Supporting information

Heterohelicenes Through 1,3-Dipolar-Cycloaddition of Sydnones with Arynes: Synthesis, Origins of Selectivity and Application to pH Triggered Chiroptical Switch with CPL-sign Reversal

Expédite Yen-Pon,[†] Floris Buttard,^{§,[⊥]} Lucas Frédéric,^{†, [⊥]} Pierre Thuéry,[‡] Frédéric Taran,[†] Grégory Pieters,^{†,*} Pier Alexandre Champagne,^{§,*} Davide Audisio^{†,*}

[†] Université Paris-Saclay, CEA, Service de Chimie Bio-organique et de Marquage, DMTS, Gif-sur-Yvette 91191, France

[‡] Université Paris-Saclay, CEA, CNRS, NIMBE, Gif-sur-Yvette 91191, France

[§] Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, 07102, United States

- These authors (F. B. and L. F.) contributed equally

E-mail: davide.audisio@cea.fr, pier.a.champagne@njit.edu, gregory.pieters@cea.fr

Table of Contents

I	General information	S3
II	Synthesis and Analytical Data of compounds	S4
	Sydnone synthesis	S5
	Aryne preparation	S9
	Helicene scope	S23
III	Optical properties of compound C-29 and C31	S32
IV	Crystallographic data	S47
V	Full computational details	S49
	Potential energy surfaces for the 5 computed systems	S50
	Transition structures geometries	S54
	C-shape products computed structures	S55
	Aromatic interactions	S56
	Distortion/interaction, angles and aromatic dimer energies	S56
	Frontiers molecular orbitals	S58
	Non-covalent interactions analysis	S60
	Natural bond orbital (NBO) analysis of TS C-32	S61
	Racemization barriers and transition structures	S61
	Energies, correction and single point energies for all computed structure	S61
	Full computational spectra showing all transition	S67
	Comparison of HOMO, LUMO with NTOs	S69
	Frontier molecular orbitals energies	S71
	Electronic density changes during $S_0 - S_1$ transitions	S72
	Calculation of the g _{lum} values	S73
	Visualizations of the magnetic and electric dipol vectors	S74
	DFT-optimized geometries and vibrational frequencies (TS)	S75
	TD-DFT-optimized geometries and transition data	S110
VI	References	S169
VII	NMR Spectra ¹ H & ¹³ C	S171

I. General Information

All reactants or reagents including dry solvents were obtained from commercial suppliers and used as received. Unless otherwise noted, all reactions were performed with dry solvents under an atmosphere of argon in oven-dried glassware using standard vacuum-line techniques. All work-up and purification procedures were carried out with reagent-grade solvents in air. Organic solvents (Aldrich) were used without further purification. THF was distilled over Na/benzophenone. Methylene chloride (DCM) was distillated over calcium chloride. Unless otherwise noted, all other commercially available reagents and solvents were used without further purification. Purifications of reactions products were carried out by flash chromatography using Merck silica gel (40-63 μ m). Reactions were monitored via thin-layer chromatography (TLC) using EMD Millipore[®] TLC silica gel glass plates.

FT-ATR-IR spectra were recorded on a Perkin-Elmer UAR Two Spectrum spectrometer and are reported as wavelength numbers (cm⁻¹). Melting points were measured on a Büchi B-545 and are reported in °C. ¹H NMR (400 MHz), ¹³C NMR (100 MHz) were measured on a Brucker Avance 400 MHz spectrometer. Chemical shifts are reported in parts per million (ppm, δ) downfield from residual solvents peaks and coupling constants are reported as Hertz (Hz). Splitting patterns are designated as singlet (s), broad singlet (br. s), doublet (d), triplet (t), quartet (q) and quintet (quin). Splitting patterns that could not be interpreted or easily visualized are designated as multiplet (m). Electrospray mass spectra were obtained using an ESI-Quadripole autopurify, Waters (pump: 2545, mass: ZQ2000) mass Spectrometer. LC-MS spectra were recorded on a Waters Acquity UPLC[®] equipped PDA eλ Detector and SQ Detector 2, mobile phase A: H₂O + 0.1% formic acid, mobile phase B: acetonitrile + 0.1% formic acid. Automatic chromatographies were performed with a COMBIFLASH RF 200i instrument equipped with UV detector and using flash cartridges Interchim silica 15 or 30 µm. High-resolution mass spectra (HRMS) were performed on a Bruker maXis mass spectrometer by the "Fédération de Recherche ICOA/CBM (FR2708) platform", University of Orléans. Absorbances were measured on a Molecular Device SpectraMax[®] M5e. Absorbance analysis was performed on Cary[®] 50 UV-Vis Spectrophotometer. Fluorescence analysis was performed on Fluoromax-4 from Horiba Jobin Yvon. A right-angle configuration was used. Optical density of samples was checked to be less than 0.1 in order to avoid reabsorption artifacts. The relative fluorescence quantum yields Φ_F were determined using Coumarin 102 (Φ_F = 0.764 in ethanol) or 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM, $\Phi_F = 0.435$ in ethanol) as a references.

Chiral SFC chromatograms were recorded using a JASCO SFC apparatus with CHIRALCEL IA chiral column (250 mm × 4.6 mm x 5 μ m), mobile phase: CO₂/alcohol, flow rate 1.0 ml.min⁻¹ at 25 °C, UV detection (300 nm).

Specific rotation ([α]) spectra were recorded on a Jasco (model P-2000) polarimeter. Electronic circular dichroism spectra (ECD, in M⁻¹ cm⁻¹) were recorded on a Jasco J-815 Circular Dichroism Spectrometer equipped with a Peltier thermostatted cell holder and Xe laser. Unless otherwise noted, CD analysis were performed at 20 °C with 1 mm x 1 cm cell. Circularly polarized luminescence (CPL) measurements were performed using JASCO CPL-300 in 1 cm x 1 cm cell. Parameters of the apparatus were adapted for every compounds.

II. Synthesis and Analytical Data of compounds

Sydnone preparation: optimisation

Entry	Х	[Pd] ^[1]	Ligand ^[2]	Base	Solvent ^[3]	Т (°С)	t (h)	SM:1a:1a' ^[4]	Yield ^[5]
1	Ι	Pd(OAc) ₂	PPh₃	K ₂ CO ₃ (2 equiv)	DMF	80	16	0:5.9:1	59%
2	Ι	Pd(OAc) ₂	PPh_3	Cs₂CO₃ (2 equiv)	DMF	80	16	1.7 : 1 : 0	6%
3	Ι	Pd(OAc) ₂	PPh₃	Et₃N (2 equiv)	DMF	80	16	46:1:21	1%
4	Ι	Pd(OAc) ₂	PPh₃	KOH (2 equiv)	DMF	80	16	1:0:0	7%
5	Ι	Pd(OAc) ₂	PPh₃	<i>t</i> BuOK (2 equiv)	DMF	80	16	10:1:1	1%
6	I	Pd(OAc) ₂	PPh₃	K ₂ CO ₃ (4 equiv)	DMF	80	16	0:1:0	61%
7	Br	Pd(OAc) ₂	PPh₃	K ₂ CO ₃ (4 equiv)	DMF	80	16	0:1:0	88% ^[6]
8	Br	Pd(OAc) ₂	PPh₃	K ₂ CO ₃ (4 equiv)	DMF (anh.)	80	16	0:1:0	73%
9	OTf	Pd(OAc) ₂	PPh₃	K₂CO₃ (4 equiv)	DMF	80	16	22:1:0	2%
10	Br	Pd(OAc) ₂	PPh₃	K ₂ CO ₃ (4 equiv)	DMF	60	16	1 : 1,8 : 0	22%
11	Br	Pd(OAc) ₂	PPh₃	K ₂ CO ₃ (4 equiv)	Toluene	80	16	1:0:5	0%
12	Br	Pd(OAc) ₂	PPh₃	K ₂ CO ₃ (4 equiv)	Dioxane	80	16	3:0:1	0%
13	Br	Pd(OAc) ₂	PPh₃	K ₂ CO ₃ (4 equiv)	DMF	80	5	0 : 20 :1	61%
14	Br	Pd(PPh₃)₄	-	K ₂ CO ₃ (4 equiv)	DMF	80	16	1:4.1:0	33%
15	Br	Pd(PPh₃)₄	-	K ₂ CO ₃ (4 equiv)	DMF (anh.)	80	16	1:2.5:0	28%
16	Br	Pd(OAc) ₂	XPhos	K ₂ CO ₃ (4 equiv)	DMF	80	16	1:4.4:0	35%
17	Br	-	-	K ₂ CO ₃ (4 equiv)	DMF	80	16	1:0:0	0%
18	Br	Pd(OAc) ₂	PPh_3	-	DMF	80	16	4.7:0:1	0%

Table S1. ^[1] 5 mol%. ^[2] 10 mol%. ^[3] All the reactions were performed under air atmosphere unless mentioned. « Anh. » means that the reaction was performed in anhydrous conditions. ^[4] Ratio were determined by proton NMR of the crude mixture. ^[5] NMR yield were determined using 1,3,5-trimethoxybenzene as an internal standard. ^[6]isolated yield

Sydnone preparation: Scope

Scheme S1. Sydnone scope

General procedure for the preparation of sydnones

To a solution of *N*-methylsydnone or *N*-benzylsydnone (1.0 equiv) in anhydrous DMF (5.0 mL for 1 mmol of sydnone) were added $Pd(OAc)_2$ (10-20 mol%), triphenylphosphine (20 mol%) and potassium carbonate (4.0 equiv). Argon was bubbled into the solution and corresponding 2-halobenzaldehyde (1.5 equiv) was added. The mixture was stirred at 80 °C until completion. The mixture was evaporated and the crude product was purified by flash chromatography.

Compounds **1a**, **1b**, **1c**, **1f**, **1g**, **1h**, **1i**, **1j**, **1k**, **1n** and **1o** were prepared according to a procedure that we reported previously.¹

10-methyl-1-oxo-1H-[1,2,3]oxadiazolo[4,3-a]isoquinolin-4-ium-3-ide 1d

C₁₁H₈N₂O₂ MW: 200.19 g.mol⁻¹ Yellow solid Yield: 21%

Following the general procedure, compound **1d** (13 mg, 0.06 mmol, 21 % yield) was obtained starting from *N*-methylsydnone (30 mg, 0.30 mmol), DMF (1.5 mL), $Pd(OAc)_2$ (16 mg, 0.07 mmol), triphenylphosphine (19 mg, 0.07 mmol), potassium carbonate (200 mg, 1.44 mmol) and 2-bromo-3-methylbenzaldehyde (80 mg, 0.39 mmol), reaction time: 6 hours. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc 100:0 to 8:2).

¹H NMR (400 MHz, CDCl₃, δ ppm): 7.90 (d, J = 7.3 Hz, 1H), 7.53 – 7.36 (m, 4H), 3.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃, δ ppm): 164.9(C), 134.9(C), 134.5(CH), 127.7(CH), 127.5(C), 127.1(CH), 126.3(CH), 125.9(C), 119.2(2C), 23.9(CH₃). IR (neat, cm⁻¹): 3098, 1740, 1720, 1413, 1292, 1218, 987, 810, 761. LCMS (ESI): m/z: 219 [M+H₂O+H]⁺.

