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Abstract 
 

“An Enhanced Numerical Model to Simulate Nonlinear Continuous Wave 

Ultrasound Propagation and the Resulting Temperature Response”, Shahram 

Mashouf, M.Sc., Biomedical Physics, Ryerson University, 2009 

 

 

In this work a nonlinear CW ultrasound field propagation model based on a 

second-order operator splitting approach is studied and a number of significant 

enhancements are introduced and implemented. In this model the ultrasound field is 

calculated and propagated plane by plane and the effects of diffraction, nonlinearity and 

absorption are applied independently over incremental steps. This work completes the 

preceding works (Christopher and Parker 1991, Tavakkoli et al. 1998, Zemp et al. 2003, 

Williams et al. 2006) by introducing an arbitrary source geometry and excitation 

definition, full diffraction solution, enhanced pressure, enhanced power deposition rate 

and temperature prediction capabilities. The result is a particularly useful tool in carrying 

out simulations of high intensity focused ultrasound (HIFU) that includes temperature 

rise predictions. Comparisons are made with other codes in both linear and nonlinear 

regimes. Different dynamics of lesion formation are obtained in linear versus nonlinear 

models, specially at the onset of lesion creation during HIFU exposure.  
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Chapter 1: 

Introduction and Background 
 
 
1.1  Thesis Motivation and Objective 

  
 Ultrasound propagation is a nonlinear phenomenon, however linear 

approximations are often used to model the beam propagation. The Linear theory of 

sound was regarded as sufficient, until 1980 when Carstensen et al. points out for the first 

time the importance of nonlinearity around intensities and frequencies of interests in the 

field of biomedical ultrasound (Carstensen et al. 1980). Even though Carstensen et al. 

concentrated on beams used in ultrasound therapy, we now know that nonlinearity effects 

could be pronounced in diagnostic applications as well. The advent of tissue harmonic 

imaging is a clear example of this effect (Duck 2002). 

The linear model assumes infinitesimal deviations of acoustic parameters about their 

equilibrium values. As a result, if the acoustic amplitudes are high enough, significant 

errors may arise (Baker 1998). The problem is that the effect of nonlinearity is cumulative 

and it’s hard to quantify these errors, except for simple geometries and excitations. For 

instance, the effect of nonlinearity in a low power biomedical ultrasound scanner might 

be more pronounced than that of a high power sonar system because the biomedical 

scanner works at much higher frequencies (Carstensen et al. 1980). In this thesis, among 

other things, we’ll be extending the model of Zemp et al. (Zemp et al. 2003) to be able to 

define an arbitrary source and excitation in simulations of nonlinear acoustic. 

We’ll be also presenting a more accurate way to predict the pressure field compared to 

the model of Zemp et al. in which the impedance relation between pressure and normal 

velocity was being used to calculate the pressure. 
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Many therapeutic effects of ultrasound are caused by temperature elevation in tissue. 

Thus it’s important to include temperature predictions as part of our model. In this thesis 

we’ll be also including simulations of temperature by introducing an enhanced heat 

generation rate due to ultrasound nonlinearity. Among others, the resulting program is a 

particularly useful tool in carrying out simulations of HIFU beams. 

 
1.2 Therapeutic Ultrasound 

Medical applications of ultrasound fall into two main categories: diagnostic and 

therapeutic. Historically, therapeutic applications of ultrasound were examined earlier 

than its diagnostic or imaging capabilities (ter Haar 2007). Ultrasound can induce a range 

of bio-effects in tissue depending on the level of intensity and duration of exposure. At 

low intensities (~100 mW/cm2) it typically creates reversible biological effects which can 

prove beneficial. At higher end (~1000 W/cm2), however, immediate cell death could 

result (ter Haar 1995). Diagnostic imaging techniques such as B-mode or Doppler fall at the 

very low range of the intensity scale and they typically don’t cause any adverse biological 

response in tissue (ter Haar 1993).  Therapeutic effects of ultrasound can be caused by 

both thermal and non-thermal mechanisms. At lower intensity levels acoustic streaming 

is the dominant underlying mechanism and at higher intensities heating and cavitation 

play a significant role. High intensity focused ultrasound (HIFU), lithotripsy and 

histotripsy are examples of high intensity therapies, while sonophoresis, sonoporation, 

gene therapy, bone healing and physiotherapy comprise low intensity treatments (ter Haar 

2007). In what follows we’ll describe a number of the high power applications in more 

detail. 

1.2.1 High Intensity Focused Ultrasound 

High Intensity focused ultrasound (HIFU) is a rapidly expanding modality with 

applications in tumor necrosis, hemostasis, immunotherapy, and soft tissue thermal 

surgeries (Tavakkoli and Sanghvi 2009). In this method of treatment, highly focused 

ultrasound beams induce a rapid temperature rise around the focal spot due to conversion 

of acoustic energy to heat. Precise, well defined thermal lesions can be created inside the 
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tissue due to thermal coagulation. One advantage of HIFU over other similar treatment 

modalities is that it can be performed non-invasively. Fig. 1-1 shows the location of 

lesion formation takes place during HIFU treatment. 

 

Figure 1-1. Lesion formation at the focal region due to HIFU exposure. The size of the lesion is   
typically around 10mm x 1mm. Source: (Bailey et al. 2003). 

 

Selecting the right transducer and excitation parameters ensure that underlying tissue 

layers remain intact and tissue coagulation happens only around the focal spot. HIFU 

transducers typically operate at frequency range of 2-4 MHz with focal intensities being 

around 1000-3000 W/cm2. The F numbers are usually around one but can be higher with 

focal lengths of up to 15 cm. The maximum acoustic pressure amplitude is typically 

limited to 2-4 MPa at the transducer surface (Bailey et al. 2003).  

The pioneering work in this area was done by Lynn et al. (Lynn and Putnam 1944, Lynn et 

al. 1942) in neurosurgical research. They built a high-power focused source and 

demonstrated a highly localized biological effect can be produced. Their work was then 

continued by Fry brothers for selective tissue ablation in the central nervous system (Fry 

et al. 1954). Treatment of Parkinson’s disease and some ophthalmologic conditions such 
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as glaucoma and retinal tears were among the first to be tried using the HIFU (Lizzi et al. 

1978, Coleman et al. 1985a, Coleman et al. 1985b, Coleman et al. 1985c). However the 

emergence of laser eye surgery and L-dopa for treatment of Parkinson inhibited further 

research activity in this area. In general despite early promising results, the clinical usage 

of HIFU was delayed till 1990s because of difficulty in guidance and monitoring of the 

treatment (ter Haar 2007, Foley et al. 2007). The advent of modern imaging techniques 

along with ultrasound capability to both monitor and deliver a treatment, has caused a 

revival of this technique. 

Applications in tumor therapy: 

HIFU has been used to treat tumors in variety of soft tissues. There have been two modes 

of HIFU delivery in actual clinical settings which are extracorporeal and transrectal 

(Tavakkoli and Sanghvi 2009). Fig 1-2 illustrates examples of commercially available 

extracorporeal and transrectal HIFU devices. 

 

Figure 1-2 (a) Ultrasound image-guided extracorporeal HIFU device manufactured and 
commercialized by Chongqing Haifu (HIFU) Technology Co. Ltd., Chongqing, China.(b) Sonablate® 
500 transrectal HIFU device developed and commercialized by Focus Surgery, Inc., Indianapolis, IN. 
Source: (Tavakkoli and Sanghvi 2009). 

(b) (a) 

 
Extracorporeal devices are significantly larger and more versatile (Fig. 1-2(a)). They can 

be used to treat a variety of problems, most commonly intra-abdominal solid tumors. 

Transrectal devices have been designed mainly for the treatment of prostate cancer and 

thus are smaller (Fig. 1-2(b)).  
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Transrectal devices work at higher frequencies and have smaller focal lengths compared 

to their extracorporeal counterparts (Leslie and Kennedy 2006) and use ultrasound for both 

treatment and imaging. For extracorporeal devices, the targeting and monitoring is done 

either with ultrasound or magnetic resonance imaging (MRI). In terms of imaging, MR 

provides excellent tumor delineation. Moreover thermal maps and necrosed volume can 

be displayed since several MRI parameters are temperatures dependant (Leslie and Kennedy 

2006). On the other hand, ultrasound imaging is significantly less expensive and less 

bulky, widely available and can provide real time images, however it’s hard to locate the 

ablated region without the presence of bubbles.  

During the last decade, HIFU has shown a great promise in treating variety of tumors.  It 

particularly finds a special place when there’s no other alternative treatment available 

such as liver metastasis and pancreatic tumors where regular resection procedures are 

simply not possible (Bailey et al. 2003). HIFU also offers a number of advantages such as 

ability to induce highly localized legions non-invasively, less side effects in terms of 

mortality and morbidity, and possibility of applying other treatments after its use. There 

are observations that HIFU might evoke an enhanced immune response which restrains 

new tumor growth (Wu et al. 2004). Even if that’s not the case, the body immune function 

is not impaired as much due to locality and noninvasiveness of the treatment (ter Haar 

2007).  There are certain challenges and difficulties in implementation of HIFU for tumor 

therapy. For example, ultrasound can not pass through air or bone because of the large 

impedance mismatch. As a result, ribs, lungs and other parts of the body filled with air 

such as bowels should not be in the path of the acoustic beam. Skin burns is also another 

issue that has to be considered which requires appropriate surface coupling and cooling 

mechanisms. Long treatment time is another problem. Contrast agent microbubbles have 

been shown to help both in imaging of the procedure (Kennedy et al. 2004) and reducing 

the treatment time (Hanajiri et al. 2006). 

Applications in haemostasis or acoustocautery: 

Haemostasis or acoustocautery is the process of occluding blood vessels using HIFU 

exposure. During tumour therapy, it was found that HIFU is also capable of sealing blood 
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vessels (Delon-Martin et al. 1995) and since then this property has been used and verified 

by a number of researches (Vaezy et al. 1999, Rivens et al. 1999).  Electrocautery is an 

alternative way to induce haemostasis, but unlike HIFU its use is limited to the tissue 

surface and surface bleeding inhibits its effectiveness. 

1.2.2 Lithotripsy 

Lithotripsy has been used for treatment of kidney stones since the early 1980s. It still 

continues to be the modality of choice for treatment of uncomplicated upper urinary tract 

concretions (Bailey et al. 2003). New applications in orthopedic medicine are also under 

development (Thiel 2001, Maier et al. 2001). Lithotripters create an acoustic shock wave at 

the device focal point where a positive-pressure spike is followed by a negative pressure 

cycle as shown in Fig. 1-3. Unlike HIFU where many cycles are continuously applied 

during the on time, in lithotripsy individual microsecond pulses are administered at a 

pulse repetition frequency of around 1-2 Hz. Typically a treatment requires around 1000-

2000 pulses.  

Lithotripter transducers typically have F-numbers around one and aperture diameters of 

tens of centimeters. More compact designs are being sought for orthopedic applications. 

Three commercially available lithotripter systems (a,b,c) and a research model (d) are 

illustrated in Fig. 1-4. In electrohydraulic lithotripters, an ellipsoidal reflector is used to 

 

Figure 1-3. A lithotripsy pulse measured at the focus of a lithotripter. The peak positive pressures are  
typically 20 to 140MPa with peak negative pressures around -8 to -15MPa. Source: 
(Bailey et al. 2003) 
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focus a shock wave on the kidney stone. The shock wave is initially generated by an 

underwater spark. In electromagnetic lithotripters, a high current is conducted through a 

coil which shakes a parallel membrane. The resulting wave is then focused by lenses or 

reflectors. The third type is piezoceramic lithotripters which consist of array elements 

located on a spherically concaved surface. Using array technology, the focal point can be 

steered and image of the stone can be acquired at the same time. The laser lithotripter 

which is not clinically available yet, uses optoacoustic properties of a thin spherical layer 

of a liquid to generate shock waves (Rudenko and Sapozhnikov 1991). Control of cavitation 

during lithotripsy is an active research area (Cathignol et al. 1998, Sokolov et al. 2001) .  

 

 
 

 

  Figure 1-4. Various lithotripter designs: (a) Electrohydraulic (b) Electromagnetic (c) Piezoceramic 
(d) Laser. Source: Bailey et al. 2003. 
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1.2.3 Histotripsy 

Histotripsy is a tissue ablative technique which utilizes focused high intensity pulsed 

ultrasound. Other tissue ablative techniques such as HIFU, radiofrequency or laser use 

thermal effects to coagulate tissue. In histotripsy, however, no coagulative necrosis is 

present as the temperature rise is kept at a minimum by selecting a low duty cycle 

(percent of time when ultrasound energy is delivered). In histotripsy the tissue damage is 

mostly due to mechanical fragmentation. The primary mechanism for this mechanical 

disruption is believed to be acoustic cavitation which has been supported by a number of 

experiments during the histotripsy process (Xu et al. 2007, Xu et al. 2005, Parsons et al. 

2007). Cavitation is a phenomenon in which rapid transition from compression to 

rarefaction phase in pressure results in the formation of microbubbles in tissue. These 

bubbles oscillate and violently collapse, releasing energy. This process creates localized 

stresses and pressures that can mechanically fragment and subdivide tissue, resulting in 

cellular destruction during histotripsy (Roberts et al. 2006). 

Unlike lithotripsy, which utilizes single-cycle pulses, pulses of several acoustic cycles in 

duration are used in histotripsy (see Fig.1-5). These pulses are repeated at a certain pulse 

  

 
Figure 1-5. Acoustic pressure waveform of a 10-cycle (14-μs) histotripsy pulse in water at the 

transducer focus (Pr = 21 MPa, Pc = 76 MPa). Source: Xu et al. 2007. 
 

repetition frequency (PRF) in order to sustain bubble activity. The duty cycle is kept at 

0.1 – 5 % compared to 100% in HIFU. Even though the spatial peak pulse average 
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intensity (ISPPA) used in histotripsy is very high (>10 kW/cm2), spatial peak time average 

intensity (ISPTA) is relatively low (<200 W/cm2) due to the low duty cycles applied. This 

low duty cycle also allows observation of the ablation process with diagnostic ultrasound 

between the therapeutic pulses since only a small portion of imaging scan lines are 

corrupted by interference (Roberts et al. 2006). 

 

The margins of histotripsy lesions in bulk tissue are also sharply demarcated, with only 

several microns between the liquefied area and the intact cells (see Fig. 1-6). The 

mechanism for the sharp boundaries might have to do with the nature of cavitation as a 

threshold phenomenon. The region of tissue erosion extends up to a point where the pulse 

pressure falls below the cavitation threshold at a tissue-fluid interface (Xu et al. 2007).   

 

C

Figure 1-6. Tissue ablation in porcine myocardium. A) After histotripsy. B) Void after ablated tissue 
has been irrigated from tissue. C) Histology at lesion border. Source: Parsons et al. 2006. 
 

In overall histotripsy offers two main advantages: first the ability to maintain the 

treatment volume compared to thermal ablative methods where the creation of precise 

lesions is limited by the diffuse nature of thermal propagation, inhomogeneous heating-

cooling due to tissue variability, perfusion effects and tissue charring (Xu et al. 2007, 

Roberts et al. 2006). Second the lesion can be easily monitored by ultrasound as treatment 

area appears hyperechoic due to bubble activity, as opposed to thermal methods which 

needs more advanced monitoring requirements such as MRI (Hall et al. 2007).  

Histotripsy is a fairly new technique, and hence has not been approved for clinical use by 

the FDA. So far no human trials have been performed. One of the concerns with 

histotripsy in oncology is the spread of the tumor within the body. Violent disruption of 
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surrounding tissue may cause nearby cancer cells to metastasize (Kieran et al. 2007). 

Studies involving metastatic VX2 tumours in rabbits are planned to investigate this 

phenomenon (Roberts et al. 2006).  

 

 

1.3 Nonlinear Acoustics  
 
1.3.1 History of Nonlinear Acoustics 
 

Nonlinear acoustics has grown rapidly over the past 30 years. The finite 

amplitude wave equations, however, were known much earlier at about the same time as 

linear equations. The reasons for the slow pace of advances include more complicated 

mathematics and also the fact that in most cases small signal relations provide a very 

good description of many acoustical phenomena (Hamilton and Blackstock 1998). 

The first step in deriving a finite amplitude equation was taken by Euler (Euler 1759) for 

aerial plane waves. He also noted that nonlinear terms may give rise to higher speeds of 

propagations. In deriving a solution for a similar problem Lagrange (Lagrange 1760) also 

came to suggest a variable speed of propagation. However shortly after he dismissed the 

idea, as this was in contrast to a widely accepted notion of a constant speed of 

propagation. Later on an important milestone was achieved by Poisson (Poisson 1808) in 

finding an exact solution for propagation of a finite amplitude plane progressive wave. 

He assumed Boyles’s law and used Eulerian coordinates which yields the following 

equation: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

=
∂
∂

−
∂
∂

x
vv

t
v

xt
v

x
vb 2

2

2

2

2

2
2       (1.3-1) 

 

where v is the particle velocity, ooPb ρ/= is the isothermal speed of sound resulting 

from Boyle’s law and ooP ρ,

])tbv +

 are the ambient pressure and density. Poisson’s exact 

solution is  for waves travelling in the direction of increasing ([xgv −= x  and  
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])([ tbvxGv −−=  for waves travelling in the opposite direction, where g and G  are 

arbitrary functions. 

In spite of this, Poisson didn’t recognize the implications of his results which predict a 

variable propagation speed of bvdtdx
v

±=/ . He failed to notice this because of 

observations that the length of a pulse did not appear to change as it propagated and 

concluded ”sound, loud or faint, is transferred with the same speed” (Hamilton and 

Blackstock 1998). 

 

The significance of nonlinear distortion was not recognized till 40 years later when 

Stokes clearly explained the waveform distortion implied by Poisson’s solution (Stokes 

1848). The first sketches of nonlinear distortion by Stokes has been shown in Fig 1-7.  

 

 
Figure 1-7. First sketches of nonlinear distortion by Stokes. Source: (Hamilton and Blackstock 1998). 
 

At the end of the classical era (1860s), the prevailing question on everyone’s mind 

was what happens after a shock front is formed. It then became clear that appearance of 

discontinuities is due to the assumption of a lossless propagation. Dissipation would not 

allow any discontinuity to form. It was then clear that dissipation should be accounted for 

in analysis of a shock front. That’s why energy equations with dissipation terms opened 

the door to shock wave theories. In earlier efforts, Stokes had tried to solve the problem 

by applying conservation of mass and momentum and energy at the shock front, but it 

didn’t yield any results as a lossless energy equation had been used. Rankin (Rankine 

1870) and Hugoniot (Hugoniot 1887) independently came up with appropriate energy 

relations which accounts for dissipation through heat conduction. Combining the 

equations of mass, momentum and energy and eliminating pressure and density from the 

expressions, the speed of shock ( ) for a shock entering a quiet fluid is calculated as: shU
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2/])2/([ 2/122
bbosh vvcU ββ ++=      (1.3-2a) 

where is the small-signal speed of sound, oc β  is the medium coefficient of nonlinearity 

and is the peak particle velocity. bv

A shock creates a rapid change in particle velocity from to . The assumption of a 

shock entering a quiet fluid assumes the particle velocity ahead of the shock is zero 

(i.e. ). 

av bv

0=av

Based on Eq. (1.3-2a), the shock front moves faster than the small signal speed of sound.  

For weak shocks where , Eq. (1.3-2a) can be simplified to: ob cv <<

2/bosh vcU β+=    (1.3-2b) 

If , Eq. (1.3-2b) takes the general form of: 0≠av

2
)( ba

osh
vvcU +

+= β   (1.3-2c) 

 

Rayleigh (Rayleigh 1910) later demonstrated that Rankin’s result would not yield valid 

results if the ratio of shock pressure before the shock to that after the shock exceeds 

certain limit. In other words heat conduction alone does not create enough dissipation to 

sustain a shock front. He was the first one who considered and formulated the effect of 

viscosity as a source of dissipation. He could then obtain single-valued solutions even for 

strong shocks through numerical methods.  

 

Shortly after, Taylor (Taylor 1910) managed to find an analytical solution for weak shock 

conditions in a viscous heat conducting gas. Based on this, the shock thickness or the 

distance required for the particle velocity to rise from 10% to 90% is given by (Hamilton 

and Blackstock 1998): 

bv
h

β
ξ 9ln2

=     (1.3-3) 

or subsequently  ; since under weak shock conditions orise cht /= osh cU ≈ .  

Here,β  and  are the same as defined in Eq. (1.3-2) andbv ξ  is the sound diffusivity 

which represents the thermo-viscous dissipation of the fluid. 

 12



Chapter 1: Introduction and Background 
________________________________________________________________________ 

As pointed out by Lighthill (Lighthill 1956) Eq. (1.3-3) displays how nonlinearity and 

dissipation create opposite effects. While increasing nonlinearity through parameter buβ  

steepens the shock, increasing dissipation throughξ  smooths it out. 

Aside from the case of a step shock, the problem of finite amplitude plane wave 

propagation generated by a sinusoidal source had been also investigated by Airy (Airy 

1849) and Hugoniot (Hugoniot 1887). Hugoniot also managed to calculate the shock 

formation distance as: 

k
x

Mβε
1

=       (1.3-4) 

where β  is the coefficient of nonlinearity, ooM cv /=ε is the ratio of peak particle velocity 

to the small-signal speed of sound and k  is the wave number.  

The shock parameter σ  is consequently defined as  

kxxx Mβεσ == /      (1.3-5) 

which is a measure of nonlinear distortion at different field locations (Duck 2002). 

 

The next major step was taken by Fay (Fay 1931) for the same problem of finite amplitude 

plane wave propagation generated by a sinusoidally vibrating source in a dissipative 

medium. He solved the problem by using the Fourier series expansion of the waveform as 

given in Eq. (1.3-6) below: 

∑
∞

=

=
1

)sin()(),(
n

no nxBvxv ωττ  (1.3-6) 

where is the particle velocity amplitude of the fundamental at the source, ov ω  is the 

source angular frequency and ocxt /−=τ . He managed to determine the values of  in 

Eq. (1.3-6) as: 

nB

]/)1(sinh[
2

Γ+Γ
=

σn
Bn   (1.3-7) 

where αβε /kM=Γ  is the Gol’dberg number,  is the medium absorption 

coefficient, 

32 2/ ocξωα =

σ  is the shock parameter as defined in Eq. (1.3-5) and other parameters are 

the same as defined in Eq. (1.3-4). 
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There are a few interesting points which are worth mentioning at this point. First, the 

Gol’dberg number as defined above, is equal to la/lb or ratio of absorption length to 

discontinuity length ( x  as defined in Eq. (1.3-4)). It’s also a good indicator of the 

waveform distortion in a lossy medium. 1>>Γ  means nonlinear processes will be 

dominant and when  is around 1.0, it means nonlinearity and dissipation are at 

comparable levels (Duck 2002). Second, for points where 

Γ

)1( σ+>>Γ n  (e.g. strong 

waves at not very far distances), the hyperbolic sine function can be substituted with its 

argument. Hence Eq. (1.3-7) is simplified to: 

)1(
2
σ+

=
n

Bn     (1.3-8) 

which are harmonic amplitudes of a sawtooth waveform.  

Finally at far distances ( 1>>σ ), the amplitude of any harmonic can be written as: 

]/)1(exp[
2

]/)1(sinh[
2

Γ+
=

Γ+
==

σβ
α

σβ
α

nk
c

nk
cBvv oo

non   (1.3-9) 

Substituting )/( xασ=Γ  in Eq. (1.3-9), yields: 

]/)1(exp[
2

σσαβ
α

+
=

xnk
cv o

n   (1.3-10) 

Assuming 1>>σ , Eq. (1.3-10) can be simplified to: 

xno
n e

k
c

v α

β
α −=

2
   (1.3-11) 

Since source amplitude doesn’t appear in Eq. (1.3-11), the amplitude of the waveform at 

distance places is independent of the source. This phenomenon is referred as saturation. 

 

Fubini (Fubini 1935) also tackled the same problem but in inviscid liquids. He determined 

the harmonic coefficients as: 

)(2 σ
σ

nJ
n

B nn =    (1.3-12) 

where  is the ordinary Bessel function. nJ

 

A plot of harmonic generation as a function of distance from a monochromatic source is 

shown in Fig. 1-8 below: 
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Figure 1-8 Amplitude of the fundamental and four harmonics of a plane wave 

     propagating in a lossless medium. Source: (Zemp 2000). 
  
It’s worth noting that Eq. (1.3-7) proposed by Fay will not reduce to Eq. (1.3-12) for the 

case of no viscosity. The reason is that Fubini solution is accurate in 1≤σ  region (close 

to the source), while Fay solution is valid for 3≥σ . A solution for the transitional region 

has been provided by Blackstock (Blackstock 1966). 

Generally analytical solutions to nonlinear problems (such as those by Fay and Fubini) 

are limited to specific source geometries and excitations (Duck 2002). That is why 

numerical methods to solve the equation have found more ground over the last several 

years. 

 

The classical era of nonlinear acoustic is then followed by works of Burgers (Burgers 

1948), Westervelt (Westervelt 1963) , Khokhlov (Khokhlov and Soluyan 1964), Zabolotskaya 

(Zabolotskaya and Khokhlov 1969) and Kuzentsov (Kuznetsov 1971) in deriving more 

general equations of nonlinear acoustic which will be described in section 1.3.3. 

 

 

1.3.2  Coefficient of Nonlinearity 
In this section we define coefficient of nonlinearity or β  which is a medium 

property. β  is the single most important parameter which can describe and account for 
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nonlinear behavior of the sound propagation. Assuming 0=β in nonlinear equations of 

acoustics will yield familiar linear counterparts. 

