cazy_webscraper For creating a local CAZy database

Emma Hobbs^{1,2}, Tracey Gloster¹, Sean Chapman², Leighton Pritchard³

¹University of St Andrews, St Andrews, UK ²The James Hutton Institute, Dundee, UK ³University of Strathclyde, Glasgow, UK

Introduction

Carbohydrate Active enZymes (CAZymes) are pivotal in pathogen recognition, signalling, structure and energy metabolism. CAZy (www.cazy.org) is the most comprehensive CAZyme database [1], but it does not provide methods for automating data retrieval or submitting sequences for annotation.

cazy_webscraper retrieves user-specified datasets from CAZy, producing a local SQL database enabling thorough interrogation of the data. cazy_webscraper can also retrieve protein sequences from GenBank [2] and download structure files from RCSB PDB [3].

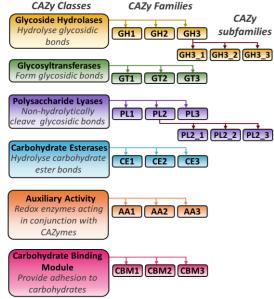


Fig.1 CAZy database structure

CAZy catalogues proteins into classes that are divided into families, some of which are divided into subfamilies.

Method

Installation via GitHub:

https://github.com/HobnobMancer/cazy_webscraper

Scraping is invoked using the command python3 cazy_webscraper. All optional flags can be found in the GitHub repository README.

Expanding the dataset beyond CAZy is achieved using the expand module.

1. GenBank

Each unique CAZyme is identified by its **primary** GenBank accession, consolidating duplicate CAZy entries in the local database.

Retrieve all CAZy family annotations for a given protein by querying the local CAZyme database by its GenBank accession.

comparisons

prediction

cazy_webscraper automates retrieving protein sequences from GenBank.

cazy_webscraper can update sequences in the local CAZyme database if a newer sequence is available in NCB, keeping the dataset up to date.

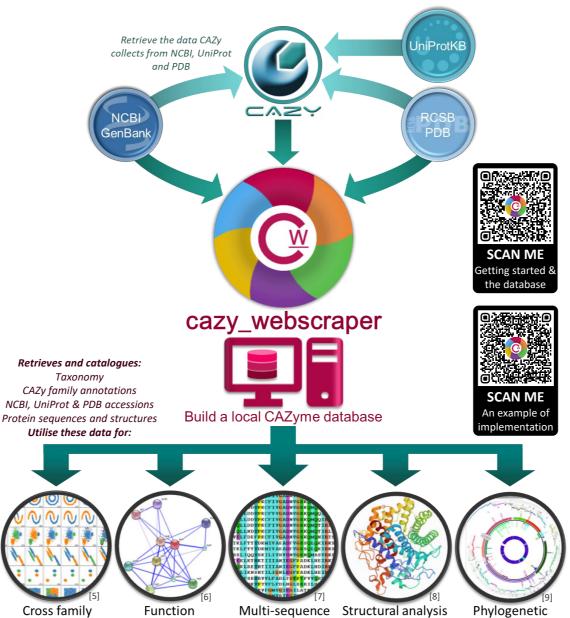
2. CAZy Families

cazy_webscraper automates and quickly scrapes CAZy. Scraping CAZy family GH1, containing 43,649 proteins, takes 44 minutes, instead of users manually reading 44 webpages.

E	ukaryot	a				
Protein Name		EC#	Organism	GenBank	Uniprot	PD8/30
unknown (fragment)	(W501228	P13)	Populus trichocarpa	A8K95221.1	ASPFRO	
lactase, (fragment)	partial	(LeT)	Pristimantis thymelensis	AUD47038.1		
lactase, (fragment)	partial	(LeT)	Proceratophrys bolei	AUD47006.1		
prunasin hydrolase			Prunus armeniaca	AHE74128.1		
prunasin hydrolase			Prunus armeniaca	AHE74131.1		
prunasin hydrolase			Prunus armeniaca	AHE74130.1		
prunasin hydrolase			Prunus armeniaca	AHE74129.1		
β-glucosidase	e (Pa bG)	3,2,1,21	Prunus avium	AAA91166.1 ACH11661.1	Q43014	
Prudu_015228			Prunus dulcis	BBH04164.1		
Prudu_016574			Prunus dulcis	BBH05239.1		
Prudu_014650			Prunus dulcis	BBH03706.1		
Prudu_016581 (fragment)			Prunus dulcis	BBH05246.1		

Fig.2 CAZy database structure

An HTML table users had to previously parse manually to retrieve data from CAZy


Unlike previous scrapers [4], cazy_webscraper can retrieve data for specific CAZy classes and (sub)families, reducing waiting times from hours to minutes.

