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Abstract: As a result of the warming observed at high latitudes, there is significant 
potential for the balance of ecosystem processes to change, i.e., the balance between 
carbon sequestration and respiration may be altered, giving rise to the release of soil carbon 
through elevated ecosystem respiration. Gross ecosystem productivity and ecosystem 
respiration vary in relation to the pattern of vegetation community type and associated 
biophysical traits (e.g., percent cover, biomass, chlorophyll concentration, etc.). In an arctic 
environment where vegetation is highly variable across the landscape, the use of high 
spatial resolution imagery can assist in discerning complex patterns of vegetation and 
biophysical variables. The research presented here examines the relationship between 
ecological and spectral variables in order to generate an ecologically meaningful vegetation 
classification from high spatial resolution remote sensing data. Our methodology integrates 
ordination and image classifications techniques for two non-overlapping Arctic sites across 
a 5° latitudinal gradient (approximately 70° to 75°N). Ordination techniques were applied 
to determine the arrangement of sample sites, in relation to environmental variables, 
followed by cluster analysis to create ecological classes. The derived classes were then 
used to classify high spatial resolution IKONOS multispectral data. The results 
demonstrate moderate levels of success. Classifications had overall accuracies between 
69%–79% and Kappa values of 0.54–0.69. Vegetation classes were generally distinct at 
each site with the exception of sedge wetlands. Based on the results presented here, the 
combination of ecological and remote sensing techniques can produce classifications that 
have ecological meaning and are spectrally separable in an arctic environment. These 

OPEN ACCESS



Remote Sens. 2012, 4 3949 
 

classification schemes are critical for modeling ecosystem processes.  

Keywords: arctic; tundra vegetation; vegetation mapping; correspondence analysis; cluster 
analysis; remote sensing; IKONOS 

 

1. Introduction 

Arctic tundra vegetation covers approximately six million square kilometres of the Earth’s surface, 
is a major circumpolar ecosystem, and is an important indicator biome within the context of global 
climate change [1–3]. Changes to the Arctic climate have been observed over the past century and are 
being manifested through shifts in vegetation phenology and species composition [4]. Arctic 
ecosystems have the potential to shift from a sink for carbon-based greenhouse gases to a source, 
possibly creating a positive feedback mechanism, intensifying global climate change [5–7]. Net 
ecosystem CO2 exchange (NEE) is the product of opposing fluxes: gross carbon uptake through 
photosynthesis (gross ecosystem productivity: GEP) and carbon losses from plant and soil respiration 
(ecosystem respiration: ER).  

Satellite remote sensing has the potential to provide valuable information for the assessment and 
monitoring of vegetation patterns that can be utilized to predict patterns of carbon flux [6,8–10]. It has 
been illustrated that the NEE of Low Arctic ecosystems may be predicted, with acceptable accuracy, 
without necessarily identifying species or vegetation, simply by utilizing spectral vegetation indices; 
greater accuracy would require mapping of the landscape based on some minimum number of 
vegetation classes and the light response of each class [6]. GEP and ER have been shown to vary 
differently in relation to the pattern of vegetation, with GEP being a major contributor to NEE in arctic 
ecosystems [11]. Changes to ER are of serious concern when monitoring the sink to source status of an 
ecosystem. ER is related to many factors including: vegetation type, soil organic matter, soil moisture, 
N and/or P availability, macro and micro topography, temperature, and thaw depth [6,7]  

Vegetation cover is both an integrator and indicator of climate and ecosystem properties [12]. 
Hence, detailed community level knowledge along with high spatial resolution remote sensing data can 
provide us with the ability to understand fine-grain spatial variation and improve our ability to scale to 
synoptic predictions [6,13]. Knowledge obtained through detailed studies at local sites can be used to 
develop strategies to model arctic ecosystem processes across spatial scales (i.e., community to 
landscape). Satellite remote sensing has the potential to provide valuable information for the 
assessment and monitoring of vegetation patterns that can be utilized to predict not only the NEE but 
also to better understand the components of GEP and ER.  

Two conceptual models exist when viewing the arctic landscapes: (i) that the landscape is a mosaic 
of patches; or (ii) that continuous variation exists along gradients [9,14]. Each perspective has its 
challenges, yet they may be viewed as complementary, and when applied together, offer useful 
information about species relationships and distributions [15]. Remote sensing scientists and plant 
community ecologists each have their own theories and practices for classification, what is needed are 
to unify these to produce practical results that maximise the advantages of both [15]. 
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Remote sensing provides spatially-continuous data regarding vegetation and terrain patterns, at a 
range of spatial, spectral, and temporal resolutions, which can be applied for investigating, and 
analyzing biophysical properties of vegetation [16–18]. Biophysical remote sensing and the 
characterization of the spatial distribution of ecological classes are based on the assumption of unique 
spectral characteristics of species and species associations [19]. The goal of such a link between 
ecologists and remote sensing scientists is to classify vegetation communities into statistically derived, 
spectrally significant, ecologically meaningful units. A common derivative of optical, multispectral, 
remotely sensed data is a classified map of vegetation communities [17]. Image classification 
techniques are well documented in the literature and can be generated with a priori or a posteriori 
definition of classes. There have been many attempts to apply remotely sensed data to produce 
vegetation maps of arctic vegetation communities [3,20–22]. The Circumpolar Arctic Vegetation Map 
(CAVM) developed by Walker et al. [3] took a photo-interpretive approach that integrated climate, 
topography, substrate and other environmental components to produce a vegetation map for the entire 
Arctic biome with 15 physiognomic mapping units. This large-scale map (1:7,500,000) of integrated 
vegetation classes works well for regional scale studies (across different bioclimatic zones), but for 
landscape scale studies (within a single climatic zone) it more appropriately serves as a foundation for 
higher spatial resolution mapping.  