 

The B/A Parameter: 

In thermodynamics, pressure in a fluid can be described as a function of density and 

entropy which is referred to as equation of state. In a perfect gas, this relationship 

assumes the simple form of 
oop

p
ρ
ρ

=  in isothermal conditions (which is also known as 

Boyle’s law) and γ

ρ
ρ )(

oop
p
= in adiabatic conditions. Although Boyle’s law describes a 

linear relation between pressure and density, in general this relation is nonlinear. 

Assuming ),( sPP ρ=  where ρ  is the density and  is entropy, the Taylor series 

expansion of 

s

P yields: 

...)(
!2

1)( 2

0
2

2

0

+−
∂
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+−
∂
∂

=− ooo
ppPP ρρ

ρ
ρρ

ρ
   (1.3-13) 

where  and oP oρ  are the values for equilibrium pressure and density. All partial 

derivatives in Eq. (1.3-13) are also calculated around the equilibrium values of density 

( oρ ) and entropy ( ). os

Eq. (1.3-13) can be simplified as below: 

 ...
!3!2

32

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ′
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ′
+

′
=

ooo

CBAp
ρ
ρ

ρ
ρ

ρ
ρ     (1.3-14) 

where  is the acoustic pressure, oPPp −= oρρρ −=′  is the excess density and 

0
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According to Eqs. (1.3-15), the parameter B/A is defined as: 

B/A
0

2

2

2 ρ
ρ

∂
∂

=
p

co

o  

where  is the small signal speed of sound. oc
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Importance of the B/A parameter: 

 

B/A parameters has a physical importance as it determines the speed of sound during 

finite amplitude propagation. The general formula for speed of propagation is (Hamilton 

and Blackstock 1998): 

ρρ ′∂
∂

=
∂
∂

=
pPc

s

2         (1.3-16) 

Taking the derivative of both sides of Eq. (1.3-14) in respect to ρ′  yields: 
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Noting 
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Replacing  on the right hand side of Eq. (1.3-18) yields: Ac oo =ρ2
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Taking the square root of both sides of Eq. (1.3-19) and using binomial expansion on the 

right hand side, yields: 
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Based on Eq. (1.3-20), the parameter B/A is a factor in determining the first order 

correction to the small signal speed of sound. 

For the case of a plane wave in linear regime, we know (Hamilton and Blackstock 1998): 

oo c
v

=
′

ρ
ρ       (1.3-21) 
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Where  is the particle velocity. v

In case of a finite amplitude plane wave, Eq. (1.3-21) can be used to determine the value 

of 
oρ
ρ′ approximately. Hence Eq. (1.3-20) can be simplified as: 

v
A

Bcc o ⋅⎟
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⎞

⎜
⎝
⎛+≈

2
               (1.3-22a) 

It’s worth noting that Eq. (1.3-22a) is the Lagrangian speed of sound or in the coordinate 

system which moves with an acoustic particle. 

Finite amplitude equations of acoustic propagation can be stated either in Eulerian or 

Lagrangian coordinate systems. The Eulerian coordinates are measured against a global 

or laboratory system of reference as opposed to Lagrangian coordinates where the system 

of reference is attached to an acoustic particle and moves with it. They can be related via 

the following equations (Lee and Wang 1993): 
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where q could be any acoustic field quantity, L and E subscripts represent Lagrangian and 

Eulerian coordinate systems respectively and ),( taξ  is the displacement of the acoustic 

particle from its equilibrium position at time t. 

 

Coefficient of Nonlinearity: 

 

In Eulerian coordinate system, the speed of propagation can be found by adding the 

particle velocity to Eq. (1.3-22a). In other words: 
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The coefficient of nonlinearity or β  is defined as: 

A
B

2
1+=β        (1.3-24) 

Thus Eq. (1.3-23) can be written as: 
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vcc oE ⋅+= β        (1.3-25) 

 

q. (1.3-25) accounts for the effects of convection during the propagation as well. In E

other words, β  accounts for nonlinearity induced as a result of medium as well as the

convection. 

 

 

.3.3   Model Equations 
 most common equations used in modeling of finite 

ossless Theory: 

he value of entropy will be constant everywhere and pressure is a 

1
In this section we’ll discuss the

amplitude acoustic wave propagation. 

 

L

Assuming no loss t

function of density only, i.e. )(ρPP = (Hamilton and Blackstock 1998). In the case of p

progressive wave propagating irection in homogenous media, the reduced wave 

equation is: 
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where 
ρ∂
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Pc  ,  is the particle velocity and  could be acoustic pressure 

excess density 

v q )( 0PP − , 

)( 0ρρ −  or particle velocity.  
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 and the expression vc +  on the left hand side 

of Eq. (1.3-26) can be expressed as: 
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whereβ  is the coefficient of nonlinearity as defined in section 1.3.2.  

uSubstit ting Eq. (1.3-27) into Eq. (1.3-26) , yields: 
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  (1.3-28) 

 19



Chapter 1: Introduction and Background 
________________________________________________________________________ 

Eq. (1.3-28) has an implicit solution which is known as Poisson solution. Assuming 

 and for the initial value problem of vq = )()0,( xGxv = , the solution can be written as 

(Cobbold 2007): 

{ tcvxGv o )( +−= }β       (1.3-29) 

or for the boundary value problem of )(),0( tFtv = , it assumes the form of: 

{ )/( ocvxtFv +−= }β       (1.3-30) 

Equation (1.3-28) can be rearranged as: 
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Assuming 1/ <<ocvβ , right side of Eq. (1.3-31) can be estimated as (Cobbold 2007): 
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Eq. (1.3-32) can be simplified further by converting to a retarded time coordinate system 

where  and xx =′ ocxt /−=τ . Calculating the partial derivatives of Eq. (1.3-32) in 

terms of new variables yields: 
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Burgers’ Equation: 

 

Burgers’ equations are in essence an extension of Eq. (1.3-33) when the medium is 

dissipative. The equation assumes weak absorption due to viscosity and heat conduction. 

Khokhlov et al.(Khokhlov and Soluyan 1964) derived the following equation for plane  

progressive waves assuming the viscous loss as the primary mechanism of dissipation: 
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   (1.3-34) 

where μ  and Bμ  are the coefficients of shear and bulk viscosity. 

Eq. (1.3-34) is known as Burgers’ equation after the work done by Burger (Burgers 1948) 

in deriving a similar differential equation to describe the turbulent flow. In this paper he 
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also points to the applicability of a similar equation to the problem of shock waves in 

supersonic motion of gas (Hamilton and Blackstock 1998). 

Fig. 1-9 below, illustrate the harmonic generation predicted by the Burgers equation in 

two media with different attenuation coefficients. Here source is sinusoidal with 

fundamental frequency of 1MHz and initial particle velocity amplitude of 0.4m/s.  

 

 

Figure 1-9. Normalized amplitudes of the fundamental and harmonics vs. normalized distance to the 
source. Medium parameters include: β =3.5, =1000 Kg/m3, 0 =1500 m/s and (a) 0ρ c α =0.3 
dB/(cm.MHz), (b) α =1.0 dB/(cm.MHz). Source: (Cobbold 2007). 
 

KZK Equation: 

 

All equations we’ve discussed so far are limited to the simple case of a plane wave. In an 

effort to derive a three dimensional equation which accounts for the effects of diffraction, 

nonlinearity and absorption, Kuznetsov (Kuznetsov 1971) extended the work of 

Zabolotskaya and Khokhlov (Zabolotskaya and Khokhlov 1969)  and obtained the following 

equation in terms of the velocity potential: 
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Using the paraxial approximation for directional sources, Kuzentsov showed Eq. (1.3-35)  

is simplified to: 
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where 2

2

2

2
2

yx ∂
∂

+
∂
∂

=∇⊥  is a transverse Laplacian and oczt /−=τ  is the retarded time. 

Taking the partial derivative of both sides of Eq. (1.3-36) in respect to τ  and replacing 

τ
ϕρ
∂
∂

= op , an equation in terms of pressure can be obtained: 
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Eq. (1.3-37) is widely known as the KZK equation after the names of the Russian 

scientists who developed it. 

As mentioned earlier, the KZK equation is based on the paraxial assumption which is 

valid for fairly directional beams (Duck 2002). This is particularly true for flat sources 

with dimensions much bigger than lambda with exception of areas close to the source or 

far off the axis. The Paraxial assumption also fails for sources with dimensions close to 

one wavelength or highly focused ones. 

The KZK equation has been widely used to simulate variety of medical applications 

including therapeutic transducers (Curra et al. 2000, Filonenko and Khokhlova 2001). The 

results have been validated experimentally in number of cases including plane circular 

sources (Baker et al. 1988, Nachef et al. 1995, TenCate 1993), circular focused fields 

(Averkiou and Hamilton 1995, Baker 1992) and rectangular geometries (Baker et al. 1995). 

 

1.3.4 Method of Fractional Steps 
 

Christopher and Parker (Christopher and Parker 1991) used a method of fractional steps to 

solve the nonlinear acoustic field of axi-symmetric planar sources. In this method the 

effects of diffraction, attenuation and nonlinearity are applied independently over 

incremental steps in a marching scheme. This work is essentially an extension to the 

KZK equation, where the parabolic term of diffraction is replaced by a full diffraction 

solution. Fig. 1-10 illustrates the application of diffraction and nonlinearity operators 

over the propagation step of  as suggested by Christopher and Parker. Attenuation can 

be combined with either diffraction or nonlinear substeps. 

zΔ
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Figure 1-10. Propagation of normal particle velocity over incremental step of zΔ .  Fundamental and 
harmonics are propagated by applying diffraction and nonlinear operators in sequence. 
 
Tavakkoli et al. (Tavakkoli et al. 1998), used the method of fractional steps in time domain 

to propagate the acoustic field of axi-symmetric sources. They implemented a second-

order operator splitting algorithm which enables larger propagations steps. This work is 

well suited for simulations of high amplitude short pulses generated in a lithotripter 

system. They also compared the results with experiment and noticed a good agreement.  

Zemp et al. (Zemp et al. 2003) extended the work of Christopher and Parker to general non 

axi-symetric sources and also made use of the second-order operator splitting method 

proposed by Tavakkoli et al. This was a particularly useful tool in simulation of array 

transducers. Williams et al. (Williams et al. 2006) extended the work of Zemp et al. by 

including multilayer media which accounts for reflection and refraction between layers. 

This work also includes a great deal of comparison between experimental and simulations 

which serves as a verification point of the theoretical model. 
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1.4 Heat Transfer and Temperature 
In this section an overview of the literature in the area of heat transfer and temperature 

predictions in tissue is presented. 

 

1.4.1  Heat Transport 
The general problem of heat transfer is addressed by making use of the first law of 

thermodynamics along with three heat transport relations which will be discussed here.  

According to the first law of thermodynamics which is a conservation of energy 

reinstatement, the heat transfer rate towards or from a body of mass, can be written as: 

dt
dTmCQH =   (1.4-1) 

where  is positive when energy flow is towards the object or negative when away 

from the object, 

HQ

T is the temperature of the object,  is the specific heat capacity and  

is mass of the object (Lienhard and Lienhard V 2008). 

C m

 

The first heat transport relation which accounts for heat transfer due to conduction is 

described by Fourier’s law (Fourier 1822) as below: 

TKq ∇−=
r   (1.4-2) 

where qr  is the heat flux in units of (W/cm2) and K is a property of the medium which is 

called thermal conductivity. Fig. 1-11 displays the nominal range of thermal conductivity 

values for various substances. For tissue it typically assumes a value between 0.1-1 

W/(moC) which is in the neighborhood of water. 
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Figure 1-11. Thermal conductivity values for different materials at room temperature (Lienhard and 
Lienhard V 2008) 
 

The second heat transport equation is attributed to Newton (Newton 1701) and deals with 

convective heat transfer. In the steady state form, it can be written as: 

)( ∞−= TThq body   (1.4-3) 

where q is the heat flux leaving the surface of a body with temperature of  due to 

fluid convection at the surface.  is the temperature of the fluid passing by and  is 

called local heat transfer coefficient. In general  depends on the temperature difference 

(i.e. ), however it has been shown that  will be independent of 

bodyT

∞T h

h

∞−=Δ TTT body h TΔ  if the 

fluid is forced to pass by the body (forced convection) and TΔ  is not too large. In free or 

natural convection, h dependence to TΔ  is proportional to a low power of TΔ  (e.g. 
4/1TΔ  or  3/1TΔ

2

), but if the body heat causes a liquid to boil, it will change by 

TΔ (Lienhard and Lienhard V 2008). 

The third heat transport relation is due to radiant energy absorbed or emitted by an abject. 

This is described by the Stefan-Boltzmann law which is expressed as: 
4)( TTeb σ=      (1.4-4) 

where is the energy flux leaving a black body, T is the object temperature (in Kelvin) 

and  

be

σ  is the Stefan-Boltzmann constant which is . 428 KW/m 10670400.5 −×
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Contributions due to Eq. (1.4-4) in problems of heat exchange within tissue are generally 

negligible because of low temperatures involved.  

In the absence of convective and radiant heat transfer, the Eqs.(1.4-1) and (1.4-2) can be 

combined to yield a partial differential equation in terms of the temperature which is 

known as heat diffusion equation: 

t
TCQTK
∂
∂

=+∇⋅∇ ρ   (1.4-5) 

here Q  is the heat deposition rate in W/cm3 and other parameters are the same as defined 

in Eqs.(1.4-1) and (1.4-2). 

A unique solution to Eq. (1.4-5) can be obtained if one initial condition is known as well 

as two boundary conditions for each dimension of the problem (Lienhard and Lienhard V 

2008). However, an initial condition will not be required in a steady-state problem or 

where  or the boundary conditions are periodic functions of time. q&

Boundary conditions often assume three forms: 

i. Dirichlet or boundary conditions of the first kind: 

In this form, T  is known on a boundary. 

ii. Neumann or boundary conditions of the second kind: 

In this form, the derivative of T  normal to a boundary is known. 

iii. Boundary conditions of the third kind: 

In this form, the derivative of T normal to a boundary is linearly related to the 

value of T at the boundary. 

 

1.4.2 Bio-Heat Transfer Equation (BHTE) 
   In tissue, convective heat transfer processes play an important role in the heat 

exchange problem as blood constantly circulate through the tissue. The heat diffusion 

equation as given in Eq. (1.4-5) does not take convective heat transfer into consideration. 

A more general equation which accounts for heat convection is in the form of Eq. (1.4-6) 

as given below (Lienhard and Lienhard V 2008): 

⎟
⎠
⎞

⎜
⎝
⎛ ∇⋅+
∂
∂

=+∇⋅∇ Tv
t
TCQTK rρ    (1.4-6) 
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)

where is the flow velocity field and other parameters are the same as defined in Eq. 

(1.4-5). 

vr

In 1948, Pennes (Pennes 1948) proposed a simplified model in which the convective term 

of Eq. (1.4-6) (i.e. ( TvC ∇⋅
rρ ) is replaced by )( bbb TTCw − . The resulting equation 

which is widely known as bioheat transfer equation or BHTE, can be expressed as: 

QTTCwTK
t
TC bbb +−−∇=
∂
∂ )(2ρ   (1.4-7) 

where  is the blood perfusion rate in  which is assumed to be uniform 

throughout the tissue,  is the blood specific heat capacity and  is the blood 

temperature which is assumed to be constant at 37 . 

bw )./( 3 smkg

Co

bC bT

In studying the problem of temperature distribution in the forearm, Pennes managed to 

find an analytical solution for Eq.(1.4-7) for a steady state cylindrical system in terms of 

the Bessel function of order zero assuming a homogenous tissue structure. 

Pennes’ model has been validated by Eberhart et al. (Eberhart et al. 1980) in several other 

biological tissues. Wissler (Wissler 1998) in an overview of Pennes article has also 

confirmed a good agreement exists between Pennes’ theoretical model and his 

experimental data. However, as Wissler points out, there are certain limitations in 

Pennes’ work. First, the biological model used by Pennes, i.e. the forearm, is not exactly 

a cylindrical homogenous tissue with uniform perfusion as it contains two bones. Second, 

the presence of large blood vessels effects the temperature distribution and third heat 

exchange of smaller blood vessels which supply the capillaries alters the temperature of 

blood. Therefore  in Eq. (1.4-7) can not be a constant. bT

Our objective is to combine equations of finite amplitude propagation of ultrasound (as 

discussed in section 1.3) with the bio-heat transfer equation to calculate the temperature 

field within the tissue. The temperature response is then used to study the process of 

lesion creation during HIFU exposure.  
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Chapter 2:  

Methodology 
 

In this chapter we’ll describe the methods used in implementation of the enhanced 

version of the code. The enhancements include arbitrary 3D source geometry and 

excitation definitions, full diffraction solution, enhanced acoustic pressure calculation, 

and enhanced power deposition rate and temperature prediction capabilities. 

 

2.1 Method of Fractional Steps 
The code is based on the method of fractional steps in which the field is 

calculated plane by plane in a marching scheme. The KZK equation, which accounts for 

combined effects of diffraction, attenuation and nonlinearity in propagation of the 

acoustic beam, is given in Eq. (2.1-1) below: 
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where p is the acoustic pressure,  is the small signal speed of sound, oc oρ  is the ambient 

density, μ  and Bμ  are the parameters of shear and bulk viscosity,β  is the coefficient of 

non-linearity and oczt /−=τ . 

The first term on the right hand side of Eq. (2.1-1) is the diffraction term in the parabolic 

approximation, the second term reflects the effect of attenuation and the third term is due 

to nonlinearity. Eq. (2.1-1) illustrates three significant properties which provide the basis 

for solving the equation. First, the term 
z
p
∂
∂ in the left side of the equation, enables plane 

by plane calculations of pressure in incremental steps along the z axis provided the values 

of pressure is known on an initial plane (e.g. at 0=z ). Second, the effects of diffraction, 
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attenuation and nonlinearity can be applied separately over propagation steps and then 

added to together. Third, the effects of attenuation and nonlinearity follow the same 

equations as a plane wave so the plane wave solutions can be used for the effects of 

attenuation and nonlinearity.  

 

2.1.1   Second-order Operator-splitting Method 
As mentioned in previous section, based on the KZK equation, the effects of 

diffraction, nonlinearity and attenuation can be propagated independently over small 

propagation steps and then the results are added together. This is referred to as operator-

splitting method. Tavakkoli et al. (Tavakkoli et al. 1998) demonstrated that following a 

certain propagation scheme would enable larger propagation steps while maintaining the 

same degree of accuracy. This is referred to as second-order operator splitting method 

and has been shown in Fig. 2-1 below: 

D 

N+A 

D 

N+A 
zΔ

zΔ
D 

 
Figure 2-1. Second order operator splitting method  
 
 
 
2.1.2    Diffraction Operator 
 

The main difference between our method and implementation of the KZK 

equation lies in the diffraction term. The diffraction term in KZK is based on the 

parabolic approximation. In our method the diffraction term in the KZK is replaced by a 

full diffraction solution. Since there are methods which enable fast plane to plane 

diffractive propagation, this approach will not lead to significant increase in 

computational time. Full diffraction is achieved using the angular spectrum method. 
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In the angular spectrum method the field is propagated plane by plane. Based on this 

method, knowing the field distribution on a given plane, one can calculate the field 

profile on any other plane parallel to the first one. If the planes are perpendicular to the z 

axis and  is the distance between the two planes, we have (Zemp et al. 2003): zΔ

( ) ( ){ } ( ){ }zkkHzyxszzyxs yxDD Δ×ℑℑ=Δ+ − ,,,,,, 2
1

2    (2.1-2) 

where )( 222

),,( yx kkkzj
yx ezkkH +−Δ=Δ  , oo cnfk /)(2π= ,  are spatial frequency 

components and n is the harmonic number. The term  in  Eq. (2.1-2) could be 

any field parameter such as pressure, normal particle velocity or velocity potential. 

yx kk  , 

,,( zyxs )

Fig. 2-2 below illustrate how this method is implemented numerically. 

 

 
Figure 2-2. Numerical implementation of angular spectrum method.  

     Source: (Cobbold 2007). 
 
To implement this method one should know the field distribution of the initial plane. If 

the source is flat, this is immediately known. If the source is not flat, this can be 

estimated using either the Rayleigh diffraction integral on the source surface or a phase 

shift method which will be described in sections 2.3.2 and 2.3.4 respectively.  

Since N  harmonics are captured at each plane, the diffractive propagation should be 

repeated N times to propagate each harmonic separately.  

 

 

 30



Chapter 2: Methodology 
_____________________________________________________________________                                     

2.1.3 Nonlinearity and Attenuation Operator 
After finishing with the diffractive sub-step, the results are converted to the 

spatial domain and a nonlinearity and attenuation sub-step is followed. Combined effects 

of nonlinearity and attenuation are applied in one step using the solution obtained by 

Harran and Cook (Haran and Cook 1983) for nonlinear propagation of progressive plane 

waves in lossy media. In this method a finite number of harmonics ( N ) is captured at 

each plane and normal particle velocity at zz Δ+  is obtained from the harmonic values of 

the preceding plane as below: 
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*       (2.1-3) 

Here,  is the propagation step,zΔ ∗  indicates the complex conjugate, n  is the harmonic 

number,  β  is the coefficient of nonlinearity,  is the frequency of the fundamental, 

is the small signal speed of sound, 

of

oc oα  is the attenuation coefficient and η  is the 

medium power law coefficient. Eq. (2.1-3) has to be repeated N  times to calculate all 

harmonics for each propagation step. 

 

2.2   3D Source Definition 
One of the enhancements implemented is the user ability to define any source 

geometry and excitation. The first part of the problem is to introduce a way to fully 

describe any source and the second part is to introduce a method to capture the field of an 

arbitrarily shaped transducer. The first part is handled though introduction of an elements 

matrix and the second part is solved by using the Rayleigh diffraction integral on the 

surface of the source. 

The second order operator splitting method was expanded by Zemp et al. (Zemp et al. 

2003) to be able to propagate any field profiles by making use of angular spectrum 

method. We want to build upon this capability and extend the code to be able to handle 

any source configuration.  
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2.2.1   Elements Matrix 
             To be able to define any source geometry and excitation, the source is broken 

into several small rectangular elements as shown in Fig. 2-3 as below.  

 

                          
Figure 2-3. Aggregation of the source surface into small rectangular elements  

 

Elements specifications (location and excitation) are then saved into a 16xN matrix which 

we call the Elements Matrix. N is the total number of small rectangular surface elements. 

The elements matrix contains 16 rows where each element specifications is saved as 

follow: 

1) x component of the vector pointing to the center of the element ( ) , in cx

global coordinates 

2) y component of the same vector ( ) cy

3) z component of the same vector ( ) cz

4) x component of the unit vector in the element's X direction ( ), in global coordinates x̂

5) y component of the same vector 

6) z component of the same vector 

7) x component of the unit vector in the element's Y direction ( ), in global coordinates ŷ

8) y component of the same vector 

9) z component of the same vector 

10) x component of the unit vector in the element's Z (transmitting) direction ( ), in 

world coordinates 

ẑ

11) y component of the same vector 

12) z component of the same vector 
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13) size of the element in the X direction ( ) l

14) size of the element in the Y direction ( ) w

15) driving amplitude ( ) ov

16) driving phase, in radians 

 

Fig. 2-4 illustrates a single element and the associated specifications as defined above: 

x̂

ŷ
ẑ

),,( ccc zyx

                      

w

l

                       Figure 2-4. Attributes of a surface element 
 
 
Examples of  source geometries created using this method have been illustrated in Fig. 2-

5 below. 

 

Figure 2-5. Examples of source geometries created using the element matrix. Left: spherical 
                    concave with a hole inside (blue area). Right: truncated spherical concave 
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2.2.2   Sub-elements 
                 Breaking the source elements further will enable us to obtain more accuracy 

when the field point is close to the surface of the transducer.  If this happens the program 

is capable of breaking the surface of each rectangular element into smaller pieces and 

maintaining the accuracy. These smaller elements within a surface element are called 

sub-elements. This is accomplished by dividing the width and length of an element into 

equally spaced pieces as shown in the Fig 2-6.  The number of divisions is called “nse” in 

the program. Figure 2-6 below illustrates how a surface element is divided into 9 smaller 

elements for the case of nse = 3, as an example. nse =1 means the element remains intact 

and nse =2 will result in 4 smaller elements. This figure also demonstrates how the 

distances ( r′ ) of a typical field point (P) from the center of sub-elements could be 

significantly different than the distance ( r ) between P and center of the element (O) 

specially when P is close to the element surface. r  and r′ are the most important 

parameters in calculating the field using Rayleigh diffraction integral which will be used 

to achieve a full diffraction solution. 

 

x̂

ŷẑ P

                      
         Figure 2-6. Division of a surface element into sub-elements 

    

          

   To demonstrate the significance of introducing sub-elements, a flat cylindrical 

transducer with even excitation was simulated (see Fig 2-7). The surface of the transducer 

A B C

′r

O
rw

l
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was broken down to small rectangular elements with  dimensions. The 

pressure field was then calculated along a radial arc (dotted line in Fig. 2-7) using 

Rayleigh diffraction integral for two cases (nse = 1 , nse = 2). The radial path has been 

selected such that at 

2mm7.07.0 ×

0=θ , the path passes tangentially to the surface of the transducer. 

In the vicinity of 0=θ , the distances of a field point to different points on the surface of 

a close-by element is quite varying and different from the distance of this point to the 

center of the element ( r  vs. r′ in Fig. 2-6). This will result in inaccuracies and the only 

way to reduce it, is by dividing each element even further into sub-elements as described 

previously. 

y 
x

θ

r =12.5mm Roc=25mm

z

 
Figure 2-7. Radius of cylindrical piston r = 12.5mm, excitation frequency fs = 1MHz 

                    Radius of curvature (Roc) = 25mm 

 
 

Fig. 2-8 illustrates how creating sub-elements would eliminate the computational errors 

in evaluating the Rayleigh integral specially in close vicinity of the source. 
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Figure 2-8. Significance of sub-elements in eliminating computational errors          

 
 

 

2.2.3 Coordinate System Attached to an Element 
                As illustrated in Fig 2-6, we can define a coordinate system which is attached 

to a given surface element (defined by ( ). As it will be demonstrated later, to be 

able to calculate the distance of a field point (P) to the center of each sub-element (

zyx ˆ,ˆ,ˆ

r′ ) , 

coordinates of P should be determined in this coordinate system. Coordinates of P is 

initially known only in the global coordinate system attached to the transducer. In this 

section we describe how global coordinates can be converted to those of a system 

attached to a surface element.  

