b	827401.26 ± 107631.52	ab	466230.00 ± 73245.22	с	638512.98 ± 36420.57	abc
Desacetoxyvindoline	689357.99 ± 57824.76	acd	634965.06 ± 66318.19	а	1061816.11 ± 21547.91	bd	1120700.68 ± 21165.97	b	812195.56 ± 82269.64	с	535624.59 ± 33122.94	а	880164.06 ± 31677.99	cd
Deacetylvindoline	280988.98 ± 33955.18	а	278110.15 ± 23312.99	а	278318.03 ± 30193.71	а	282441.47 ± 14883.32	а	300738.03 ± 42002.99	а	150090.30 ± 24836.22	b	214372.52 ± 13842.51	ab
Vindoline	9776321.34 ± 993997.98	ab	10440781.30 ± 1364195.83	ab	13776099.96 ± 968623.88	а	14402922.48 ± 750354.76	а	12529975.05 ± 1555210.34	а	7104481.84 ± 961226.59	b	10650093.45 ± 527464.84	ab
Anhydrovinblastine	141512.73 ± 28527.72	ab	212350.25 ± 29297.84	ab	369626.58 ± 84081.20	а	363866.10 ± 44151.80	а	320329.61 ± 77974.70	ab	120954.11 ± 31181.84	b	273287.35 ± 41493.00	ab
Vinblastine	57351.68 ± 11382.30	а	88021.62 ± 10303.26	ab	179765.81 ± 34719.63	b	174082.78 ± 15575.99	b	140687.98 ± 39458.90	ab	54637.09 ± 11729.77	а	130833.87 ± 20103.27	ab
Vincristine	41640.02 ± 5880.28	ac	52310.38 ± 6827.84	abc	88201.58 ± 10369.81	b	64349.26 ± 8266.85	abc	72704.41 ± 13275.37	ab	33714.36 ± 4243.72	с	57528.26 ± 4473.48	abc
Desacetoxyvindorosine	7585.41 ± 923.01	ac	6360.19 ± 777.65	а	18971.11 ± 2928.11	b	18705.45 ± 1504.89	b	11873.17 ± 1388.42	ас	7259.40 ± 885.11	ac	13714.07 ± 659.78	bc
Desacetylvindorosine	15199.29 ± 1781.37	ab	17362.99 ± 1992.51	а	16882.31 ± 1003.73	а	18259.69 ± 689.93	а	17619.11 ± 1832.13	а	10076.15 ± 1556.73	b	14086.73 ± 605.21	ab
Demethoxyvindoline = vindorosine	386198.50 ± 53653.51	ac	408797.04 ± 65847.67	ас	642038.32 ± 47690.78	ab	694586.44 ± 47929.86	b	542592.84 ± 72814.95	ab	277838.57 ± 45551.37	С	481896.69 ± 29774.34	ac
Vincadifformine	247.03 ± 49.40	а	5889.37 ± 1437.46	а	212848.32 ± 10063.38	b	226325.24 ± 15431.19	b	199138.82 ± 27974.21	b	45207.07 ± 9905.86	а	32964.75 ± 3702.96	а
16-Hydroxyvincadifformine	3500.91 ± 876.26	а	22256.18 ± 3298.01	ae	340014.47 ± 13910.91	b	379815.11 ± 22893.51	b	254677.20 ± 27322.21	с	108279.18 ± 17988.03	d	95435.29 ± 13339.80	de
Minovincinine	627.33 ± 167.81	а	807.99 ± 152.29	а	24469.84 ± 5947.05	b	34428.72 ± 3973.01	с	10253.38 ± 906.42	а	2875.48 ± 648.71	а	1380.17 ± 107.00	а
19-hydroxytabersonine	2099.44 ± 401.36	а	2883.45 ± 389.09	а	119314.69 ± 13517.13	b	377209.41 ± 24740.83	b	104313.19 ± 12347.27	а	23898.89 ± 8481.32	а	4323.11 ± 401.31	а
19-O-acetyltabersonine	55398.90 ± 4662.24	а	220765.33 ± 19790.28	b	452668.22 ± 9803.61	cd	348068.34 ± 12519.35	bc	554879.55 ± 80713.83	d	205184.02 ± 17613.09	b	227463.02 ± 29554.85	b