The emphasis of remote sensing research for ecological purposes has focused on vegetation 
structure, cover, and temporal dynamics; attributes that clearly affect spectral reflectance in the visible 
and near infrared wavelengths [23]. Surprisingly little attention has been given to the nature of the 
relationships between spectral classes and vegetation classes that are of interest to the ecologist, a 
discontinuity which has been identified by several authors [24–26]. In remote sensing classifications, 
these relationships are often not made explicit, with more attention given to the spectral characteristics 
of the mapping units, often at the expense of the description and quantification of their ecological 
characteristics such as soil moisture and nutrient status [23].  

There have been some notable attempts to demonstrate the nature of relationships between spectral 
and vegetation classes with varying techniques and levels of success. Approaches have included, the 
use of multiple discriminant analysis to predict community type on the basis of spectral  
variables [27–31], statistical association between the distributions of spectral classes and 
independently mapped vegetation classes [32], and statistical comparisons between spectral and either 
numeric or subjective vegetation classifications [33–35]. Thomas et al. [15] explored the application of 
ordination techniques and various clustering methods within a peatland complex with mixed results, 
particularly within regard to the ability to find spectrally distinct units. One of the important elements 
may be the inclusion of abiotic as well as biotic ground-cover components to characterise vegetation 
classes. Lewis [23] states that it is particularly important in the study of arid environments since 
perennial and ephemeral vegetation rarely exceed 30% cover, and the underlying soils and rocks form 
a significant proportion of the landscape. This may hold true for other sparsely vegetated areas, such as 
tundra in the Canadian High Arctic. The inclusion of soil and rock with vegetation variables to classify 
the landscape allows segregation of sites that may have the same dominants, but which vary in relative 
cover; a difference also likely to be captured by image spectral reflectance [23]. 

Building on Lewis [23] and Thomas et al. [15], we apply ordination techniques where samples sites 
are organized along a percent-vegetation cover (PVC) gradient that accounts for the biotic and abiotic 
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components in ordination space. Clustering techniques are applied to ordination results to create 
classes that are based on species/cover composition and latent environmental variables as opposed to a 
priori land cover classes. These classes can then be used to classify high spatial resolution remote 
sensing data, based on the assumption that there is a suitable correspondence between the 
species/cover composition, and environmental and spectral variables. The combination of ordination, 
clustering, and image classification is important for analyzing imagery with very high spatial 
resolutions, where the potential exists for meaningful information to be derived from detailed ground 
information [36–38].  

To address and improve our predictions of fluxes at the landscape scale we need to better 
understand the patterns of vegetation communities and the processes that create these patterns. The 
question exists: Can we generate an ecologically meaningful vegetation classification of high spatial 
resolution remote sensing data without a priori classes; based on the combination of PVC and spectral 
data? To address this question, the following hypothesis is examined: Spectrally distinct vegetation 
classes that relate to important underlying environmental variables can be created using a combination 
of ecological and remote sensing techniques for disparate High- and Mid-Arctic tundra research sites. 

2. Methods 

2.1. Study Area 

Two sites were selected to examine similarities and differences across a latitudinal climate gradient 
and allow for a more robust examination of methodologies. The northern most study site is at Cape 
Bounty (CB), more specifically the Cape Bounty Arctic Watershed Observatory (CBAWO) on the 
south-central coast of Melville Island (74°55′N, 109°35′W) (Figure 1(a)). The study area at CB is 
approximately 150 km2 in size and is composed of two adjacent watersheds that drain into two 
separate lakes, and then south into Viscount Melville Sound. The area is underlain by steeply dipping 
sedimentary rocks of the Devonian Weatherall and Hecla Bay Formations and mantled with glacial 
and regressive early Holocene marine sediments [39]. Continuous permafrost with an active layer of 
0.5–1 m covers the entire study area. The climate is characterized by long, cold winters and a short, 
cool, melt season from June to August. The mean daily July temperature for CB in 2004 was 3.1 °C 
with infrequent, and typically of low intensity, rainfall. Low stratus cloud and fog are common during 
the summer months. Walker et al. [3] characterize CB as being within Bioclimatic Zone B with a 
vegetation classification of G2—graminoid, prostrate dwarf shrub, forb tundra. Vegetation cover is 
heterogeneous and varies by drainage condition along a mesotopographic gradient [40,41]. 