Knowing the width ( ) and the length ( ) of each element, it’s straight forward 

to determine the coordinates of the center of each sub-elements (e.g. A, B and C in Fig 2-

6) in the coordinate system attached to the element.  As an example the coordinates of 

point A in Fig 2-6 will be 

w l

)0  ,  
2
/w

2
  ,  

2
/( nsewnsel

−+
2
l− . If coordinates of P can be 

also determined in the system attached to the element, the distance of P to the center of 

each sub-element ( r′ ) can be readily calculated.  

 If the coordinates of point P in global coordinate system (identified by xyz axes in 

Fig. 2-9 below) is , the coordinates of P in a coordinate system with its origin ),,( ppp zyx
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at the centre of the element and axes parallel to the xyz axes will be 

. The problem now is to find the coordinate of P in a new 

coordinate system with the same centre but rotated axes indicated by . The unit 

vectors (i.e. ) along axes are the unit vectors attached to the surface element. 

Unit vectors  are known in global coordinate system as part of the Element matrix 

representing the transducer surface. Expanding  in terms of global unit vectors 

(

]    []    [ cccppp zyxzyx −

zyx ˆ,ˆ,ˆ

zyx ˆ,ˆ,ˆ

kji

zyx ′′′′′′

zyx ′′′′′′

zyx ˆ,ˆ,ˆ
rrr

,,

⎪
⎪
⎩

⎪⎪
⎨

⎧

++=

++=

++=

kwjwiwz

kvjvivy

kujuiux

zyx

zyx

zyx

rrr

rrr

rrr

ˆ

ˆ

ˆ

wvu ,,

), yields: 

  

where coefficients are all known and stored as part of the Elements matrix defined 

earlier in section 2.2.1. Converting these equations into matrix form, yield: 

                
Figure 2-9. Systems of coordinate 
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Assuming  , and making use of associative property of matrix 

multiplication, one can write: 
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Multiplying both sides by  ]    [ cpcpcp zzyyxx −−− , yields: 
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 The expression  is a 1]    [ −×−−− Azzyyxx cpcpcp 31×  matrix which gives the 

components of vector cp rr rr
−  in terms of unit vectors  . Noting  ẑ,yx ˆ,ˆ pcp rrr ′=−

rrr  (see 

Fig. 2-9), one can determine that  is the coordinates of point 1−× A]zc    [ −−− zyyxx pcpcp
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P in a coordinate system identified by  unit vectors or the coordinate system 

attached to the element. 

zyx ˆ,ˆ,ˆ

           

2.3 Full Diffraction Solution 
   

2.3.1  Initial Plane 
                The propagation of ultrasound begins at the surface of the source where field 

variables are known (boundary conditions). Since the angular spectrum method can only 

be applied on a plane, we need to calculate the field on a plane in front of the source 

which we call the initial plane. We choose this plane to be perpendicular to the z axis. 

The first calculation step is to propagate the field from the surface of the transducer to the 

initial plane. The location of the initial plane (z0) is of importance and will be discussed 

in section 2.3.3. 

 

      

  2.3.2   Rayleigh Diffraction Integral 
              Since our method accounts for full diffraction, it’s desirable that the first 

propagation step would also include full diffraction. In light of this, ultrasound field on 

the initial plane is calculated using the Rayleigh diffraction integral. 

 

                                                                                                              (2.3-1) ∫= o
o SP

                                                                                                                  

+− rjk
o d

r
ev

cj )(α

λ
ρ

S

where r  is the distance between an infinitesimal surface element and the field point 

where we want to calculate the pressure (see Fig. 2-10).  is the normal velocity at the 

element surface and 

ov

ρ , , c α  , λ  are medium density, speed of sound, attenuation 

coefficient and the wavelength respectively and λπ /2=k is the wave number.  
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ŷẑ

r

),,(  ppp zyxP

),,( ccc zyx

 
 

 
Figure 2-10. Pressure at a field point is calculated by summation over all surface elements  

 

Using Eq. (2.3-1), one can calculate the pressure at any point of a homogenous medium. 

r  is the only unknown in Eq. (2.3-1) above which has to be calculated for each surface 

element as defined in the Elements matrix (see section 2.2.1). To calculate r , the 

coordinates of the field point , where the pressure is to be calculated, are 

converted to those of the coordinate system attached to the element. This is achieved by a 

matrix conversion as derived in section 2.2.3: 

),,( ppp zyx

1]    []    [ −×−−−=′′′′′′ Azzyyxxzyx cpcpcpppp                       (2.3-2) 

where A  is the element orientation matrix and is constructed using rows 4 to 12 of the 

Elements matrix as below: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

ne)2,Elements(1   ne)1,Elements(1   ne)0,Elements(1
ne),Elements(9     ne),Elements(8     ne),Elements(7
ne),Elements(6     ne),Elements(5     ne),Elements(4

A  

Here ne is the element column number in the Elements matrix.  

Note that  or the coordinates of the center of the surface element in Eq. (2.3-2) 

is readily accessible in rows 1 to 3 of the Elements matrix. 

),,( ccc zyx

 Knowing coordinates of the field point ( P ) in the coordinate system attached to 

the surface element, one can calculate the distance between P  and centre of the surface 

element ( r ) or sub-elements. The pressure at any given field point can now be calculated 
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using Eq. (2.3-1) which will be a summation over all surface elements (or sub-elements). 

In other words: 

lw
r

ev
c

jP
N

n n

rjk

no
oo

n

⋅×= ∑
=

+−

1

)(α

λ
ρ

    (2.3-3) 

where N is the total number of surface elements,  is the distance between the field point 

and the nth surface element, ,  are the width and the length of each surface element 

and all other parameters are the same as defined in Eq. (2.3-1).  is also known through 

the Elements matrix and can be expressed as: 

nr

w l

nov

( ne]6,Elements[1expne]5,Elements[1 ⋅×= jvno )   (2.3-4) 

 

The results of our simulations using this methodology will be presented in Chapter 3 

section 3.1. 

 

 

2.3.3  Location of the Initial Plane 
          

    One advantage of using the Rayleigh diffraction integral during the first step of 

propagation is that field could be propagated to any initial plane at any distance from the 

source, providing the effect of nonlinearity remain negligible (small signal excitation). 

This could potentially enhance the calculation time of the code as there’s no need for any 

intermediate propagation planes between the source and the initial plane. This is 

particularly useful for focused sources where nonlinearity usually remains insignificant 

close to the transducer surface and then gradually increases towards the focal point. For 

the case of a concave spherical source (as depicted in the Fig 2-11 below) the axial 
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Initial plane

z0 
z 

R D/2 

zmin
O 

Source 

Figure 2-11. Location of the initial plane in a concave spherical source 
 
 

location of the initial plane (z0) is limited by the source edges from one side and the  

extent of nonlinearity from the other side. In other words: 

( )
aperture) ofDiameter   , curvature of Radius (

22
min

max0min

2/  where
==

−−==

<<

DR

DRRzz

zzz

d  

zmax is determined using the shock parameter. The shock parameter is a dimensionless 

quantity which can be used to describe the extent of nonlinear distortion in any point of 

the field (Hamilton and Blackstock 1998). It combines the effects of the source amplitude, 

geometry, frequency, propagation distance and medium properties into one single number 

which can then be used to determine the degree of nonlinearity or waveform distortion at 

any given point of the field. For a plane sinusoidal wave it’s defined as below: 

 

 sourcefrom  distance 
number wave  theis /2

sourceat velocity  particlepeak  is 
numberMach  acoustic is  /

tynonlineari oft coefficien  theis  where
5)-(2.3                                              

=
=
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⋅⋅⋅=

z
k
u

cu

zk

o

ooM

MS

λπ

ε
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for spherically converging waves, Eq. (2.3-5) is replaced by: 

     

[ ]

 5)-(2.3  Eq.in  as definition same  thehave parametersother and 
curvature of radius  source  theis  where

6)-(2.3                    )/1/(1ln
R

RzRkMS −⋅⋅⋅= εβσ
       

 

Based on the definition of the shock parameter, 0=Sσ  indicates there’s no wave 

distortion due to nonlinearity and 1=Sσ  means nonlinearly-induced shock wave-front 

has just formed.  

 

Fig. 2-12 below illustrates time-domain sketches of a plane sinusoidal wave at various 

distances from a plane source as it propagates into the medium (Cobbold 2007). The wave 

distortion seen here is due to the nonlinearity and happens only when the source 

amplitude is large enough. 

 
Figure 2-12. Time domain waveform distortion of a plane sinusoidal wave as a result of medium 
nonlinearity 
 

0=Sσ .1 is a point where the effect of nonlinearity starts becoming significant and the 

wave-form starts to deviate from a linear propagation. Replacing 1.0=Sσ  into Eq. (2.3-

6) yields: 

 )1.0exp(1max ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

kR
Rz

Mβε
                     (2.3-7) 
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zmax determines the upper limit for the axial position of the initial plane. If the initial 

plane is set at an axial point greater than zmax then the field calculated on this plane is not 

accurate enough due to nonlinearity. Locating the initial plane on any axial point farther 

than zmax from source would adversely effect the accuracy of the results. As it can be seen 

in the Fig. 2-13, if the axial position of the initial plane is set at less than zmax, other points 

(e.g. A and B) on this plane will also be located at radial distances which are less than 

zmax from the source. Hence the effect of nonlinearity would be negligible on all points 

located on this plane.  

 

z

Initial plane 

0 

R 

zmax 

B 

A 

Source 

 
Figure 2-13. zmax is determined by the induced degree of nonlinearity 
 

If the intensity of the focal spot is to be set at a certain level (e.g. 5000 W/cm2 that is a 

typical focal intensity in HIFU regime), it can be shown that the shock parameter of a 

concave spherical source (given by Eq. 2.3-6) is not affected by the frequency of the 

source. The reason is that the wave number ( ) increases proportionally with frequency, 

while the acoustics Mach number (

k

Mε ) is inversely proportional to frequency if the 

intensity at focal spot is to be maintained around a certain value. This can be shown by 

making use of the amplitude gain of a spherical concave source. We can calculate the 

pressure at geometrical focal spot by applying Eq. (2.3-1) to a uniformly excited 

spherical cap.  

 

 

 44



Chapter 2: Methodology 
_____________________________________________________________________                                     

 

R 

F

h

S 
D/2

 

 Figure 2-14. Important 
dimensions of a concave 
spherical source  ∫

+−

=
S

rjk

o
oo dS

r
evcjP

)(α

λ
ρ

 

 

 

Since Rr =  at the focal spot and we assumed a uniform excitation, both  remain 

constant and can be taken out of the integral: 

ovr and  

∫+−=
S

Rjkooo
F dSe

R
vcj

P )(α

λ
ρ

                 (2.3-8) 

 As seen above, the integral is simplified to sum of the surface elements which will be 

RhS π2=  for the surface area of a spherical cap. Eq. (2.3-8) can then be simplified as: 
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By looking at Eq. (2.3-9) one can identify the term 
R
eS R

λ

α−×  on the right side as the 

pressure gain of the transducer which we call G  throughout this thesis. 

Focal intensity  can be obtained from  as below: )( FI FP

10)-(2.3                             
2
1

  ,   
2

1
2

1

2222

222

GvcI

vcpGp
c

P
c

I

oooF

ooooo
oo

F
oo

F

ρ

ρ
ρρ

=⇒

===
 

Using Eq. (2.3-10),  (normal particle velocity at source) can then be expressed in terms 

of the focal intensity : 

ov

(I )F

                              
2

Gc
I

v
oo

F
o ρ
=               (2.3-11) 

Using Eq. (2.3-11), acoustic Mach number of a concave spherical source can be 

expressed as below: 
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Using Mε from Eq. (2.3-12) and replace it into Eq. (2.3-6) for shock parameter, yields: 
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As it can be seen from Eq. (2.3-13), the shock parameter is a product of medium 

properties (i.e. βρ ,,c ), geometry and the focal intensity. Fig. 2-15 below shows the 

variations of the shock parameter in pre-focal region for a typical HIFU transducer in 

water for various focal intensities: 
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Figure 2-15. Variations of shock  parameter as a function of distance. R is the radius of curvature 
and D is the aperture diameter 
 

As mentioned previously, Eq. (2.3-9) produces an expression for the pressure gain 

of a concave spherical transducer at the focal spot in linear (small signal) regime. We can 
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show in a specific case of a transducer with 12/ <<RD  (slightly curved, see Fig. 2-16 ), 

the gain will be simplified to 
λ

π
R
DG

4

2

= . 

Using Eq. (2.3-9) and noticing that the surface area of a spherical cap is RhS π2= , one 

can write: 
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Figure 2-16. Definition of parameters 
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If the attenuation is low enough (e.g. propagation in water) then the term in Eq. (2.3-

14) will be close to unity and the well known 

Re α−

λ
π

R
DG

4

2

=  formula will be resulted. The 

importance of this derivation is to emphasize that for a highly focused transducer, Eq. 

(2.3-14) is not accurate enough and one should use Eq. (2.3-9) instead. As most HIFU 

transducers are highly focused, therefore we will be mostly using Eq. (2.3-7) to estimate 

G throughout this thesis. 

 

2.3.4   Full Diffraction vs. Phase Shift Method 
                In propagating the field from the surface of the transducer to an initial plane, 

two methods can be used. The first method is the full diffraction solution through 
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application of the Rayleigh diffraction integral which was discussed earlier in section 

2.3.2. Another method which is particularly used in a case of a spherically concaved 

transducer (Christopher and Parker 1991, Filonenko and Khokhlova 2001, Averkiou and 

Hamilton 1995) is the method of introducing a phase shift or a phase factor. In this method 

the nearest point on the initial plane to a surface element on the source is found and the 

distance of a line connecting the two ( , in Fig. 2-17) is used to introduce a phase to 

the normal particle velocity. The phase shift method only provides an approximate 

solution as we know the field at a point located on the initial plane is the result of 

contribution of all surface elements and not only the closest element   That’s why the full 

diffraction integral is a preferred method, although it’s computationally more intensive.  

1l 2l

 
   Figure 2-17. Phase shift method 

 

 

In the phase shift method, the premise is that if the initial plane lies close enough to the 

surface of the source, the particle velocity at any given point on the initial plane is 

dominated by the closest surface element and can be approximated as if a plane wave is 

emanating from this element alone. Based on this the particle velocity amplitude at the 

closest point (A on Fig. 2-18) on the initial plane is the same as the normal particle 

velocity at the surface. However it should be noted that the normal particle velocity 
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amplitude on the initial plane will be a dot product of kvn

rr .1 . In terms of the phase shift, 

the distance travelled by the plane wave is θcos1 ⋅= ld  (see Fig. 2-27). Replacing 

1

1.cos
n

n

v
kv

r

rr

=θ , yields: 

 

 

 
Figure 2-18. How to calculate phase shift 
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So the normal particle velocity phasor at the initial plane can be calculated as: 
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This method described above involves some error due to the fact that the particle velocity 

at each point is the result of interaction of all surface elements, not only the closest 

1l
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element. However contributions of the surrounding elements diminishes as the distance 

between the field point and the source surface approaches zero. This can be shown on the 

basis of the Rayleigh integral. 

If we assume the normal particle velocity is  in region delineated by the radius of  

and   in region between  and  and so on so forth (see Fig. 2-19), the velocity 

potential at point F on the z axis can be written as (Cobbold 2007): 

1nv 1R

2nv 1R 2R

∫∫
−

=
S

dkj

n dS
d

ev
π

φ
2
1        (2.3-16) 

where S in the total area of the source. 

 
Figure 2-19. Calculation of the Rayleigh diffraction integral close to the source surface. 
 

If z is the axial distance of point F (or the vertical distance of F to source),  we can 

substitute 22 zrd += and drrdS ⋅= π2  into Eq. (2.3-16) to obtain: 

 

r
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Changing the integrand variable to 22 zru += , Eq. (2.3-17) can be simplified to: 
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Noting that ukjukjukj e
k
je

kj
due −−− =

−
=∫

1 , Eq. (2.3-18) can be written as: 
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Noting φ−∇=vr , normal particle velocity at point F is: 
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Now it can be seen that when  (or when the field point moves closer to the source 0→z

hand ssurface), all terms on the right ide of Eq. (2.3-20) become zero except the term 
jkze−  which becomes unity. Thus in the limit of 0→z , Eq. (2.3-20) is simplified to: 

10 nzz v=
→

                 (2.3-21) lim v  

In other words contributions from other elem nts ) would disappear in the 

3-18) can be also used to establish criteria as how close is considered enough. 

he 

   

method should generate accurate field 

parameters in a case of a slightly curved radiator as the initial plane could be placed close 

e 2( .,, 3 etcvv nn

limit. 

Eq. (2.

Obviously this would be dependant on the spatial distribution of particle velocity on t

source as well.  

   

Based on this it can be hypothesized that this 
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to the surface of the radiator. In Chapter 3 we will put this hypothesis into test by 

calculating the pressure field at different depths of a concave spherical source.  

 

2.4 Enhanced Pressure 
The numerical method presented in section 2.1, calculates the normal particle velocity 

meters such as pressure should be calculated using 

s 

thr

zv . In other words other acoustic para

known zv  values. An easy way to convert particle velocity to pressure (or vice versa), i

ough simple impedance relation between particle velocity and pressure: 

cp ⋅= zvρ  

However, this formula is only accurate for a plane wave travelling along the z axis in an 

inviscid m dium. In more general cases, such as spherical, cylindrical or focused beams, 

 

ntire spatial domain would limit 

r as it will 

l 

z c

then 

id 
 

 viscous liquid (Cobbold 2007): 

e

this relation is not valid anymore and a more general formula is required. In this section 

we will derive accurate formulas to calculate pressure from normal particle velocity (or 

vice versa), which are valid within small signal approximations in any acoustic beams as

long as the medium is a homogenous viscous liquid.   

In the method of fractional steps, zv  values are only known on certain planes 

perpendicular to the z axis. Not knowing zv  values in e

our capability to calculate acoustic ariables over all spatial locations. Howeve

be shown later, it is possible to derive other acoustic variables such as pressure or latera

components of particle velocity ( xv , yv ), only on the propagation planes, using angular 

spectrum technique. This will serve as a perfect tool to obtain pressure across a 

propagation plane knowing only the omponent of the particle velocity. 

The equations are initially derived assuming no dissipation (inviscid liquid) and 

expanded to a more general case with viscous loss. 

 v

 

2.4.1  Enhanced Pressure in Lossless Liqu

We’ll start off with linearized Navier-Stokes equation in
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 Assuming no dissipation, i.e. 04
=+ μμ , the Eq. (2.4-1) can be simplified to: 
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We also know that: 
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Which is obtained from combining linearized state and continuity equations (Cobbold 

2007) . 

Substituting vr ϕ−∇=  into Eq. (2.4-3), yields: 
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Integrating both sides of Eq. (2.4-5) in time, yields: 

t
p o ∂

∂
=

ϕρ              

 in the medium. 

Assuming a sinusoidal excitation, 

                                  (2.4-6) 

Eq. (2.4-6) is only valid when there’s no energy loss

ϕ  will be also sinusoidal in time and can be expressed 

as: 

{ }tj
s ezyxtzyx ωφϕ ⋅= ),,(Re),,,(             (2.4-7) 

Where sφ  is a phasor presentation of ϕ  and it’s a complex function in space. 

Using the expression of ϕ  in Eq. (2.4-7) and replace it into Eq. (2.4-6), yields: 

{ } ( )
⎭
⎬⋅

∂
=⋅

∂
== tj

so
tj

soo e
t

e
t

p ωω φρφρρ ReRe  ⎫
⎩
⎨
⎧ ∂∂

∂
∂

t
ϕ

Since sφ  is only a function of space, it can be taken out of the partial derivative in time:  

( ) { } { tj
so

tj
so

tj

so ejej
t

ep ωω
ω

φωρωφρφρ ⋅=⋅=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂
⋅= ReReRe  }

In other words, jP soφωρ=  is the phasor presentation of p . Consequently one can write: 
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Pj

o
s ωρ

φ −
=        (2.4-8) 

 find a phaSimilarly we can sor relation between sφ  and zV as follows:  

z
vz ∂

−=v ∂
⇒−∇=

ϕϕ   r

Substituting 

                                 (2.4-9) 

ϕ  from Eq. (2.4-7) into Eq. (2.4-9), yields: 

{ } ( )
⎭
⎬

⎩
⎨∂ sz

Re  ⎫⎧ ⋅
∂

−=⋅
∂
∂

−= tjtj
sz ee

z
v ωω φφRe

f the partial derivative in space:  Since tje ω  is only a function of time, it can be taken out o

⎭
⎬
⎫

⎩
⎨
⎧ ⋅

∂
∂

−=
⎭
⎬
⎫

⎩
⎨
⎧

∂
∂
⋅−= tjsstj

z e
zz

ev ωω φφ ReRe  

in other words,  

z
V s

z ∂
∂

−=
φ                                               (2.4-10) 

where  is the phasor presentation of z

Using the expression of 

V zv . 

 obtained earlier in Eq. (2.4-8) and replace it into Eq. (2.4-10): sφ

zoo
z ∂⎠⎝ ωρωρ

Pjj ∂⎞− P
z

V =⎟⎟⎜⎜
⎛

∂
∂

−=         or 

),,(),,( zxPjzyxVz
∂

=                 (2.4-11) y
zo ∂ωρ

Taking the 2D Fourier transfo th sides of Eq. (2.4-11) in respect to yx, : rm of bo

),,(),,( zkkSP
z

jzkkSV yx
o

yxz ∂
∂

=
ωρ

                          (2.4-12) 

On the other hand from the angular spectrum analysis we know (Liu and Waag 1997): 

   (2.4-13) 

Where 

),,()0,,(),,( zkkHkkSPzkkSP yxyxyx ×=  

( )( )22 k+  2exp),,( yxyx kkjzzkkH −=

Differentiating both sides of Eq. (2.4-13) in respect to z, yields: 

( ) 14)-(2.4                 ),,()0,,(               k        

),()0,,(),,(

222 zkkHkkjkkSP

zkkH
z

kkSPzkkSP
z

yxyxyx

yxyxyx

×+−×=

∂
∂ ,×=

∂
∂
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Substituting Eq. (2.4-14) into Eq. (2.4-12): 

( ) ),,()0,,(1),,( 222 zkkHkkkkkSPzkkSV yxyxyx
o

yxz ×+−×
−

=
ωρ

                (2.4-15) 

Replacing  in Eq. (2.4-15) and noting0=z 1)0,,( ==zkkH yx : 

( )
)0,,()0,,(

222 yxz

yx

o
yx kkSV

kkk
kkSP

+−

−
=

ωρ                (2.4-16) 

Based on Eq. (2.4-16), knowing the normal particular velocity over a plane perpendicular 

e ca r the same plane, as below: to z axis, on n calculate the pressure ove

( )
{ }

⎪⎭

⎪⎫
⎬

⎪

⎪
⎨
⎧

ℑ
+−

−
ℑ= − ),(),( 2222

1
2 yxV

kkk
yxP zD

o
D

ωρ                          (2.4-17) 
⎩ yx

where yyxx fkfk ππ 2 , 2 ==  are spatial frequency components. 

Going forward we call  derived using Eq. (2.4-17), “enhanced pressure”. This 

term ance 

relation. The impedance for ula of 

),( yxP

inology enables us to differentiate it from

m

 the pressure obtained using the imped

VcP ooρ=  is only accurate for a plane wave,  

nevertheless it’s often used to derive the pressure in more general cases such as focused 

etry is arb

urier transform 

f  is a D unction

sources which is only an approximation. Eq. (2.4-17), however, is valid for any field 

distribution and source geometry. Thus it serves as an ideal tool in our program to 

calculate pressure where source geom itrarily defined by user.  

 

In a case of a plane wave, Eq. (2.4-17) reduces to the familiar impedance relation 

between pressure and velocity as below: 

For a plane wave oz VyxV =),(  , where oV is a constant. As a result 2D Fo

 ),( yxVz irac impulse f : o

{ } ),(4)
2

,
2

(),(),(2
x

oyxozD

kkVffVyxV
π

δδ ×=×=ℑ 2
yxo

y kkV δπ
π

×=            (2.4-18) 

Substituting Eq. (2.4-18) into Eq. (2.4-17) and noting that the ),( yx kkδ  is zero 

everywhere except at 0== yx kk : 
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{ }),(4          

),(4
/

          

),(4),(

21
2

21
2

2

2

1 o

k
δπ

ωρ ⎫

⎩

⎧
××

−
ℑ= −

2

yxoooD

yxo
o

o
D

yxoD

kkVc

kkV
c

kkVyxP

δπρ

δπ
ω
ωρ

××−ℑ=
⎭
⎬
⎫

⎩
⎨
⎧

××
−

ℑ=

⎭
⎬⎨

−

−  

Conversely, the inverse 2D Fourier transform of a delta function is a constant in space: 

which is the well known impedance relation. 