16-hydroxy-19-O-acetyltabersonine	28.50 ± 8.90	а	19.30 ± 11.68	а	7504.69 ± 815.30	а	131981.66 ± 18961.02	b	7292.73 ± 1029.33	а	4189.18 ± 1508.80	а	49.28 ± 25.15	а
16-hydroxylochnericine	52510.55 ± 6388.69	а	183475.69 ± 21187.12	b	463941.53 ± 18700.75	с	287130.22 ± 11521.42	bc	751298.45 ± 106106.81	d	141498.88 ± 19829.92	ab	141265.42 ± 9050.20	ab
16-hydroxylochnericine glucoside	8980.47 ± 1612.25	а	106775.57 ± 21589.15	bc	95786.88 ± 12130.77	bc	58830.14 ± 1666.06	ас	181341.65 ± 25487.06	d	31050.31 ± 4324.36	а	20284.19 ± 1913.02	а
Hörhammericine	4724.77 ± 996.81	а	5992.97 ± 915.68	а	278470.00 ± 38042.54	bc	374346.28 ± 39153.63	b	185240.87 ± 36359.61	с	63542.74 ± 28403.72	а	6372.98 ± 543.77	а
16-hydroxyhörhammericine	86.72 ± 48.60	а	193.00 ± 18.89	а	10580.30 ± 1703.02	b	26707.28 ± 1398.64	с	24552.49 ± 3524.69	с	3244.90 ± 986.72	ab	174.94 ± 36.97	а
16-methoxyhörhammericine	6127.80 ± 1025.41	а	14570.47 ± 1812.75	а	1455135.43 ± 58409.57	b	1768828.83 ± 60800.49	b	1476769.83 ± 190025.82	b	628559.98 ± 120788.73	с	87278.84 ± 15027.98	а
Vandrikidine	58516.82 ± 8298.02	а	61809.06 ± 8650.40	а	286373.73 ± 13438.47	b	627657.05 ± 36265.94	с	311488.93 ± 31407.43	b	114670.79 ± 20833.02	а	72160.38 ± 6822.54	а

SUPPLEMENTARY TABLE S9 MIA levels upon overexpression of *MYB96/b*.

	<i>p35S::GUS</i> ± SEM		p35S::MYB96b ± SEM		p35S::MYB96 ± SEM		p35S::MYB96/96b ± SEM	
Loganin	18077.20 ± 1311.99	а	23202.36 ± 1551.57	ab	28192.15 ± 2957.71	b	21051.04 ± 1060.61	ab
Secologanin	166639.21 ± 11085.70	а	189229.95 ± 10593.10	а	187008.77 ± 15666.49	а	165322.53 ± 9280.56	а
Strictosidine	3249908.79 ± 32900.11	ac	2412417.01 ± 62155.70	b	2734654.41 ± 250541.41	а	3890892.24 ± 217153.69	с
Strictosidine secologanoside	3873.44 ± 358.60	а	110.62 ± 110.62	b	1006.49 ± 912.46	b	280.40 ± 280.40	b
Unknown 2 (strictosidine aglycone isomer)	95098.64 ± 9985.24	а	110953.76 ± 5712.12	а	95959.85 ± 9104.73	а	116455.19 ± 6188.85	а
Strictosidinic Acid	319097.32 ± 30435.43	ab	295479.71 ± 16263.51	а	272663.15 ± 37572.91	а	429114.31 ± 12376.90	b
Serpentine	2934652.60 ± 454437.97	а	2777297.91 ± 167880.75	а	3253367.89 ± 513643.97	а	3628148.31 ± 209836.09	а
Unknown MIA (serpentine isomer)	699111.61 ± 54890.41	а	667555.96 ± 41418.47	а	852078.76 ± 117001.48	а	1203419.96 ± 67104.93	b
Geissoschizine	1958540.56 ± 300324.84	а	2108506.58 ± 124252.41	а	1774373.95 ± 219955.12	а	1384011.68 ± 59339.72	а
Unknown MIA (geissoschizine isomer 1)	3517665.90 ± 495131.29	а	4181376.41 ± 278217.33	а	3440154.48 ± 390808.37	а	3122352.57 ± 112133.71	а
Unknown MIA (geissoschizine isomer 2)	94789.54 ± 12983.37	а	99653.36 ± 6191.92	а	82520.02 ± 12669.74	а	224065.05 ± 15165.13	b