The southern study site, on Boothia Peninsula, is located in the Kitikmeot region of Nunavut within 
the Lord Lindsay River watershed, west of Sanagak Lake (SL) (70°11′N, 93°44′W) (Figure 1(b)). The 
study area is confined to the regions between the Lord Lindsay River to the south and an adjacent 
tributary to the north. The dimensions of the study area are approximately 15 km long and the width 
varies from 500 m in the southeast to over 5 km in the northwest. The area is comprised of glacial 
sandy outwash plains and plateaus with evidence of former oxbow lakes and channels. Dipping 
limestone formations with extensive outcroppings of granitic rocks to the north underlie the area. 
Continuous permafrost with an active layer of 0.5–1 m dominates the area. In 2005 the mean July 
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(SL) and 2003 (CB) and confirmed during sampling through an examination of the variance in  
above-ground wet biomass weights. A 50 cm × 50 cm (0.25 m2) quadrat was used to delineate each 
sample location. For each location a species list was generated and cover abundance was estimated 
using the Braun-Blanquet scale. Cover was estimated for biotic species and abiotic components, such 
as rock, and till. In some cases, species identification was limited to the genus level (i.e., Carex spp.); 
moss species were classified into Sphagnum spp. and non-Sphagnum mosses (mosses) [44]. Overall a 
total of 44 species/genus types were identified. Total AGB was clipped within the quadrat to the soil or 
brown moss layer [45]. Gravimetric soil moisture samples were collected at every third quadrat using a 
5.3 cm diameter soil corer to a depth of 5 cm (110.3 cm3). Biomass and soil moisture samples were 
weighed wet in the field and returned to the lab for oven drying. Total percent cover values were 
calculated for vegetated and non-vegetated surfaces (i.e., exposed rock and soil). For the analyses, each 
quadrat sample was treated independently of plot location. In the two-year study, 885 vegetation 
samples were collected and processed (487 samples from the CB and 398 samples from SL).  

IKONOS multispectral data (4 m spatial resolution) were collected for CB on 22 July 2004, 
corresponding to the vegetation sampling for that site. A 23 July 2001 IKONOS image was collected for 
SL. Though the image does not correspond with the sampling year it is representative of the peak growing 
season. The images were geo-referenced to UTM coordinates to correspond to the 1:50,000 National 
Topographic Survey (NTS) for each of the study areas and were corrected using GCP’s collected 
concurrently with the data collection. The overall root mean square errors (RMSE) for the corrected 
images were within 2–3 m horizontally. IKONOS data (i.e., image channels: blue: 0.45–0.52 mm; green: 
0.51–0.60 mm; red: 0.63–0.70 mm; and near infrared: 0.76–0.85 mm) were calibrated to  
top-of-atmosphere reflectance following procedures outlined by NASA [46] and Taylor [47].  

2.3. Multivariate Analysis Techniques 

2.3.1. Correspondence Analysis (CA) 

Jongman et al. [48] describe correspondence analysis (CA) as a technique that constructs theoretical 
environmental variables/gradients that best explain species abundance data. The theoretical variable 
that explains the most variation is termed the first ordination axis. Multiple axes can be constructed to 
maximize the dispersion of species scores but each new axis is orthogonal to the previous axes; only 
new information is expressed on each axis. The ordination axes of CA are termed eigenvectors and 
have a corresponding eigenvalue (λ) that is equal to the maximized dispersion of the species scores. 
The eigenvalue is a measure of importance of the ordination axis, with the first axis having the largest 
eigenvalue (λ1), and subsequent axes having smaller values. Lower eigenvalue axes are often ignored 
to focus on biologically relevant information [49].  

It should be noted that CA can display two mathematical ‘faults’ that are unrelated to any inherent 
structure in the data. First, site scores at the ends of the first axis can be compressed. Second, when the 
gradient lengths are short the first axis usually explains the majority of the variance; it will then 
become folded to falsely create the second axis known as the arch effect [48]. This effect introduces 
false structure in the data by implying that the second axis contains new information about a  
latent variable. 
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To explore common and distinct vegetation communities across the two study areas both data sets of 
percent vegetation cover were combined for the CA analysis input data. Upon running a detrended 
correspondence analysis (DCA) it was observed that the species gradients were greater than four standard 
deviations, suggesting a unimodal technique such as correspondence analysis (CA) was appropriate, and 
that the axes lengths should avoid the ‘arch effect’ [48,50]. CA was then performed to determine the 
natural arrangement of sites and to examine the latent environmental variables. The CA’s were calculated 
using CANOCO 4.5 (Microcomputer Power, Ithica, New York, USA) with Hill’s scaling, a square root 
transformation of the species abundances, and with rare species down-weighted [50]. The resulting site 
scores from the CA were used as the input values for the clustering procedure. 