7-methyl-1-oxo-1H-[1,2,3]oxadiazolo[4,3-a]isoquinolin-4-ium-3-ide 1e

C₁₁H₈N₂O₂ **MW:** 200.19 g.mol⁻¹ Yellow solid **Yield:** 36%

Following the general procedure, compound **1e** (44 mg, 0.22 mmol, 36% yield) was obtained starting from *N*-methylsydnone (62 mg, 0.62 mmol), DMF (3 mL), Pd(OAc)₂ (30 mg, 0.13 mmol), triphenylphosphine (38 mg, 0.14 mmol), potassium carbonate (400 mg, 2.89 mmol) and 2-bromo-6-methylbenzaldehyde (164 mg, 0.82 mmol), reaction time: 24 hours. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc 100:0 to 8:2).

¹H NMR (400 MHz, Methylene Chloride-*d*₂, δ ppm): 8.35 (d, *J* = 8.1 Hz, 1H), 8.03 (d, *J* = 7.6 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.62 (t, *J* = 7.8 Hz, 1H), 7.42 (dt, *J* = 7.4, 1.0 Hz, 1H), 2.65 (s, 3H). ¹³C NMR (100 MHz, Methylene Chloride-*d*₂, δ ppm): 165.1(C), 136.1(C), 131.6(CH), 129.6(CH), 126.7(C), 125.6(C), 123.4(CH), 119.4(CH), 119.2(CH), 19.3(CH₃). IR (neat, cm⁻¹): 3096, 1741, 1720, 1410, 1292, 1222, 981, 810, 760. LCMS (ESI): *m/z*: 223 [M+Na]⁺. 8-chloro-[1,2,3]oxadiazolo[4,3-a]isoquinolin-4-ium-1-olate 1

C₁₀H₅CIN₂O₂ MW: 220.61 g.mol⁻¹ Yellow solid Yield: 74%

Following the general procedure, the title compound **1** was obtained in (164 mg, 0.74 mmol, 74% yield) was obtained starting from *N*-methylsydnone (118 mg, 1.00 mmol) and 2-bromo-5-chlorobenzaldehyde (329 mg, 1.50 mmol). The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc 9/1 to 7/3).

¹H NMR (400 MHz, CDCl₃, δ ppm): 8.45 (d, J = 8.7 Hz, 1H), 8.02 (d, J = 7.4 Hz, 1H), 7.74 (d, J = 1.8 Hz, 1H), 7.68 (dd, J = 8.7 Hz, J = 1.8 Hz, 1H), 7.52 (d, J = 7.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 164.4, 134.1 (2C), 132.1, 127.1, 125.2, 124.4, 122.7, 120.4, 105.3. IR (cm⁻¹): 1742, 976.

LCMS (ESI): m/z: 221 [M(³⁵Cl)+H]⁺, 223 [M(³⁷Cl)+H]⁺.

7-fluoro-1-oxo-1H-[1,2,3]oxadiazolo[4,3-a]isoquinolin-4-ium-3-ide 1m

C₁₀H₅FN₂O₂ MW: 204.16 g.mol⁻¹ Yellow solid Yield: 32%

Following the general procedure, compound **1m** (20 mg, 0.09 mmol, 32 % yield) was obtained starting from *N*-methylsydnone (30 mg, 0.30 mmol), DMF (1.5 mL), Pd(OAc)₂ (16 mg, 0.07 mmol), triphenylphosphine (19 mg, 0.07 mmol), potassium carbonate (200 mg, 1.44 mmol) and 2-bromo-6-fluorobenzaldehyde (80 mg, 0.39 mmol), reaction time : 5.5 hours. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc 100:0 to 8:2).

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 8.28 (d, *J* = 8.1 Hz, 1H), 8.02 (d, *J* = 7.5 Hz, 1H), 7.86 (d, *J* = 7.5 Hz, 1H), 7.69 (td, *J* = 8.1, 5.4 Hz, 1H), 7.27 – 7.20 (m, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 164.4(C), 158.2 (d, J = 254 Hz, C), 132.8(d, J = 9 Hz, CH), 127.2(d, J = 4 Hz, C), 119.7 (2xCH), 119.3 (d, J = 5 Hz, CH), 117.2 (d, J = 4 Hz, CH), 115.4 (d, J = 17 Hz, C), 113. 1 (d, J = 19 Hz, CH), 104.9 (C).

¹⁹F NMR (**376** MHz, **CDCl**₃, δ ppm): -119.29. IR (neat, cm⁻¹): 3096, 1745, 1721, 1607, 1471, 1245, 1031, 910, 791. LCMS (ESI): *m/z*: 223.1 [M+H₂O+H]⁺. 10-oxo-10H-[1,2,3]oxadiazolo[3,4-h][1,7]naphthyridin-7-ium-8-ide 1p

C₉H₅N₃O₂ MW: 187.15 g.mol⁻¹ Yellow solid Yield: 21%

Following the general procedure, compound **1p** (21 mg, 0.11 mmol, 21% yield) was obtained starting from N-methylsydnone (53 mg, 0.52 mmol), DMF (2.5 mL), Pd(OAc)₂ (26 mg, 0.11 mmol), triphenylphosphine (30 mg, 0.11 mmol), potassium carbonate (300 mg, 2.17 mmol) and 2-bromopyridinecarboxaldehyde (100 mg, 0.53 mmol), reaction time: 24 hours. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc 100:0 to 0:100).

¹H NMR (400 MHz, DMSO-*d*₆, δ ppm): 8.93 (dd, *J* = 4.6, 1.7 Hz, 1H), 8.65 (d, *J* = 7.3 Hz, 1H), 8.34 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.99 (d, *J* = 7.4 Hz, 1H), 7.60 (dd, *J* = 8.1, 4.6 Hz, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆, δ ppm): 162.5 (C), 152.7(CH), 142.9(C), 135.7(CH), 125.5(CH), 122.6(CH), 122.4(2C), 121.6(CH).

IR (neat, cm⁻¹): 3045, 1737, 1433, 1232, 1142, 988, 830, 784. LCMS (ESI) m/z: C₉H₆N₃O₂ [M+H]⁺ 188.3.

1-oxo-1H-benzo[4,5]thieno[3,2-c][1,2,3]oxadiazolo[3,4-a]pyridin-4-ium-3-ide 1q

C₁₂H₆N₂O₂S MW: 242.25 g.mol⁻¹ Orange solid Yield: 54%

Following the general procedure, compound **1q** (82 mg, 0.39 mmol, 54% yield) was obtained starting from N-methylsydnone (60 mg, 0.6 mmol), DMF (2.5 mL), $Pd(OAc)_2$ (13.5 mg, 0.06 mmol), triphenylphosphine (31.5 mg, 0.12 mmol), potassium carbonate (348 mg, 2.5 mmol) and 3-bromobenzo[*b*]thiophene-2-carbaldehyde (180.9 mg, 0.75 mmol), reaction time: 16 hours. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc 100:0 to 8:2).

¹H NMR (400 MHz, DMSO-*d*₆, δ ppm): 9.40 – 9.34 (m, 1H), 8.74 (d, *J* = 7.3 Hz, 1H), 8.31 (d, *J* = 7.3 Hz, 1H), 8.22 – 8.17 (m, 1H), 7.67 – 7.59 (m, 2H).

¹³C NMR (100 MHz, DMSO-*d*₆, δ ppm): 163.7(C), 140.7(C), 132.3(C), 131.1(C), 128.1(CH), 127.8(C), 126.4(CH), 125.4(CH), 123.3(CH), 121.6(CH), 112.0(CH), 108.3(C).

IR (neat, cm⁻¹): 2924, 1726, 1510, 1443, 1335, 1227, 1157, 1050, 910, 768, 751, 693. LCMS (ESI) *m/z*: C₁₂H₇N₂O₂S [M+H]⁺ 243.6.

Aryne preparation

Preparation of phenanthryne and benzophenanthryne

Scheme S2. Synthetic pathway for preparation of aryne precursor 9a and 9b

((2-bromophenyl)ethynyl)trimethylsilane 2a

Under argon atmosphere, a solution of trimethylsilylacetylene (1.66 mL, 11.74 mmol, 1.5 equiv) in distilled THF (2 mL) is added to a solution containing 1-bromo-2-iodobenzene (1.02 mL, 7.9 mmol, 1.0 equiv), $PdCl_2(PPh_3)_2(112 mg, 0.15 mmol, 0.02 equiv)$, Cul (61 mg, 0.32 mmol, 0.04 equiv) and NEt₃ (2.2 mL, 15.7 mmol, 2 equiv) in distilled THF (12 mL). The mixture was heated at reflux for 3 hours and allowed to cool to room temperature. It was then filtered through a celite pad and rinsed with EtOAc. The filtrate was evaporated. The crude was partitioned between Et₂O and brine solution. The organic layer was then dried over MgSO₄, filtered and concentrated to dryness. Purification by silica gel column chromatography (Heptane 100%) afforded the desired compound as a yellow oil (2 g, 7.9 mmol, quantitative). The spectroscopic data were in accordance with the one reported in the literature. ²

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.57 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.50 – 7.47 (m, 1H), 7.23 (dd, *J* = 7.6, 1.3 Hz, 1H), 7.15 (ddd, *J* = 8.0, 7.4, 1.8 Hz, 1H), 0.28 (s, 9H).

Under argon atmosphere, to a solution of (2-methoxyphenyl)boronic acid (750 mg, 4.93 mmol, 2.0 equiv) in toluene (3 mL) were added Pd_2dba_3 (11 mg, 0.012 mmol, 0.5 mol%) and SPhos (20 mg, 0.048 mmol, 2 mol%). The solution was purged with argon and K_3PO_4 (1.59 g, 6.9 mmol, 3 equiv) was added followed by a solution of ((1-bromophenyl)ethynyl)trimethylsilane (635 mg, 2.50 mmol, 1.0 equiv) in toluene (2 mL). The mixture was heated at 100 °C for 6 hours, cooled down to room temperature and filtered through a pad of celite. The filtrate was concentrated *in vacuo* and purification by column chromatography (heptane/EtOAc, 100:0 to 98:2) to afford the compound as an orange oil (669 mg, 2.38 mmol, 95% yield).

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.54 (dt, *J* = 7.7, 1.0 Hz, 1H), 7.38 – 7.27 (m, 5H), 7.01 – 6.93 (m, 2H), 3.78 (s, 3H), 0.04 (s, 9H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 156.7, 141.9, 132.1, 131.2, 130.0, 129.7, 128.9, 128.2, 126.8, 123.0, 120.1, 110.7, 104.8, 96.4, 55.4, -0.2.

IR (NaCl, cm⁻¹): 3061, 2957, 2158, 1603, 1499, 1463, 1249, 1181, 1004, 865, 841, 796, 753. LCMS (ESI) : m/z : 281 [M+H]⁺.