Negative sign in Eq. (2.4-19) originates from the assumption made in Eq. (2.4-7) where 

{ }
19)-(2.4                                                               

),(  ),( 1
2 yxoooD

Vc
ffVcyxP

×−=

××−ℑ= −

ρ

δρ
 

ooo

ϕ  as a function of time was defined as: 

{ }tj
s ezyxtzyx ωφϕ ⋅= ),,(Re),,,(     

 we choose If { }tje ω−⋅

), the negative sign in (2.4-1

 negative z direction. It appears th

s zyxtzyx φϕ = ),,(Re),,,(  (note the minus sign in the power of 

9) describes a plane wave tje ω− 9) will disappear. Eq. (2.4-1

moving to the at selecting 

{ }tjω−
s ezyxtzy φ ⋅= ),,(Re),,  define a wave propagating toward the positive x,y,z 

directions and selecting 

xϕ ,(

{ }tj
s ezyxtzyx ωφϕ ⋅= ),,(Re),,,(  wo

x,y,z directions. 

Another particularly inte particle velocity distrib

a given plane is sinusoidal as below: 

uld define a wave 

propagating towards the negative 

resting case to consider is when ution on 

present a phase cohered excitation throughout a 

given plane where the amplitude varies in a sinusoidal order. Fig. 2-20, illustrates how 

)cos(),( 21 ykxkVyxV oz +=   

Assuming oV  is a constant, this will re

amplitude distribution along a given plane looks like: 
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Figure 2-20. Spatial distribution of the sinusoidal signal )22sin(),( yvxuVyxV oooz ππ += , 

, for various spatial frequencies of . Source: (Prince and Links 2006). 1,0 ≤≤ yx oo vu ,

 
The 2D Fourier transform of  will be: ),( yxVz

{ } [ ]),(),(
2
14),( 2121

2
2 kkkkkkkkVyxV yxyxozD +++−−××=ℑ δδπ             (2.4-20) 

Which includes two impulse functions at points and ),( 21 kk ),( 21 kk −−  on spatial 

frequency domain as shown in Fig. 2-21. Substituting Eq. (2.4-20) into Eq. (2.4-17) 

yields: 

( )
[ ]

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++−−××
+−

−
ℑ= − ),(),(

2
14),( 2121

2

222

1
2 kkkkkkkkV

kkk
yxP yxyxo

yx

o
D δδπωρ  

Separating the two delta functions: 

 

( )
[ ]

( )
[ ]

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++××
+−

−
ℑ

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−××
+−

−
ℑ=

−

−

),(
2
14            

),(
2
14),(

21
2

222

1
2

21
2

222

1
2

kkkkV
kkk

kkkkV
kkk

yxP

yxo

yx

o
D

yxo

yx

o
D

δπωρ

δπωρ
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ky 

kr = 

 
Figure 2-21. Location of impulse functions in k space 
 
 

Noting that the delta functions in expression of above are zero everywhere except 

at points and , one can write: 

),( yxP

),( 21 kk ),( 21 kk −−

( )
[ ]

( ) ( )( ) [ ]
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++××
−+−−

−
ℑ

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−××
+−

−
ℑ=

−

−

),(
2
14            

),(
2
14),(

21
2

2
2

2
1

2

1
2

21
2

2
2

2
1

2

1
2

kkkkV
kkk

kkkkV
kkk

yxP

yxo
o

D

yxo
o

D

δπ
ωρ

δπ
ωρ

 

or 

( )
[ ]

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+++−−××
+−

−
ℑ= − ),(),(

2
14),( 2121

2

2
2

2
1

2

1
2 kkkkkkkkV

kkk
yxP yxyxo

o
D δδπ

ωρ  

which yields 

( ) ( )
),()cos(),(

2
2

2
1

2212
2

2
1

2
yxV

kkk
ykxkV

kkk
yxP z

o
o

o

+−

−
=+

+−

−
=

ωρωρ          (2.4-21) 

In other words pressure will have the same spatial distribution as particle velocity 

however with different amplitude than what simple impedance relation predicts.  

The maximum pressure amplitude can be written as: 

kx

),( 21 kk

),( 21 kk −−
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( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−

=
+−

=

2

2
2

2
1

2
2

2
1

2

1
k

kk

Vc

kkk

VP ooooo
m

ρωρ     (2.4-22) 

For a plane wave  and Eq. (2.4-22) reduces to the familiar impedance relation. 

However for , the maximum pressure amplitude is bigger than what 

results from the impedance formula, and for , it gradually decreases. Fig. 2-

22 illustrates the actual pressure amplitude relative to the impedance pressure: 

021 == kk
22

2
2
1 kkk <+0 <

22
2

2
1 kkk >+

 
Figure 2-22. Deviation from plane wave approximations becomes 
                     obvious at higher spatial frequencies  
 

This is a very good indicator as how impedance relation (to convert particle velocity to 

pressure) can be significantly in error for non planar fields. 

Note that if kkk =+ 2
2

2
1 , the pressure amplitude becomes infinity in theory. An e

which gives rise to infinite pressure amplitudes is ),( yxVz

xample 

)cos(kxVo=  which satisfies 

kkk + 2 =2  relation2
1 . Noting λπ /2=k s if particle velocity amplitude

with period of 

, it mean s vary 

λ  in spatial domain then the pressure amplitudes will amplifies out of 

control. In practice, however, this will never happen as attenuation and nonlinearity 

processes suppress the pressure amplitude, but it still remains elevated. 
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2.4.2  Computational Noise in Enhanced Pressure 
 

Eq. (2.4-17) has a singularity at  which constitutes a circle with radius k  in 

the spatial frequency domain (k space). Following Zemp et al. terminology (Zemp et al. 

2003), we will be referring to this as radiation circle in what follows (see Fig. 2-23).  

222 kkk yx =+

 

ky

Radiation Circle 

kr = kx

 
Figure 2-23. Particle velocity to pressure transfer function has 

                                            a singularity on the radiation circle 
 

The presence of this singularity results in computational problems. In Matlab® it can 

cause the program to fail to generate the inverse Fourier transform specially if 2D Fourier 

transform of  has large enough components around the radiation circle.  ),( yxVz

Another issue is that it will create computational noise in the output (i.e. ). This 

noise spreads all over the spatial domain, however its effect is more significant where the 

signal amplitude is weaker which results in lower SNR value. An example of this is far 

off-axis loci in a focused source where the pressure amplitude falls abruptly.  

),( yxP

There are two methods to eliminate the problems mentioned above associated with the 

singularity in the transfer function of  to zV P . One way is to implement a filter around 

the radiation circle. The filter transfer function should drop to zero at the radiation circle. 

Another method (which will be discussed later) is to introduce a small attenuation within 

the medium. As we will see in section 2.4.3, the singularity disappears in the transfer 
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function of  to zV P  if the medium is dissipative. In other words the assumption of a 

lossless medium gives rise to this singularity. In real world where attenuation always 

exists,  to zV P  transfer function won’t include a singularity.  

 

Computational Noise and Distance from the Source: 

 

It’s noteworthy that the noise amplitude is more pronounced close to the transducer 

surface and gradually diminishes farther away. The reason is that field variations are 

much smoother farther away from the transducer. As a result the field spectrum in spatial 

frequency domain will form a narrow band around (0 , 0) as one move away from the 

transducer surface. This implies that spatial frequency components at or around radiation 

circle gradually decrease in amplitude and this will in turn subside the noise amplitude. 

To demonstrate this more fully, a transducer will seem like a spot for field points far 

away from its surface (see Fig. 2-24). Consequently the field will be similar on the 

surface of a sphere centered at the transducer as all points are located at the same distance 

from the transducer. This can be shown by applying the Rayleigh diffraction integral as 

below: 

23)-(2.4                                         
2
1   

2
1

∫∫

−

S

jkr

jkr

r

dS

∫∫
−

S

r
e

π

π

S

∫
S

nv

=

=

n

n
eφ

dS

dS

v

v
 

Where  is the surface of the source (i.e. transducer),  is the normal particle velocity 

on the transducer surface and R is the radius of the sphere. 

nv

Since  is constant (it’s a property of the source), based on Eq. (2.4-23), the field 

everywhere on the sphere is the same. 

 

Now if we look at Plane 1 versus Plane 2 in Fig. 2-24, it’s obvious the field on plane 2 

will vary less than plane 1, as it falls closer to the corresponding sphere. To demonstrate 

this quantitatively, we’ll use Eq. (2.4-23) to calculate the field at point A. 
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Plane 1 Plane 2 

 
Figure 2-24. Field variations subside considerably father from 

         the transducer surface 
 

Substituting 22 xRr += in Eq. (2.4-23) yields: 

 
2
1)(

22

22

o

xRjk

S
xR

eA ×
+

=
+−

π
φ  

Calculating the derivative of )(Aφ , with respect to x: 

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++

×
+

+
+

×−
=

+−
+−

222222

22
22

22

2 

2

2
)(

xRxR
ex

xR

e
xR

xjk
S

dx
Ad xRjk

xRjk

o

π
φ  

Simplifying the above expression and noting xR >> : 

 

⎥⎦
⎤

⎢⎣
⎡ +−×=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
×

+
×−

≈

−

−
−

R
jk

R
xeS

R
ex

R

e
R
xjkS

dx
Ad

jkRo

jkR
jkR

o

12
2

          

2 

2

2
)(

2

3

π

π
φ

 

 
Tx 

 
A 

22 xR + x
r

R
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Since 
R

k 12
>>=

λ
π , jk

R
jk −≈+−

1 and: 

2

)(
R
xejkS

dx
Ad jkRo ×−≈ −

π
φ       (2.4-24) 

It can be seen from Eq. (2.4-24) that field variations drop by inverse square of R . 

 

Reduction of Computational Noise by Filtering: 

 

As mentioned earlier, an effective way to reduce the computational noise is by filtering 

the normal particle velocity spectrum ( ) in spatial frequency domain around the 

radiation circle. The filter would depress the spatial frequency components of normal 

particle velocity around the radiation circle and hence reduces the amplitude of spikes 

generated due to the singularity in transfer function. This will translate into less amount 

of noise in spatial domain. 

),( yxz kkV

The filter transfer function has shown in Fig. 2-25 below. This type of filter is normally 

referred to as a band stop or notch filter since it only blocks a certain band of frequencies. 

In this case it selectively filters out a band in vicinity of the radiation circle with radius of 

λπ /2=k . 

 

 
Figure 2-25. Band stop filter 

 

 

The filter has four distinct bands which are realized as below: 

 
1 

k )(   22
yx kk +ω

)(ωF

bk

sbΔ

bk Δ− + Δ
mbk mbk− Δ + Δ
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2
cos1)( θω +

=F      

where 

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

Δ+<<Δ+
Δ

−Δ+
Δ+≤≤Δ−

Δ−<<Δ−
Δ

Δ−−
Δ+≥Δ−≤

=

bkbk
b
bk

bkbk

bkbk
b

bk
bkbk

m
s

mm

m
s

ωωπ

ωπ

ωωπ

ωω

θ

  ,   )(
  ,                       

   ,   )(
 or      ,                        0

 

 

To calculate the pressure, 2D Fourier transform of the normal particle velocity is 

calculated and then multiplied by ( )222
),(

yx

o
yx

kkk
kkF

+−

−
×

ωρ . The inverse 2D Fourier 

transform of the product, would give us the spatial distribution of pressure as below: 

( )
{ }

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

ℑ
+−

−
×ℑ= − ),(),(),( 2222

1
2 yxV

kkk
kkFyxP zD

yx

o
yxD

ωρ   

 

In Chapter 3, we will present the results of our simulations where examples of 

computational noise caused by singularity in Eq. (2.4-17) are provided. We will also 

demonstrate that noise amplitude is subsided as a result of filtering or by moving farther 

away from the transducer surface. 

 

2.4.3 Enhanced Pressure In Viscous Liquid 
To derive the transfer function for converting normal particle velocity to pressure in 

section 2.4.1, we assumed no attenuation. In this section we will be deriving a 

generalized equation to include viscous loss in the medium and then extend it to include 

propagation in tissue as well. 

 

In a viscous liquid, the linear wave equation is: 
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( ϕμμκϕϕκρ 22
2

2

3
4

∇
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛ ++∇=

∂
∂

tt Bo )      (2.4-25) 

For a sinusoidal excitation, velocity potential ϕ  is sinusoidal too and can be written as: 

{ }tj
s ertr ωφϕ ⋅= )(Re),( rr        (2.4-26) 

Where )(rs
rφ  is a complex function in space. 

Substituting Eq. (2.4-26) into Eq. (2.4-25) yields: 

( )

( ){ } ( )( )
{ }

{ } ( )
{ }
{ } { }

( ){ } 27)-(2.4            )
3
4(1)(Re)(Re

   )(Re
3
4)(Re

)(Re

   )(Re
3
4)(Re
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   )(Re
3
4)(Re

)(Re
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2
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2
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2

⎭
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⎫
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⎨
⎧

⎟
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⎝
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⎠
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∂
∂
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⎠
⎞

⎜
⎝
⎛ ++∇×

=−×

⇒
⎭
⎬
⎫
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⎨
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∂
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⎟
⎠
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⎜
⎝
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=
⎭
⎬
⎫

⎩
⎨
⎧

⋅
∂
∂

μμωκφφωκρ

φωμμκφ

φωκρ

φμμκφ

ωφκρ

φμμκφ

φκρ

ωω

ωω

ω

ωω

ω

ωω

ω

Bs
tj

so
tj

s
tj
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tj

so
tj

s
tj

Bs
tj

tj
so

tj
sB

tj
s

tj
so

jrere

rejre

re
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t
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t
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t
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r
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r
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r

 

For Eq. (2.4-27) to hold true for all values of , complex expression of t

)(2 rso
rφωκρ−  on the left hand side has to be equal to ⎟

⎠
⎞

⎜
⎝
⎛ ++∇ )

3
4(1)(2 μμωκφ Bs jrr  on 

right hand side, for all points in space.  

To prove this point, lets assume there exists two complex numbers and v such that for 

all values of : 

u

t

{ } { }veue tjtj ×=× ωω ReRe  

Substituting and  yx juuu += yx jvvv +=  , yields: 
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( ){ } ( ){ }

( ) ( ){ } ( ) ( ){ }

( ) ( ){ }
( ) ( ){ }

( ) ( )

( ) ( ) 28)-(2.4                                                  0tan

    sincos

    sincossincos

     sincossincosRe
sincossincosRe

     sincosResincosRe

     ReRe

=−−−

⇒−=−

⇒−=−

⇒++−

=++−

⇒+×+=+×+

⇒+×=+×

tvuvu

tvutvu

tvtvtutu

tvtvjtvtv
tutujtutu

jvvtjtjuutjt

jvvejuue

yyxx

yyxx
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xyyx

xyyx

yxyx

yx
tj

yx
tj

ω

ωω

ωωωω

ωωωω

ωωωω

ωωωω

ωω

 

 

For Eq. (2.4-28) to be valid for all times , both coefficients have to be zero: 

yyyy

xxxx

vuvu
vuvu

=⇒=−
=⇒=−

     0
     0

 

In other words u  has to be equal to v . Thus Eq. (2.4-27) can be written as: 

⎟
⎠
⎞

⎜
⎝
⎛ ++∇=− )

3
4(1)()( 22 μμωκφφωκρ Bsso jrr rr  

Which can be re-arranged as: 

0)(
)

3
4(1

)(
2

2 =
⎟
⎠
⎞

⎜
⎝
⎛ ++

+∇ r
j

r s

B

o
s

rr φ
μμωκ

ωκρφ        (2.4-29) 

Using ooc κρ/1= formula for small signal speed of sound, where oρ  is ambient density 

and substituting   and )/(1 2
ooc ρκ = ock /ω= in Eq. (2.4-29), the following equation is 

resulted: 

0)()( 22 =+∇ rkr ss
rr φφ       (2.4-30) 
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This is the famous homogenous Helmholtz equation, where )
3
4(1/ μμωκ ++= Bjkk   

is called complex wave number. In case of a lossless inviscid medium, k  will be equal to 

 (the regular scalar wave number). k

For a plane wave propagating along z direction, sφ  is only a function of z and Eq. (2.4-

30) can be immediately solved as below:  

    -         02
2

2
zkj

oss
s ek

z
φφφφ

=⇒=+
∂
∂       (2.4-31) 

Replacing  θμμωκ j
B rej =++ )

3
4(1 , in expression for k , one can find: 

( ))2/sin()2/cos()/( 2/2/1 θθθθ j
r

ke
r

krekk jj −=== −        (2.4-32) 

Replacing k  obtained in Eq. (2.4-32) into Eq. (2.4-31), yields: 

z
r

kz
r

kj

os ee
)2/sin()2/cos(

 
θθ

φφ
−−

⋅=                   (2.4-33) 

Using Eq. (2.4-33) and noting ock /ω= , one can calculate both the amplitude attenuation 

coefficient and the phase speed as below: 

)2/sin()2/sin()( θωθωα
rcr

k

o

==         (2.4-34) 

)2/cos()2/cos(
)(

θθ

ωω
rc

r
kc o==                 (2.4-35) 

Both r  and θ  increases by frequency. As a result, both quantities given in Eq. (2.4-34) 

and Eq. (2.4-35) increase by frequency. In other words a direct outcome of solving the 

Helmholtz equation is prediction of frequency dependant attenuation and phase speed. 

The phenomenon of phase speed variation with frequency is called dispersion and as it 

can be seen here it’s a direct result of attenuation in the medium. In a lossless 

medium, 1=r  and 0=θ , which results in occ =)(ω (Eq. 2.4-35) or no dispersion. 
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Using Helmholtz equation (Eq. (2.4-30)) , and the linearized continuity and state 

equations, one can derive a relation between  and zV P  which accounts for viscous loss. 

It’s worth noting that Eq. (2.4-11) which was derived earlier is only valid in a lossless 

medium. Here we would like to derive a more general relation between  and zV P  when 

viscous loss is present. 

The general relation which relates the pressure and particle velocity is derived by 

combining the equation of state and the continuity equation (Cobbold 2007). In small 

signal approximation, this will result in: 

0. =∇+
∂
∂ v

t
p rκ             (2.4.36) 

Substituting ϕ−∇=vr  into Eq. (2.4-36), yields: 

02 =∇−
∂
∂ ϕκ

t
p            (2.4-37) 

Assuming a continuous sinusoidal excitation, Eq. (2.4-37) can be written as: 
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⎩
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⎧ ⋅
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⇒=⋅∇−⋅
∂
∂

 

As mentioned earlier, for Eq. (2.4-38) to be valid for all values of t , one should 

have: 

sPj φωκ 2∇=              (2.4-39)   

  

Using Helmholtz equation in viscous medium which was derived earlier (Eq. (2.4-30)): 

ssss kk φφφφ 2222      0 −=∇⇒=+∇        (2.4-40) 

Substituting  from Eq. (2.4-40) into Eq. (2.4-39), yields: sφ
2∇−

 2
skPj φωκ −=      
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or 

P
k

js 2 ωκφ −=                                                                       (2.4-41) 

Note that for an inviscid liquid with no dissipation, kk =  and Eq. (2.4-41) reduces to Eq. 

(2.4-8) as expected. 

Substituting sφ  from Eq. (2.4-41) into Eq. (2.4-10), yields: 
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Taking the 2D Fourier transform of both sides of Eq. (2.4-42) in respect to yx, : 

),,(),,( 2 zkkSP
zk

jzkkSV yxyxz ∂
∂

=
ωκ                   (2.4-43) 

On the other hand from the angular spectrum analysis we know: 

 
)(exp),,(  where
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Differentiating both sides of Eq. (2.4-44) in respect to z, yields: 

45)-(2.4                      ),,()()0,,(                      

  ),,()0,,(),,(
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Combining Eq. (2.4-43) and Eq. (2.4-45), one can obtain: 

  ),,()()0,,(),,( 222
2 zkkHkkkkkSP

k
zkkSV yxyxyxyxz ×+−×

−
=

ωκ           (2.4-46) 

Replacing  in Eq. (2.4-46) and noting0=z 1)0,,( ==zkkH yx : 
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2
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yxzyx
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ωκ

                                      (2.4-47) 
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In a lossless liquid, kk = and Eq. (2.4-47) reduces to Eq. (2.4-16) which was derived 

earlier in section 2.4.1 for an inviscid liquid.  

It’s interesting to note that Eq. (2.4-47) unlike Eq. (2.4-16) will not have a singularity if 

medium is dissipative. The reason is that in a viscous medium k  has an imaginary part 

and the expression )( 222
yx kkk +−  in the denominator will not be zero. However the 

transfer function of Eq. (2.4-47)  still has the potential to create noise in numerical 

methods. When the real part of  2k  is cancelled by , the amplitude of the 

remainder is usually small enough to create high amplitude hikes around the radiation 

circle. 

22
yx kk +

As mentioned earlier for a plane wave propagating along z direction, homogenous 

Helmholtz equation yields:  

    -         02
2

2
zkj

oss
s ek

z
φφφφ

=⇒=+
∂
∂      (2.4-48) 

Since k  is a complex number, it can be seen from Eq. (2.4-48) that  

αjkk −=         (2.4-49) 

where  is the regular wave number and k α  is the attenuation coefficient of the medium. 

Utilizing Eq. (2.4-49) into Eq. (2.4-47), one can solve for and use the inverse 

Fourier transform to find the pressure distribution (i.e. ).  

),( yx kkSP

), yx(P

 

Substituting Eq. (2.4-49) into the right hand side of Eq. (2.4-47), yields:  

50)-(2.4                    
)()2(
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2222
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αα

αωκ

α
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Assuming  (i.e. points on the radiation circle) and noting that for most 

liquids 

222
yx kkk +=

k<<α , Eq. (2.4-50) can be simplified to: 
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Noting that jj +−=− 12  and 
k

c ooρ
ωκ

=
1 , Eq. (2.4-51) can be further simplified to: 
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Multiplying  to both nominator and denominator of Eq. (2.4-52): )1( j+
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Reminding that for most liquids k<<α , Eq. (2.4-53) can be written as: 
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Assuming  is the particle velocity distribution on a given 

plane. Having , one can use Eq. (2.4-47) to calculate the pressure distribution on 

the same plane. In other words: 
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Fourier transform of  )cos(),( 21 ykxkVyxV oz +=

),( 21 kk −−

 consists of two impulse functions 

located at and . Based on Eq. (2.4-55) the impulse function amplitudes 

are multiplied by

),( 21 kk

)( 2
1
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2

kkk

k

+−

−
2
2ωκ

. If we choose  and  so that  ,  both 

and  will be located on the radiation circle and we can use Eq. (2.4-54) 

to write: 

1k 2k 22
2

2
1 kkk =+

),( 21 kk )2k,( 1k −−

α
ρ

ωκ

kjc
kkk

k
oo )1(

)( 2
2

2
1

2

2

+≈
+−

−           (2.4-56) 

 71



Chapter 2: Methodology 
_____________________________________________________________________                                     

Substituting Eq. (2.4-56) into Eq. (2.4-55) and taking the inverse Fourier transform 

yields: 

)cos()1(),( 21 ykxkkjcVyxP ooo ++=
α

ρ             (2.4-57) 

Note that if a simple impedance approximation has been used we would have obtained: 

)cos(),( 21 ykxkcVyxP ooo += ρ  

In other words, a full diffraction solution predicts a gain of 
α
k2  in pressure amplitude. 

Since for many liquids α>>k
-1m 4188

, a significant pressure elevation is resulted. For instance 

in water  and /2 == λπk np/m 02.0=α  at 1 MHz, which will result in 

6472
=

α
k . However in tissue which is much more attenuative, this will result in lower 

pressure gains. In kidney for example where  and -1m4027/ =λπ2=k Np/m 51.11=α  

at 1 MHz, 
α
k2  equals to 26. 

The calculated gain of 647 in water is large enough to produce noise in numerical 

implementations of the enhanced pressure formula (Eq. (2.4-55)) due to sampling across 

space.  yx kk ,

In Chapter 3, where results of our simulations using Eq. (2.4-54) is presented, higher 

noise levels in water compared to tissue will be demonstrated.  

 

 

2.5  Source Presentation in Spatial Frequency Domain 
  

As mentioned in section 2.3.1, the first step in calculating the field is to propagate the 

field from the surface of the transducer to a plane close-by which we called the initial 

plane. The reason behind this is that the angular spectrum method can be only applied to 

planes while the source geometry in general can presume any shape. This step is done 

using the Rayleigh diffraction integral as the phase shift methods produce inaccurate 
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results in near field specially for highly curved surfaces such as a typical HIFU 

transducer1. 

 

2.5.1  Pressure Calculation Across Initial Plane 
The pressure is calculated across the initial plane using the CW version of the 

Rayleigh diffraction integral: 

∫∫
+−

=
Source

)(

dS
r

evcjP
rjk

n
oo

α

λ
ρ           (2.5-1) 

In Eq. (2.5-1) oρ  and are the equilibrium density and speed of sound, oc λ  is the 

wavelength,α  is the medium attenuation coefficient, and  λπ /2=k , which are all 

constants. The integral is done over all surface elements of transducer, where is the 

surface area of any given element,  is the normal particle velocity phasor at that 

element and 

dS

nv

r  is the distance between the element center and the field point where we’re 

interested in calculating the pressure. 

 

2.5.2  Spatial Extent of the Initial Plane 
The spatial extent of the initial plane is set by the user via parameters “x_source” and 

“y_source” in the parameters file . Parameters file is a Matlab file (.m file) where all 

parameters used in the simulation are defined. The source spatial extent has to be selected 

so that the initial plane captures most of the energy emitted by the source. x_source and 

y_source are determined based on the distance of the initial plane to the transducer. For 

example in Fig. 2-26 below, if the initial plane is located at z = zmin (as close to the 

transducer as possible), the selection of x_source = y_source = D/2 would ensure most of 

the energy emitted by the source is captured. 