2.3.2. Clustering 

In this study, clustering was undertaken on the ordination output rather than the raw data as the 
former is less susceptible to sampling or other inadvertent errors [51,52]. Ward’s method is a 
hierarchical agglomerative centroid clustering technique that is based on minimizing increases in the 
error sum of squares; defined as the sum of the squares of distances from each individual to the 
centroid of its group [49,53]. Hierarchical clustering techniques begin with a measure of association 
between objects, referred to as (dis)similarity measures. In this study, Euclidian distance was 
determined to be appropriate since it could easily handle the domain of input values and could be used 
for the Ward clustering technique [49,54]. 

The site scores of the CA analysis were used as the input values for the clustering algorithm in  
PC-ORD 5.0 (MJM Software Design, Gleneden Beach, OR, USA). The clustering dendrogram was 
initially ‘pruned’ to a level of ten clusters based on preliminary examinations of higher clustering 
levels. Higher levels on the dendrogram created many small clusters and made assessing the nature of 
the clusters difficult.  

2.3.3. Multi-Response Permutation Procedures (MRPP) 

The clusters from the pruned dendrogram were tested with the multi-response permutation 
procedure (MRPP); the hypothesis tested is that there is no difference between the species/cover 
compositions of the clusters. First, the within-group distances are assessed to determine the dispersions 
of species for a group; next, examining how the clusters occupy regions of species space assesses the 
null hypothesis of no difference among clusters. The test statistic (T) describes the separation between 
clusters; the more negative T the stronger the separation, and the greater the difference in species/cover 
composition. The agreement statistic (A) describes within-group homogeneity, compared to complete 
randomness. When all species/cover values are identical within clusters, A = 1; if heterogeneity within 
clusters equals expectation by chance, then A = 0. In this manner MRPP analysis output provides an 
overall comparison of clusters as well as a pair-wise comparison [49]. If a pair-wise comparison had a 
high T-score and a low A-score, they were combined and renamed by the lower cluster value. In cases 
where clusters were combined, MRPP was performed again to ensure that all the new clusters were 
distinct. The resulting clusters were then tested for their signature separability.  
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2.3.4. Spectral Separability Analysis (SSA) 

Spectral separability analysis (SSA) is a common remote sensing method for determining the 
natural arrangement of plant communities through the examination of their spectral similarities and 
differences [55]. SSA is based purely on the spectral response of plant communities and assumes that 
communities having a similar spectral response also have ecological similarities. Creating spectrally 
separable groups should provide higher image classification accuracies. Clusters from each CA were 
tested for their spectral separability using the Jeffries-Matusita (J-M) distance measure. J-M calculates 
a measure of distance between two classes; a lower bound of zero for identical classes and an upper 
bound of 1.41 (√2) for perfectly separated classes [56]. ENVI 4.8 (Exelis Visual Information Solution, 
Boulder, CO, USA) was used to calculate the J-M values which have been scaled to 2 to aid in 
interpretation. The J-M distance measure has a nonlinear relationship between accuracy and separability 
and simply provides a guideline for determining the spectral separability of CA clusters [15,57]. 
Cluster combinations were determined as follows: 

• Clusters found to have good separability (i.e., J-M ≥ 1.9) from each other were not  
grouped together;  

• Clusters that exhibited poor separability (i.e., J-M ≤ 1.0) with another cluster were grouped 
together; and 

• Clusters with low separability (i.e., J-M > 1.0 and <1.9 were combined with the cluster for 
which they were most poorly separable if they had similar ecological characteristics (e.g., 
soil moisture, PVC, indicator species, etc.).  

The final clusters derived from the CA, clustering, MRPP and SSA were used to derive the ecological 
classes. These are described using indicator species analysis and associated field data. Subsequently, 
these classes were used as the calibration and validation sites for the ecological image classifications. 

2.3.5. Indicator Species Analysis (ISA) 

The Dufrêne and Legendre [58] method of calculating species indicator values conceptualizes 
environmental differences as clusters of sample units where species abundance data is used to 
determine the faithfulness of occurrence for a species in a particular cluster. A perfect indicator for a 
cluster should always be present and exclusive to that cluster of sample units. Here, indicator values 
are tested for statistical significance using a Monte Carlo technique. ISA is complementary to MRPP, 
supplementing the test of no difference between clusters with a description of how well each species 
separates among clusters [49]. Indicator values (IV) range from zero (no indication) to 100% (perfect 
indication) and are calculated by determining the relative abundance and the relative frequency of a 
species within a pre-defined group. The two proportions are multiplied together to yield a percentage 
IV for each species in each group. The highest IV for a species (IVmax) across all the clusters is used to 
define the characteristics of that cluster and will be used to help identify the cluster as an ecological 
class in the final image classifications.  
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2.4. Ecological Classification and Error Assessment 

The maximum likelihood classification (MLC) technique was applied in this study using all four 
multispectral image bands from the IKONOS imagery. Since the ordination and cluster algorithms are 
being used to define the classes there is no a priori classification scheme to use for validation. 
Additionally, the cluster sampling technique makes calibration and validation difficult. All attempts 
have been made to maximize independence (i.e., half the samples in each cluster were randomly 
selected for calibration with the remainder used for validation). A 3 × 3 pixel sample around each 
sample point was used to determine the spectral signature of a sample. Calibration sites were used to 
obtain statistics for classification decision rules. Validation sites were selected for accuracy assessment 
if they were located outside of a calibration window. Overall accuracy, the Kappa coefficient and 
errors of commission/omission were derived from examination of the error matrices.  