2-ethynyl-2'-methoxy-1,1'-biphenyl 4a

C15H11O MW: 208.26 g.mol⁻¹ Orange oil Yield: 97%

At 0°C. TBAF.H₂O (5.82 g, 20.8 mmol, 1.5 equiv) was added to ((1-(2methoxyphenyl)phenyl)ethynyl)trimethylsilane (4.174 g, 14.9 mmol, 1 equiv) in THF (40 mL). The mixture was stirred at room temperature for 5 hours. The solution was diluted with EtOAc and washed with a NH₄Cl solution. The organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude was purified by column chromatography (SiO₂, heptane/EtOAc 100:0 -> 98:2) to afford the desired compound as a yellow solid (3.01 g, 14.4 mmol, 97% yield). The spectroscopic data were in accordance with the one reported in the literature.³

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.60 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.42 – 7.27 (m, 5H), 7.04 – 6.97 (m, 2H), 3.79 (s, 3H), 2.93 (s, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 157.0, 141.9, 133.2, 131.4, 130.5, 129.8, 129.3, 128.6, 127.1, 122.2, 120.5, 111.3, 83.3, 79.3, 55.8.

4-methoxyphenanthrene 5a

C₁₅H₁₂O MW: 208.26 g.mol⁻¹ White solid Yield: 66%

Under inert atmosphere, PtCl₂ (79 mg, 0.29 mmol, 0.1 equiv) was added to a solution of 2-ethynyl-2'methoxy-1,1'-biphenyl (618 mg, 2.97 mmol, 1 equiv) in anhydrous toluene (13 mL). The solution was heated at 80 °C for 20 hours. The solvent was removed *in vacuo*. The crude was purified by column chromatography (SiO₂, heptane 100%) to afford the desired compound as a white solid (413 mg, 1.98 mmol, 66% yield). The spectroscopic data were in accordance with the literature.⁴

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 9.68 (d, *J* = 8.5 Hz, 1H), 7.89 (dt, *J* = 7.8, 1.8 Hz, 1H), 7.77 – 7.69 (m, 2H), 7.68 – 7.61 (m, 1H), 7.59 (ddd, *J* = 9.1, 6.9, 1.9 Hz, 1H), 7.56 – 7.51 (m, 2H), 7.17 (dd, *J* = 5.9, 3.3 Hz, 1H), 4.15 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 158.8, 134.6, 132.7, 130.3, 128.6, 128.2, 127.9, 127.0, 126.4, 126.3, 125.8, 121.4, 120.8, 108.3, 55.6.

4-hydroxyphenanthrene 6a

C₁₄H₁₀O MW: 194.23 g.mol⁻¹ White solid Yield: 97%

Under inert atmosphere, at -78°C, BBr₃ (10 mL, 10 mmol, 1M in DCM, 1.2 equiv) was slowly added to a solution of 4-methoxyphenanthrene (1.736 g, 8.33 mmol, 1 equiv) in dry DCM (20 mL). The solution was allowed to reach room temperature and stirring was maintained for 14 hours. The mixture was cooled at 0°C and a saturated aqueous solution of NaHCO₃ was slowly added until bubbling stopped. The organic layer was then separated, dried over MgSO₄, filtered and the solvent was removed *in vacuo*. The crude was purified by column chromatography (SiO₂, heptane/EtOAc 100:0 -> 9:1) to afford the desired compound as an off-white solid (1.55 g, 7.98 mmol, 97% yield). The spectroscopic data were in accordance with the literature. ⁴

¹H NMR (400 MHz, CDCl₃, δ ppm): 9.67 – 9.62 (m, 1H), 7.88 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.71 (q, *J* = 8.8 Hz, 2H), 7.68 – 7.63 (m, 1H), 7.61 – 7.57 (m, 1H), 7.51 (dd, *J* = 7.9, 1.3 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 1H), 6.99 (dd, *J* = 7.6, 1.3 Hz, 1H), 5.64 (s, 1H). LCMS (ESI): *m/z*: 195 [M+H]⁺.

At -78°C, under argon, to a solution of 4-hydroxyphenanthrene (1.55 g, 7.98 mmol, 1 equiv) in DCM (33 mL) was added a solution of NBS (1.5 g, 8.42 mmol, 1.2 equiv) in DCM (7 mL). The solution was allowed to warm at room temperature and stirred for 1 hour. A solution of 1M HCl was added to reach pH 4. The mixture was partitioned between DCM and water. The organic layer was separated, dried over MgSO₄ and filtered off. Solvent was removed *in vacuo* and the crude was purified by flash chromatography (SiO₂, eluent gradient: Heptane/EtOAc 100:0 to 200:1). The desired compound was obtained as a white solid (1.67 g, 6.11 mmol, 76% yield). Spectroscopic data in accordance with the literature.⁷

¹H NMR (400 MHz, CDCl₃, δ ppm): 9.66 (d, *J* = 8.6 Hz, 1H), 7.90 (dd, *J* = 7.7 Hz, *J* = 1.5 Hz, 1H), 7.77 (d, *J* = 8.6 Hz, 1H), 7.71–7.59 (m, 4H), 7.39 (d, *J* = 8.5 Hz, 1H), 6.71 (s, 1H). LCMS (ESI): *m/z*: 273 [M(⁷⁹Br)+H]⁺, 275 [M(⁸¹Br)+H]⁺.

C₁₇H₁₇BrOSi MW: 345.31 g.mol⁻¹ Pink solid Yield: quantitative

A solution of 3-bromophenanthren-4-ol (1.67 g, 6.11 mmol, 1 equiv) and HMDS (1.6 mL, 7.15 mmol, 1.2 equiv) in distilled THF (18 mL) was heated at reflux for 4 hours. The mixture was then cooled down and the solvent was removed *in vacuo* to afford the desired compound as pink solid (2.11 g, 6.11 mmol, quantitative). Spectroscopic data in accordance with the literature. ⁴

¹H NMR (400 MHz, CDCl₃, δ ppm): 9.48–9.43 (m, 1H), 9.86–9.82 (m, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 8.9 Hz, 1H), 7.62 (d, J = 8.9 Hz, 1H), 7.52 (m, 2H), 7.40 (d, J = 8.4 Hz, 1H), 0.21 (s, 9H). LCMS (ESI): m/z: 345 [M(⁷⁹Br)+H]⁺, 347 [M(⁸¹Br)+H]⁺.

Under inert atmosphere, at -78 °C, *n*BuLi (0.8 mL, 1.84 mmol, 2.3 M in hexanes, 1.05 equiv) was added dropwise to a solution of ((3-bromophenanthren-4-yl)oxy)trimethylsilane (600 mg, 1.73 mmol, 1 equiv) in freshly distilled THF (8 mL). The mixture was then stirred at this temperature for 20 minutes. Then, Tf₂O (0.4 mL, 2.43 mmol, 1.4 equiv) followed by dry Et₂O (8 mL) were added and the stirring was maintained for 30 minutes. The mixture was quenched by addition of a cold saturated solution of NaHCO₃. Et₂O was added and the organic layer was separated, dried over MgSO₄ and filtered. The solvent was removed *in vacuo*. Purification by column chromatography (SiO₂, heptane/EtOAc 100:0 -> 99:1) to afford the desired compound as a colorless oil (442 mg, 1.1 mmol, 64% yield). Spectroscopic data in accordance with the literature. ⁴

¹H NMR (400 MHz, CDCl₃, δ ppm): 9.00 – 8.93 (m, 1H), 7.92 – 7.87 (m, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.78 (d, *J* = 8.8 Hz, 1H), 7.71 – 7.61 (m, 4H), 0.53 (s, 9H). LCMS (ESI): *m/z*: 400 [M+H]⁺.

((1-bromonaphthalen-2-yl)ethynyl)trimethylsilane 2b

C₁₅H₁₅BrSi **MW:** 303.27 g.mol⁻¹ Yellow oil **Yield:** 59%

Under argon atmosphere, to 1-bromonaphthalen-2-yl trifluoromethanesulfonate (2 g, 5.63 mmol, 1.0 equiv) in DMF (50 mL) were added $PdCl_2(PPh_3)_2$ (147 mg, 0.02 mmol, 0.3 mol%) and CuI (80 mg, 0.04 mmol, 0.6 mol%). After 3 cycles of argon/vacuum, *i*Pr₂NH (7 mL, 49 mmol) and TMS-acetylene (1.1 mL, 7.78 mmol, 1.4 equiv) were added and the mixture was allowed to stir at room temperature for 20 hours. The mixture was then slowly quenched at 0°C with a 1M solution of HCl and DCM was added. The organic layer was separated, dried over Na₂SO₄ and filtered. Solvent was removed *in vacuo* and purification on silica gel chromatography (heptane, 100%) afforded the desired compound as a yellow oil (1.01 g, 3.3 mmol, 59%). The spectroscopic data were in accordance with the literature. ⁵

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 8.38 (d, *J* = 8.7 Hz, 1H), 7.91 – 7.89 (m, 2H), 7.71 (ddd, *J* = 8.3, 6.7, 1.8 Hz, 1H), 7.63 (ddd, *J* = 8.0, 7.0, 1.2 Hz, 1H), 7.45 (d, *J* = 9.1 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 133.8(C), 132.2(C), 129.3(CH), 128.3(CH), 128.0(CH), 127.9(CH), 127.5(CH), 127.3(CH), 126.9(C), 123.4(C), 104.4(C), 100.6(CH₃).

Under argon atmosphere, to a solution of (2-methoxyphenyl)boronic acid (221 mg, 1.45 mmol, 2.0 equiv) in toluene (1.5 mL) were added Pd_2dba_3 (4 mg, 0.004 mmol, 0.5 mol%) and SPhos (8 mg, 0.02 mmol, 2 mol%). The solution was purged with argon and K_3PO_4 (505 mg, 2.19 mmol, 3 equiv) was added followed by a solution of ((1-bromonaphthalen-2-yl)ethynyl)trimethylsilane (225 mg, 0.74 mmol, 1.0 equiv) in toluene (1 mL). The mixture was heated at 80 °C for 4 hours, cooled down to room temperature and filtered through a pad of celite. The filtrate was concentrated *in vacuo* and purification by column chromatography (heptane/EtOAc, 100:0 to 99:1) to afford the compound as an orange oil (233 mg, 0.7 mmol, 95% yield).

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 7.83 (d, *J* = 7.9 Hz, 1H), 7.77 (d, *J* = 8.2 Hz, 1H), 7.58 (d, *J* = 8.5 Hz, 1H), 7.51 (d, *J* = 8.6 Hz, 1H), 7.41 – 7.34 (m, 3H), 7.22 – 7.20 (m, 1H), 7.09 – 7.03 (m, 2H), 3.69 (s, 3H), 1.54 (s, 9H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 157.6, 141.3, 133.2, 132.4, 132.0, 129.3, 128.3, 128.1, 128.0, 127.4, 126.8, 126.5, 126.4, 120.7, 111.3, 105.5, 97.6, 55.9, 0.01.

IR (neat, cm⁻¹): 2959, 2145, 1600, 1580, 1492, 1451, 1433, 1247, 1028, 839, 748. **LCMS (ESI)** *m/z*: 331 [M+H]⁺.