Unknown 1 (isositsirikine isomer)	633621.94 ± 71704.80	а	633009.96 ± 27457.56	а	623066.31 ± 64597.28	а	658132.61 ± 43777.80	а
Isositsirikine	416370.09 ± 33899.53	а	394503.59 ± 19858.68	а	407085.93 ± 49096.73	а	540091.67 ± 29580.98	а
Perivine	143216.57 ± 6677.20	а	156338.91 ± 8522.00	ab	208846.44 ± 16544.12	b	301029.88 ± 17796.69	С
Akuammicine	243714.10 ± 14999.68	а	218826.92 ± 13563.25	а	275274.17 ± 32682.01	а	418342.16 ± 13918.86	b
O-acetylstemmadenine	256203.17 ± 9275.95	а	259941.53 ± 13593.20	а	239481.60 ± 12421.14	а	310548.87 ± 9331.95	b
16-hydroxytabersonine	204610.96 ± 6092.51	а	228663.65 ± 16080.62	а	213691.18 ± 22233.43	а	373824.82 ± 13240.55	b
16-hydroxytabersonine glucoside	12224.51 ± 3589.46	а	10193.54 ± 1107.57	а	7815.83 ± 768.46	а	25295.28 ± 2143.12	b
Catharanthine	9523886.58 ± 869603.54	а	9739259.01 ± 532742.66	а	10348636.85 ± 1029051.96	а	14733651.38 ± 570844.09	b
Unknown MIA (catharanthine isomer 1)	7153472.93 ± 456075.95	а	7302683.07 ± 500435.51	а	7760883.18 ± 763604.39	а	10508131.55 ± 751941.65	b
Unknown MIA (catharanthine isomer 2)	4440041.00 ± 323906.98	а	4409152.83 ± 302083.35	а	4809815.51 ± 470118.48	а	6787739.83 ± 427093.95	b
Unknown MIA (catharanthine isomer 3)	707826.50 ± 62826.83	а	722843.61 ± 48621.69	а	805858.79 ± 99615.49	а	1162660.09 ± 59521.33	b
Desacetoxyvindoline	761815.28 ± 44265.57	а	731145.46 ± 35310.95	а	728638.68 ± 43966.21	а	827125.88 ± 23511.19	а
Deacetylvindoline	349264.72 ± 26595.05	а	365332.19 ± 15360.14	а	363585.21 ± 37027.74	а	448500.41 ± 22624.85	а
Vindoline	10803870.27 ± 502242.35	а	10794229.84 ± 786105.05	а	9906909.68 ± 530268.23	а	10963867.33 ± 654783.22	а
Anhydrovinblastine	533421.25 ± 43732.49	а	336824.47 ± 41900.30	а	280294.74 ± 71595.24	а	482590.01 ± 78798.09	а
Vinblastine	119772.46 ± 10921.38	а	87389.33 ± 13087.25	а	61875.87 ± 16058.29	а	100642.06 ± 20718.21	а
Vincristine	112736.71 ± 8163.45	а	89011.88 ± 7574.91	а	83684.92 ± 15750.46	а	136641.02 ± 17197.14	а
Desacetoxyvindorosine	9109.75 ± 541.10	а	9099.32 ± 761.80	а	10478.56 ± 1119.57	а	10672.73 ± 149.04	а
Desacetylvindorosine	22891.62 ± 1651.31	а	24970.16 ± 1896.91	ab	33263.04 ± 3260.62	bc	36335.65 ± 1254.43	С
Demethoxyvindoline = vindorosine	623608.99 ± 60975.46	а	679723.22 ± 51393.01	ab	747367.33 ± 93818.53	ab	907585.89 ± 27750.51	b
Vincadifformine	3970.77 ± 906.62	а	4587.13 ± 557.40	а	4197.33 ± 611.45	а	8178.08 ± 466.37	b
16-Hydroxyvincadifformine	9319.24 ± 1475.38	а	10636.60 ± 716.42	а	10536.19 ± 1930.16	а	11137.91 ± 685.78	а
Minovincinine	2140.65 ± 168.68	а	1876.23 ± 244.38	а	2591.28 ± 419.49	а	4290.63 ± 301.01	b
19-hydroxytabersonine	43433.28 ± 2564.97	а	53601.84 ± 5291.97	а	53920.66 ± 4842.04	а	71636.23 ± 1804.03	b