3. Results 

3.1. Correspondence Analysis (CA) for Community Delineation 

Correspondence analysis results (Table 1) are displayed graphically as a biplot of sample sites 
arranged on unitless ordination axes (Figure 2). Supplementary environmental variables that were 
collected in the field, such as soil moisture; exposed rock and soil are not used during the derivation of 
the ordination but can be projected passively onto the biplot ordination. These variables do not 
contribute to the calculation of the ordination results, but their meaning is interpreted using those 
results [59]. 

Table 1. Correspondence Analysis (CA) results for the combined datasets of Cape Bounty 
(CB) and Sanagak Lake (SL). 

CA Axis 1 2 3 4 Sum Total Eigenvalue 

Eigenvalue 0.5 0.45 0.34 0.22 1.51 3.14 

% Variance 16 14.4 10.9 7 48.3   

Thomas et al., [15] used the first and second axes for clustering. However, upon examining the 
biplots and eigenvalues, the authors indicated that these two axes might not adequately represent the 
relationship between sites. In our analyses, with the variance of the fourth axis explaining >5%, it was 
decided the site scores from all four ordination axes would be suited as input values for the clustering 
algorithm. With each sample assigned a cluster, based on its CS site score, MRPP was then used to 
determine the similarity of the clusters and to decide which should be merged. All the clusters were 
tested to determine if the null hypothesis (i.e., that there is no difference between the clusters) could be 
rejected. The null hypothesis was rejected since the groups occupy different regions of species space, 
as shown by the strong chance corrected within-group agreement (A = 0.44) and test statistics  
(T = −285.21) (p < 0.005).  
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Figure 2. The CA biplot of the combined dataset of CB and SL with the first and second 
ordination axes and supplementary environmental variables overlain to aid in interpretation 
(soil moisture, exposed rock, exposed soil). 

 

MRPP pair-wise comparisons were performed on the original ten clusters to examine similarities in 
composition. The average T-score for the pair-wise comparisons was −82.3. Clusters 6 and 7  
(T = −10.0, A = 0.02) and 8 and 9 (T = −5.8, A = 0.02) were combined and then identified by the lower 
group number (i.e., 6 and 8) (Table 2). To provide further ecological meaning, gravimetric soil 
moisture values and total PVC values are presented as the average of all the sample points within a 
cluster. Visual examination of the biplot does not reveal if similar communities exist at both sites even 
though soil moisture, exposed rock, and soil exposure appear to be strong environmental factors. When 
the four axes of the biplot were clustered, the results demonstrate that there was very little mixing of 
samples from the two study sites within the clusters, indicating the species compositions at each study 
site are relatively distinct. Figure 3 provides a representation of the clustering dendrogram of all the 
sites; the clusters are in their correct position but the clustering distances are not to scale. 

Clusters 1 and 2 are comprised of the CB sample sites and have similar primary and secondary 
cover types; till (75.4% and 40.6%) and mosses (8.8% and 27.8%), though in differing proportions. 
The average PVC for clusters 1 and 2 are 25.4% and 73.4% respectively. In terms of soil moisture each 
is dry during the peak growing season (13.4% and 20.6% soil moisture for clusters 1 and 2 
respectively). Indicator species analysis is applied to aid in cluster identification. The indicator species 
for cluster 1 is Papaver radicatum (Arctic Poppy) (IV = 42.2) with till (IV = 38.1). Cluster 2 has 
lichens as the highest indicator species (i.e., Thamnolia subliformis (Worm Lichen) (IV = 31.8) and 
Cetraria nivalis (Snow Lichen) (IV = 20.7)). Cluster 3 is mesic with average soil moisture of 37.3%. 
Nostoc commune, a nitrogen fixing cyanobacteria that forms a black crust on the soil [60], is the 
primary cover (48.6%) and indicator species (IV = 49.0), whereas Salix arctica (IV = 29.8) is the 
secondary indicator species for cluster 3. With undisturbed soil covered by Nostoc commune, the PVC 
for the cluster is high at 101.7%. The sites for this cluster are exclusively at CB. When examining the 
dendrogram, clusters 2 and 3 are more similar to each other than to cluster 1; a result of the lack of 
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Table 2. Ecological descriptions of the final CA clusters (post MRPP and SSA. 

CB and 

SL CA 1 2 3 4 5 6* 8* 10 

Cluster 

% Soil 

Moisture 
13.4 20.6 37.3 15.9 41.2 17.2 123.9 83.3 

PVC 25.4 73.4 101.7 48.0 80.4 30.4 154.0 139.6 

Primary 

Cover 

Till  

(75.4%) 

Till 

 (40.6%) 

Nostoc 

commune 

(48.6%) 

Rock 

(68.8%) 

Dryas spp. 