                                                 
1 See Chapter 3, section 3.2, for more details  
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Initial plane

z0 Roc 

z 

+y source 

-y source 

D/2 

zmin O 

y 

Source 

Figure 2-26. Spatial extent of the initial plane 
 

 

 

2.5.3 Spatial Sampling of the Initial Plane 

The pressure is calculated using Eq. (2.5-1) at equally spaced discrete points on 

the initial plane. If initial plane is to be placed close to the transducer surface, the spacing 

should be done at least at the rate of 10/λ . This is due to variation of r  in Eq. (2.5-1). 

Fig. 2-27 below illustrates how the pressure varies more rapidly in near filed. If we are to 

calculate the pressure due to surface element S1 at points P1 and P2 located very close to 

the transducers surface, then we can see that drr =− 21 . In other words P1 and P2 will 

have different pressures (due to S1) unless λ<<d . However the pressure due to the 

surface element S1 at points P3 and P4 separated by the same distance in the far field 

( ) is almost equal since it can be easily shown that dl >> 0)lim( 21 =−
∞→l

rr . 
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Figure 2-27. Pressure variations are more rapid close to the transducer surface 

 

The sampling interval across the initial plane is set by the user through a parameter called 

“Width” in the parameter file. 

For general non axi-symmetric sources, sampling should be done across the entire extent 

of the initial plane as shown in Fig. 2-28 below: 

 

 
Figure 2-28. Pressure is calculated at the intersection of solid lines 

 

However, for axi-symmetric sources, it can be done only across the points along the x 

axis which is computationally less extensive and then based on the values of pressure 

Transducer 
surface 
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l

1r

P2 P4 
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d d
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calculated along the x axis, pressure at other points on the plane can be estimated. In axi-

symmetry sources, the acoustic field would form equi-pressure circles as shown in Fig. 2-

29. The pressure on these circles will be the same as what calculated at their x 

intersection. We will then use interpolation to find the pressure of any point falling in 

between these circles. 

  

    

y 

x

Figure 2-29. Equi-pressure circles in an axis-symmetric source 
 
 
2.5.4  Pressure to Normal Particle Velocity Conversion 
 

After calculating the pressure field on the initial plane, we need to find the normal 

particle velocity at the same points. This step is required because the NLP code 

propagates the normal particle velocity and not the pressure. There are two methods 

available to convert from pressure to normal particle velocity. The first method is to use 

the relation between pressure and the normal particle velocity in spatial domain as given 

in Eq. (2.5-2): 

 ),,(),,(V 2z zyxP
zk

jzyx
∂
∂

=
ωκ                    (2.5-2)2 

The second method is through angular spectrum approach where the conversion is done 

in spatial frequency domain: 

                                                 
2 Refer to section 2.4.3 for derivation. 
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which results in: 
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Eq. (2.5-2) can be applied to any single point in space to convert pressure to normal 

particle velocity, but Eq. (2.5-4) requires that pressure be known on an entire plane. 

In spite of this, Eq. (2.5-4) fits our problem better as it provides a faster way to make that 

conversion over the entire extent of the initial plane. Plus Eq. (2.5-2) requires that 

pressure be known on two adjacent planes (instead of one) which doubles the 

computational time.  

It’s worth noting that the problem of computational noise is not an issue in 

implementation of Eq. (2.5-4) as the term ( )222
yx kkk +−  is no longer in the denominator 

of the transfer function. In other words, the computational noise only appears in 

conversion of normal particle velocity to pressure and not vice versa. 

 

2.5.5 Acoustic Source as a 2D Array 
 

Once the conversion to normal particle velocity is done by making use of Eq. (2.5-4),  

the calculated values of  is then expanded and assigned to the adjacent squares (dotted 

lines in Fig. 2-30 below) to create a 2D array. Since the value of across any given 

square (e.g. the shaded area shown in Fig. 2-30) is constant, it can be written in compact 

form as 

zv

zv

                                                 
3 Refer to section 2.4.3 for derivation. 
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where  is the z coordinate of the initial plane, w is the width of the array element and 

 is the location of the element’s centre.  

0z

),( cc yx

The rect function has an analytical 2D Fourier transform as below: 

( ) ×=ℑ )
2

,
2

(sinc),,( 2
02 ππ

yx
ozD

k
wkwwvzyxv

)( cyykcxxkje +−
      (2.5-6) 

Eq. (2.5-6) is then discretized along and dimensions to create a 2D matrix. The 

same process is repeated across all array elements and then the resulting matrices are 

added up to produce the discrete Fourier transform of the entire initial plane. 

xk yk

y 

x 

 w

w

( )cc yx ,

 

Figure 2-30. Acoustic source as a 2D array 
 

The result is then fed into Eq. (2.5-7) to perform the first half step diffraction (see section 

2.1.2 for more details): 

 78



Chapter 2: Methodology 
_____________________________________________________________________                                     

( ) ( ){ } ( ){ })2/(,,,,)2/(,, 2
1

2 zkkHzyxvzzyxv yxzDDz Δ×ℑℑ=Δ+ −       (2.5-7) 

where )()2/( 222

)2/,,( yx kkkzj
yx ezkkH +−Δ=Δ   and zΔ  is the size of each propagation. 

To implement Eq. (2.5-7) numerically, transfer function  has to be sampled at 

the same intervals as Eq. (2.5-6). This sample interval is determined by the  

“Times_Nyquist_Rate” in the parameters file. The Nyquist rate is the number of samples 

acquired per wavelength. 

),( yx kkH

After finishing diffraction substep, the result is then converted back to spatial domain 

using inverse Fourier transform and a nonlinear substep is subsequently followed as 

shown in Fig. 2-1 in section 2.1.1. The process is then repeated to propagate the field 

along the z direction.  

 

2.6 Temperature and Thermal Dose Calculations 

As part of the enhancements implemented in the code is the capability to predict 

temperature and the associated thermal dose within the tissue. The code takes in the heat 

deposition rate, tissue parameters, boundary conditions, exposure on time (Ton) and the 

total simulation time (Tmax) and returns temperature, thermal dosage, lesion center and 

lesion size.  

The thermal dose is calculated based on the temperature results by applying the following 

formula (Sapareto and Dewey 1984): 

∫ −=
f

i

t

t

tT dtRTD )(43          (2.6-1) 

Where  is the accumulated thermal dose,  is the temperature in units of , 

 for and  for T . 

TD )(tT

C

Co

5.0=R CT o43> 25.0=R o43≤
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The code will then uses the TD values of Eq. (2.6-1) to determine the lesion size and 

location. The lesion center is identified as a point in space where the maximum thermal 

dose has reached, and the lesion size is determined based on the experimentally obtained 

thermal dose of 240 minutes at 43  (Dewey 2009). This is the threshold for creation of 

an irreversible thermal lesion (i.e. coagulation necrosis). The volume of space with 

thermal doses above this threshold limit would indicate the lesion size. 

Co

 

2.6.1   Bio-heat Transfer Equation 

Temperature field calculations are performed by solving the standard Bio-heat 

Transfer Equation (BHTE) which was originally proposed by Pennes in 1948. It provides 

a model to describe heat transport and temperature rise in perfused media.  

The equation assumes the general form of: 

QTTCwTK
t
TC bbb +−−∇=
∂
∂ )(2ρ         (2.6-2) 

where T  is the tissue temperature in , Co

bT  is the blood temperature that is assumed constant at 37 , Co

ρ  is the tissue mass density in , 3/ mkg

C  is the tissue specific heat capacity in , )./( CkgJ o

bC  is the blood specific heat capacity in , )./( CkgJ o

K  is the tissue thermal conductivity in , )./( CmW o

bw  is the blood perfusion rate in , and )./( 3 smkg

Q  is the heat production rate per unit volume in   3/ mW

 

Eq. (2.6-2) is solved numerically using a finite difference algorithm. 
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2.6.2 Enhanced Heat Deposition Rate 

To solve the BHTE equation as given in Eq.(2.6-2), a knowledge of Q  or heat 

deposition rate is needed. The beam propagation causes part of the acoustic energy to 

convert into thermal energy which is the source for Q. For a plane harmonic wave, the 

expression for Q is given by (Cobbold 2007): 

22 ||||2)( vcP
c

IzQ oo
oo

αρ
ρ
αα ===        (2.6-3) 

where α  is the medium attenuation coefficient and |and  are the amplitudes of 

pressure and particle velocity respectively.  

| P || v

Nyberg (Nyborg 1981) demonstrated that for a general case of a non-planar continuous 

wave, an equation similar to Eq.(2.6-3) in terms of the pressure amplitude is obtained 

providing the loss due to shear viscosity is negligible. In other words equation 

2|| P
c

Q
ooρ

α
=  is still applicable to calculate Q in a general nonplanar continuous sound 

field when there’s no loss due to shear viscosity. In Chapter 4,  however, we’ll be 

showing that a more general equation which will include the effects of shear viscosity is 
2||)( VczQ ooo

r
αρ= , where 2222 |||||||| zyx VVVV ++=

r
. 

Nonlinearity produces harmonics of the fundamental which will attenuate at different 

rates. According to power law of attenuation in biological tissue, the attenuation 

coefficient of the nth harmonic can be written as: 

b
onn ff )/(αα =      (2.6-4) 

where α  is the attenuation coefficient of the fundamental, b is the power index which is 

around unity for biological tissues and nf  is the frequency of the nth harmonic. As a 

result the general form for 

 

 Q  can be expressed as (Filonenko and Khokhlova 2001): 
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where N is the number of harmonics retained, and  is the pressure amplitude of the 

nth harmonic. 

|| np

Q  calculated in Eq. (2.6-5)  accounts for the excess heat deposition rate in tissue as a 

result of nonlinearity induced harmonics.  

 

2.6.3   Interpolation of Q Between Two Planes 

 Heat deposition rate or Q , has to be known at the entire volume where the 

temperature field is to be calculated. However, it’s readily available only at propagation 

planes (dotted lines in Fig. 2-31) due to the method of fractional steps. In other words, 

values of  are not known anywhere between the planes. However, since the field 

profile is continuous, a linear interpolation of Q  between two adjacent planes can be 

used to estimate the Q  anywhere in between as shown in Fig. 2-31. Based on this heat 

deposition rate at an intermediate plane with axial location of  can be estimated 

as: 

Q

)( iQ iz

( )
z

dQQQQi Δ
⋅−+= 121   (2.6-6) 

where ,  and  are axial locations of the adjacent propagation 

planes. 

1zzd i −= 12 zzz −=Δ 21 , zz

Eq. (2.6-6) can be performed in matrix form over the entire plane which is 

computationally very efficient. 
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Figure 2-31. Interpolation of Q between two propagation planes 
 

 

2.6.4   User Defined Parameters 

 A number of parameters should be set by the user before a temperature simulation 

is run.  These include tissue thermal properties such as thermal conductivity, specific heat 

capacity and blood perfusion rate. The user also needs to define the domain where 

temperature is to be calculated. The calculation domain is determined by 6 parameters 
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which assign the max. and min. of x,y,z extents. Based on this the calculation domain 

forms a cuboid as shown in Fig. 2-32. 

 

 

 

Source 
y x 

 BHTE domain

z_bhte_min z_bhte_max 
y_bhte_min 

y_bhte_max 

S 

z 

Figure 2-32. BHTE calculation domain 
 

After selecting the boundaries, the user needs to select the temperature at the boundaries. 

The temperature at the boundary marked by ‘S’ in Fig 2-32 can be set separately to 

enable the user to simulate the skin temperature which is usually less than 37 . The 

temperatures of the other boundaries are set at a constant (typically 37 ). 

Co

Co

The user should also set the duration of the HIFU exposure (Ton) and the total simulation 

time (Tmax). 
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Chapter 3: 

 
Model Verification 

 
In this chapter we will present the results of our simulations based on the methods 

discussed in Chapter 2. This will serve as a verification point for formulas and methods 

discussed in the previous chapter.   

 

3.1  Verification of the Diffraction Integral  
    To verify the acoustic field propagation from the surface of the transducer to the 

initial plane, the pressure field was calculated using our code (NLP-E) and a linear 

program (Field)4 and the results were compared. The NLP-E code divides the surface of 

the transducer into small rectangular elements and calculates the pressure based on Eq. 

(2.3-3) as discussed in Chapter 2. 

The simulations were performed using the dimensions of an actual HIFU transducer in 

the therapeutic ultrasound lab with radius of curvature of 100mm and aperture diameter 

of 125mm (see Fig. 3-1). The source excitation was selected to be at f =1MHz and 

surface pressure of Po=100KPa.   

 

R=100mm 

F
D=125m

O 
z

Radiator surface 
f = 1MHz 
Po = 100KPa 

 
Figure 3-1. Spherical concave transducer used in simulations 

                                                 
4 Refer to Appendix-C for more details 
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The surface of the transducer was simulated by breaking it down to mm1mm1  

rectangular elements as shown in Fig. 3-2. The lateral pressure amplitude profiles were 

plotted at axial locations of z = 25mm, 50mm, 75mm and 100mm. Generally excellent 

agreements were observed. For z = 25mm, the difference was reduced by selecting nse=2 

×

reduced by selecting nse = 2 instead of 1 which results in 

breaking of the mm1mm1  surface element down even 

further into four smaller sub-elements. This would only 

be needed when a field point is located relatively close to 

the surface of the transducer. That’s why it can specially 

help increasing the accuracy for the case of z=25mm. The 

reason is that the distance of a field point located close to 

the surface of the transducer, could be different from 

point to point of a surface element as shown in Fig. 3-3 

below. However as the distance between P and the 

transducer surface increases, which is the case in the far 

field of the transducer, they become almost equal 

(i.e. ). 

×

4r≈321 rrr ≈≈

 

 

 

P
1r

2r
3r

4r

4321 rrrr

Figure 3-2. Transducer surface is 
broken down to 1mm x 1mm elements 

≠ ≠ ≠

 
Figure 3-3. Variations of a field point distance from  

        a surface element   
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The result of simulations at four different axial locations are plotted in Figs. 3-4 to 3-9 

below: 
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Lateral pressure profile @ z=25mm

Source specs: Roc=100mm, D=125mm, f=1MHz

 

 

Field (f=40)
NLP-E (nse=1)

 
Figure 3-4. Closer to the transducer surface. A close match was obtained, however the NLP-
E code generates small pressure hikes at points of maxima or minima 
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Field (f=40)
NLP-E (nse=2)

 
            Figure 3-5. A better match was achieved as a result of the introduction of sub-elements 
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Figure 3-6. A close match was obtained at z=50mm plane without any extra  

sub-element divisions  
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Lateral pressure profile @ z=75mm
Source specs: Roc=100mm, D=125mm, f=1MHz
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Figure 3-7. Comparison of pressure profiles. Field vs. NLP-Enhanced 
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Figure 3-8. Comparison of pressure profiles. Field vs. NLP-Enhanced 
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Figure 3-9. Same graph as in Fig. 3-8 but in log scale to highlight the values close to zero 
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3.2  Full Diffraction vs. Phase Shift Method  
 

In this section the results obtained through application of several phase shift 

methods are compared with those obtained by full diffraction solution. The phase shift 

methods discussed here are based on Eq. (2.3-15) derived in Chapter 2 to estimate the 

normal particle velocity on the initial plane.  

 

A concave spherical source was simulated with parameters shown in Fig. 3-10. The 

simulation was done for D = 25mm and 15mm. D = 15mm will result in less source 

curvature and thus more accurate results are expected using the phase-amplitude shift 

method. It’s assumed that the concave source is uniformly excited at surface pressure of 

Po = 500KPa and f = 1MHz.  

lation parameters 
 

rent 

ed 

 
Figure 3-10. Simu

The pressure field is then determined at z = 15mm and 25mm planes using four diffe

phase shift methods and the results are compared with full diffraction solution obtain

through the Field5 program.  

 

Method 1: 

In this method the phase and amplitude at each point on a plane in front of the source is 

estimated by using Eq. 2.3-15 as discussed in Chapter 2 section 2.3.4. Once this is done 

                                                 
5 See Appendix-C for more details. 

R=25mm 

F

Radiator surface 
f = 1MHz 
Po = 500KPa 

D
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the pressure field is calculated by Rayleigh diffraction integral using the normal particle 

velocities 

 

Method 2

on this plane. 

: 

The second method is similar to the first but the amplitude is kept constant at the source 

level and only a phase shift is implemented. This method is being studied here as well 

because it’s often used in simulation of concave sources (Christopher and Parker 1991, 

Filonenko and Khokhlova 2001, Averkiou and Hamilton 1995). 

 

Method 3: 

ds approximate results in the case of a curved radiator 

rface, however it has been shown that the deviation from more accurate numerical 

small even for highly focused sources (Coulouvrat 1993). In light of this, we’ll 

 

 The third method, which is used as a gold standard, calculates the pressure using the 

Rayleigh diffraction integral again but this time by integrating directly on the radiator 

surface. This method also yiel

su

methods is 

consider the third method as a gold standard to compare the other methods with. 

 

In the first method, the distance of each point (e.g. A) on the initial plane from the surface

of the radiator (i.e. l=AB ) is calculated (see Fig. 3-11 below). 

esides , the angle  l θ B  is also needed to estimate the normal particle velocity at point A. 

two parameters are known, Eq. (2.3-13) above can be used to find the normal Once these 

particle velocity at each point on the initial plane.  
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  on of the phase shi ally concave source 
 

In the case of a spherically concaved radiator, and 

    Figure 3-11. Applicati ft method on a spheric

l θ  can be expressed in terms of r  

(the radial distance of each point loc ted on the initial plane): 

  

a

 
⎪⎩

⎪
⎨
⎧

=

−−=−−=−=

)/arcsin(
 ,  )2/(  ,  2222R

Rr
rRzDRhzhl dd

θ
    (32.23-120) 

Using Eqs. (32.23-120) and assuming even source excitation, the normal particle velocity 

at point A, can be estimated as: 

                   (32.23-

R

     cos)( )cos( θθ ljk
non evAv −⋅=   

21) 

Where nov  is the normal velocity amplitude at the source and λπ /2=k  is the wave 

 small rectangular 

elements and assigning a normal particle velocity to each element based on Eq. (2.3-21). 

o lt of our simulations in two different cas

i , iii) For a highly focused source (F# 1.00) (

number. 

The simulation was performed by dividing the initial plane into

What foll ws is the resu es: 

00.1:#25,25 FmmRmmD ⇒== ) 

ii, iv) For a slightly focused source (F# 1.67)( 67.1:#25,15 FmmRmmD ⇒== ) 

 

R=25mm 

F

h

D/2 

Radiator surface 
f = 1MHz 

Initial plane 

Po = 500KPa 
r

θ
AB

θ

zd l
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i)    The first simulation was done for source parameters of: 

MHzfKPapmmRmmD o 1 ,500 ,25 ,25 ==== (Highly focused, F# 1) 

            At axial locations of  a)  15mmz = and  b)  25mmz =  

 

            a) mmz 15=  
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5
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7

8

x (mm)

|P
|/

=25mm, f=1MHz
 

Pressure lateral profile at z=15mm
Source specs: Roc=D

P o

 

Method 1 (phase-amplitude adjusted)
Method 2 (phase adjusted)
Method 3 (Field)

 
Figure 3-12. The difference is obvious for a highly focused source 

 
 Fig. 3-12 displays normalized pressure amplitude over lateral x dimension at 

plane. As it can be seen, both methods 1 and 2 contain errors comparing to 

method 3 shown by solid line. However method 1 seems to be following the solid line 

more closely than method 2 does. These discrepancies are expected as the source is 

highly curved in this simulation (F# 1). It’s interesting to notice that methods 1 and 2 

produce similar results far off the axis. 

 

This plot clearly demonstrates that phase shift methods generate significant errors if used 

in conjunction with highly focused sources. That’s why we chose to implement a full 

diffract e (see section 2.3.2 . 

 addition, using the Rayleigh diffraction integral will enable us to virtually place the 

 phase 

shift metho

 15mmz =

ion solution to calculate the acoustic field on the initial plan )

In

initial plane anywhere and not necessarily close to the source as it’s the case in

d. This capability helps us to reduce the computation time. 
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            b) mmz 25=  
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Method 1 (phase amplitude adjusted)
Method 2 (phase adjusted)
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Figure 3-13. Pressure profile at the focal plane 
 

At focal plane, the three methods generate more consistent results as shown in Fig. 3-13. 

However far off the axis they don’t agree well as illustrated in Fig. 3-14 where y axis is 

scaled in log. 
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Pressure lateral profile at z=25mm (focal plane)
Source specs: Roc=D=25mm, f=1MHz

 

 

Method 1 (phase-amplitude adjusted)
Method 2 (phase adjusted)
Method 3 (Field)

 
Figure 3-14. Pressure profile at the focal plane (log scale)  
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ii) The second simulation was done for source parameters of: 

MHzfKPapmmRmmD o 1 ,500 ,25 ,15 ==== (Slightly focused, F# 1.67) 

                 At axial locations of  a)  15mmz = and  b) mmz 25=  

 

 a)  

            

mmz 15=  
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Pressure lateral profile at z=15mm
Source specs: Roc=25mm, D=15mm, f=1MHz

 

)
 

Method 1 (phase-amplitude adjusted)
Method 2 (phase adjusted)
Method 3 (Field)

 
Figure 3-15. Pressure profiles coincide due to less curvature or higher F# 

       

 been seen in this graph (Fig. 3-15), for the case of a slightly curved radiator (F# 

1.66), all three methods yield almost similar results (as opposed to a highly focused 

source). This is expected as the distance between the initial plane and the source remains 

small throughout the source curvature which is an important assumption for the phase 

shift method to be accurate. 

           

  b) 

  

At the focal plane all methods yield similar results as well, as shown in Fig. 3-16 below. 

This demonstrates further that for a slightly curved radiator, the phase shift method 

provides a very good approximation and produces accurate results. 

  

As it can

mmz 25=  
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Method 1 (phase-amplitude adjusted)
Method 2 (phase adjusted)
Method 3 (Field)

 
Figure 3-16. An overlap is maintained at the focal plane too 
 

 

Methods 1 and 2 as described above can be applied to any source geometry.  Another 

method, which is only applicable to a spherically concaved source, involves applying a 

focusing phase factor on a plane perpendicular to the acoustic axis so that all point 

sources on this plane interfere constructively at the geometrical focal point (Christopher 

and Parker 1991, Averkiou and Hamilton 1995). This is virtually the case for a spherically 

concaved source as all the point sources on the radiator surface interfere constructively at 

the geometrical focus, since they are all located at the same distance from the centre of 

the curvature. However, as it will be shown later, they don’t necessarily produce similar 

acoustic field across spatial dimensions. The difference is more significant when the 

radiator is highly focused. Fig. 3- : 

 

17 shows the geometry of the problem
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Figure 3-17. Plane equivalent of a con ve spherical source by introducing focusing phase 
 
 

If radial distance of a point (e.g. A) on the initial plane from the origin (point O) is 

ca

r , the 

distance between this point and the centre of curvature will be 22 Rrd += as shown in 

Fig. 3-17 above. 

Adding a phase factor equal to 
λ

π2+  to the phase at point A, makes the phase od f the 

point source A at the focus to be 022 =−+
λλ

located on the initial plane will reach the focus (point F in Fig. e same phase

and hence interfer

ππ dd . In other words all point sources 

3-17) with th  

e constructively. The normal particle velocity on the initial plane can 

then be expressed as: 

)()/2( rkjdj λπ

In the parabolic approximation (i.

22

)( R
nonon evevrv +⋅=⋅=    (3.2-3) 

e. Rr << ), the ph ow: ase factor can be simplified as bel
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nt and can be dropped which yields: 
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non evrv 2/2
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A
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Radiator surface 
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This is a parabolic form which is oft d in simulations of spherically concaved en use

transducers (Averkiou and Hamilton 1995). 

In parabolic approximation the radial extent of the initial plane is assumed to be equal 

hown analytically that this 

selection will not yield accurate results in the case of a highly focused spherical source. 

Calculating the Ra itial plane with 

 
Figure 3-18. Pressure calculation at the focal point of a radial source 

 

to 2/D or half the diameter of aperture. However it can be s

yleigh diffraction integral on the surface of the in

focusing phase factor to the extent of r , yields: max
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dr
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We’re going to assume here that 0=α (lossless medium), nonetheless one can obtain an 

analytical expression for focal pressure, even without this assumption. 

FR
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If we break the surface area  into small radial rings with infinitesimal width   (see 

Fig. 3-18 above), the surface integral of Eq. (3.2-5) can be converted to a line integral as 

below: 

S dr
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This integral can be easily solved with a change of variable: 

duudrr
udr
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Expressing FP  in terms of new variable u , yields: 
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Focal pressure was also derived earlier in section 2.3.4 for t

spherical cap transducer (see Eq. 2.3-9) : 

he case of an evenly excited 
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 (which is a commonly used value), it can be easily shown 

)

λ
)

Selecting 2/max Dr =

FF PP >
)

. However, for the case of RD <<2/ , the d ference between the two 

 

if

diminishes and they yield almost the same values. Nonetheless maxr  can be selected such

that FF PP =
)

: 
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Method 4: 

In this method a focusing phase factor is introduced at the initial plane located at 

We’ll selectively set  (based on the above equation) so that the pressure gain at focal 

point is equal to the equivalent spherical cap. 

 

0=z . 

maxr

Method 5: 

In this method a focusing phase factor is introduced at the initial plane located at . 

We’ll set 2/max Dr = , ere D  is the diameter of aperture. 

 

0=z

 wh

iii) The third simulation was done for source parameters of: 

D MHzfKPapmmRmm o 1 ,500 ,25 ,25   (Highly focused, F# 1) = ===

            At axial locations of  a)  15mmz = and  b)  25mmz =  

 

            a) 

 

mmz 15=  
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Method 4 (focusing phase factor with extended radius)
Method 5 (focusing phase factor)

 
Figure 3-19. Pressure deviation appear in near field 

 

Fig. 3-19 demonstrates that focusing phase factor will not produce accurate results 

compared to Method 3 (solid line) in pre-focal region.  