19-O-acetyltabersonine	83064.17 ± 4142.76	а	91102.16 ± 5708.77	а	93903.91 ± 8907.29	а	138903.70 ± 7777.72	b

Vandrikidine	154225.34 ± 14757.24	а	170333.52 ± 12008.57	а	178765.73 ± 21251.04	ab	232296.58 ± 5051.69	b
16-methoxyhörhammericine	9054.03 ± 114.64	а	8936.00 ± 402.63	а	8733.89 ± 1095.19	а	19182.45 ± 1781.51	b
16-hydroxyhörhammericine	142.24 ± 25.16	а	70.10 ± 24.37	а	133.20 ± 16.90	а	124.92 ± 46.23	а
Hörhammericine	37968.54 ± 2655.73	а	47364.79 ± 2702.62	ab	46619.19 ± 5077.90	а	60762.98 ± 2182.34	b
16-hydroxylochnericine glucoside	11464.25 ± 8059.56	а	8321.25 ± 1827.04	а	7232.79 ± 1781.23	а	35186.17 ± 5258.00	b
16-hydroxylochnericine	239563.89 ± 24918.66	а	284786.38 ± 14148.97	ab	313035.09 ± 37059.05	ab	392134.46 ± 24480.09	b
16-hydroxy-19-O-acetyltabersonine	287.33 ± 111.64	а	258.19 ± 96.52	а	380.19 ± 158.87	а	154.46 ± 41.51	а

SUPPLEMENTARY TABLE S10 MIA levels upon overexpression of *MYB96/b*, *CrMYC2a*^{D126N} and *ORCA4*.

	<i>p35S::GUS</i> ± SEM		<i>p35S::CrMYC2a^{D1}</i> ^{26N} ± SEM		p35S::ORCA4 ± SEM		<i>p35S::MYB96</i> ± SEM		p35S::CrMYC2a ^{D126N} / ORCA4 ± SEM		p35S::ORCA4/ MYB96 ± SEM		p35S::CrMYC2a ^{D126} ^N /MYB96 ± SEM		p35S::CrMYC2a ^{D126N} / ORCA4/MYB96 ± SEM	
Loganin	9332.21 ± 670.24	а	9145.02 ± 1093.29	а	9749.58 ± 1349.63	а	11278.43 ± 1875.02	а	12390.85 ± 627.01	а	10389.86 ± 1093.90	а	8657.14 ± 629.17	а	11832.32 ± 496.03	а
Secologanin	80576.30 ± 1464.34	а	76038.85 ± 2902.62	а	76294.12 ± 2023.22	а	86004.92 ± 6046.99	а	82294.31 ± 2112.81	а	76911.70 ± 3463.54	а	81200.08 ± 5770.51	а	88012.94 ± 1482.64	а
Strictosidine	1878964.65 ± 32854.65	а	3681759.40 ± 390608.12	b	3589440.75 ± 367966.61	b	2118946.68 ± 340878.91	ас	5704397.26 ± 272573.10	d	3681482.17 ± 216910.28	b	3241250.30 ± 230225.64	bc	4298522.19 ± 82989.58	b
Strictosidine secologanoside	21.18 ± 21.18	а	478.54 ± 141.26	ас	155.79 ± 65.71	а	131.64 ± 89.13	а	3221.50 ± 467.63	b	266.15 ± 114.89	а	167.66 ± 166.01	а	1304.77 ± 296.92	с
Unknown 2 (strictosidine aglycone isomer)	80887.16 ± 2351.80	а	98933.16 ± 10800.57	а	80384.16 ± 6774.79	а	85617.32 ± 8941.26	а	109306.10 ± 2558.56	а	103188.24 ± 3899.31	а	92772.02 ± 5563.26	а	101132.05 ± 2185.94	а
Strictosidinic Acid	74892.04 ± 18046.67	а	151651.41 ± 18447.75	ad	448524.22 ± 53908.12	b	59766.04 ± 7006.73	а	730982.85 ± 41114.00	с	283137.79 ± 6982.35	d	178325.46 ± 20434.58	ad	480095.82 ± 38582.79	b
Serpentine	1773919.33 ± 179007.37	а	1797351.47 ± 355495.59	а	1411218.50 ± 242832.40	а	1945287.83 ± 312072.04	а	2116516.31 ± 107442.18	а	1944529.14 ± 212919.58	а	1680917.92 ± 254719.41	а	1922687.75 ± 168717.65	а