(46.0%) 

Till  

(60.5%) 

Sphagnum 

spp (82.7%) 

Sphagnum spp 

(46.8%) 

Secondary 

Cover 

Mosses 

(8.8%) 

Mosses 

(27.8%) 

Mosses 

(32.6%) 

Mosses 

(22.1%) 

Carex spp. 

(10.6%) 

Dryas spp. 

(18.4%) 

Eriophorum 

spp. (60.1%) 
Dryas spp. (42.7%) 

Primary IV 

P. 

radicatu

m (42.2) 

Thamnolia 

subliformis 

(31.8) 

Nostoc 

commune 

(49.0) 

Umbilicari

a 

spp.(91.3) 

Dryas spp. 

(38.6) 
n/a 

Eriophorum 

spp. (56.4) 
n/a 

Secondary 

IV 

Till  

(38.1) 

Cetraria 

nivalis 

(20.7 ) 

Salix arctica 

(29.8) 

Rock  

(88.3) 

Saxifraga 

oppositifola 

(17.8) 

n/a 

Sphagnum 

spp  

(31.1) 

n/a 

Majority 

Sites 

Cape 

Bounty 

Cape  

Bounty 

Cape 

Bounty 

Cape 

Bounty 
Sanagak Lake Sanagak Lake Mixed Sanagak Lake 

CB and 

SL CA 

Final 

Cluster 

1 

(Combined Cluster 1 & 2) 
3 4 5 6 8 

10 

Combined 8 & 10 

(for Sanagak Lake 

Only) 

% Soil 

Moisture 
17.1 37.3 15.9 41.2 17.2 123.9 123.3 

PVC 50.2 101.7 48.0 80.4 30.4 154.0 144.8 

Primary 

Cover 
Till (57.6%) 

Nostoc 

commune 

(48.6%) 

Rock 

(68.8%) 

Dryas spp. 

(46.0%) 
Till (60.5%) 

Sphagnum 

spp (82.7%) 

Sphagnum spp 

(69.3%) 

Secondary 

Cover 
Mosses (18.5%) 

Mosses 

(32.6%) 

Mosses 

(22.1%) 

Carex spp. 

(10.6%) 

Dryas spp. 

(18.4%) 

Eriophorum 

spp. (60.1%) 

Eriophorum spp. 

(47.5%) 

Primary IV P. radicatum (38.4) 

Nostoc 

commune 

(49.0) 

Umbilicari

a 

spp.(91.3) 

Dryas spp. 

(38.6%) 
n/a 

Eriophorum 

spp. (56.4) 
Eriophorum spp. (43) 

Secondary 

IV 
Till (38.0) 

Salix arctica 

(29.8) 

Rock 

(88.3) 

Saxifraga 

oppositifolia 

(17.8) 

n/a 
Sphagnum 

spp (31.1) 
Sphagnum spp (27) 

Classificati

on 
Cape Bounty 

Cape 

Bounty 

Cape 

Bounty 
Sanagak Lake Sanagak Lake 

Cape 

Bounty 
Sanagak Lake 

Bioclimact

-ic Class 
P1 G1 n/a G2 P1 W1 W1 

Ecological 

Class Name 

Dry P. radicatum & Till 

Tundra 

Mesic Nostoc

Tundra 
Felsenmeer 

Mesic Dryas 

spp. Tundra 

Dry Dryas spp. 

& Till Tundra 

Wet Sedge 

Tundra 
Wet Sedge Tundra 
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Dryas spp. as you move along the ordination axis. The result is that these classes are spectrally similar 
and generating errors in the classifications. Thomas et al. [15] noted a similar problem with the 
classification of a peatland using CA ordination in that it can be difficult to discriminate class 
boundaries along a latent environmental gradient because of spectral similarities.  

Table 4. Confusion matrix for ecological classes at SL. 

Reference 
Class 

# of Pixels 

Percent Classified into Class 
6 

(Dry Dryas spp. 
& Till Tundra) 

5 
(Mesic Dryas spp. 

& Till Tundra)  

10 
(Wet Sedge Tundra) 

Unclassified 18 
523 
487 
405 

0 2.6 1.0 
6 68.9 25.5 2.6 
5 28.7 55.3 0 

10 2.4 16.6 96.4 
Overall Accuracy 69.2% 
Kappa Coefficient 0.54 

95% Confidence Interval 0.509−0.583 

4. Discussion 

4.1. Ecological Classes 

The final classification scheme has been derived based on soil moisture preferences and indicator 
species. To aid in interpretation and to link the larger-scale CAVM classifications with the classes that 
have been created here, the bioclimatic classification identifier has also been included (Table 2). By 
examining the CA biplots of sample sites, which are separated into their ecological classifications, and 
with supplementary environmental variables overlain, the underlying latent variables can be 
interpreted to better understand the ecological classifications that have been created [59]. It is 
illustrated in Figure 6 that the supplementary variables are strongly correlated with the arrangement of 
the sample sites in ordination space. For example, the Felsenmeer class (Figure 7(c)), that was only 
present at CB, is distinctly clustered in the upper right quadrant of the biplot. These sites are located at 
CB on steep slopes and ridge tops where the sloping sedimentary bedrock is relatively close to the 
surface and has been frost shattered. 