 

         b)  mmz 25=
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Method 3 (Field)
Method 4 (focusing phase with extended radius)
Method 5 (focusing phase)

 
Figure 3-20. A better match is maintained at the focal plane 

 

Fig. 3-20 demonstrates how the focusing phase method with extended radius produces 

more accurate results in terms of the focal gain and locations of pressure nulls at the focal 

plane. 
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iv) The forth simulation was done for source parameters of: 

MHzfKPapmmRmmD o 1 ,500 ,25 ,15 ==== (Slightly focused, F#=1.67) 

At axial locations of  a)  15mmz = and  b)  25mmz =            

 

            a)  mmz 15=
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Method 3 (Field)
Method 4 (focusing phase factor with extended radius)
Method 5 (focusing phase factor)

 
    Figure 3-21.  Phase shift methods generate satisfactory results for a source with higher F# 
 

Comparing Fig. 3-21 with Fig. 3-19 in section iii, demonstrates how three methods 

converge and produce similar results when aperture diameter (D) is small compared to 

the radius of curvature (R). 
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Method 3 (Field)
Method 4 (focusing phase factor with extended radius)
Method 5 (focusing phase factor)

 
Figure 3-22. An overlap is maintained at the focal plane too 
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In summary our results show that  phase shift methods produce better results when the 

spherical surface has a higher F# which means the radiator surface deviates slightly from 

a plane surface. In HIFU applications, where highly focused sources with low F# are 

normally used, phase shift methods fail to generate accurate results specially in pre-focal 

regions. Due to plane by plane propagation in the method of fractional steps, any error on 

the initial plane is propagated to other planes and can grow in an accumulative manner. 

Thus we have chosen to implement a full diffraction solution for the first propagation 

step from the surface of transducer to the initial plane. While it’s computationally 

intensive, it’s more accurate and has the capability to be applied to any source geometry. 

 

3.3  Computational Noise in Enhanced Pressure 
In this section we will present the results of our simulations for a flat rectangular 

transducer where a low amplitude noise is generated due to computational 

implementations of the normal particle velocity to pressure transfer function. 

 

 

3.3.1 In a Lossless Medium 
 

As mentioned in Chapter 2, the relation which converts the normal particle velocity on a 

given plane to the pressure on the same plane in a lossless medium is given by: 
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As mentioned in Chapter 2, Eq. (3.3-1) includes a singularity on spatial frequency 

domain which will cause problems in numerical implementation of the enhanced 

pressure. For instance it will cause the inverse 2D fast Fourier transform in the right hand 

side of Eq. (3.3-1) to fail in Matlab®. This problem can be overcome by implementing a 

band stop filter around the singularity (see section 2.4.2, in Chapter 2).  
Introducing a band stop filter, even with a very narrow bandwidth, would allow us to 

calculate the pressure using Eq. (3.3-1). Nevertheless a low amplitude noise in the 
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pressure output is generated which is due to the discrete sampling of  in the spatial 

frequency domain in the vicinity of the singularity.  

yx kk ,

 

To illustrate the noise produced in the output pressure, as a result of singularity in Eq. 

(2.4-17), here we’re simulating a mmmm 2010 ×  rectangular transducer which is 

uniformly derived at  and MHz2=of KPa500=oP  (see Fig. 3-23). 

 
Figure 3-23. Geometry and parameters used in the simulation 
 

A very narrow band stop filter with transition band of  was implemented around 

the singularity to allow the execution of the inverse 2D fast Fourier transform in Eq. (3.3-

1). 

5000/k

Fig. 3-24 illustrates the lateral pressure profile at depth of z=3mm in front of the 

transducer . The effect of noise is particularly visible where the signal level is low. A 

very narrow band stop filter with transition band of  around the radiation circle 

was implemented to avoid instability caused by the singularity. For comparison, the plane 

wave approximation has been also plotted (dotted line) on the same graph: 
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Figure 3-24. Noise in pressure, caused by a singularity in the transfer function 

 

As we move the observation plane along the z axis, the noise has less effect in altering 

the pressure amplitude as shown in Fig. 3-25 below. 

 

-60 -40 -20 0 20 40 6010-3

10-2

10-1

100

x (mm)

P
/P

o

Lateral pressure profile at z=15mm

 

 

P Enhanced
Plane wave approx.

 
Figure 3-25. The noise level is substantially subsided farther away from the transducer surface 
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There are two reasons for the reduction of noise in far field. The main reason is that the 

field profile becomes smoother in far field and thus its spectrum becomes narrower in 

spatial frequency domain. In other words the components of field spectrum gradually 

concentrate around (0 , 0) and drop at radiation circle which will result in less noise. 

Another reason is that the pressure amplitude gradually spreads laterally and thus the 

pressure increases off the axis. This will increase the signal level at the off axis loci and 

improve the signal to noise ratio. 

 

To confirm our hypothesis that at far field noise due to the presence of singularity is 

subsided, a signal to noise ratio analysis was performed. The signal was filtered using a 5 

point moving average filter. The difference between the original signal and the filtered 

signal was considered to be noise. The power of noise was then calculated and averaged 

over the vicinity of each point. Fig. 3-26 below shows how noise to signal ratio varies 

over space.  
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Figure 3-26. Quantitative demonstration of noise reduction at farther field points 

 

The effect of computational noise is clearly less for a plane located farther from source. 

The signal to noise power spatial average was calculated to be 175.6 for a plane located 

at z=3mm and 1627.4 for a plane located at z=15mm. Notice that the hikes in plots of Fig. 

3-26 correspond to pressure dips in Fig. 3-24,25 where signal level drops significantly. 
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Reduction of noise by filtering: 

 
To demonstrate the effectiveness of filtering in reduction of noise, a band stop filter as 

defined in section 2.4.2 in Chapter2, was applied to the transfer function of the output 

pressure. The side and middle margins of the filter were selected to be 60/kbm =Δ  and 

(see Fig 2-25 in Chapter 2). The enhanced pressure versus impedance 

pressure along with the filtered enhanced pressure has been shown in Fig. 3-27 below.  

40/kbs =Δ
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Figure 3-27. Effect of filtering in noise reduction 

 

It’s obvious that the noise pressure has subsided significantly, however the signal 

amplitude has decreased too due to filtering. To prove that the noise has really been 

reduced by filtering, we need to show the signal to noise ratio has improved. To do this, 

both signals (P Enhanced and the filtered P Enhanced) were filtered using a 5 point 

moving average filter. The difference between the filtered signal and the original signal 

was considered to be noise. The power of noise was then calculated and averaged and 

divided by the signal power at each location. Fig. 3-28 shows the ratio of noise to signal 

power of filtered vs. not-filtered. 
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Figure 3-28. Quantitative demonstration of noise reduction by filtering 

 

It’s obvious that the noise to signal ratio has subsided (or signal to noise has improved) 

when a filter has been used. 

 

3.3.2 In a Viscous Medium 
 

 As derived in Chapter 2, the relation between normal particle velocity to pressure 

relation in a viscous medium can be expressed as: 
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Unlike Eq. (3.3-1), Eq. (3.3-2) doesn’t contain a singularity, thus the need for filtering to 

calculate the inverse 2D Fourier transform is eliminated. However the noise in the output 

pressure is still present due to the fact that imaginary part of k  is typically much smaller 

than the real part (i.e. αjkk −=  & α << ). In view of this we expect that the noise 

level would be much higher in water compared to tissue sine 

k

waterα << tissueα (see sction 

2.4.3 for more details).  

 108



Chapter 3: Model Verification 
________________________________________________________________________ 

To test this hypothesis a simulation was performed in water and then in tissue and the 

enhanced lateral pressure was calculated at various z coordinates.  The geometry and 

other parameters used in the simulations are shown in Fig. 3-29  

 

y

 
Figure 3-29. Geometry and parameters used in the simulation 
 

Fig. 3-30 illustrates how the noise amplitude is much smaller compared to water as 

expected.  
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Figure 3-30. Computational noise is more significant in water due to lower attenuation  

         coefficient (no filtering applied) 
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In case of simulation in water, applying a filter will significantly reduce the noise as 

shown in Fig. 3-31 below. The filter is a band stop filter with 1000/kbb sm =Δ=Δ . 
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Figure 3-31. Effect of filtering in reduction of noise. Implementation of a very narrow band stop  

filter   (  has resulted in significant reduction of noise )1000/( kbb ms =Δ=Δ

 

The noise reduction here is much more significant than that of the case of no attenuation 

performed in section 3.3.1. The reason is that in the case of no attenuation we had to 

implement a very narrow pre-filter to avoid the singularity which is putting a damp on the 

noise even before applying a wider band filter. But with inclusion of attenuation (even 

though it’s very low for water) the singularity no longer exists, and there’s no need to 

implement a pre-filter as required in previous section. 

The noise will decrease as one move father along the z axis, since the field profile 

becomes smoother which translates to narrower beam profile in spatial frequency domain 

and lower amplitude at radiation circle. This has been illustrated in Fig. 3-32 below for 

water at z=15mm vs. z=3mm planes. The noise at z=15mm has subsided by itself, even 

without applying a filter. 
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Figure 3-32. Reduction of noise in far field due to smoother field variations (no filter applied) 
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Chapter 4: 
Results 

  

In this chapter, we will be presenting the results of our simulations and compare them 

with other programs, published data or experimental results. The latest version of the 

code has been used in simulations presented here which is referred to as NLP-E (short 

For Enhanced Non-Linear Propagation) for terminology purposes. NLP-E features the 

following enhancements: 

 

1- Arbitrary source geometry and excitation definition. 

2- Full diffraction solution. 

3- A more accurate way to calculate pressure field which is referred to as “Enhanced 

Pressure” as defined in section 2.4. 

4- Introduction of k  or complex wave number to reduce computational noise and 

account for attenuation. 

5- Nonlinear-derived temperature and thermal dose calculations. 

 

4.1  Linear Simulations 
 

The NLP-E code can be run in linear regime by setting the coefficient of 

nonlinearity to zero )0( =β 6. Since programs to simulate linear wave propagation are 

widely available, we can compare NLP-E results with well established linear codes. 

The source parameters were selected to replicate the existing Imasonic IFUS transducer 

available at Advanced Biomedical Ultrasound Imaging and Therapy Lab of the Dept. of 

Physics. This transducer has a concaved spherical geometry with a circular central hole to 

accommodate the imaging probe as shown in Fig. 4-1 (a). 

                                                 
6 The NLP-E code can be also run in linear mode by selecting small source excitation amplitudes. This 
method have been also tried and validated in separate simulations.   
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(a) 

(b) 

R=100mm 

F

D=125mm 

Radiator surface 
f = 1MHz 
Po = 222.9 KPa 

DH=35mm 

(c) 

Figure 4-1 Source specifications. (a) Actual picture of the Imasonic IFUS transducer in the 
lab (pointers ’A’ and ‘B’ indicate the imaging probe and the focused source respectively)  
(b) 3D source definition used for the simulation (blue area indicates the inactive area of the 
middle where the imaging probe is located).   (c)  Actual dimensions 
 

The medium parameters were selected to be the same as published values for liver 

(Cobbold 2007, Curra et al. 2000). The parameters used in this simulation include: 
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Radius of curvature (R) = 100 mm 

Diameter of aperture (D) =  125 mm 

Ambient medium density )( oρ = 1060 Kg/m3 

Small signal peed of sound = 1595 m/s )( oc

Attenuation coefficient at 1MHz )(α = 5.755 Np/m 

Power factor of power law of attenutaion )(η  =1.1 

Initial plane axial location = 70 mm )( 0z

Spatial sampling interval of the propagation plane = 20/λ  

Spatial sampling interval of the initial plane = 0.5 mm 

Spatial extent of the propagation plane = 80mm80mm×  

Spatial extent of the initial plane = 80mm80mm×  

Propagation steps )( zΔ  = 1mm 

Number of propagation planes: 60 

 

Two simulations were performed using identical set of parameters as defined above. The 

first simulation was done using the “NLP_E” code and the second using the “Field”7 

program which is a linear code. The pressure, intensity and temperature profiles were 

plotted both in lateral and axial directions and compared. The power deposition rate was 

not plotted separately as it follows the same profile as intensity multiplied by the 

attenuation coefficient. 

 

4.1.1 Pressure Profiles 
 

The lateral pressure profiles have been plotted at axial locations of z = 75, 80, 85, 95, 

100, 105, 115 mm in total of 7 graphs.  In Fig. 4-2, each graph presents three pressure 

profiles calculated using different methods for the sake of comparison. The dottled line 

represents the pressure derived using the plane wave approximation which has been 

calculated using the impedance relation (i.e. zoo VcP ρ= ) 
                                                 
7 See Appendix-C for more details 
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(c) (d) 
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Figure 4-2. Lateral pressure profiles at various axial locations. Excellent agreement is observed 
between NLP_E and Field results in the linear regime. 
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The first point to note about the pressure pr files presented in Fig 4-2, is that the 

difference between the plane wave approximation and the enhanced pressure is obvious 

and can reach as high as 20% at some points. Therefore it lends support to the need of 

introducing enhanced pressure in our model. Fig. 4-3 is a close-up look at the pressure 

profile at z=75mm which illustrates this difference more clearly.  

o
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Figure 4-3. Enhanced pressure is higher than what’s predicted by plane wave 

      approximation (or impedance relation) at most loci along the x axis. 
 

It’s worth noting that both profiles have been derived using the same normal particle 

velocity distribution data set, thus the difference is strictly due to the methods of 

calculations. The enhanced pressure is calculated using Eq. (2.4-55) as discussed in 

section 2.4: 
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versus  is used as 

elow: 

the plane wave approximation in which the simple impedance formula

b

),(),( yxVcyxP zooρ=       (4.1-2) 
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The enhanced pressure formula of Eq. (4.1-1) is the solution of Helmholtz equation an

hence is valid for any field configuration (planar or non-planar); but the impedanc

relation of Eq. (4.1-2) is only valid for plane waves. It’s therefore expected that for a

focused sour

d 

e 

 

ce, Eq. (4.1-1) result in more accurate pressure values than Eq. (4.1-2). 

 

The second point to note about pressure profiles presented in Fig. 4-2, is that the 

enhanced pressure is almost always higher than the pressure calculated using the plane 

on purposes. As it can be seen in Fig. 4-3 the solid line is almost always situated 

above the dotted line w y noting that 

nents 

. 

 Eq. (4.1-2). 

wave approximation. A close-up look at Fig 4-2(a) has been shown in Fig. 4-3 for 

illustrati

ith exception of few points. This can be explained b

in plane wave approximation of Eq. (4.1-2), only normal component of particle velocity 

( zv ) is used to estimate the pressure, but in a general non-planar field, lateral compo

of particle velocity (i.e. yx vv , ) are also present and could have substantial amplitudes

The presence of these components would give rise to pressure values which are more 

than what is predicted by

 

The third point to note is that the results of the enhanced pressure model follow the result 

of the Field program more closely than the plane wave approximation. This fact has been 

illustrated in Fig. 4-4 below which is a close-up look at Fig. 4-2 (c). The dotted circle has 

been further magnified in Fig 4-4 (b) to display the details around 0=x  region. It’s 

interesting to note how the enhanced pressure profile assumes a pressure hump around 

the axial point ( 0=x ) consistent with the Field results. This would serve as a validation 

point for our model, only if we can demonstrate that the pressure calculated by the Field

program is an exact solution and not obtained by an impedance relation approximation

Appendix-C, we demonstrate that the p

 

. In 

ressure calculated in Field does not contain an 

pedance approximation and hence should yield similar results as NLP-E which is in im

agreement with our results. 

 

. 
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Figure 4-4. (a) Enhanced pressure tracks the results of the Field program more closely. (b) A close-
up look at the dotted circle in (a) reveals how enhanced pressure deviates from the plane wave 
approximation to produce the same curvature as the Field program. 
  

The lateral pressure around the focal plane quickly drops to close to zero as seen in Figs. 

4-2 (d),(e),(f). As a result the details of pressures far off-axis would not be reflected in 
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these graphs. Fig. 4-5 is the same graph as in Fig. 4-2 (e) with the y-axis in log scale 

which makes the small off-axis pressure fluctuations viewable. As it can be seen in Fig. 

4-5, our NLP-E model matches the Field results very well for lateral locations of around 

=x [-30mm, 30mm]. Beyond this interval, they will not exactly follow the same 

trajectory because of computational wrap-around errors which become observable at 

these very low pressure values off the axis. The wrap around errors are generated due to 

the limited spatial extent of the propagation plane. 
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Figure 4-5. Lateral pressure profile at focal plane in log scale 

 
 
4.1.2 Intensity Profiles 
 Intensity profiles are important as they give us an idea of power deposition rates 

as, in linear regime, they are directly related through Eq. (4.1-3) below: 

IQ ×= α2      (4.1-3) 

Intensity profiles are derived using the pressure data presented in section 4.1.1, through 

the following formula: 
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2||
2

1 P
c

I
ooρ

=    (4.1-4) 

Eq. (4.1-4) is only valid for a plane wave propagating in an inviscid medium, however it 

can be used in conjunction with Eq. (4.1-3) to calculate Q in general non-planar acoustic 

fields providing there’s no shear viscosity ( 0=μ ) in the medium (Nyborg 1981).8 

Fig 4-6 displays the lateral intensity profiles at axial locations of z = 75, 80, 85, 95, 100, 

105, 115 mm for the total of 7 graphs. For comparison, each graph includes three plots 

which have been obtained through applying Eq. (4.1-4) to pressure values of section 

4.1.1. 
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Figure 4-6. (a,b,c,d) Lateral intensity profiles at va  axial locations. Excellent agreements are rious
                     observed between NLP-E and Field results 

                                                 
8 In the next chapter we will be proposing a more general formula for Q which will be applicable to any 
continuous wave field (planer or non-planar) in any viscous medium. 
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Figure 4-6. Continued 
 

It’s worth noting how the wave front intensity is being concentrated around the focal 

point as shown in Fig. 4-6 (f). This induces a significant rate of heat deposition around 

.  

A close-up look of Fig. 4-6 (f) around the focal spot has been shown again in Fig. 4-7. 

The plane wave approximation of 

the focal spot which would result in rapid temperature elevation and tissue coagulation

zoo VcP ρ=  has resulted in intensity predictions which 

are significantly lower (dotted line vs. solid lines). At the focal point this difference is 

about 360 W/cm2 or 23%. Once again the importance of implementation of the enhanced 

pressure formula in the NLP-E code is demonstrated here as intensities around the focal 

spot are very important in calculations of the temperature response and thermal dose. 
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Figure 4-7.  The substantial difference between the results obtained using the impedance 

pressure (the dotted line) and the exact pressure (solid lines) around the foca
spot, reflects the significance of the enhanced pressure implementation in the 
NLP-E code.  

 

 

l 

emperature response simulations were performed in the vicinity of the transducer focal 

oint with the following boundaries: 

-5mm 

 4.1.3 Temperature Profiles 
 

T

p

≤≤ x  5mm 
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The temperature at these boundaries was set at (boundary conditions). 

Thermal properties of liver were used to calculate the temperature which include (Curra et 

al. 2000): 
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 ≤≤ z
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 (tissue and blood specific heat capacity) = 4180bC )./( CKgJ o , 

K  (liver thermal conductivity) = 0.6 

 (blood perfusion rate) = 20.0 

 

Using identical set of parameters, the temperature was then calculated through NLP-E 

(with β=0) and Field programs separately and the results were compared. In overall 

excellent agreement was observed. Fig. 4-8 displays temperature profiles after 0.5s of 

HIFU exposure with a focal time-average intensity of I = 1900 W/cm2. As it can be seen 

the temperature profiles almost overlap which reflects the validity of our model in linear 

regime as described in section 2.6.3 in Chapter 2. Fig 4-8 (a) shows the axial temperature 

profile and Fig. 4-8 (b) is the lateral temperature profile at the focal plane after 0.5s of  

HIFU exposure. 

 

)./( CmW o , 

bw )./( 3 smKg  
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Figure 4- P-E code 
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8. NL and Field yield similar results in linear regime. (a) Axial . (b) Lateral 
tem e profiles at t=0.5s 

Graphs in Fig. 4-8 reflect the temperature along certain locations of the calculation 

etric, the x-z plane also represents the temperature of the whole volume. 

 
 

domain. To make sure the temperature profiles are the same across the calculation 

domain, the temperature contour at the x-z plane was plotted as well. Since the source is 

axi-symm
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Figure 4-9. Temperature contours around the focal spot after: (a) 0.1s,  (b) 0.5s of HIFU exposure 
 
 
As it can be seen in Fig 4-9, both programs yields almost similar contours. 

Both programs (NLP-E and Field), return the lesion size and its location at the conclusion 

of temperature simulations. Table 4-1 summarizes these data for exposure time of 0.5 s 

followed by a cooling period of 0.5s.  

able 4-1. T
Thermal treatment results NLP-E Field 

 
hermal lesion data T

Highest temperature reached ( C) 82.61 82.79 o

Location of the highest temperature (x,y,z) (mm) (0,0,99.77) (0,0,99.66) 
Lesion size (mm x mm x mm) 1.563x1.563x8.299 1.577x1.577x8.174 
Lesion center (x,y,z) (mm) (0,0,100.02) (0,0,99.88) 
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R=160mm 

F 
D=37.6mm 

Concave source 
fo = 2.25 MHz 
Po = 92.5 KPa 

z 
O 

Medium: Water 

able 4-1 above, the lesion center is defined as the point where the highest dosage has 

occurred and the lesion size is based on the volume of points accumulating a dose higher 

than 240 equivalent minutes at 43 . 

 

4.2 Nonlinear Simulations 
In section 4.1 we noticed that the NLP-E code returns impressive results in linear 

mode. In this section the results of its performance in nonlinear mode is presented.  

 

4.2.1 Comparison with the KZK 
In order to validate our methodology and test the NLP-E performance in nonlinear 

mode, we’ll be comparing the results obtained using the NLP-E with published KZK 

simulations and experimental results available in the literature. In their 1995 paper, 

Averkiou and Hamilton (Averkiou and Hamilton 1995) presented their simulation results 

obtained through the simulations of the KZK and compared them with experimental 

results. In this section we have been using the exact same source and medium parameters 

as used by Averkiou and Hamilton. Fig 4-10 displays the source geometry and excitation 
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parameters. 

 

 

 

 

 

 

 

Figure 4-10. Source and medium para
e KZK nonlinear model. 

meters used for comparison with 
th 

 

 
9 Refer to section 2.6 for the definition of thermal dose 
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The parameters used in this simulation include: 

 

Radius of curvature (R) = 160 mm 

Medium

Diameter of aperture (D) =  37.6 mm 

 density )( oρ = 1000 Kg/m

Small signal speed of sound )( oc = 1486 m/s 

3 

Source pressure (Po) = 92.5 Kpa 

Source frequency (fo) = 2.25 MHz 

Attenuation coefficient at 2.25MHz )(α = 0.1645 Np/m 

Coefficient of nonlinearity )(β = 3.5 

Number of harmonics retained (Nf) = 10 

Power factor of power law of attenutaion )(η  =2 

Initial plane axial location )( 0z = 0 mm 

Spatial sampling interval of the propagation plane = 15/λ  

Spatial sampling interval of the initial plane = 0.3 mm 

Spatial exten 44mm44mm×  t of the propagation plane = 

Spatial extent of the initial plane = 37.6mm37.6mm×  

)zΔopagation steps (Pr  = 5mm 

u gation planes: 51 

ig. 4-11 below shows the pressure latera amental and three harmonics 

z = 85, 100, 120, 160 and 250mm. Results of the NLP-E code have been presented on 

ent results of Averkiou and Hamilton on the 

ght hand s

xperiment (solid line ine) results.  

 

N

 

mber of propa

 

F

at 

l profiles for fund

the left hand side and the KZK + experim

ri ide of Fig. 4-11. The results of Averkiou and Hamilton include both 

) and theoretical (dotted le
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 Figure 4-11.  Lateral pressure profiles at various axial locations. Left column: NLP-E results, Right  
column: Experiment (solid line) and KZK results (dotted line) by Averkiou and Hamilton, 1995.
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Figure 4-11.  Continued 
 

 

As it can be seen in Fig. 4-11, a very good agreement exists between our results and those 

obtained from the KZK nonlinear model. 

 

Generation of harmonics as shown in Fig. 4-11, causes distortion of the pressure 

waveforms from simple sinusoidal waveforms. Fig. 4-12 displays the normalized 

pressure waveform as a function of time at different axial locations. The linear gain at the 

focus can be calculated using Eq. (2.3-7) to be 10.27. As it can be seen in Fig. 4-12, the 

nonlinearity causes the peak pressure to be higher than what’s predicted from the linear 

approximation. At the same time, the peak negative pressure decreases and the waveform 

becomes asymmetrical unlike nonlinear propagation of a plane wave where the symmetry 

of the waveform is maintained (see Fig. 2-21; on page 45).  
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     Figure 4-12. Nonlinear distortion of the pressure wave at different axial locations.  
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4.2.2 Effect of Nonlinearity 

  

 Now that we have shown that the NLP-E yields accurate results both in linear and 

non-linear modes, we can compare the results between the two modes (linear vs. 

nonlinear) and investigate how nonlinearity effects affects the acoustic and thermal 

responses. A nonlinear code such as NLP-E enables us to quantify these differences and 

see how significant they could be. These differences will be more pronounced at higher 

edia with lower attenuation coefficient such as water or in focused 

urces. That’s why the study of nonlinearity effects is specially important in high 

tensity focused applications such as HIFU. 

o two parts 

(i) In water 

s 

source pressures, in m

so

in

 

The simulations is this part are divided int

(ii) In tissue 

 

This would enable us to see and describe different aspects of the nonlinear propagation of 

ultrasound. In each section two simulations are run using NLP-E code. One in linear 

mode and another in nonlinear mode and the results are compared. The linear simulation

are performed by setting the coefficient of nonlinearity to zero )0( =β . 