Unknown MIA (serpentine isomer)	543850.31 ± 37936.69	а	512655.45 ± 96116.74	а	479470.62 ± 79208.50	а	558725.21 ± 89192.89	а	781436.21 ± 29652.46	а	772071.87 ± 79957.80	а	521913.71 ± 62477.14	а	651391.30 ± 40765.34	а
Geissoschizine	935438.08 ± 50202.60	а	2704771.21 ± 400087.77	be	1912838.73 ± 261108.63	bc	1589684.30 ± 250103.99	с	4414049.70 ± 255513.88	d	1951477.70 ± 60394.70	abc	2001953.29 ± 66141.24	bc	3157425.18 ± 113417.51	e
Unknown MIA (geissoschizine isomer 1)	570123.83 ± 32701.96	а	1571415.11 ± 229194.25	bde	1175808.07 ± 176902.25	bd	958110.20 ± 141171.70	ad	2593610.43 ± 132045.21	с	1269091.18 ± 36405.24	d	1132908.32 ± 39506.84	ad	1878428.23 ± 76769.31	e
Unknown MIA (geissoschizine isomer 2)	61498.79 ± 8375.42	а	198383.12 ± 39106.71	bc	90652.22 ± 18901.02	ad	101180.94 ± 25685.36	acd	246594.52 ± 13297.48	b	104928.70 ± 19935.43	acd	203999.14 ± 20899.43	bd	187425.55 ± 20141.93	bd
Isositsirikine	195276.61 ± 2013.75	ab	289545.92 ± 32738.82	bd	246762.85 ± 21950.17	bd	217616.68 ± 30006.38	b	500285.21 ± 24540.06	с	306755.45 ± 14312.96	bd	263482.34 ± 15237.61	bd	337763.56 ± 7397.93	d
Unknown 1 (isositsirikine isomer)	304514.64 ± 6690.27	а	370906.49 ± 49861.56	а	311485.59 ± 30595.22	а	319953.69 ± 40361.99	а	528541.46 ± 12103.56	b	407747.41 ± 20396.93	ab	338506.06 ± 21948.50	а	408633.12 ± 9314.01	ab
Perivine	77500.61 ± 1958.16	а	329998.96 ± 57036.39	bcdf	99439.63 ± 9469.55	ad	114359.03 ± 21412.43	ad	303961.13 ± 20030.12	cdf	210373.57 ± 10500.41	d	496394.96 ± 48715.35	е	398180.07 ± 42894.45	ef
Akuammicine	137373.37 ± 5597.61	а	727458.69 ± 145196.32	bdef	253547.93 ± 32132.97	с	183977.91 ± 34245.82	с	968382.34 ± 42986.83	df	448383.84 ± 31297.80	ce	709936.97 ± 69036.30	ef	983034.25 ± 77078.21	f

0-acetylstemmadenine	113816.67 ±	а	502984.15 ±	hc	193477.32 ±	а	133395.35 ±	а	556439.36 ±	h	233108.65 ±	а	408625.87 ±	c	481489 19 + 11337 95	hc
0-acetyistenimadenine	9641.36	a	62387.95	bc	7164.20	a	17818.22	a	30591.19	U	8624.69	a	33884.72	C	401405.15 ± 11557.55	ыс
16-hydroxytabersonine	80914.90 ±	а	485874.77 ±	hc	703212.60 ±	c	112853.49 ±	а	2379295.53 ±	Ь	534157.38 ±	hc	339230.59 ±	ah	1567952 30 + 81104 99	Δ
	5591.51	u	84793.03	be	55317.69	C	22198.41	u	122007.38	u	22011.97	be	16354.39	ub	1507552.50 ± 01104.55	C
16-hydroxytabersonine glucoside	11654.71 ±	а	48498.27 ±	ah	80475.90 ±	he	15251.98 ±	а	233168.69 ±	c	35502.78 ±	а	45033.90 ±	ae	151113 92 + 17760 97	Ь
	1357.93	u	8816.57	ub	8055.34	be	4438.25	u	13661.28	C	4289.39	u	5703.39	uc	191119.92 ± 17700.97	u
Catharanthina	6586547.17	ъh	6637131.39 ±	ъb	6432821.83 ±	ъb	7027293.38 ±	ah	9873252.58 ±	h	10011238.24 ±	2	6389266.73 ±	h	9172692 95 + 645254 12	ah