Classes at CB and SL align themselves along a gradient of the first ordination axis. Dry and Mesic 
Dryas spp. Tundra classes (Figure 7(d,e)) of SL are further down the first ordination axis followed by 
the Dry P. radicatum and Till Tundra (Figure 7(a)) and Mesic Nostoc Tundra (Figure 7(b)) of CB. 
Though this gradient is aligned with the supplementary variable of exposed soil, it may illustrate that 
there may be other latent environmental variables, at both sites, that may be impacting species 
compositions and abundances for these classes. Primary production in arctic vegetation communities is 
limited by climatic conditions and nutrient supply [60,61]. The amount of available nitrogen, in the 
form of ammonium (NH4

+) and/or nitrate (NO3
−), is one of the major factors limiting plant growth in 

the Arctic [62–64]. The main input of nitrogen originates from biological nitrogen fixation by 
cyanobacteria, such as Nostoc commune [65–67]. For the study area at SL, over 25% of the Mesic 
Dryas spp. Tundra sites contain Nostoc commune whereas it was only found in 11% of the Dry Dryas 
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Dryas spp. at SL; it is found in 82.7% of the samples whereas shrub cover at CB was limited to  
Salix spp. 

The lower right quadrant, strongly associated with moist soils, contains the Wet Sedge Tundra class 
(Figure 7(f)). This cluster of sample sites contains the CB and SL samples, demonstrating that although 
they are from distinctly different study sites, the vegetation communities are similar in their 
composition and dependence on readily available soil moisture. At both CB and SL, Wet Sedge 
Tundra sites (most closely related to W1—Sedge/grass, moss wetland [3]) are often located in areas 
with high levels of soil moisture through the growing season, due to proximity of large upslope snow 
banks. The reason for the creation of an additional wetland class at SL is the presence of Dryas spp. in 
some of the sample sites.  

Figure 7. Representative images of the final ecological classes. (A) Dry P. radicatum and 
Till Tundra; (B) Mesic Nostoc Tundra; (C) Felsenmeer; (D) Dry Dryas spp. and Till 
Tundra; (E) Mesic Dryas spp. Tundra; and (E) Wet Sedge Tundra. 

 

CB and SL appear to have a natural moisture gradient, at peak season, that generates three distinct 
moisture categories across the landscape; dry, mesic and wet [11,69,70]. Variations along this gradient 
may not simply be limited to vegetation composition and structure but extend to ecosystem function 
and processes; e.g., carbon flux (CO2; CH4) and nitrogen availability/mobilization [7]. 

4.2. Suitability of the Techniques and Future Development 

Based on ordination and clustering of PVC sample data, we were successful in generating 
meaningful ecological classifications for two separate arctic environments (i.e., SL ~ 70°N and  
CB ~ 75°N). The accuracy results from this methodology may be typically lower than those of 
traditional a priori image classification techniques. Traditional supervised classification relies solely 
on user selected spectral training sets to define the image classes. The value of a supervised 
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classification is based only on the validity and usefulness of the a priori classes and the user’s ability 
to select spectrally distinct training data. In this research the value in the final classes is that they 
represent distinct species assemblages that relate to environmental variables and are not predetermined 
or dependant on the user’s ability to select spectral training sets. Though the success of the final 
classifications was mixed, the methodology identified distinct and similar ecological classes at the two 
sites based on the species composition and spectral separability, and without a priori classes. 
Thomas et al. [15] used comparable techniques, showing less favourable results than observed here, 
albeit for a more “ecologically complex” peatland (i.e., with nine different classes). The improved 
results observed here may be a function of the reduced complexity of the environment in which this 
methodology has been applied. In addition, the inclusion of vegetated and non-vegetated ground cover 
in the analysis, as suggested by Lewis [23], has improved results, specifically for this rather harsh 
environment. Arctic vegetation communities, particularly in the mid and high arctic, display a patchy 
collection of discrete communities, often associated with a soil moisture gradient related to 
topography. For instance, CB is comprised of spatially and spectrally distinct patches, such as Wet 
Sedge Tundra and Felsenmeer, within a landscape primarily comprised of Dry P. radicatum and Till 
Tundra (71.6%). Jongman et al. [48] explain that if the vegetation pattern shows distinct groupings of 
species then classification (clustering) is an appropriate framework for conceptualizing communities; 
in the case of CB, this appears to have contributed to achieving higher classification accuracies. Unlike 
CB, SL does not appear to have clear and distinct patches of vegetation. Although distinct patches of 
Wet Sedge Tundra do exist in the SL study area, it is clear that there is a more gradual change of 
vegetation cover from the Dry to Mesic Dryas spp. Tundra communities. The spectral similarities of 
these communities, due to the preponderance of Dryas spp., resulted in reduced classification success. 
Although two conceptual models exist: (i) the landscape consists of a mosaic of patches; or (ii) the 
landscape varies continuously along one or more environmental gradients; it appears that the landscape 
in question may best determine which model to select [9,14]. A potential solution to this may be to 
incorporate fuzzy classification methods. Rather than creating discrete patches, fuzzy set 
classifications represent a probability surface and have shown to better reflect the nature of some 
vegetation gradients [71]. Additionally, for this study, only the original four multispectral bands were 
included in the image classification. Simple transformations of band reflectance have been shown, for 
a range of vegetation communities, to be closely correlated with plant biophysical qualities [19]. The 
normalized difference vegetation index (NDVI) has been shown to have correlations to AGB and 
PVC [1,13,21,42,73]. Spectral vegetation indices such as NDVI could be included in the image 
classification procedure to incorporate spectral biophysical derivatives such as AGB.  