2-ethynyl-1-(2-methoxyphenyl)naphthalene 4b

C₁₉H₁₄O MW: 258.32 g.mol⁻¹ Yellow solid Yield: 88%

At 0°C, TBAF.H₂O (1.366 g, 4.97 mmol, 1.5 equiv) was added to ((1-(2-methoxyphenyl)naphthalen-2-yl)ethynyl)trimethylsilane (1.078 g, 3.26 mmol, 1 equiv) in THF (22 mL). The mixture was stirred at room temperature for 5 hours. The solution was diluted with EtOAc and washed with a saturated NH₄Cl solution. The organic layer was dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude was purified by column chromatography (SiO₂, heptane/EtOAc 100:0 -> 9:1) to afford the desired compound as a yellow solid (742 mg, 2.87 mmol, 88% yield).

¹H NMR (400 MHz, CDCl₃, δ ppm): 7.87 – 7.85 (m, 1H), 7.82 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.51 – 7.45 (m, 3H), 7.41 – 7.37 (m, 1H), 7.28 – 7.26 (m, 1H), 7.14 – 7.08 (m, 2H), 3.71 (s, 3H), 2.98 (s, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 157.6, 140.9, 133.4, 132.4, 132.0, 129.5, 129.0, 128.2, 127.7, 127.6, 126.9, 126.7, 126.6, 126.5, 126.4, 120.7, 119.7, 111.5, 83.8, 80.1, 56.0.

IR (neat, cm⁻¹): 2956, 2145, 1600, 1580, 1492, 1451, 1433, 1247, 1028, 839, 818, 748. **LCMS (ESI)** *m/z*: 259 [M+H]⁺.

Vield: 52% Under inert atmosphere, PtCl₂ (6 mg, 0.02 mmol, 0.2 equiv) was added to a solution of 2-ethynyl-1-(2methoxyphenyl)naphthalene (34 mg, 0.13 mmol, 1 equiv) in anhydrous toluene (0.5 mL). The solution was heated at 80 °C for 20 hours. The solvent was removed *in vacuo*. The crude was purified by column chromatography (SiO₂, heptane/EtOAc 100:0 -> 98:2) to afford the desired compound as a blue solid

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 8.16 (d, *J* = 8.0 Hz, 1H), 7.98 – 7.93 (m, 2H), 7.87 – 7.77 (m, 3H), 7.67 – 7.50 (m, 4H), 7.16 (dd, *J* = 7.0, 1.9Hz, 1H), 3.89 (s, 3H).

(18 mg, 0.07 mmol, 52% yield). The spectroscopic data were in accordance with the literature.⁶

¹³C NMR (100 MHz, CDCl₃, δ ppm): 156.7(C), 135.3(C), 132.5(C), 131.7(C), 131.1(CH), 130.2(C), 127.8(CH), 127.2(CH), 127.1(CH), 126.7(CH), 126.0(C), 125.9(CH), 125.5(CH), 123.5(CH), 120.9(CH), 120.2(C), 107.5(CH), 54.7(CH₃).

benzo[c]phenanthren-1-ol 6b

C₁₈H₁₂O MW: 244.29 g.mol⁻¹ Off white solid Yield: 99%

Under inert atmosphere, at -78°C, BBr₃ (0.4 mL, 0.4 mmol, 1M in DCM, 2.05 equiv) was slowly added to a solution of 1-methoxybenzo[c]phenanthrene (51 mg, 0.19 mmol, 1 equiv) in dry DCM (4 mL). The solution was allowed to reach room temperature and stirring was maintained for 14 hours. The mixture was cooled at 0°C and a saturated aqueous solution of NaHCO₃ was slowly added until bubbling stopped. The organic layer was then separated, dried over MgSO₄, filtered and the solvent was removed *in vacuo*. The crude was purified by column chromatography (SiO₂, heptane/EtOAc 100:0 -> 8:2) to afford the desired compound as an off-white solid (48 mg, 0.19 mmol, 99% yield). The spectroscopic data were in accordance with the literature. ⁶

¹H NMR (400 MHz, CDCl₃, δ ppm): 8.20 (d, *J* = 8.4 Hz, 1H), 8.07 (dd, *J* = 7.9, 1.6 Hz, 1H), 7.98 (d, *J* = 8.5 Hz, 1H), 7.92 – 7.87 (m, 2H), 7.77 (d, *J* = 8.5 Hz, 1H), 7.71 (ddd, *J* = 8.4, 6.9, 1.6 Hz, 1H), 7.68 – 7.60 (m, 3H), 7.25 (dd, *J* = 6.8, 2.3 Hz, 1H), 5.54 (s, 1H). LCMS (ESI) *m/z*: 243 [M-H]⁻.

2-bromobenzo[c]phenanthren-1-ol 7b

C₁₈H₁₁BrO MW: 323.19 g.mol⁻¹ Off white solid Yield: 67%

Under inert atmosphere, at -0°C, NBS (22 mg, 0.12 mmol, 1 equiv) in solution in DCM (1.75 mL) was slowly added to a solution of benzo[c]phenanthrene-1-ol (30 mg, 0.12 mmol, 1 equiv) in DCM (2 mL). The solution was stirred 1 hour at this temperature. The solvent was removed *in vacuo*. The crude was purified by column chromatography (SiO₂, heptane/EtOAc 100:0 -> 98:2) to afford the desired compound as an off-white solid (31.2 mg, 0.09 mmol, 75% crude yield). The purity was evaluated at 90% by NMR spectroscopy

¹H NMR (400 MHz, CDCl₃, δ ppm): 8.24 – 8.18 (m, 1H), 8.04 – 7.95 (m, 2H), 7.86 – 7.76 (m, 4H), 7.66 – 7.60 (m, 2H), 7.51 (d, *J* = 8.5 Hz, 1H), 6.25 (s, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 148.9 (C), 134.4(C), 132.8(C), 132.1(C), 129.9(CH), 129.7(CH), 128.9 (C), 128.3(CH), 127.8(CH), 127.3(CH), 127.1(CH), 126.1(CH), 126.0(CH), 125.1(CH), 124.8(C), 121.3(CH), 119.0(C), 107.8(C).

IR (neat, cm⁻¹): 3482, 3046, 1587, 1488, 1343, 1282, 1231, 1065, 835, 756, 617. LCMS (ESI) *m/z*: 323.7 [M]. ((2-bromobenzo[c]phenanthren-1-yl)oxy)trimethylsilane 8b

C₂₁H₁₉BrOSi MW: 395.37 g.mol⁻¹ yellow oil Yield: 74%

Under inert atmosphere, a solution containing 2-bromobenzo[c]phenanthren-1-ol (197 mg, 0.61 mmol, 1 equiv) and HMDS (1 mL, 4.77 mmol, 7.8 equiv) in dry THF (7.5 mL) was heated at reflux overnight. The solvent was removed *in vacuo* afford the desired compound as a yellow oil (210 mg, 0.53 mmol, 87% crude yield). The purity was evaluated at 85% by NMR spectroscopy, the compound was used as obtained.

¹H NMR (400 MHz, CDCl₃, δ ppm): 8.20 – 8.16 (m, 1H), 7.91 – 7.86 (m, 2H), 7.78 – 7.70 (m, 4H), 7.54 – 7.50 (m, 2H), 7.48 (d, *J* = 8.5 Hz, 1H), -0.69 (s, 9H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 149.47(C), 134.14(C), 132.67(C), 131.85(C), 131.73(CH), 130.70(CH), 129.71(C), 128.22(CH), 127.06(CH), 126.99(CH), 126.86(CH), 125.95(CH), 125.90(C), 125.77(CH), 124.57(CH), 124.05(C), 122.44(CH), 114.00(C), -0.19(3xCH₃).

Under inert atmosphere, at -78 °C, BuLi (0.13 mL, 0.25 mmol, 1.9 M in cyclohexane, 1.25 equiv) was added dropwise to a solution of ((2-bromobenzo[c]phenanthren-1-yl)oxy)trimethylsilane (78 mg, 0.20 mmol, 1 equiv) in freshly distilled THF (2 mL). The mixture was then stirred at this temperature for 40 minutes. Then, Tf₂O (60 μ L, 0.35 mmol, 1.75 equiv) followed by dry Et₂O (1 mL) were added and the stirring was maintained for 30 minutes. The mixture was quenched by addition of a cold saturated solution of NaHCO₃. Et₂O was added and the organic layer was separated, dried over MgSO₄ and filtered. The solvent was removed *in vacuo*. Purification by column chromatography (SiO₂, heptane/EtOAc 100:0 -> 99:1) to afford the desired compound as a colorless oil (20 mg, 0.04 mmol, 23% yield).

¹H NMR (400 MHz, CDCl₃, δ ppm): 8.22 – 8.18 (m, 1H), 7.92 (dd, J = 9.1, 7.3 Hz, 3H), 7.80 – 7.75 (m, 3H), 7.70 (d, J = 7.8 Hz, 1H), 7.56 – 7.52 (m, 2H), 0.51 (s, 9H). ¹³C NMR (100 MHz, CDCl₃, δ ppm): 148.6(C), 136.1(C), 133.1(C), 132.8(C), 132.1(CH), 132.0(C), 129.5(C), 129.0(CH), 128.6(CH), 127.7(CH), 127.5(CH), 126.4(CH), 126.1(CH), 125.8(CH), 125.6(CH), 124.4(C), 121.8(C), 119.8 (q, J = 131 Hz), 115.9(C), 0.3(3xCH₃). IR (neat, cm⁻¹): 1590, 1422, 1203, 1131, 1052, 933, 840, 821, 597. LCMS (ESI) m/z: 447.8[M-H]⁻.

Preparation of benzoquinolyne

Scheme S3. Synthetic pathway for the preparation of 13a

benzo[h]quinolin-10-ol 10

Following a procedure from the literature⁷: in a sealable tube, were added benzo[*h*]quinoline (720 mg, 4.0 mmol, 1 equiv), Pd(OAc)₂ (50 mg, 0.22 mmol, 0.05 equiv), PhI(OAc)₂ (1.7 g, 5.2 mmol, 1.3 equiv) in ACN (10 mL). The mixture was heated at 100 °C for 24 hours. After cooling at room temperature, solvents were removed under evaporation. MeOH (10 mL) was added followed by NaOH (400 mg, 10 mmol, 2.5 equiv). Stirring at room temperature was maintained for 3 hours. The mixture was slowly quenched by addition of a 1M solution of HCl until pH 5-6 is reached. The mixture was then concentrated *in vacuo* and the crude was partitioned between EtOAc and water. The organic layer was separated, dried over MgSO₄, filtered and concentrated. Purification by silica gel chromatography (Heptane/EtOAc 9:1) afforded the desired compound as a yellow solid (620 mg, 3.17 mmol, 79% yield).

¹H NMR (400 MHz, CDCl₃, δ ppm): 14.93 (s, 1H), 8.84 (dd, *J* = 4.7, 1.7 Hz, 1H), 8.27 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.82 (d, *J* = 8.9 Hz, 1H), 7.65 – 7.55 (m, 3H), 7.42 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.25 (d, *J* = 7.6 Hz, 1H). LCMS (ESI) *m/z*: 196 [M+H]⁺.