Catharantinne	± 240876.72	au	1164743.46	au	637496.81	au	981397.24	au	309436.29	au	981359.59	a	679522.44	D	8123083.85 ± 043234.12	au
Unknown MIA (catharanthine	4483285.77	ah	4175576.27 ±	2	4019400.89 ±	2	4282055.57 ±	2	5415114.71 ±	ah	5919705.95 ±	h	4165164.60 ±	2	4600857 72 + 240518 06	ah
isomer 1)	± 143565.56	au	498917.24	d	314794.82	d	458618.14	d	172585.81	dIJ	431916.12	D	318379.37	d	4090857.72 ± 249518.90	au
Unknown MIA (catharanthine	3146655.64	٥h	3054348.24 ±	ah	2777286.75 ±	-	2949961.39 ±		4019998.50 ±	٥h	4234888.43 ±	h	3370115.46 ±	ah	2626080 24 + 121601 08	ah
isomer 2)	± 93617.46	ab	429748.00	db	282517.61	d	359451.51	d	112737.07	dD	264612.26	b	283195.76	aD	3626089.34 ± 121601.08	aD
Unknown MIA (catharanthine	589747.11 ±	- 1-	517141.25 ±	-	539712.11 ±	- 1-	544340.56 ±	- 1-	754205.43 ±	b a	779315.73 ±	_	526403.13 ±	_	C201C4 2C + 22244 27	
isomer 3)	24632.93	ab	67525.09	а	56473.30	ab	68291.73	ар	24179.39	DC	46399.93	С	49781.83	а	629164.36 ± 33344.37	ac
	572496.85 ±	±	676426.49 ±		652723.69 ±		730985.35 ±	881040.14 ±		716408.76 ±		649538.89 ±	_	001201 02 1 26764 44		
Desacetoxyvindoline	36787.88	а	108263.61	а	65240.11	а	118851.25	а	34219.94	а	72773.19	а	83286.48	а	881291.02 ± 36764.44	а
	237696.83 ±		209199.29 ±		203152.92 ±		253281.45 ±		233532.30 ±		269212.29 ±		259884.80 ±			
Deacetylvindoline	8784.70	а	24728.42	а	19678.85	а	38531.45	а	10075.73	а	20301.13	а	16518.21	а	255929.47 ± 11027.13	а
	9062435.33		8875880.17 ±		8949539.10 ±		9892297.95 ±		11190508.80 ±		11137011.40 ±		9415932.01 ±			
Vindoline	± 413759.41	а	1103042.00	а	856662.39	а	1319574.54	а	498438.71	а	1017832.04	а	896999.74	а	10612136.84 ± 460549.93	а
Anhydrovinblastine	294946.45 ±		330214.63 ±		228997.91 ±		291103.18 ±		498324.27 ±		352055.39 ±		277617.52 ±			
	7367.57	а	107480.02	а	61666.26	а	71641.33	а	30687.94	а	84950.86	а	78475.24	а	281310.18 ± 35430.55	а
	196068.75 ±		235935.28 ±		145213.82 ±		216357.71 ±		339491.03 ±		254708.50 ±		160679.39 ±			
Vinblastine	14170.45	а	75339.01	а	36744.45	а	47476.90	а	28535.21	а	54303.09	а	28666.33	а	211517.27 ± 35913.34	а
	48430.87 +		62219.03 +		57187.14 +		77487.66 +				73501.85 +		65165.31 +			
Vincristine	1888.95	а	12082.38	ab	11583.32	ab	11752.22	ab	90556.22 ± 3607.04	b	6853.79	ab	5437.77	ab	74491.45 ± 7056.38	ab
	6826 85 +		8079 31 +		8734 79 +		10657 55 +				10292 56 +					
Desacetoxyvindorosine	874 77	а	1429 56	а	899 74	а	1794 77	abc	15681.26 ± 1180.10	bc	776.07	ас	8070.30 ± 1287.38	а	14655.16 ± 681.84	С
	14049 80 +		12911 79 +		11032 18 +		14699 43 +				14396 46 +		15390 35 +			
Desacetylvindorosine	591 97	а	1346 70	а	1359 84	а	1910 78	а	13289.98 ± 167.77	а	652 41	а	1103 33	а	15997.52 ± 700.07	а