 

(i) In water: 

 

Fig 4-13 displays the source geometry and excitation parameters which will be used in 

simulations of this section. The source pressure (Po) was selected such that it produces 

2500 W/cm2 of focal intensity in water which is around the same range as used in a 

typical HIFU application. 
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D =20mm 

 
Figure 4-13.  Source geometry and excitation param
 

eterss. 

ther simulation parameters include: 

0 Kg/m3 

 sound in water = 1500 m/s 

O

 

Water density = 100

Small signal speed of

Attenuation coefficient at 1MHz in water =  Np/m 

Power factor of power law of attenuation (water) = 2 

Coefficient of nonlinearity (water) = 3.5 

Spatial sampling interval of the propagation plane = 15/

2105.2 −×

λ  

Spatial sampling interval of the initial plane = 0.4 mm 

l extent of the propagation plane = Spatia 26mm26mm×  

Spatial extent of the initial plane = 20mm20mm ×  

Propagation steps = 1mm 

Number of propagation planes: 30 

 

The simulation was repeated twice. Once it was run in linear mode by selecting = 0β  

and the second time in nonlinear mode by selecting 5.3=β . 

Nonlinearity produces harmonics with increasing amplitudes towards the focal spot 

where the pressure amplitude is elevated. This has been displayed in Fig. 4-14 (a) where 

the axial pressure profile for the fundamental and two more harmonics have been plotted. 

 

R =25mm 

F 

Radia
fo = 1M

tor surface 
Hz 

Po = 1.2 MPa 

Water 
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For comparison the results of the linear simulations have been plotted on the same graph.  
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al plane. The dotted line is the linear approximation 

 the amplitude of the fundamental around the focal spot is 

 That’s because part of the energy is 

s at different axial locations both in 

ormalized to the amplitude of the 

ach location and the time axis have been 

ntal (To ). As it can be seen in Fig. 4-15 (a), at z 

nlinear simulations yield almost similar results. But as we 

ocal point (z = 25mm), the difference becomes more 

bvious. It’s worth noting that in Fig. 4-15 (a),(b) the pressure peak compression phase 

 

s that th peak compression 

e shock front rise time. 

Figure 4-14. Harmonic generation at the foc
 

As it can be seen in Fig. 4-14,

lower than what’s predicted by linear simulations.

transferred from the fundamental into higher harmonics. 

 

 

Fig. 4-15 below displays pressure vs. time waveform

linear and nonlinear modes. Pressure values have been n

source pressure (Po) to reflect the gain at e

normalized to period of the fundame

=18mm, both linear and no

move along the z axis towards the f

o

has shifted to left while the peak rarefaction phase has shifted to right which is in

accordance with nonlinear propagation. The reason i e 

propagates faster through  

the medium in contrast to the rarefaction phase. As the wave propagates forward, they 

gradually move closer to form a shock front. However due to attenuation there’s a limit to 

th
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Figure 4-15. Pressure waveforms at different axial locations (linear vs. nonlinear) 
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This fact can be seen more clearly in Fig 4-16 where pressure waveforms at different 

axial locations have been plotted in one graph. The gradual shift of the pressure peak 

compression phase to the left and the peak rarefaction phase to the right and formation of 

a rapid rise time is clearly seen in these waveforms. 
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   Figure 4-16. Waveform distortion at different axial locations of a focused source in 

               water due to nonlinearity 
 

 

(ii) In tissue: 

 

Simulations in tissue were performed to investigate the effect of nonlinearity in 

high intensity focused treatments such as HIFU. Attenuation coefficient in tissue is 

typically 2 orders of magnitude higher than that in water. As a result the effect of 

nonlinearity will be suppressed in tissue by higher absorption. In this section we will use 

the same geometry and source excitation as in section (i). Since in an actual HIFU set-up, 

a layer of water exists between the transducer and the tissue (as a coupling medium), the 

medium properties were selected to be an average between those of water and the tissue. 

These averages were calculated based on 70% water and 30% tissue. 

 

The parameters used in this section include: 
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Radius of curvature (R) = 25 mm 

Diameter of aperture (D) =  20 mm 

Tissue density = 1000 Kg/m3 

Small signal peed of sound in tissue= 1500 m/s 

Small signal peed of sound in tissue = 1500 m/s 

Source pressure (Po) = 1.2 MPa 

Source frequency (fo) = 1 MHz 

Attenuation coefficient at 1MHz in tissue = 1.744 Np/m 

Power factor of power law of attenuation (tissue) = 1.73 

Coefficient of nonlinearity (tissue) = 3.82 

Spatial sampling interval of the initial plane = 0.4 mm 

Spatial extent of the propagation plane = 26mm26mm ×  

Spatial extent of the initial plane = 20mm20mm ×  

Propagation steps = 1mm 

Number of propagation planes: 60 

ulation was repeated twice. Once it was run in linear mode by selecting 

 

 

0=β  The sim

82.3=βand the second time in nonlinear mode by selecting . By comparing the results 

f two simulations, we can observe and quantify the effect of nonlinearity. 

Fig. 4-

i) in 

ected 

o

17 displays the pressure waveform at the focal point in both linear and nonlinear 

modes. Nonlinearity distortion has slightly subsided compared to results of section (

water (see Fig. 4-16 (c)) as the peak pressure has dropped around 10%. This is exp

due to higher absorption in tissue; however since the nonlinearity coefficient is slightly 

higher in tissue, the nonlinear distortion remains significant. 

Higher harmonics have higher attenuation coefficients due to the frequency power law 

and hence are absorbed by the medium faster. This will result in higher heat deposition 

rate in the focal region than what’s predicted by the linear theory.  
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Fig. 4-18 illustrates the difference in the p

the linear and nonlinear simulations
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Figure 4-18. Increase of the heat generation rate in the focal region as a result of  

        nonlinear propagation. 
 

The increase in heat deposition rate speeds up the onset of lesion creation in the focal 

region at the start of the treatment. However if the treatment is continued, this effect wil

not be as important in determining the overall size of the lesion (Cu

l 

rra et al. 2000).  
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To demonstrate this effect, temperature response for exposure time of 0.7 s  was 

obtained. Fig. 4-19, shows temperature maps and lesion formation progress in 0.1s time 

intervals. The lesion boundaries are determined through accumulated dosage data which 

is calculated using Eq. 2.6-1 based on temperature data. Any point accumu

thermal dose of 240 equivalent minutes at 43  or higher is considered

lesion. 
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Figure 4-19. (a,b,c) Development of temperature and lesion contours (linear vs. nonlinear) over time.  
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Figure 4-19. (d,e,f,g) -Continued  
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t can be seen in Fig. 4-19 (a),(b) , no lesion is created prior to t=0.2s. At t=0.3s, 

lesion starts to form but only in nonlinear model (see Fig. 4-19 (c)). In other words the 

onset of lesion creation is earlier as a result of nonlinearity. However as time passes by, 

the ratio between the lesion volume predicted in linear mode versus that in nonlinear 

mode decreases. This is due to the fact that the increase in heat deposition rate is only 

limited to a small volume. As the lesion grows, the elevated heat absorption rate in the 

middle of lesion is no longer a big factor in the overall size of the lesion. It’s also worth 

noting the expansion of high temperature contours in the middle of lesion as a result of 

 due to nonlinearity. 
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Chapter 5: 

Discussions and Conclusions 
 

 

In this chapter we will provide discussions and draw conclusions from the results 

obtained and lay out a road map for future works. 

.1  Significance of the Work 

In this section we will provide an overview of the enhancements implemented 

to NLP-E code and point out their significance in nonlinear simulations of the acoustic 

eam. 

.1.1 Arbitrary Excitation and 3D Source Geometry 

Using the NLP-E code, user can now define any 3D source geometry and 

xcitation as needed. This would enable simulations of variety of transducers in any 

ape or form. An example was demonstrated in Chapter 4 where an IFUS transducer 

ith a hole in the middle (see Fig. 4-1(a)) was simulated. Many nonlinear codes are 

mited to simple source geometries such as spherical, circular or rectangular shapes. 

hus this enhancement serves as an important step in the right direction. 

.1.2 Full Diffraction Solution 

As discussed in section 2.3.4, phase shift methods offer a simple way to propagate 

e field from the source to a plane nearby. However they include errors which increase 

ith the distance between the source and the plane. For a curved source this distance 

herently exists and hence presents a source of error. A full diffraction solution using the 
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Rayleigh diffraction integral on the surface of the source eliminates such errors. This is 

rly important in implementation of methods of fractional steps as the error is 

cumulative. In other words the er gradually grow as the results 

of the previou forth. Thus 

a full diffracti ometry and 

excitation methodology. 

les calculation of the pressure in a given 

act for a plane wave propagating in an inviscid medium. We have demonstrated 

ee section 4.1.2 for example) that for a concave spherical source with dimensions and 

und, the impedance 

lation based on the plane wave approximation yields substantially lower pressure 

ce 

ven 

 by 

on 

e 

 towards 

roviding more accurate predictions of both pressure and temperature as measurable 

In implementation of the enhanced pressure formula we managed to resolve the 

singularity issue in the transfer 

particula

ror on the first plane will 

s plane are used to find the field on the next plane and so on so 

on solution is a great complement to our 3D arbitrary source ge

 

 

5.1.3 Enhanced Pressure 

 
The enhanced pressure formula enab

plane in terms of the normal particle velocity in the same plane (see Eq. (2.4-55)). A 

more simple way to calculate the pressure is through the impedance relation which is 

only ex

(s

excitation frequencies around those of interest in biomedical ultraso

re

values. A particular area of interest is the focal region where a significant differen

between the two methods is observed. The difference in predicted pressure cause an e

more disparity in intensity values percentage wise as the intensity is related to pressure

the power of two. Since the intensity values are directly proportional to heat generati

rate, this will in turn effect temperature predictions as well. Thus implementation of th

enhanced pressure formula in the NLP-E code serves as an important step

p

physical quantities. 

 

function of normal particle velocity to pressure (Eq. (2.4-

17) , section 2.4.1)  by making use of k  or a complex wave number. By using a comp

wave number, the singularity in Eq. 2.4-17 is eliminated and calculating the inverse 2D 

lex 
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Fourier transform becomes a well posed problem. Alternatively the singularity in Eq. 

(2.4-17) can be avoided by implementing a narrow band stop filter around the singular

However the complex wave number method offers three benefits over the filtering 

method: first the signal is not attenuated due to filtering. This attenuation can be 

significant regardless of how narrow the band stop filter might be. This is because the 

transfer function amplitude becom

ity.  

es increasingly larger as one moves closer to the 

ngularity and a filter removes all those components. Second, a complex wave number 

trinsically accounts for viscous absorption in the medium. And third it’s 

n filtering.  

 

 

. As 

t 

 

ould 

ge 

ed excess heat in a confined area around the focal spot, smaller 

sions can be formed for highly localized treatment sites such as neurological 

e

significantly compared to other codes.  

si

in

computationally more efficient tha

 

5.1.4 Temperature Simulations 
 

The NLP-E code was coupled to a BHTE solver to perform simulations of 

temperature and thermal dose within the tissue. Temperature predictions are important in

therapeutic applications of ultrasound as they will enable us to plan a thermal treatment. 

The program also accounts for excess heating due to nonlinearly-induced harmonics

mentioned in section 4.2.2 in Chapter 4, it’s important to account for nonlinearity as i

plays an important role in the development of a thermal lesion specially in the initial 

phase of the treatment.  For instance, in a HIFU treatment, an appropriate power, 

exposure on time, and cooling time can be planned to create a certain lesion size. A wide

range of lesion sizes can be created with the right combination of total acoustic power, 

exposure and cooling times. In this regard, combination of the NLP-E and BHTE w

take us one step further in comparison to a linear code. For example by taking advanta

of nonlinearly induc

le

applications. 

Our novel approach in implementing BHTE within the NLP-E code has made it very 

efficient in terms of computational tim . Interpolating Q between two adjacent planes 

along with exploiting matrix operations have cut down the computational burden 
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5.2 Future Work 
In this section we will provide an overview of what needs to be done in futu

make the NLP-E code even more versatile and efficient.  

 

5.2.1  Pulsed Wave Model 
 NLP-E code simulates the continuous wave (CW) propagation of the ultrasound 

beam. A CW model is suitable for applications

is long enough compared to the period of the fundam

re to 

 in which the duration of excitation signal 

ental component. For example in a 

U treatment, where power is delivered for a few seconds at frequencies of a 

ed a continuous wave. However in modalities 

h short pulses of ultrasound is applied, a 

continuous wave model is no longer valid. It’s therefore desirable to develop a pulsed 

wave m

and its 

latest version of the NLP-E code, the heat deposition rate (Q) is calculated 

 2, 

typical HIF

few MHz, the input signal can be consider

such as histotripsy and lithotripsy in whic

odel to be able to simulate the propagation of short pulses of ultrasound. 

 

 

5.2.2 Multilayer Medium 
In the current version of the NLP-E code it’s assumed that the medium is 

homogenous. However, as we know, the ultrasound beam generally passes through 

several layers of tissue such as skin, fat, muscle, etc. It’s therefore necessary to exp

capability to be able to simulate multilayer tissue structures. This task is readily 

achievable considering the inherent layer-by-layer propagation scheme of the NLP-E 

code. 

 

 5.2.3 Enhanced Heat Deposition Rate 
 In the 

using the pressure amplitude of harmonics through the following formula (see Chapter

section 2.6.2): 

2

1

|| n

N

n oo

n P
c

Q ⋅= ∑
= ρ

α
     (5.2-1) 
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where N is the total number of harmonics retained and  is the pressure amplitude of 

Howev

-D) which is valid in any 

viscous liquid without any restrictions on the shear viscosity. In this formula, Q is 

es of x,y,z components of the particle velocity instead 

|| nP

of the nth harmonic. 

er Eq. (5.2-1) is only valid when the coefficient of shear viscosity is zero. We 

have derived a more general formula for Q (see Appendix

expressed in terms of the amplitud

of the amplitudes of pressure as stated in Eq. (5.2-2) below10: 

 

[ ] ||||||
1

222∑
=

++⋅=
N

n
zyxnoo VVVcQ αρ        (5.2-2) 

Eq. (5.2-2) indicates that all components of the particle velocity should be known to be

able to calculate the Q . However the NLP-E code calculates only the normal com

of particle velocity on each propagation plane. In Appendix-D we’ve been also offerin

method which enables calculation of x and y components of the particle velocity 

 

ponent 

g a 

knowing 

only its normal component over the extent of an entire plane. Hence Eq. (5.2-2) can be 

alternatively used to calculate the Q in the NLP-E.   

Implem ncement 

 

he addition of a BHTE module to the NLP-E code enables us to predict the 

 that the medium properties change as 

e medium at certain temperature levels should be defined as part of the 

parameters file. The p

                                                

entation of Eq. (5.2-2) into NLP-E will serve as another potential enha

for future work. 

 

5.2.4 Dynamic Medium  

T

temperature as a function of time. We also know

function of temperature (Kolios et al. 1999). In view of this a dynamic model can be 

developed to change the medium properties accordingly. A table of acoustic and thermal 

properties of th

rogram starts initially assuming room temperature and continues to 

 
10 See Appendix-D for derivation 
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of the acoustic part with new parameters is done followed by the 

sed 

ature 

5.2.5 Cavitation Model  
 

nonlinear propagation of ultrasound and cavitation processes due to peak negative 

vitation occurs and results in 

sideration in modalities such as HIFU or histotripsy where bubbles are 

often created within the focal region. Standard bubble dynamic models such as Rayleigh-

lesset-Noltingk-Neppiras-Poritsky (RPNNT) (Akulichev 1971) and  Gilmore-Akulichev 

the nonlinear acoustic model to account for bubble 

activities.  

calculate the temperature as a function of time. As soon as a temperature threshold is 

crossed, another run 

temperature simulations until the second threshold is reached. The process is then 

repeated till the end of the treatment period. A dynamic medium model can be also u

to address the creation of vapor bubbles in HIFU exposures. When the focal temper

reaches the boiling point and the vapor bubbles starts to appear, the acoustic and thermal 

properties can be changed drastically to reflect those effects.   

 

Bubble activities play an important role in lesion formation during high intensity 

focused ultrasound applications. Enhanced heat deposition rate in the focal region due to 

pressure cycle, create bubbles which can precede the lesion formation (Bailey et al. 2003). 

The Significance of bubbles in enhanced heating has been widely recognized (Holt and 

Roy 2001, Khokhlova et al. 2006). Multiple scattering of the acoustic energy by bubbles 

traps the acoustic energy within the volume where ca

increased absorption (ter Haar and Coussios 2007). It’s therefore necessary to take bubble 

activities into con

P

(Church 1989) can be coupled to 
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Appendix-A 

Instructions to Run NLP-E 

 
NLP-E should be run using Matlab® version 7.4 or later. NLP-E contains three principle 

 which are called upon. The principle m files and their 

sks include: 

CW_N

ium 

ain 

ting its 2D Fourier transform 

modularFDSBE2002.m executes the nonlinear propagation step 

attenuation.m creates an attenuation matrix in spatial frequency domain to be applied to 

H 

circ_w .m builds a tapered circular window with radius r_cut around the observation 

plane. 

 

All above mentioned files (with exception of Parameters.m) should be stored in one 

directory. The path to this directory has to be indicated in CW_NLPE_2009.m file in 

m files and a series of functions

ta

LP_E_2009.m which controls the flow of the program. The program starts by 

running this file. 

Parameters.m which stores all user definable parameters such as dimensions, med

acoustic and thermal properties, etc. 

Main2009_bhte.m which is the main body of the program. 

 

The name of the functions and their tasks are: 

truncsphshell.m creates a geometry matrix for a truncated sphere shell. 

bhte_2008.mexw32 performs BHTE temperature and thermal dose calculations 

calc_tr_fxn_H.m builds a matrix of the transfer function H by sampling it in spatial 

frequency domain (see section 2.1.2 for definition of H) 

sample_h.m builds a matrix of the transfer function H by sampling h in spatial dom

and calcula

in
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‘maindir’. Parameters.m file can be saved in a different directory for housekeeping 

ropriate folder name (e.g. date of simulation, etc.). In Parameters.m 

file another directory for saving temporary files have to be indicated in ‘dirname’. 

rogram initially asks for the location of the 

or a location and a name where you want to save 

the simulation results.  The simulation results will be saved in .mat format which can then 

e retrieved using the load command. The variables which are saved and made available 

 normal particle velocity for all harmonics in [m/s] 

 

l normal particle velocity along y direction for all harmonics in [m/s] 

 x direction for all harmonics in [Pa] 

onics in [Pa] 

o’: Pressure at the source surface in [Pa] 

3] 

eral name of ‘tmpl_x.mat’ where x is the time stamp of the temperature and thermal 

 

purposes with an app

When CW_NLPE_2009.m is run, the p

desired parameters file. It will then ask f

b

at the conclusion of NLP-E run include: 

 

‘axial’ :  Axial

‘lateralx’ :  Lateral normal particle velocity along x direction for all harmonics in [m/s]

‘lateraly’ :  Latera

‘PE_axial’ :  Axial pressure for all harmonics in [Pa] 

‘PE_lateralx’:  Lateral pressure along

‘PE_lateraly’:  Lateral pressure along y direction for all harm

‘P

‘x_obs’:  Observation points along x direction 

‘y_obs’:  Observation points along y direction 

‘I_axial’: Total time-averaged axial intensity profile [W/m2] 

‘I_lateralx’: Total time-averaged lateral intensity profile along x direction [W/m2] 

‘Q’: Power deposition rate at all calculation planes [W/m

 ‘ZQ’: z coordinates of calculation planes in BHTE domain where intensity and power 

deposition values were calculated 

 

The results of the BHTE part of the program are saved in the main directory under the 

gen

dose readings.
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Published Paper 
 
Canadian Acoustics, Vol. 37 No. 3 (2009), p. 172-173 
 

 

AN ENHANCED NUMERICAL MODEL TO SIMULATE NONLINEAR 

IELD 

ca

CONTINUOUS WAVE ULTRASOUND F
Shahram Mashouf, Jahan Tavakkoli 

Dept. of Physics, Ryerson University, Ontario, Canada, M5B 2K3   

jtavakkoli@ryerson.  

applications in tumor necrosis, hemostasis 

f treatment highly focused 

n be created inside the tissue 

 

ed noninvasively. Selecting the right transducer and 

xcitation parameters ensure that underlying tissue layers remain intact and tissue 

a 

linear distortion can be observed and thus an accurate propagation model 

eeds to include the effect of nonlinearity (Curra et al. 2000) The model that we present 

here is based on a second-order operator splitting method where the acoustic field is 

propagated over incremental steps taking into account the effects of diffraction, 

onlinearity and attenuation. This model is in essence a modified version of the KZK 

 

INTRODUCTION 

Within the realm of therapeutic ultrasound, high intensity focused ultrasound 

(HIFU) is a rapidly expanding modality with 

and immunotherapy (Bailey et al. 2003). In this method o

ultrasound beams induce a rapid temperature rise around the focal spot due to conversion 

of acoustic energy to heat. Precise, well defined lesions ca

due to thermal coagulation. One advantage of HIFU over other similar treatment

modalities is that it can be perform

e

coagulation happen only around the focal spot.  

Due to high acoustic pressure amplitude and intensity produced in focal region, 

significant non

n

n
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model where the parabolic diffraction term is replaced by a more accurate full diffraction 

rm. This method was first introduced by Christopher and Parker (Christopher and Parker 

91) for axi-symmetric sources and then improved by Tavakkoli et al. (Tavakkoli et al. 

larger propagation steps. It was then extended by Zemp et al. 

 method.  

 this work, we’ll be further refining this method by introducing arbitrary source 

geometry and excitation definition, full diffraction solution, enhanced pressure 

c  

The result is a IFU beams in 

tissue including tempe FU power is usually 

delivered for the duration of a few seconds W 

simulation will be suitable. 

METHOD 

equation, which accounts for combined effects of diffraction, 

attenua

te

19

1998) via implementing 

emp et al. 2003) to general non axi-symmetric problems using angular spectrum(Z

In

alculation, and enhanced power deposition rate and temperature prediction capabilities.

particularly useful tool in carrying out simulations of H

rature rise predictions. Since a typical HI

 at frequencies of a few MHz, a C

The KZK 

tion and nonlinearity in propagation of acoustic beam, is given in Eq. (1) below: 

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

⎟
⎠

⎜
⎝

++∇=
∂
∂

∫
∞−

⊥ τ
β

τ
μμ

ρ
τ

τ 2

2

2

3
2

32
1

2 c
pdc

z
p

B
oo

o   (1) 

The first term on the right hand side is the diffraction term in parabolic approximation, 

the second term reflects the effect of attenuation and the third term is due to nonlinearity. 

The pressure field can be calculated over propagations planes in incremental steps by 

bringing 

⎞⎛ 4 pp

z
p
∂
∂  to the left side as in Eq. (1). Also based on the above equation, the effects of 

diffraction, attenuation and nonlinearity can be applied independently over propagation 

planes and then added together. This is often referred to as operator splitting method. In 

the second-order operator splitting method, a certain propagation scheme is maintained 

which enable larger propagation steps and faster computational time (see Fig.1) 

(Tavakkoli et al. 1998). 
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Note that in this method, nonlinearity and attenuation are combined and propagated in 

one step. For a CW periodic waveform, the equations of propagations in each step shown 

in Figure 1 are presented here. For diffraction over the nth harmonic: 

( ) ( ){ } ( ){ }zkkHzyxvzzyxv yxzDDz Δ×ℑℑ=Δ+ − ,,,,,, 2
1

2   (2) 

where

D 

N+A 

D 

D 

N+A 
zΔ

zΔ

Figure 1. Second-order 
operator splitting method. 
D, N, and A represent 
operators for diffraction, 
nonlinearity and 
attenuation respectively. 

 and )( 222

),,( yx kkkzj
yx ezkkH +−Δ=Δ oo cnfk /)(2π=  and   are spatial frequency 

components. This will be repeated ov onics (

yx kk  , 

er N harm =n 1 to N). 

For nonlinearity and attenuation over the nth 

harmonic: ( ) ( ) ( )
1

*
2

2     (
2

3)
n N

bo
n n i n i i n i o o n

fv z z v z j z iv v nv v nf v z
c

πβ α
−

− −
⎡ ⎤

+ Δ = + Δ + − Δ⎢ ⎥
⎣ ⎦
∑ ∑ which will be repeate

1 1i i no = = +

d  

over N harmonics as well. 

In the enhanced version of the algorithm, user has the capability to define an arbitrary 

is to propagate the beam from the source onto the initial plane by introducing simple 

ection of solid lines in Fig. 2). The calculated values of  is then 

expanded and assigned to the adjacent squares (dotted lines) to create a 2D array as  

source geometry and input excitation. Since the propagation is done plane by plane, this 

will require an extra initial step to propagate the field from the surface of transducer to an 

initial plane. This step is done using the Rayleigh diffraction integral which assumes 

linear propagation from the source to the first plane. Another method to accomplish this 

phase shifts. Phase shift methods, however, produce inaccurate results in near field 

specially when the source surface is highly focused 

The normal particle velocity is then calculated on equally spaced discrete points across 

the initial plane (inters zv
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y

 

shown in Fig. 2.Since the value of zv across any given square (e.g. the shaded area shown 

in Fig. 2) is constant, it can be written in compact form as ⎟
⎠
⎞

⎜
⎝
⎛ −−

= vv oz re
w

yy
w

xx cc )(
,

)(
ct  

where  is the width of the array element and  is the location of the element’s 

 The rect function has an analytical 2D Fo nsfo

w ),( cc yx

centre. urier tra rm as below: 

×=ℑ )
2

,
2

(sinc)( 2 ykk )( cyykcxxkj
2 ππ

x
ozD wwwvv e +−     (4) 

en added up across all array elements to calculate 

entire plane. The result is then feed into Eq. 2 to perform the first half step diffraction as 

inishing diffraction substep, the result is then converted back 

rical transducer with effective radius 

of curvature of 160 mm and aperture diameter of 37.6 mm working at a frequency of 2.25 

Eq. 4 is th the Fourier transform of the 

illustrated in Fig. 1. After f

to spatial domain using inverse Fourier transform and a nonlinear substep is subsequently 

performed using Eq. 3. The process is then repeated to propagate the field along the z 

direction.  