Bromination optimisation

111 NINAD wate

Conditions						
Conditions	10	11a	11b	11c		
NBS , Toluene/ACN (1:1), rt, 1h*	2.8	1	3.4	0.1		
DBDMH, ACN, rt, 1h	1.6	1	2.4	0.5		
BDMS, DCM, rt, 1h	17	1	4	0		
NBS, DCM, 0°C, 1h*	0.8	1	1.4	0.2		
NBS, iPr ₂ NH, DCM, -78°C, 3h	4.4	1	2.3	0.07		
NBS, ACN, 0°C, 1h*	0.1	1	1.7	0.35		
NBS, ACN, 0°C then rt, 1h *	0.2	1	0.7	0.05		
NBS, ACN, 0°C then rt, 1h **	0	1	1.1	0.8		
NBS, ACN, 40°C, 1h*	0.3	1	1.1	0.2		
NBS, ACN(wet), rt, 1h *	0.9	1	1.3	0.1		
NBS, Ag ₂ SO ₄ , EtOH, rt, 4h	1.9	1	2.2	0.4		
NBS, BArF, ACN, rt, 1h	0.6	1	1.4	0.2		
NBS, ACN, rt, 1h*	0.3	1	2	0.6		

Table S2. *NBS was solubilized in a 1/3 of the amount of solvent and slowly added with a syringe pump (14 mL/h speed rate) ** syringe pump speed rate: 7 mL/h

9-bromobenzo[h]quinolin-10-ol 11a & 7-bromobenzo[h]quinolin-10-ol 11b				
Br HO Br	C ₁₃ H ₈ BrNO MW: 274.12 g.mol ⁻¹ Yellow solid Yield: 59%			

Using a syringe pump (14 mL/h speed rate), NBS (550 mg, 3.06 mmol, 1 equiv) in ACN (10 mL) was added to a cold solution (0 °C) of benzo[h]quinolin-10-ol **10** (600 mg, 3.08 mmol, 1 equiv) in ACN (20 mL) with a vigorous stirring. The mixture was stirred at this temperature 1 hour and solvent was removed by evaporation. Purification by silica gel chromatography (Heptane/EtOAc 100:0 -> 99:1) afforded 7-bromobenzo[h]quinolin-10-ol **11b** as a yellow solid (230 mg, 0.84 mmol, 27% yield) and a mixture of 9-bromobenzo[h]quinolin-10-ol **11a** and 7,9-dibromobenzo[h]quinolin-10-ol. Purification

by reverse phase chromatography ($H_2O+0.1\%TFA/ACN+0.1\%TFA$ 95:5 to 0:100) followed by basic treatment afforded 9-bromobenzo[h]quinolin-10-ol **11a** as a pure pale-yellow powder (264 mg, 0.96 mmol, 32% yield).

Spectroscopic data for 9-bromobenzo[h]quinolin-10-ol 11a

¹H NMR (400 MHz, CDCl₃, δ ppm): 15.95 (s, 1H), 8.83 (dd, J = 4.7, 1.7 Hz, 1H), 8.28 (dd, J = 8.1, 1.8 Hz, 1H), 7.83 (d, J = 8.4 Hz, 1H), 7.77 (d, J = 8.9 Hz, 1H), 7.66 (d, J = 8.9 Hz, 1H), 7.60 (dd, J = 8.1, 4.7 Hz, 1H), 7.29 (d, J = 8.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃, δ ppm): 156.0(C), 147.5(C), 145.1(CH), 136.6(CH), 134.1(C), 133.4(CH),

128.9(CH), 126.5(C), 125.1(CH), 121.5(CH), 118.8(CH), 116.5(C), 107.9(C). **IR (cm⁻¹):** 1622, 1584, 1519, 1459, 1427, 1335, 1311, 1128, 829, 724. **LCMS (ESI)** *m/z*: C₂₄H₁₇N₂ [M+H]⁺ 333.4.

Spectroscopic data for 7-bromobenzo[h]quinolin-10-ol 11b

¹H NMR (400 MHz, CDCl₃, δ ppm): 15.27 (s, 1H), 8.87 (dd, *J* = 4.7, 1.7 Hz, 1H), 8.33 (dd, *J* = 8.1, 1.8 Hz, 1H), 8.26 (d, *J* = 9.2 Hz, 1H), 7.87 (d, *J* = 8.6 Hz, 1H), 7.77 (d, *J* = 9.2 Hz, 1H), 7.65 – 7.61 (m, 1H), 7.14 (d, *J* = 8.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.4 (C), 147.8 (C), 145.4 (CH), 136.7 (CH), 133.8 (CH), 132.8 (C), 128.1 (CH), 126.3 (C), 126.1 (CH) 121.6 (CH), 117.3 (C), 115.2 (CH), 110.6 (C).
 IR (cm⁻¹): 1619, 1575, 1466, 1400, 1329, 1272, 1110, 1032, 817, 715.
 LCMS (ESI) *m/z*: C₁₃H₉BrNO [M]⁺ 274.2.

Spectroscopic data for 7,9-dibromobenzo[h]quinolin-10-ol 11c

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 16.37 (s, 1H), 8.88 (dd, *J* = 4.7, 1.8 Hz, 1H), 8.36 (dd, *J* = 8.1, 1.8 Hz, 1H), 8.22 (d, *J* = 9.2 Hz, 1H), 8.14 (s, 1H), 7.79 (d, *J* = 9.2 Hz, 1H), 7.68 (dd, *J* = 8.1, 4.7 Hz, 1H). The spectroscopic data were in accordance with the literature. ⁸

9-bromo-10-((trimethylsilyl)oxy)benzo[h]quinoline 12a

C₁₆H₁₆BrNOSi MW: 346.30 g.mol⁻¹ White solid Yield: 99%

In a sealable tube, were added 9-bromobenzo[h]quinolin-10-ol **11a** (120 mg, 0.45 mmol, 1 equiv), BSTFA (250 μ L, 0.94 mmol, 2.1 equiv) in dry ACN (800 μ L). The mixture was heated at 60 °C for 2 hours. The solvent was removed *in vacuo* to give a white solid (153 mg, 0.45 mmol, 99% yield). Due to instability and fast deprotection the compound **12a** was used quickly after in the next step.

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 9.02 (dd, *J* = 4.4, 1.9 Hz, 1H), 8.15 (dd, *J* = 8.0, 1.9 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 8.8 Hz, 1H), 7.65 (d, *J* = 8.8 Hz, 1H), 7.53 (dd, *J* = 8.0, 4.3 Hz, 1H), 7.43 (d, *J* = 8.4 Hz, 1H), 0.30 (s, 9H).

9-(trimethylsilyl)benzo[h]quinolin-10-yl trifluoromethanesulfonate 13a

C₁₇H₁₆F₃NO₃SSi **MW:** 399.46 g.mol⁻¹ Colorless oil **Yield:** 51%

At -78°C, under inert atmosphere, *n*BuLi (0.6 mL, 1.05 mmol, 1.2 equiv) was added dropwise to a solution of 9-bromo-10-((trimethylsilyl)oxy)benzo[h]quinoline **12a** (302 mg, 0.85 mmol, 1 equiv) in freshly distilled THF (3 mL). Stirring was maintained at this temperature for 30 minutes then Tf₂O (200 μ L, 1.22 mmol, 1.4 equiv) was slowly added. After 1 hour of stirring at this temperature, the solution was allowed to warm to room temperature. A cold saturated solution of NaHCO₃ was added to quench the mixture. The crude was then extracted with Et₂O. The organic layer was dried over MgSO₄, filtered and concentrated. Purification by silica gel column chromatography (Heptane/EtOAc 100:0 to 98:2) afforded the desired compound as a colorless oil (180.3 mg, 0.45 mmol, 51% yield).

¹H NMR (400 MHz, CDCl₃, δ ppm): 9.02 (dd, *J* = 4.3, 1.9 Hz, 1H), 8.19 (dd, *J* = 8.1, 1.9 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.81 - 7.72 (m, 3H), 7.56 (dd, *J* = 8.0, 4.3 Hz, 1H), 0.51 (s, 9H). ¹³C NMP (100 MHz, CDCl, δ ppm): 140 7(C), 148 3(CH), 145 7(C), 137 1(C), 135 0(CH), 134 0(C)

¹³C NMR (100 MHz, CDCl₃, δ ppm): 149.7(C), 148.3(CH), 145.7(C), 137.1(C), 135.9(CH), 134.9(C), 134.2(CH), 128.1(CH), 127.6(CH), 127.5(C), 127.1(CH), 124.3(C), 122.2(CH), 119.0 (q, J = 323 Hz).
IR (neat, cm⁻¹): 2925, 1591, 1418, 1390, 1196, 1131, 984, 841, 731, 681.

HRMS (ESI-TOF) *m*/*z* calcd for C₁₄H₁₇F₃NO₃SSi [M+H]⁺ : 400.0645; found: 400.0641.

Preparation of 7-phenylbenzoquinolyne precursor

Scheme S4. Synthetic pathway for the preparation of 13b

7-phenylbenzo[h]quinolin-10-ol 11c

C₁₉H₁₃NO MW: 271.32 g.mol⁻¹ Yellow solid Yield: 72%

Under inert atmosphere, 7-bromobenzo[h]quinolin-10-ol **11b** (197 mg, 0.72 mmol, 1 equiv), Pd₂dba₃ (8 mg, 8 µmol, 0.01 equiv), SPhos (16 mg, 40 µmol, 0.05 equiv), K₃PO₄ .3H₂O (500 mg, 2.17 mmol, 3 equiv) were suspended in anhydrous toluene (2 mL). The solution was degassed before the addition of phenylboronic acid (176 mg, 1.44 mmol, 2 equiv). The mixture was heated at 100 °C for 20 hours. After cooling at room temperature and filtration through a celite pad, the reaction mixture was concentrated *in vacuo*. Purification by silica gel chromatography (Heptane/EtOAc 100: 0 -> 99:1) afforded the desired compound as a yellow solid (141 mg, 0.52 mmol, 72% yield).

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 15.32 (s, 1H), 8.83 (dd, *J* = 4.7, 1.7 Hz, 1H), 8.22 (dd, *J* = 8.1, 1.8 Hz, 1H), 7.92 (d, *J* = 9.2 Hz, 1H), 7.63 – 7.43 (m, 8H), 7.32 (d, *J* = 8.1 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 159.2(C), 148.5(C), 144.9(CH), 140.9(C), 136.2(CH), 132.5(C), 131.4(CH), 130.9(C), 130.6(2xCH), 128.4(2xCH), 127.2(CH), 127.0(CH), 126.2(C), 124.6(CH), 121.1(CH), 115.9(C), 113.8(CH).

IR (NaCl, cm⁻¹): 3040, 2617, 2494, 1622, 1532, 1472, 1410, 1336, 1290, 1232, 1130, 824, 716, 632. **LCMS (ESI)** *m/z*: C₁₉H₁₄NO [M+H]⁺ 272.4.