	445804 30 +		410520.96 +		403909 35 +		455758 62 +		586173 39 +		561708 00 +		416085 62 +			
Demethoxyvindoline = vindorosine	30556 10	а	77696 18	а	50553 81	а	502/15 16	а	37190 59	а	64070 61	а	63025.83	а	526572.38 ± 49473.15	а
	126 92 +		//050.18		1600 40 +		267.00 +		161717 04 +		1924 27 +		03023.85			
Vincadifformine	420.83 ±	а	3294.07 ± 936.88	а	270.29	а	110 20	а	26596 24	b	1024.37 ±	а	3350.49 ± 1811.31	а	44784.72 ± 3955.88	а
	2522.05 +		0202.06 +		375.20 1861 20 +		110.20		171054 20 +		401.91					
16-Hydroxyvincadifformine	206.05	а	2020 40	а	4804.29 ±	а	4310.43 1	а	16121 /0	b	202.03 -	а	7063.49 ± 490.41	а	69848.73 ± 6492.19	с
	300.05		2029.49		600.95		652.99		10151.49		1009 0E ±					
Minovincinine	$494.47 \pm$	ас	612.41 ± 183.35	ас	041.74 ±	ас	391.15 ± 60.25	ac	9238.83 ± 845.70	b	1096.05 ±	ас	378.30 ± 54.67	а	1892.15 ± 102.36	с
	2202.26.+				107.28		2572.22 +		102941 04 +		120.28					
19-hydroxytabersonine	3202.30 ±	а	2959.23 ± 657.84	а	2035.34 I	а	25/3.33 ±	а	102841.04 ±	b	4951.32 ±	а	2535.97 ± 315.08	а	39611.25 ± 5961.26	с
	331.5Z		162170 45 +		324.40				10000		/1/.10					
19-O-acetyltabersonine	52096.51 ±	а	1631/8.45 ±	b	123485.41 ±	ab	66025.44 ±	а	510058.30 ±	с	148414.08 ±	b	145557.18 ±	b	397300.75 ± 7568.17	d
	432.48		19004.81		AT22'AT		9402.93		31933.10		5077.54		93/3.2/			
16-hydroxy-19-O-acetyltabersonine	37.19 I	а	46.29 ± 26.90	а	18.59 ± 18.01	а	59.04 ± 14.46	а	713.54 ± 103.70	b	38.19 ± 16.85	а	35.81 ± 25.18	а	99.71 ± 34.43	а
			110031 30 4		247074 15 1		66726.00 -		620212 14 4		402159.00 -		110270 00 1			
16-hydroxylochnericine	2212.0C	а	110921.30 ±	а	54/8/4.15 ±	b	00/20.99 ±	а	02U212.14 ±	с	403138.09 ±	b	1193/8.89 ±	а	546424.58 ± 37269.60	с
•	2312.90		1/005.54		40/1/.38		9024.43		10/31.42		10/03.91		/201.55			

6-hydroxylochnericine glucoside	9703.16 ± 1610.01	а	20070.68 ± 4179.77	а	126704.48 ± 13047.73	b	13469.81 ± 4451.24	а	145039.15 ± 9232.74	b	83588.78 ± 5371.03	с	30701.25 ± 5026.19	а	114799.31 ± 16200.68	bc
Hörhammericine	5649.26 ± 488.75	а	5168.97 ± 1037.97	а	4944.01 ± 793.23	а	4522.21 ± 628.76	а	160223.61 ± 16721.94	b	7298.05 ± 414.32	а	5552.77 ± 844.45	а	112375.38 ± 18507.65	с
16-hydroxyhörhammericine	205.76 ± 16.17	а	94.76 ± 16.01	а	151.71 ± 41.33	а	106.23 ± 35.07	а	12716.05 ± 833.07	b	248.22 ± 30.72	а	128.68 ± 44.84	а	9024.61 ± 1475.29	с
16-methoxyhörhammericine	5669.46 ± 299.63	а	8416.25 ± 1018.94	а	8027.10 ± 969.87	а	5994.55 ± 1319.74	а	1278211.75 ± 148975.94	b	14673.34 ± 856.02	а	14074.94 ± 2002.04	а	600138.97 ± 80691.00	с
Vandrikidine	66372.97 ± 3644.32	а	59197.58 ± 10499.71	а	59401.41 ± 5904.84	а	64826.75 ± 9454.28	а	293123.07 ± 28000.55	b	94476.22 ± 4949.51	а	58706.73 ± 5826.50	а	138841.73 ± 8077.63	с