RESULTS 

The results obtained using our method were compared with other methods both in 

linear and nonlinear regimes. In overall, excellent agreements were observed. Fig. 3 

displays lateral pressure profiles for a concave sphe

MHz and with a source pressure of 92.5 KPa. Our results are in excellent agreement with 

those obtained by Averkiou and Hamilton (Averkiou and Hamilton 1995) using the KZK 

nonlinear model as shown in Fig. 3. 

 

x 

 

w

w

( )cc yx ,

Fi
In
a 

gure 2. 
itial plane as 
2D array. 
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Appendix-C 
 
 
“Field” program
 
 

Field is a program which conducts linear simulation of continuous wave 

ultrasound in a homogenous medium. In this thesis we’ve made use of Field to conduct 

linear simulations of ultrasound for the sake of comparison with our results or validation 

of our methodology. 

ents. 

e at any given Field point is then calculated by summing up the contribution 

f each surface element over the entire surface area of the source. The pressure 

ula 

riginally proposed by Ocheltree and Frizzel (Ocheltree and Frizzell 1989) as below: 

 

 

In Field the pressure is calculated by dividing the source into small rectangular elem

The pressur

o

contribution of each surface element is calculated through an analytical form

o

( )
⎟
⎠
⎞

⎜
⎝
⎛ Δ′

⋅⎟
⎠
⎞

⎜
⎝
⎛ Δ′+−ΔΔ

=Δ
R

hyk
R

wxk
R

Rjkvhwcj
P nooo

2
sinc

2
sinc

)(expρ α
λ

 (C-1) 

here and are the coordinates of the field point where the pressure is to be 

alculated in the coordinate system attached to the element (see Fig. C-1 and/or “List of 

ymbols” for definition of parameters used in Eq. (C-1)).  

 
igure C-1.  Definition of parameter 

 x′ , y ′ z ′w

c

S

 

F

P

O 

wΔ

R

x′

y ′z′

hΔ
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cheltree and FrizzeO l (Ocheltree and Frizzell 1989) have used the discrete format of the 

llowing surface integral to arrive at Eq. (C-1): fo

dS
r

ev
cj

P
rjk

n
oo ∫∫

−−

=
)(αρ

Sλ
  (C-2) 

in terms of the velocity potential, we can write (Cobbold 2007):   

 

Here we’d like to demonstrate that this equation provides the exact pressure term and is 

not based on an impedance relation between pressure and particle velocity. Starting from 

the Rayleigh integral 

dS
rS

ns π2

where nv  is the normal particle velocity at the source surface. 

We also derived in Chapter 2, section 2.4 (see Eq. 2.4-41), the following express

pressure: 

ev
rkj

∫∫
−

=
1             (C-3) 

ion for 

φ

sj
k 2−P φ
ωκ

=               (C-4) 

Substituting Eq. (C-3) into Eq. (C-4) yields: 

dS
r

evjP
S

rk

n∫∫=
πωκ2

          (C-5)   

Substituting 

k j−2

αjkk −=  (see Eq. (2.4-49), Chapter 2, section 2.4)) into Eq. (C-5), yields: 

dS
r

evjkkjdS
r

evjkjP
S

rjkj

n
S

rjkj

n ∫∫∫∫
−−−− −−

=
−

=
)(22)(2

2
)2(

2
)( αα

πωκ
αα

πωκ
α   (C-6) 

(3.1-7) 

Noting ooc κρ/1= (Cobbold 2007), we can write: 

      (C-7) 

Substituting Eq. (C-7) into Eq. (C-6) and noting 

)/(1 2
ooc ρκ =

k<<α : 

dS
r

ev
cjkjk

P
S

rjkj

n
oo ∫∫

−−−
=

)(2

2
)2( α

πω
ρα

  (C-8) 

which can be simplified as: 
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dS
r

vP
S

n
oo ∫∫=

2π
   (C-9) 

Since k<<

ecjk rjkj −−− )()2( αρα

α  for most biological tissues, the term α2  can be ignored to yield: 

dS
r

evjcP
S

rjk

n
oo ∫∫

+−−
=

)(α

λ
ρ     (C-10) 

which is the same formula as used by Ocheltree and Frizzell.  

In other words pressure calculated by the Field program does not have an impedance 

approximation.  
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Appendix-D 

 
Enhanced  Q  - An I
 

 

position rate (see Eq. (2.6-5), Chapter 2, section 2.6.2). As explained in 

that section, this equation is only valid when the coefficient of shear viscosity is zero. In 

this Appendix we’ll present a more general formula which is valid in any viscous liquid 

without any restrictions on the shear viscosity. 

We start from 

 

mporved Formula 

 
 

In the NLP-E code we use the pressure amplitude of harmonics to calculate the

enhanced heat de

IQ
r
⋅−∇=  equation which is a conservation of energy relation (Nyborg 

1981): 
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)()()()(

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂
⋅+

∂
∂
⋅+

∂
∂
⋅+

∂

∂
⋅+

∂
∂
⋅+

∂
∂
⋅−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

∂
∂

+⋅
∂
∂

+⋅
∂
∂

−=⋅⋅−∇=⋅−∇=

z
p

zv
z
zv

p
y
p

yv
y
yv

p
x
p

xv
x
xv

p

zvp
zyvp

yxvp
x

vpIQ rr

 

In the case of a CW periodic excitation, each pair on the right hand side of Eq. (D-1) 

comprise of a product of two temporal waveforms (v and u) which can be written in a 

general form as below: 

 

             (D-2) 
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s a result temporal averages of the terms on the right hand side of Eq. (D-2) will be zero A

unless ji = , where in that case it equals to ( vi
ji ϕcos

2
 )uj

uv
ϕ− . Hence Eq. (D-2) can be 

mplified as: si

{ } 
1

Re
2
1)(

1
cos

2
1

∑
=

∗⋅=−∑
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Where nV  and nU  are complex numbers representing the phasor of each harmonic. 

Using Eq. (D-3), the temporal average of Q as presented in Eq. (D-1), can be written as 

follow: 

v.u
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For a simple case of a plane linear wave propagating in z direction, all spatial derivativ s 

with respect to x and y are zero and Eq. (D-4) can be simplified as: 

e
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We also know that for a
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     (D-6)  

where α is the medium attenuation coefficient and λπ /2=k  is the ave 

Substituting Eqs. (D-6) into Eq. (D-5) yields: 

 w number. 
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I is the temporal average intensity at a field point where Q  is to be calculated. 

s as 

ormation we know (Eq. (2.4-42), Chapter 2): 

Eq. (D-7) is a well known formula for heat rate generation in a plane wave and serve

a verification point for Eq. (D-4) as derived above. 

In a more general (non-planar) field f

z
P

k
jVz ∂

∂
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ωκ         (D-8) 

Similarly and due to symmetry: 
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These relations are linear approxim

remains low. Assuming linearity, these equations are valid for all harmonics. 

Assuming 

ations and hence are only valid when signal amplitude 

akj =−
ωκ

2

, Eqs. (D-8) , (D-9) & (D-10) can be re-arranged as: 
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Substituting Eqs. (D-11) , (D-12) , (D-13) into Eq. (D-4) for Q , yields: 
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Noting 2||*
xVxVxV =⋅ , and , Eq. (D-14) can be 
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The general relation which rela erived by 

combining the equation of state and the continuity equation (Cobbold 2007). In small 

tes the pressure and particle velocity is d

signal approximation, this will result in: 

0. =∇+
∂
∂p rvκ                      (D-17) 

For a single frequency excitation: 

t
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Substituting Eq. (D-18) into Eq. (D-17): 
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r
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Substituting Eq. (D-19) into Eq. (D-1
ωκ

2kja −=  : 6) and noting 
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Eq. (D-23) indicates that all components of particle velocity should be known to be able 

to calculate the ver he NL -E co  calc ates only the normal component of 

formula to calculate the pressure from the particle velocity on a propagation plane which 

is repeated here: 

 Q . Howe  t P de ul

particle velocity on each propagation plane. In Chapter 2, section 2.4.3, we derived a 
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Now we can use the pressure obtained by Eq. (D-24) and substitute into Eq. (D-25) 

below: 
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to calculate the x  component of the particle velocity or into Eq. (D-26): 
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calcu  using Eq. (D-23). 

In other words knowing the normal particle velocity distribution on a propagation plane, 

would be sufficient to accurately calculate the on the sam

 

 
 
 
 
 

elocity are kn

Q

Q e plane. 

 

 

 



References 
________________________________________________________________________ 

References 

Airy, G B 1849 On a difficulty in the problem of sound Phil. Mag. 34 401-5  

Akulichev, V A 1971 Pulsations of cavitation voids 203-
59  

ts of harmonic generation in a 
focused finite-amplitude sound beam J. Acoust. Soc. Am. 98 6 3439-42  

, M R
erapeutic effect of ultrasound (a review) Acoustical 

49

sound in Medicine 

aker, A C 1992 Nonlinear pressure fields due to focused circular apertures J. Acoust. 
Soc. Am. 91 2 713-7  

aker, A C, Anastasiadis, K and Humphrey, V F 1988 The nonlinear pressure field of a 
plane circular piston: theory and experiment.J. Acoust. Soc. Am. 84 4 , Oct. 1988 
1483-7  

aker, A C, Berg, A M, Sahin, A and Tjotta, J N 1995 The nonlinear pressure field of 
plane, rectangular apertures: Experimental and theoretical results J. Acoust. Soc. 
Am. 97 6 3510-7  

Blackstock, D T 1966 Connection between the Fay and Fubini solutions for plane sound 
waves of finite amplitude J. Acoust. Soc. Am. 39 6 1019-26  

Burgers, J M 1948 A mathematical model illustrating the theory of turbulence Adv. Appl. 
Mech. 1 171-99  

Carstensen, E L, Law, W K, McKay, N D and Muir, T G 1980 Demonstration of 
nonlinear acoustical effects at biomedical frequencies and intensities Ultrasound in 
Medicine and Biology 6 4 359-68  

Cathignol, D, Tavakkoli, J, Birer, A and Arefiev, A 1998 Comparison between the effects 
of cavitation induced by two different pressure-time shock waveform pulses IEEE 
Trans. Ultrason. Ferroelectr. Freq. Control 45 3 788-99  

 

High Intensity Ultrasonic Fields 

Averkiou, M A and Hamilton, M F 1995 Measuremen

Bailey , Khokhlova, V A, Sapozhnikov, O A, Kargl, S G and Crum, L A 2003 
Physical mechanisms of the th
Physics  4 369-88  

Baker, A C 1998 Nonlinear Effects in Ultrasound Propagation, Ultra
ed F A Duck, A C Baker and H C Starritt pp 23  

B

B

B

 161



References 
________________________________________________________________________ 

Christopher, P T and Parker, K J 1991 New approaches to nonlinear diffractive field 
. Acoust. Soc. Am. 90 1 488-99  

hurch, C C 1989 A theoretical study of cavitation generated by an extracorporeal shock 
wave lithotripter.J. Acoust. Soc. Am. 86 1 215-27  

sity Press)  

coma. I. Experimental model Ophthalmology 92 3 339-46  

 of 

r 

. 

 of heating patterns and tissue temperature response due to 
 

Delon-Martin, C, Vogt, C, Chignier, E, Guers, C, Chapelon, J Y and Cathignol, D 1995 

Dew enius relationships from the molecule and cell to the clinic 

Duck sound in Medicine 

Eberhart, R C, Shitzer, A and Hernandez, E J 1980 Thermal dilution methods: estimation 

Euler

Filon
stical Physics 47 4 468-

75  

propagation J

C

Cobbold, R S C 2007 Foundations of Biomedical Ultrasound : Oxford Univer

Coleman, D J, Lizzi, F L and Driller, J 1985a Therapeutic ultrasound in the treatment of 
glau

Coleman, D J, Lizzi, F L and Driller, J 1985b Therapeutic ultrasound in the treatment
glaucoma. II. Clinical applications Ophthalmology 92 3 347-53  

Coleman, D J, Lizzi, F L and Torpey, J H 1985c Treatment of experimental lens capsula
tears with intense focused ultrasound Br. J. Ophthalmol. 69 9 645-9  

Coulouvrat, F 1993 Continuous field radiated by a geometrically focused transducer: 
Numerical investigation and comparison with an approximate model J. Acoust. Soc
Am. 94 3 I 1663-75  

Curra, K P, Mourad, P D, Khokhlova, V A, Cleveland, R O and Crum, L A 2000 
Numerical simulations
high-intensity focused ultrasound IEEE Trans. Ultrason. Ferroelectr. Freq. Control
47 4 1077-89  

Venous thrombosis generation by means of high-intensity focused ultrasound 
Ultrasound in Medicine and Biology 21 1 113-9  

ey, W C 2009 Arrh
International Journal of Hyperthermia 25 1 3-20  

, F A 2002 Nonlinear acoustics in diagnostic ultrasound Ultra
and Biology 28 1 1-18  

of tissue blood flow and metabolism.Ann. N. Y. Acad. Sci. 335 107-32  

, L 1759 De la propagation du son Mém.Acad.Sci.Berlin 15 185  

Fay, R D 1931 Plane sound waves of finite amplitude J. Acoust. Soc. Am. 3 222-41  

enko, E A and Khokhlova, V A 2001 Effect of acoustic nonlinearity on heating of 
biological tissue by high-intensity focused ultrasound Acou

 162



References 
________________________________________________________________________ 

Foley, J L, Vaezy, S and Crum, L A 2007 Applications of high-intensity focused 
ultrasound in medicine: Spotlight on neurological applications Appl. Acoust. 68 3 
245-59  

Four  Analytique de la Chaleur  

lesions in the central nervous system with ultrasound J. Neurosurg. 11 5 471-8  

Fubi nde ampiezza Alta 
Frequenza 4 530-81  

Hall, vitation induced 
tissue disruption by ultrasound imaging backscatter reduction IEEE Trans. 

Hamilton, M Fand Blackstock, D T ed 1998 Nonlinear Acoustics  

Hana
asound Hepatology Research 36 4 308-14  

Holt, R G and Roy, R A 2001 Measurements of bubble-enhanced heating from focused, 
MHz-frequency ultrasound in a tissue-mimicking material Ultrasound in Medicine 

Hugo dans les corps et plus 
spécialement dans les gaz parfaits J.École Polytech. 57 3-97  

Kenn erts, I S D, Middleton, M R and 
Cranston, D 2004 Contrast-enhanced ultrasound assessment of tissue response to 

  

Khokhlov, R V and Soluyan, S I 1964 Waves of moderate amplitudes in absorbing media 

Khokhlova, V A, Bailey, M R, Reed, J A, Cunitz, B W, Kaczkowski, P J and Crum, L A 
esion formation by 

high intensity focused ultrasound in a gel phantom J. Acoust. Soc. Am. 119 3 1834-

 

ier, J 1822 Théorie analytique de la chaleur Théorie

Fry, W J, Mosberg, W H, Barnard, J W and Fry, F J 1954 Production of focal destructive 

ni, E 1935 Anomalie nella propagazione di onde acustiche di gra

 T L, Fowlkes, J B and Cain, C A 2007 A real-time measure of ca

Ultrason. Ferroelectr. Freq. Control 54 3 569-75  

jiri, K et al. 2006 Microbubble-induced increase in ablation of liver tumors by high-
intensity focused ultr

Haran, M E and Cook, B D 1983 DISTORTION OF FINITE AMPLITUDE 
ULTRASOUND IN LOSSY MEDIA.J. Acoust. Soc. Am. 73 3 774-9  

and Biology 27 10 1399-412  

niot, P H 1887 Sur la propagation du mouvement 

edy, J E, Ter Haar, G R, Wu, F, Gleeson, F V, Rob

high-intensity focused ultrasound Ultrasound in Medicine and Biology 30 6 851-4

Acustica 14 5 241-7  

2006 Effects of nonlinear propagation, cavitation, and boiling in l

48  

Kieran, K, Hall, T L, Parsons, J E, Wolf Jr., J S, Fowlkes, J B, Cain, C A and Roberts, W
W 2007 Refining Histotripsy: Defining the Parameter Space for the Creation of 

 163



References 
________________________________________________________________________ 

Nonthermal Lesions With High Intensity, Pulsed Focused Ultrasound of the 
Kidney J. Urol. 178 2 672-6  

In Vitro 

Kolios, M C, Sherar, M D and Hunt, J W 1999 Temperature dependant tissue properties 

Biotechnology 44 113-8  

Kuzn

 
72  

Leslie, T A and Kennedy, J E 2006 High-intensity focused ultrasound principles, current 
63-72  

Lighthill, M J 1956 Viscosity effects in sound waves of finite amplitude Surveys in 

Liu, D - and Waag, R C 1997 Propagation and backpropagation for ultrasonic wavefront 

Lizzi r, J 1978 Experimental, ultrasonically induced lesions 
in the retina, choroid, and sclera Invest. Ophthalmol. Visual Sci. 17 4 350-60  

Lynn ced by focused 
ultrasound Am. J. Pathol. 20 637-49  

Lynn

26 2 179-93  

Maie red tensile strength after shock-wave application in an animal 
model of tendon calcification Ultrasound in Medicine and Biology 27 5 665-71  

Nach

lts J. Acoust. Soc. Am. 98 4 2303-23  

and ultrasonic lesion formation Advances in Heat and Mass Transfer in 

etsov, V P 1971 Equations of nonlinear acoustics Sov. Phys. Acoust. 16 467-70  

Lagrange, J 1760 Nouvelles recherches sur la nature et la propagation du son Miscellanea
Taurinensis 2 42 11-1

Lee, C P and Wang, T G 1993 Acoustic radiation pressure J. Acoust. Soc. Am. 94 2 I 
1099-109  

uses, and potential for the future Ultrasound Quarterly 22 4 2

Lienhard, J Hand Lienhard V, J H 2008 A Heat Transfer Textbook  

Mechanics 250-351  

design IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44 1 1-13  

, F L, Coleman, D J and Drille

, J G and Putnam, T J 1944 Histology of cerebral lesions produ

, J G, Zwemer, R L, Chick, A J and Miller, A E 1942 A new method for the 
generation and use of focused ultrasound in experimental biology J. Gen. Physiol. 

r, M et al. 2001 Impai

ef, S, Cathignol, D, Tjotta, J N, Berg, A M and Tjotta, S 1995 Investigation of a 
high intensity sound beam from a plane transducer. Experimental and theoretical 
resu

Newton, I 1701 Scala graduum Caloris. Calorum Descriptiones & Signa Philosophical 
Trans. 824-9  

 164



References 
________________________________________________________________________ 

Nybo
 70 2 310-2  

Parsons, J E, Cain, C A and Fowlkes, J B 2007 Spatial variability in acoustic backscatter 
 

therapy IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54 3 576-90  

Pennes, H H 1948 Analysis of tissue and arterial blood temperatures in the resting human 
forearm J. Appl. Physiol. 1 2 93-122  

Poisson, S D 1808 Mémoire sur la théorie du son Journal de l'École Polytechnique, 14 
Ième Cahier 7 319-92  

Princ 23  

ite longitudinal 
disturbance Trans.R.Soc.Lond. 160 277-88  

Rayleigh, L 1910 Aerial plane waves of finite amplitude Proc.R.Soc.London 84 247-84  

edicine 
European Journal of Ultrasound 9 1 89-97  

Robe ulsed 
cavitational ultrasound: A noninvasive technology for controlled tissue ablation 

Rudenko, O V and Sapozhnikov, O A 1991 High-power acoustic beams: Self-action of 
ow 

Sapareto, S A and Dewey, W C 1984 Thermal dose determination in cancer therapy 

Sokolov, D L, Bailey, M R and Crum, L A 2001 Use of a dual-pulse lithotripter to 

Stokes, G G 1848 On a difficulty in the theory of sound Phil.Mag. 33 349-56  

rg, W L 1981 HEAT GENERATION BY ULTRASOUND IN A RELAXING 
MEDIUM.J. Acoust. Soc. Am.

Ocheltree, K B and Frizzell, L A 1989 Sound field calculation for rectangular 
sources.IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36 2 242-8  

as an indicator of tissue homogenate production in pulsed cavitational ultrasound

e, J Land Links, J M 2006 Medical Imaging: Signals and Systems pp 

Rankine, W J M 1870 On the thermodynamic theory of waves of fin

Rivens, I H, Rowland, I J, Denbow, M, Fisk, N M, Ter Haar, G R and Leach, M O 1999 
Vascular occlusion using focused ultrasound surgery for use in fetal m

rts, W W, Hall, T L, Ives, K, Wolf Jr., J S, Fowlkes, J B and Cain, C A 2006 P

(histotripsy) in the rabbit kidney J.Urology (in Press)  

discontinuous waves, focusing of pulses, and extracorporeal lithotripsy Mosc
Univ.Phys.Bull. 46 5-18  

International Journal of Radiation Oncology Biology Physics 10 6 787-800  

generate a localized and intensified cavitation field J. Acoust. Soc. Am. 110 3 I 
1685-95  

 165



References 
________________________________________________________________________ 

Tavakkoli, Jand Sanghvi, N T 2009 Ultrasound-Guided HIFU and Thermal Ablation,
Therapeutic Ultrasound: Mechanisms to Ap

 
plications ed V Frenkel (Hauppauge, 

NY (in press): Nova Science Publishers)  

Tava ng of pulsed 
finite-amplitude focused sound beams in time domain J. Acoust. Soc. Am. 104 4 

Tayl
Proc.R.Soc.Lond.A 84 371-7  

TenC gation of the nonlinear pressure field 
produced by a plane circular piston J. Acoust. Soc. Am. 94 2 I 1084-9  

ter H  Diagnostic Ultrasound, Abdominal and General Ultrasound 
ed D Cosgrove, H Meire and K Dewbury pp 127-32  

ter Haar, G 2007 Therapeutic applications of ultrasound Prog. Biophys. Mol. Biol. 93 1-3 

ter Haar, G R 1995 Ultrasound focal beam surgery Ultrasound in Medicine and Biology 

Thiel, M 2001 Clin.Orthop.Relat.Res. 387 18  

Vaez
ed ultrasound to control 

bleeding Journal of Vascular Surgery 29 3 533-42  

West

Williams, R, Cherin, R, Lam, T Y, Tavakkoli, J, Zemp, R J and Foster, F S 2006 

Medicine and Biology 51 5809-24  

Wiss

Wu, F, Wang, Z and Lu, P 2004 Activated anti-tumour immunity in cancer patients after 
-22  

kkoli, J, Cathignol, D, Souchon, R and Sapozhnikov, O A 1998 Modeli

2061-72  

or, G I 1910 The conditions necessary for discontinuous motion in gases 

ate, J A 1993 An experimental investi

aar, G R 1993 Safety of

111-29  

21 9 1089-100  

ter Haar, G and Coussios, C 2007 High intensity focused ultrasound: Physical principles 
and devices International Journal of Hyperthermia 23 2 89-104  

y, S, Martin, R, Kaczkowski, P, Keilman, G, Goldman, B, Yaziji, H, Carter, S, 
Caps, M and Crum, L 1999 Use of high-intensity focus

ervelt, P J 1963 Parametric acoustic array J. Acoust. Soc. Am. 35 4 535-7  

Nonlinear ultrasound propagation through layered liquid and tissue-equivalent 
media: computational and experimental results at high frequency Physics in 

ler, E H 1998 Pennes' 1948 paper revisited J. Appl. Physiol. 85 1 35-41  

high intensity focused ultrasound ablation Ultrasound Med. Biol. 30 1217

 166



References 
________________________________________________________________________ 

 167

 
17 1 424-35  

l therapy - Histotripsy IEEE Trans. Ultrason. Ferroelectr. Freq. Control 
54 10 2091-101  

Zabolotskaya, E A and Khokhlov, R V 1969 QUASI-PLANE WAVES IN NONLINEAR 
ACOUSTICS OF CONFINED SOUND BEAMS Akusticheskij Zhurnal 15 1 40-7  

Zemp iomaterials 
and Biomedical Engineering  

Zemp g of nonlinear ultrasound 
propagation in tissue from array transducers J. Acoust. Soc. Am. 113 1 139-52  

 

Xu, Z, Fowlkes, J B, Rothman, E D, Levin, A M and Cain, C A 2005 Controlled 
ultrasound tissue erosion: The role of dynamic interaction between insonation and
microbubble activity J. Acoust. Soc. Am. 1

Xu, Z, Raghavan, M, Hall, T L, Chang, C -, Mycek, M -, Fowlkes, J B and Cain, C A 
2007 High speed imaging of bubble clouds generated in pulsed ultrasound 
cavitationa

, R J 2000 Modeling nonlinear ulltrasound in tissue MSc Institute of B

, R J, Tavakkoli, J and Cobbold, R S C 2003 Modelin


	Ryerson University
	Digital Commons @ Ryerson
	1-1-2009

	An Enhanced Numerical Model to Simulate Nonlinear Continuous Wave Ultrasound Propagation and the Resulting Temperature Response
	Shahram Mashouf
	Recommended Citation


	Table of Contents
	TITLE PAGE...................................................................................................i
	AUTHOR’S DECLARATION.......................................................................ii
	ABSTRACT...................................................................................................iii
	ACKNOWLEDGEMENTS...........................................................................iv

	INTRODUCTION
	METHOD
	RESULTS