NBS (101 mg, 0.57 mmol, 1.1 equiv) was added by portion to a solution of 7-phenylbenzo[h]quinolin-10-ol **11c** (141 mg, 0.52 mmol, 1 equiv) in anhydrous DCM (10 mL). The solution was stirred at room temperature for 1.5 hour and the solvent was removed *in vacuo*. Purification by silica gel chromatography (Heptane/EtOAc 100: 0 -> 95:5) afforded the desired compound as an orange solid (120.4 mg, 0.34 mmol, 66% crude yield). The product was obtained as an inseparable mixture of regioisomers with 88% of the desired isomer. The corrected yield of the desired isomer is 60%.

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 16.33 (s, 1H), 8.82 (dd, *J* = 4.7, 1.7 Hz, 1H), 8.25 (dd, *J* = 8.1, 1.7 Hz, 1H), 7.85 (d, *J* = 8.9 Hz, 2H), 7.62 – 7.55 (m, 2H), 7.53 – 7.41 (m, 5H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 155.6(C), 147.5(C), 144.9(CH), 139.6(C), 136.5(CH), 134.4(CH), 131.7(C), 131.6(C), 130.5(2xCH), 128.6(2xCH), 127.5(CH), 127.0(CH), 126.4(C), 124.9(CH), 121.6(CH), 116.3(C), 107.6(C).

IR (neat, cm⁻¹): 3054, 1618, 1581, 1459, 1442, 1395, 1301, 1127, 880, 830, 725, 703. LCMS (ESI) *m/z*: C₁₉H₁₃BrNO [M+H]⁺ 351.4. 9-bromo-7-phenyl-10-((trimethylsilyl)oxy)benzo[h]quinoline 12a

C₂₂H₂₀BrNOSi MW: 422.39 g.mol⁻¹ white solid Yield: quantitative

> Colorless oil **Yield:** 24%

In a sealable tube, were added 9-bromo-7-phenylbenzo[h]quinolin-10-ol (120 mg, 0.34 mmol, 1 equiv), BSTFA (180 μL, 0.68 mmol, 2.1 equiv) in dry ACN (600 μL). The mixture was heated at 60 °C for 2 hours. The solvent was removed in vacuo to give a white solid (132 mg, 0.14 mmol, quantitative yield). Due to instability and fast deprotection the compound was used quickly after in the next step. ¹H NMR (400 MHz, CDCl₃, δ ppm): 9.04 (dd, J = 4.3, 1.9 Hz, 1H), 8.13 (dd, J = 8.0, 1.9 Hz, 1H), 7.84 (s, 1H), 7.78 (d, J = 9.1 Hz, 1H), 7.59 – 7.43 (m, 7H), 0.32 (s, 9H).

7-phenyl-9-(trimethylsilyl)benzo[h]quinolin-10-yl trifluoromethanesulfonate 13b

At -78°C, under inert atmosphere, nBuLi (220 µL, 0.37 mmol, 1.2 equiv) was added dropwise to a solution of 9-bromo-10-((trimethylsilyl)oxy)benzo[h]quinoline 12b (132 mg, 0.31 mmol, 1 equiv) in freshly distilled THF (2.2 mL). Stirring was maintained at this temperature for 30 minutes then Tf₂O (100 µL, 0.61 mmol, 1.4 equiv) was slowly added. After 1 hour of stirring at this temperature, the solution was allowed to warm to room temperature. A cold saturated solution of NaHCO₃ was added to quench the mixture. The crude was then extracted with Et₂O. The organic layer was dried over MgSO₄, filtered and concentrated. Purification by silica gel column chromatography (Heptane/EtOAc 100:0 to 99:1) afforded the desired compound as a colorless oil (36 mg, 0.07 mmol, 24% yield).

¹H NMR (400 MHz, CDCl₃, δ ppm): 9.05 (dd, J = 4.3, 1.9 Hz, 1H), 8.16 (dd, J = 8.1, 1.9 Hz, 1H), 7.80 (d, J = 9.1 Hz, 1H), 7.72 (s, 1H), 7.66 (d, J = 9.1 Hz, 1H), 7.59 – 7.47 (m, 6H), 0.53 (s, 9H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 149.15(C), 148.3(CH), 145.8(C), 140.2(C), 139.9(C), 135.7(CH), 135.3(CH), 134.9(C), 134.3(C), 130.3(2xCH), 128.8(2xCH), 127.9(2xCH), 127.4(CH), 127.1(C), 125.2(CH), 124.4(C), 122.4(CH), 118.9 (q, J = 318 Hz).

IR (neat, cm⁻¹): 1583, 1419, 1379, 1237, 1197, 1131, 984, 859, 834, 733, 702. **HRMS (ESI-TOF)** *m*/*z* calcd for C₂₃H₂₁F₃NO₃SSi [M+H]⁺: 476.0958; found: 476.0953.

Helicenes scope

General procedure for the preparation of helicenes

To a solution of the sydnone (1 equiv) and aryne precursor (1.25 equiv) in dry THF (0.4 M) was added dropwise TBAF (1.25 equiv, 1M in THF) over a period of 5 min. The mixture was stirred at room temperature during 15 or 30 min and was then concentrated to dryness *in vacuo*. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc) to afford the desired compound.

Note: Assignment of the C-shape vs the S-shape products has been done by analogy with our precedent report after extensive 2D NMR study and X-ray structures resolution¹. We noticed by ¹H NMR that in the case of the S-shape the proton 29 is deshielded (between 10.6 - 10 ppm) because it is not subjected to the magnetic anisotropy induced by the other terminal benzene.

16-methylnaphtho[1',2':4,5]indazolo[3,2-a]isoquinoline C-21

C₂₄H₁₆N₂ **MW:** 332.40 g.mol⁻¹ Yellow solid **Yield:** 34%

Compound **C-21** was obtained in 34% yield (8.5 mg, 0.025 mmol) from compound **1d** (15 mg, 0.075 mmol) and compound **9a** (35 mg, 0.09 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, $100/0 \rightarrow 95/5$).

¹H NMR (400 MHz, CDCl₃, δ ppm): 8.54 (d, *J* = 7.2 Hz, 1H), 8.04 – 7.89 (m, 5H), 7.83 – 7.79 (m, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.61 – 7.49 (m, 2H), 7.36 (d, *J* = 7.2 Hz, 1H), 7.26 (t, *J* = 3.6 Hz, 1H), 7.14 (ddd, *J* = 8.3, 6.8, 1.4 Hz, 1H), 1.56 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 149.42(C), 137.71(C), 132.81(C), 131.53(C), 130.93(C), 130.34(C), 130.30(CH), 129.88(CH), 129.00(C), 128.03(CH), 127.66(CH), 126.97(CH), 126.95(CH), 126.72(C), 126.62(C), 126.12(CH), 126.04(CH), 125.85(CH), 125.10(CH), 123.77(CH), 117.42(CH), 115.91(CH), 112.37(C), 21.85(CH₃).

IR (cm⁻¹): 3048, 2925, 1531, 1480, 1331, 1202, 907, 828, 805, 749, 731. LCMS (ESI) *m/z*: C₂₄H₁₇N₂ [M+H]⁺ 333.4.

HRMS (ESI-TOF) *m*/*z* calcd for C₂₄H₁₇N₂ [M+H]⁺ : 333.1386; found: 333.1384.

13-methylnaphtho[1',2':4,5]indazolo[3,2-a]isoquinoline C-22

C₂₄H₁₆N₂ **MW:** 332.40 g.mol⁻¹ Yellow solid **Yield:** 37% Compound **C-22** was obtained in 37% yield (12.5 mg, 0.037 mmol) from compound **1e** (20 mg, 0.1 mmol) and compound **9a** (50 mg, 0.125 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, $100/0 \rightarrow 95/5$).

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 8.71 (d, *J* = 7.5 Hz, 1H), 8.07 – 8.02 (m, 3H), 7.99 – 7.94 (m, 3H), 7.66 – 7.54 (m, 3H), 7.42 (dt, *J* = 7.3, 1.0 Hz, 1H), 7.34 (ddd, *J* = 8.3, 6.9, 1.4 Hz, 1H), 7.22 (dd, *J* = 8.2, 7.2 Hz, 1H), 2.79 (s, 3H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 149.98(C), 133.73(C), 133.63(C), 132.80(C), 130.29(CH), 130.27(CH), 129.38(C), 128.89(CH), 128.67(C), 128.13(C), 127.85(CH), 127.27(CH), 127.08(CH), 126.37(CH), 126.31(CH), 125.99(CH), 125.79(C), 125.75(CH), 125.36(C), 124.74(CH), 117.33(CH), 112.40(CH), 110.28(C), 19.94(CH₃).

IR (cm⁻¹): 3048, 1617, 1601, 1532, 1484, 1333, 1218, 905, 828, 784, 730. **LCMS (ESI)** *m/z*: C₂₄H₁₇N₂ [M+H]⁺ 333.3.

HRMS (ESI-TOF) *m*/*z* calcd for C₂₄H₁₇N₂ [M+H]⁺: 333.1386; found: 333.1384.

13-fluoronaphtho[1',2':4,5]indazolo[3,2-a]isoquinoline C-27 and 12-fluoronaphtho[2',1':6,7]indazolo[3,2-a]isoquinoline S-27

C₂₃H₁₃FN₂ MW: 336.36 g.mol⁻¹ Yellow solids Yield: 57%

Compounds C-27 and S-27 was obtained in 50% (12 mg, 0.035 mmol) and 7% (1.8 mg, 0.005 mmol) yields respectively from compound **1m** (15 mg, 0.073 mmol) and compound **9a** (35 mg, 0.087 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, $100/0 \rightarrow 97/3$).

Data for compound C-27.

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 8.72 (d, *J* = 7.5 Hz, 1H), 8.06 (dd, *J* = 8.9, 7.5 Hz, 2H), 8.01 – 7.95 (m, 4H), 7.75 (dd, *J* = 7.5, 0.7 Hz, 1H), 7.62 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 7.45 (dd, *J* = 6.6, 2.7 Hz, 1H), 7.37 (ddd, *J* = 8.3, 6.9, 1.4 Hz, 1H), 7.32 – 7.26 (m, 2H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 157.95 (d, *J* = 250.7 Hz), 149.87, 132.86, 132.59 (d, *J* = 2.4 Hz), 130.57, 130.11, 129.73, 128.63, 128.02, 127.28, 126.70 (d, *J* = 8.4 Hz), 126.61 (d, *J* = 4.1 Hz), 126.54, 126.39, 125.42, 124.94, 124.65 (d, *J* = 4.0 Hz), 118.75 (d, *J* = 16.9 Hz), 117.40, 112.58 (d, *J* = 19.8 Hz), 110.47, 108.37 (d, *J* = 7.0 Hz).

¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -120.97.

IR (cm⁻¹): 3051, 1594, 1533, 1489, 1462, 1333, 1240, 955, 829, 782, 753

LCMS (ESI) *m/z*: C₂₃H₁₄FN₂ [M+H]⁺ 337.

HRMS (ESI-TOF) *m*/*z* calcd for C₂₃H₁₄FN₂ [M+H]⁺: 337.1136; found: 337.1131.