References

- Bailey, T. L., Johnson, J., Grant, C. E., and Noble, W. S. (2015). The MEME Suite. *Nucleic Acids Res.* 43, W39-W49. doi:10.1093/nar/gkv416
- Buchan, D. W. A., and Jones, D. T. (2019). The PSIPRED Protein Analysis Workbench: 20 years on. *Nucleic Acids Res.* 47, W402-W407. doi:10.1093/nar/gkz297
- Disfani, F. M., Hsu, W.-L., Mizianty, M. J., Oldfield, C. J., Xue, B., Dunker, A. K., et al. (2012). MoRFpred, a computational tool for sequence-based prediction and characterization of short disorder-to-order transitioning binding regions in proteins. *Bioinformatics* 28, i75-i83. doi:10.1093/bioinformatics/bts209
- Dugé De Bernonville, T., Carqueijeiro, I., Lanoue, A., Lafontaine, F., Sánchez Bel, P., Liesecke, F., et al. (2017). Folivory elicits a strong defense reaction in *Catharanthus roseus*: metabolomic and transcriptomic analyses reveal distinct local and systemic responses. *Sci. Rep.* **7**, 40453. doi:10.1038/srep40453
- Gongora-Castillo, E., Childs, K. L., Fedewa, G., Hamilton, J. P., Liscombe, D. K., Magallanes-Lundback, M., et al. (2012). Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. *PLoS ONE* 7, e52506. doi:10.1371/journal.pone.0052506
- O'shea, C., Staby, L., Bendsen, S. K., Tidemand, F. G., Redsted, A., Willemoës, M., et al. (2017). Structures and short linear motif of disordered transcription factor regions provide clues to the interactome of the cellular hub protein radical-induced cell death1. *J. Biol. Chem.* 292, 512-527. doi:10.1074/jbc.M116.753426
- Pan, Y.-J., Lin, Y.-C., Yu, B.-F., Zu, Y.-G., Yu, F., and Tang, Z.-H. (2018). Transcriptomics comparison reveals the diversity of ethylene and methyl-jasmonate in roles of TIA metabolism in *Catharanthus roseus*. *BMC Genomics* 19, 508. doi:10.1186/s12864-018-4879-3
- Van Moerkercke, A., Fabris, M., Pollier, J., Baart, G. J., Rombauts, S., Hasnain, G., et al. (2013). CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data. *Plant Cell Physiol* 54, 673-685. doi:10.1093/pcp/pct039
- Van Moerkercke, A., Steensma, P., Schweizer, F., Pollier, J., Gariboldi, I., Payne, R., et al. (2015). The bHLH transcription factor BIS1 controls the iridoid branch of the monoterpenoid indole alkaloid pathway in *Catharanthus roseus*. *Proc. Natl. Acad. Sci. USA* 112, 8130-8135. doi:10.1073/pnas.1504951112
- Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K., and Uversky, V. N. (2010). PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. *Biochim. Biophys. Acta Proteins Proteomics* 1804, 996-1010. doi:10.1016/j.bbapap.2010.01.011