3. EC Numbers

Use cazy_webscraper to collate quickly CAZymes having similar activity by scraping by EC number or querying the local CAZyme database.

4. Taxonomy

Scrape specific taxa. Apply a combination of **kingdoms**, **genus**, **species**, and /or **strain** filters. Use the taxonomy data to track the evolution of functions through **phylogenetic analysis**.

5. CAZomes

Automate retrieving the CAZome (all CAZymes within a genome) of species of interest from CAZy.

Or quickly retrieve CAZomes by querying the local CAZyme database.

With one command, retrieve all protein sequences of a CAZome, ready for homolog searchers.

6. UniProt

Expand the dataset beyond CAZy by incorporating data *via* UniProt accessions. For example, retrieve CAZyme subcellular localisation data from UniProt, to **elucidate the functions** of uncharacterised CAZymes.

7. RCSB PDB

Automate rapid retrieval of **all** PDB structures for the dataset of interest in CAZy using cazy_webscraper.

Query using a combination of taxonomy, CAZy (sub)family, CAZy class and EC number filters.

8. SQL Database

Building an SQL database instead of a plaintext [5], enables thorough interrogation of the data *via* complex queries using SQL.

Perform complex queries that cannot be performed on the CAZy website.

For example, retrieve all species with at least one CAZyme in GH1 and at least one CAZyme in PL9.

Reproducibility

Use cazy_webscraper to generate **reproducible and shareable datasets**, facilitating reproduction of downstream analyses.

Optional configuration by a YAML file and generation of a log file, generates **shareable documentation** to bolster reproducibility.

Conclusions

cazy_webscraper provides new, previously unachievable access to the proteomic data within CAZy. This facilitates inclusion of CAZy data in functional, evolutionary, structural, genomic and metabolic studies. Thus, cazy_webscraper opens up numerous new avenues of investigation.

- Automate retrieving CAZy annotations, protein sequences and structure files
- Expand the dataset beyond that stored in CAZy
- Thoroughly interrogate the dataset using complex queries in SQL

References

- 1. Lombard, V. et al. (2014) 'The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Research, 42, pp.D490–D495
- 2. Sayers, E. W. et al. (2020) 'GenBank', Nucleic Acids Research, 49(D1 pp.D92-96
- 3. Berman, Helen M. et al. (2000) 'The Protein Data Bank', Nucleic Acids Research, 28(1), pp.235-242
- Honorato, R. V. (2016) 'CAZy-parser a way to extract information from the Carbohydrate-Active enZYmes Database', The Journal of Open Source Software, 1(8), 53
- Chilamakuri, C. S. R. et al. (2011) 'Cross-genome comparisons of newly identified domains in Mycoplasma gallisepticum and domain architectures with other mycoplasma species', *International Journal of Genomics*, 2011, pp. 878973
- 6. Wikipedia (2009) 'Protein function prediction', accessed 2021.03.27
- 7. Andrade, M (2006) 'Multiple sequence alignment', Wikipedia, accesse 2021.03.27
- Parsiegla, G. (2002) 'Crystal structure of the cellulase Cel9M enlightens structure/function relationships of the variable catalytic modules in glycoside hydrolases', Biochemistry, 41(37), pp.11134-11142
- Barrett, K., Lange, L. (2019) 'Peptide-based functional annotation of carbohydrate active enzymes by conserved unique peptide patterns (CUPP)', Biotechnology for biofuels, 12, 102

Acknowledgements

We thank the EASTBIO Doctorial Training Partnership for funding our work.

Biotechnology and Biological Sciences and Biological Sciences are Council

Fig. 2 Sources and application of data stored in the CAZyme database created by cazy_webscraper

Numbers in brackets indicate the source of the image.

alignments

and prediction

analysis