Data for compound S-27.

¹H NMR (400 MHz, CDCl₃, δ ppm) : 10.53 (dt, J = 8.6, 0.6 Hz, 1H), 8.79 (d, J = 7.4 Hz, 1H), 8.67 (d, J = 8.8 Hz, 1H), 8.44 (d, J = 8.8 Hz, 1H), 8.07 - 7.94 (m, 3H), 7.92 - 7.85 (m, 2H), 7.79 (d, J = 8.8 Hz, 1H), 7.72 - 7.67 (m, 2H), 7.30 (d, J = 7.4 Hz, 1H).
¹⁹F NMR (376 MHz, CDCl₃, δ ppm): -119.58.
IR (cm⁻¹) : 3045, 2922, 1539, 1358, 1260, 1082, 829.
LCMS (ESI) *m/z*: C₂₃H₁₄FN₂ [M+H]⁺ 337.

HRMS (ESI-TOF) *m*/*z* calcd for C₂₃H₁₄FN₂ [M+H]⁺: 337.1136; found: 337.1130.

14-chloronaphtho[1',2':4,5]indazolo[3,2-a]isoquinoline C-28 and 11chloronaphtho[2',1':6,7]indazolo[3,2-a]isoquinoline S-28

C₂₃H₁₃ClN₂ **MW:** 352.82 g.mol⁻¹ Yellow solid **Yield:** 73%

Compounds **C-28** and **S-28** was obtained in 65% (23 mg, 0.065 mmol) and 8% (3 mg, 0.008 mmol) yields respectively from compound **1I** (22 mg, 0.1 mmol) and compound **9a** (60 mg, 0.15 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, 100/0 -> 95/5).

Data for compound C-28.

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 8.65 (d, *J* = 7.3 Hz, 1H), 8.08 – 8.04 (m, 1H), 8.03 (d, *J* = 8.8 Hz, 1H), 7.98 – 7.91 (m, 4H), 7.84 (d, *J* = 2.2 Hz, 1H), 7.61 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.38 (ddd, *J* = 8.3, 6.9, 1.4 Hz, 1H), 7.33 (d, *J* = 7.3 Hz, 1H), 7.26 (dd, *J* = 8.8, 2.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 150.1(C), 133.3(C), 132.83(C), 132.81(C), 130.4(CH), 130.38(C), 129.9(CH), 129.8(CH), 129.6(C), 128.5(C), 128.1(CH), 127.8(CH), 127.3(CH), 126.5(CH), 126.3(CH), 126.2(CH), 125.8(CH), 125.4(C), 125.0(CH), 123.5(C), 117.5(CH), 114.8(CH), 110.3(C).

IR (cm⁻¹): 2917, 1526, 1357, 1331, 1260, 1084, 878, 838, 814, 791, 745.

LCMS (ESI) *m*/*z*: C₂₃H₁₄ClN₂ [M+H]⁺ 353.4.

HRMS (ESI-TOF) *m*/z calcd for C₂₃H₁₄ClN₂ [M+H]⁺: 353.0840; found: 353.0837.

Data for compound S-28.

¹**H NMR (400 MHz, CDCl₃, δ ppm)**: 10.53 (dt, *J* = 8.6, 0.6 Hz, 1H), 8.79 (d, *J* = 7.4 Hz, 1H), 8.67 (d, *J* = 8.8 Hz, 1H), 8.44 (d, *J* = 8.8 Hz, 1H), 8.07 – 7.94 (m, 3H), 7.92 – 7.85 (m, 2H), 7.79 (d, *J* = 8.8 Hz, 1H), 7.72 – 7.67 (m, 2H), 7.30 (d, *J* = 7.4 Hz, 1H).

IR (cm⁻¹): 3045, 2922, 1539, 1358, 1260, 1082, 829.

LCMS (ESI) *m*/*z*: C₂₃H₁₄ClN₂ [M+H]⁺ 353.4.

HRMS (ESI-TOF) *m*/*z* calcd for C₂₃H₁₄ClN₂ [M+H]⁺ : 353.0840; found: 353.0839.

benzo[7',8']isoquinolino[2',1':2,3]indazolo[5,4-h]quinoline C-29

C₂₆H₁₅N₃ MW: 369.47 g.mol⁻¹ Yellow solid Yield: 52%

Compound **C-29** was obtained in 52% yield (21 mg, 0.056 mmol) from compound **1b** (27 mg, 0.11 mmol) and compound **13a** (57 mg, 0.14 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, 100/0 -> 95/5).

¹**H NMR (400 MHz, CDCl₃, \delta ppm):** 8.91 (d, *J* = 7.0 Hz, 1H), 8.26 (d, *J* = 8.9 Hz, 1H), 8.17 - 8.11 (m, 3H), 8.08 (d, *J* = 0.9 Hz, 1H), 7.95 - 7.87 (m, 3H), 7.65 (d, *J* = 7.1 Hz, 1H), 7.41 (dd, *J* = 4.3, 1.8 Hz, 1H), 7.33 (dt, *J* = 8.5, 0.9 Hz, 1H), 7.27 - 7.22 (m, 2H), 7.02 (dd, *J* = 8.1, 4.2 Hz, 1H), 6.30 (ddd, *J* = 8.3, 6.8, 1.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 150.2(C), 146.2(CH), 145.0(C), 134.7(CH), 133.9(C), 131.1(C), 130.9(C), 130.2(C), 129.9(CH), 128.6(CH), 128.3(C), 127.7(CH), 127.3(C), 127.1(CH), 127.0(CH), 126.8(C), 126.6(CH), 126.2(CH), 125.1(C), 124.2(CH), 124.1(CH), 123.4(CH), 120.7(CH), 118.9(CH), 116.1(CH), 111.2(C). IR (cm⁻¹): 3052, 1711, 1517, 1321, 1122, 964, 826, 731.

LCMS (ESI) *m/z*: C₂₆H₁₆N₃ [M+H]⁺ 370.3.

HRMS (ESI-TOF) *m*/z calcd for C₂₆H₁₆N₃ [M+H]⁺: 370.1339; found: 370.1338.

m.p.: 258 - 260 °C.

benzo[4',5']thieno[3',2':3,4]pyrido[1,2-b]naphtho[1,2-e]indazole C-30

C₂₅H₁₄N₂S MW: 374.46 g.mol⁻¹ Yellow solid Yield: 35%

Compound **C-30** was obtained in 35% yield (8.5 mg, 0.025 mmol) from compound **1q** (15 mg, 0.075 mmol) and compound **9a** (35 mg, 0.09 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, $100/0 \rightarrow 95/5$).

¹H NMR (400 MHz, CDCl₃, δ ppm): 8.92 (d, *J* = 7.2 Hz, 1H), 8.06 – 7.93 (m, 5H), 7.92 – 7.86 (m, 2H), 7.68 (d, *J* = 7.2 Hz, 1H), 7.31 (ddd, *J* = 8.0, 6.8, 1.2 Hz, 1H), 7.27 – 7.20 (m, 1H), 6.90 (dt, *J* = 8.2, 0.9 Hz, 1H), 6.67 (ddd, *J* = 8.3, 6.9, 1.4 Hz, 1H), 6.59 (ddd, *J* = 8.3, 7.1, 1.1 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 150.9(C), 138.8(C), 135.32(C), 135.29(C), 132.9(C), 132.2(C), 131.0(CH), 130.7(C), 128.5(C), 127.8(CH), 127.7(CH), 127.5(CH), 126.9(CH), 126.6(CH), 126.3(C), 126.2(CH), 126.0(C), 125.8(CH), 125.5(CH), 124.3(CH), 122.6(CH), 121.9(CH), 116.8(CH), 110.1(CH), 108.3(C).

IR (cm⁻¹): 3049, 1925, 1621, 1530, 1382, 1218, 1137, 907, 828, 739, 730. **LCMS (ESI)** *m/z*: C₂₅H₁₅N₂S [M+H]⁺ 375.4. **HRMS (ESI-TOF)** *m*/*z* calcd for C₂₅H₁₅N₂S [M+H]⁺: 375.0950; found: 375.0952. **m.p.:** 215 - 217 °C.

benzo[4",5"]thieno[3",2":3',4']pyrido[1',2':2,3]indazolo[5,4-h]quinoline C-31

C₂₅H₁₃N₃S **MW:** 375.45 g.mol⁻¹ Yellow solid **Yield:** 41%

Compound **C-31** was obtained in 41% yield (11.6 mg, 0.031 mmol) from compound **1q** (18 mg, 0.076 mmol) and compound **13a** (38 mg, 0.095 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, $100/0 \rightarrow 9/1$).

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 8.87 (d, *J* = 7.2 Hz, 1H), 8.25 (dd, *J* = 8.1, 1.8 Hz, 1H), 8.16 – 8.05 (m, 3H), 7.94 (dd, *J* = 4.3, 1.8 Hz, 1H), 7.89 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.68 (d, *J* = 7.2 Hz, 1H), 7.22 (ddd, *J* = 8.2, 7.1, 1.2 Hz, 1H), 7.17 (dd, *J* = 8.1, 4.3 Hz, 1H), 6.92 (dt, *J* = 8.2, 0.9 Hz, 1H), 6.54 (ddd, *J* = 8.2, 7.1, 1.1 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 150.9(C), 138.8(C), 135.32(C), 135.29(C), 132.9(C), 132.2(C), 131.0(CH), 130.7(C), 128.5(C), 127.8(CH), 127.7(CH), 127.5(CH), 126.9(CH), 126.6(CH), 126.3(C), 126.2(CH), 126.0(C), 125.8(CH), 125.5(CH), 124.3(CH), 122.6(CH), 121.9(CH), 116.8(CH), 110.1(CH), 108.3(C).

IR (cm⁻¹): 2954, 2923, 2853, 1727, 1621, 1528, 1489, 1389, 1205, 908, 834, 768, 732. LCMS (ESI) m/z: C₂₅H₁₅N₂S [M+H]⁺ 376.3.

HRMS (ESI-TOF) *m*/*z* calcd for C₂₄H₁₄N₃S [M+H]⁺: 376.0903; found: 376.0907.

naphtho[1',2':4,5]indazolo[2,3-h][1,7]naphthyridine C-32

C₂₂H₁₃N₃ MW: 319.36 g.mol⁻¹ Yellow solid Yield: 26%

Compound **C-32** was obtained in 26% yield (5.3 mg, 0.016 mmol) from compound **1p** (12 mg, 0.064 mmol) and compound **9a** (33 mg, 0.082 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, 100/0 -> 8/2).

¹H NMR (400 MHz, CDCl₃, δ ppm): 8.76 – 8.69 (m, 2H), 8.21 (d, *J* = 8.4 Hz, 1H), 8.17 (dd, *J* = 8.0, 1.8 Hz, 1H), 8.06 – 7.91 (m, 5H), 7.59 (ddd, *J* = 8.1, 6.8, 1.2 Hz, 1H), 7.45 (dd, *J* = 8.0, 4.5 Hz, 1H), 7.38 (d, *J* = 7.3 Hz, 1H), 7.32 – 7.26 (m, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 150.2(C), 148.6(CH), 143.3(C), 134.1(CH), 133.91(C), 132.92(C), 132.1(CH), 130.9(CH), 129.8(C), 129.8(C), 127.9(CH), 126.9(CH), 126.9(CH), 126.8(CH), 126.2(CH), 126.1(C), 125.1(C), 123.1(CH), 121.8(CH), 117.0(CH), 114.0(CH), 111.4(C).