The benefit of CA in this research, where there was a lack of environmental field data, is that 
sample sites are organized based on theoretical variables that best explain the greatest variation 
allowing for the identification of those variables. Supplementary environmental variables that were 
collected in the field, such as soil moisture, exposed rock, and exposed soil can be projected passively 
onto the biplot of ordination space to aid in the interpretation of the environmental variables affecting 
species and abundance. Although the vegetation communities identified appear to have a strong 
correspondence to soil moisture and exposed rock, there also appears to be some underlying variables 
such as nutrient availability and/or soil pH. The relationships observed with soil moisture concur with 
the bioclimatic zones and community classifications described by Walker et al. [3]. Though the classes 
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generated by Walker et al. [3] are general and are applied at a very coarse scale, they do appear to 
relate to the finer scale ecological classes derived in this study. Inclusion of additional environmental 
data, such as soil pH, NH4

+ and NO3
− concentrations, may assist in the understanding/explanation of 

anomalies observed with respect to latent environmental variables.  
Other ordination techniques, such as canonical correspondence analysis (CCA) select the 

linear combination of measured environmental variables that maximize the dispersion of the species 
scores [48]. CCA is a ‘restricted correspondence analysis’ in the sense that the site and species scores 
are restricted to a linear combination of measured variables giving rise to as many axes as there are 
environmental variables. The inclusion of additional environmental variables and CCA may create 
more distinct clusters in species space, thereby improving the separation of ecological classes. 
Additionally, ecological classes derived from the use of CCA would have defined environmental 
values as opposed to 'latent' associations.  

The hypothesis that was tested in this research was that: Spectrally distinct vegetation classes that 
relate to important underlying environmental variables can be created using a combination of 
ecological and remote sensing techniques for disparate high- and mid-arctic tundra research sites. 
Unfortunately, this hypothesis does not hold true for both study sites. At CB, where a mosaic of 
patches was clear and distinct, this hypothesis can be confirmed, whereas at SL, with the exception of 
the Wet Sedge Tundra, this hypothesis is refuted. At SL there was difficulty in distinguishing between 
the Dry and Mesic Dryas spp. classes due to the variation in cover along an underlying environmental 
gradient. The inclusion of additional measured environmental variables and the use of CCA may 
improve these results. Overall, this research does create meaningful vegetation classifications that 
relate to underlying ecological processes. The methodology described for the creation of these 
classification may be useful in developing a better understanding of GEP and ER since both can be 
related to factors such as vegetation cover, soil moisture, N availability, and micro topography [6,72]. 

4. Conclusions 

The results of this study illustrate that a combination of ecological and remote sensing techniques 
can produce image classifications that are ecologically meaningful and spectrally significant in a high 
Arctic environment without a priori classes. The combination of correspondence analysis (CA), 
clustering and multi-response permutation procedure (MRPP) techniques in conjunction with remote 
sensing techniques such as spectral separability analysis (SSA) to create ecological classes for use as 
calibration data can create ecologically meaningful classifications of vegetation communities. The 
results demonstrate that the incorporation of species abundance data for ecological 
ordination/clustering can assist in the spectral classification of Arctic environments when using high 
spatial resolution data. Classification results (overall accuracies between 69% to 79% and Kappa 
values of 0.54–0.69) may be considered low when compared to traditional supervised and 
unsupervised classification techniques, but the resulting classifications provide greater ecological 
meaning in Arctic environments. Difficulties in delineating some ecological classes may be improved 
with the inclusion of additional environmental variables, such as soil pH and nutrient data (e.g., 
ammonium (NH4

+) and nitrate (NO3
−)) and the application of canonical correspondence analysis.  
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Understanding the spatial relationship between environmental variables and the associated 
vegetation patterns will provide insight into the structure and function of arctic vegetation 
communities. This may lead to more informed predictions of the impact of a warming climate on 
vegetation productivity and ecosystem function. The creation of spectrally distinct, statistically derived 
ecological classifications may prove extremely useful for monitoring vegetation patterns and 
processes, and as such, can be utilized to predict patterns of carbon dioxide exchange. 
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