IR (cm⁻¹): 3048, 2924, 2853, 1729, 1601, 1480, 1355, 1258, 1109, 828, 729. LCMS (ESI) m/z: C₂₂H₁₄N₃ [M+H]⁺ 320.1. HRMS (ESI-TOF) m/z calcd for C₂₂H₁₄N₃ [M+H]⁺: 320.1182; found: 320.1182.

isoquinolino[2',1':2,3]indazolo[5,4-h]quinoline C-33

C₂₂H₁₃N₃ **MW:** 319.36 g.mol⁻¹ Yellow solid **Yield:** 43%

Compound **C-33** was obtained in 43% yield (8 mg, 0.025 mmol) from compound **1a** (11 mg, 0.058 mmol) and compound **13a** (28 mg, 0.07 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, $100/0 \rightarrow 8/2$).

¹**H NMR (400 MHz, CDCl₃, \delta ppm):** 8.75 (dd, *J* = 4.3, 1.8 Hz, 1H), 8.63 (d, *J* = 7.3 Hz, 1H), 8.36 (dd, *J* = 8.1, 1.8 Hz, 1H), 8.13 (d, *J* = 8.8 Hz, 1H), 8.08 (d, *J* = 8.5 Hz, 1H), 7.98 (d, *J* = 8.9 Hz, 1H), 7.91 (d, *J* = 8.5 Hz, 1H), 7.86 – 7.83 (m, 1H), 7.71 – 7.67 (m, 1H), 7.59 – 7.50 (m, 2H), 7.46 (d, *J* = 7.2 Hz, 1H), 7.32 (ddd, *J* = 8.4, 7.1, 1.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 149.9(C), 147.8(CH), 145.3(C), 135.8(CH), 134.9(C), 131.5(CH), 130.4(C), 129.6(C), 129.5(CH), 128.4(CH), 127.7(C), 127.35(C), 127.31(CH), 126.7(C), 126.5(C), 126.0(CH), 124.7(CH), 124.5(CH), 121.3(CH), 119.3(CH), 116.6(CH), 109.9(C).
 IR (cm⁻¹): 2917, 2849, 1735, 1529, 1490, 1334, 1248, 958, 836, 793, 731.
 LCMS (ESI) *m/z*: C₂₂H₁₄N₃ [M+H]⁺ 320.4.

HRMS (ESI-TOF) *m*/z calcd for C₂₂H₁₄N₃ [M+H]⁺: 320.1182; found: 320.1184.

7-phenylbenzo[7',8']isoquinolino[2',1':2,3]indazolo[5,4-h]quinoline C-34

C₃₂H₁₉N₃ MW: 445.52 g.mol⁻¹ Yellow solid Yield: 45%

Compound **C-34** was obtained in 45% yield (11 mg, 0.024 mmol) from compound **1b** (13 mg, 0.055 mmol) and compound **13b** (30 mg, 0.063 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, 100/0 -> 95/5).

¹H NMR (400 MHz, CDCl₃, δ ppm): 8.94 (d, *J* = 7.1 Hz, 1H), 8.19 (s, 1H), 8.17 – 8.05 (m, 3H), 7.94 (d, *J* = 8.6 Hz, 2H), 7.82 – 7.52 (m, 8H), 7.42 (dd, *J* = 4.3, 1.8 Hz, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.26 (dd, *J* = 14.9, 1.2 Hz, 1H), 7.02 (dd, *J* = 8.1, 4.2 Hz, 1H), 6.34 (ddd, *J* = 8.3, 6.9, 1.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 149.6 (C), 146.2 (C), 142.0 (C), 141.1 (C), 134.8 (C), 134.1 (C), 131.0 (C), 130.9 (C), 130.4 (3CH), 129.34 (C), 128.7(CH), 128.6 (2CH), 128.5(C), 127.7 (CH), 127.2 (CH), 127.1

(CH), 126.7 (CH), 126.5 (CH), 126.2 (CH), 126.0 (CH), 125.1(C), 124.2 (CH), 123.7(CH), 123.6 (CH), 121.0 (CH), 119.5 (C), 116.2 (CH), 110.8(C). **IR (cm⁻¹):** 3052, 1713, 1587, 1499, 1323, 1218, 1122, 965, 907, 826, 730, 702. **LCMS (ESI)** m/z: C₃₂H₂₀N₂ [M+H]⁺ 446.9. **HRMS (ESI-TOF)** m/z calcd for C₃₂H₂₀N₃ [M+H]⁺: 446.1652; found: 446.1648.

11-phenylbenzo[7',8']isoquinolino[2',1':2,3]indazolo[5,4-h]quinoline C-35

C₃₂H₁₉N₃ MW: 445.52 g.mol⁻¹ Yellow solid Yield: 41%

Compound **C-35** was obtained in 41% yield (14 mg, 0.031 mmol) from compound **1h** (24 mg, 0.077 mmol) and compound **13a** (40 mg, 0.10 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, $100/0 \rightarrow 95/5$).

¹H NMR (400 MHz, CDCl₃, δ ppm): 8.28 (d, *J* = 8.8 Hz, 1H), 8.20 – 8.06 (m, 6H), 7.97 (d, *J* = 8.5 Hz, 1H), 7.93 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 1H), 7.71 (s, 1H), 7.67 – 7.57 (m, 3H), 7.50 – 7.46 (m, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.05 (dd, *J* = 8.1, 4.3 Hz, 1H), 6.33 (ddd, *J* = 8.3, 6.9, 1.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 149.9 (C), 146.1 (C), 138.3 (C), 134.7 (C), 134.4 (C), 130.9 (C), 130.7 (CH), 130.4 (C), 130.1 (2CH), 129.65 (CH), 129.64 (CH), 128.76 (C), 128.71 (2CH), 128.6 (C), 127.9 (C), 127.3 (CH), 126.8 (CH), 126.1 (CH), 124.3 (CH), 124.1 (CH), 124.0 (C), 123.7 (CH), 120.6 (CH), 119.9 (C), 117.0 (CH), 111.2 (C).

IR (cm⁻¹): 3051, 2924, 2852, 1721, 1598, 1526, 1489, 1353, 1205, 908, 835, 731 LCMS (ESI) m/z: C₃₂H₂₀N₂ [M+H]⁺ 446.9.

HRMS (ESI-TOF) *m*/*z* calcd for C₃₂H₂₀N₃ [M+H]⁺: 446.1652; found: 446.1655. **m.p.:** 160 - 162 °C.

phenanthro[4',3':4,5]indazolo[3,2-a]isoquinoline C-36

C₂₇H₁₆N₂ **MW:** 368.44 g.mol⁻¹ Yellow solid **Yield:** 37%

Compound **C-36** was obtained in 37% yield (4.8 mg, 0.013 mmol) from compound **1a** (7.7 mg, 0.041 mmol) and compound **9b** (21.2 mg, 0.047 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, $100/0 \rightarrow 20/1$).

¹**H NMR (400 MHz, CDCl₃, δ ppm):** 8.67 (d, *J* = 7.3 Hz, 1H), 8.17 – 8.06 (m, 3H), 8.03 – 7.96 (m, 3H), 7.90 (ddd, *J* = 16.6, 8.2, 1.2 Hz, 2H), 7.70 – 7.66 (m, 1H), 7.38 (d, *J* = 7.3 Hz, 1H), 7.29 – 7.26 (m, 1H), 7.13 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 6.64 – 6.60 (m, 1H), 6.55 (ddd, *J* = 8.3, 7.0, 1.3 Hz, 1H), 6.42 (ddd, *J* = 8.5, 6.9, 1.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 133.3, 132.9, 131.7, 131.5, 130.9, 130.7, 128.1, 128.0, 127.8, 127.7, 127.2, 126.5, 126.3, 126.2, 126.0, 125.9, 125.8, 125.4, 125.38, 125.3, 125.0, 124.7, 123.4, 117.2, 116.0, 112.5. One C is missing

IR (cm⁻¹): 3047, 2959, 2925, 2854, 1723, 1609, 1537, 1503, 1260, 1249, 1079, 1016, 907, 838, 791, 729. **LCMS (ESI)** *m/z*: C₂₇H₁₇N₂ [M+H]⁺ 369.3.

HRMS (ESI-TOF) *m*/*z* calcd for C₂₇H₁₇N₂ [M+H]⁺: 369.1386; found: 369.1385. **m.p.:** 209 - 211 °C.

C₃₁H₁₈N₂ MW: 418.49 g.mol⁻¹ Yellow solid Yield: 31%

Compounds **C-37** was obtained in 31% yield (2.8 mg, 0.0067 mmol) respectively from compound **1b** (5 mg, 0.02 mmol) and compound **9b** (15 mg, 0.033 mmol) according to the general procedure. The crude product was purified by flash chromatography (SiO₂, heptane/EtOAc, $100/0 \rightarrow 9/1$).

¹**H NMR (400 MHz, CDCl₃, \delta ppm):** 9.08 (d, *J* = 7.0 Hz, 1H), 8.34 (s, 2H), 8.29 (d, *J* = 8.0 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 8.6 Hz, 1H), 7.84 - 7.76 (m, 2H), 7.69 (d, *J* = 6.9 Hz, 1H), 7.54 (d, *J* = 7.9 Hz, 2H), 7.22 - 7.12 (m, 2H), 6.73 (ddd, *J* = 8.0, 6.9, 1.2 Hz, 1H), 6.40 (d, *J* = 8.4 Hz, 1H), 6.00 (ddd, *J* = 8.2, 6.8, 1.3 Hz, 1H), 5.91 (d, *J* = 8.6 Hz, 1H), 5.78 (ddd, *J* = 8.3, 6.9, 1.4 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃, δ ppm): 131.39, 131.29, 130.46, 130.10, 129.86, 129.62, 128.80, 127.92, 127.73, 127.66, 127.32, 126.48, 126.35, 126.19, 125.96, 125.90, 125.80, 125.27, 124.24, 124.04, 123.72, 123.64, 123.17, 122.98, 116.77, 115.17. 5 C missing

IR (cm⁻¹): 2959, 2854, 1723, 1609, 1502, 1260, 1015, 907, 838, 791, 728.

LCMS (ESI) *m*/*z*: C₃₁H₁₉N₂ [M+H]⁺ 419.5.

HRMS (ESI-TOF) *m*/*z* calcd for C₃₁H₁₉N₂ [M+H]⁺: 419.1543; found: 419.1541.

III. Optical properties of compound C-29

Scheme S6. Structure and picture of compound **C-29** in its neutral or protonated state upon addition of TFA of DBU.

Chiral SFC analysis

Preparative separation: SFC chromatograms were recorded using a CHIRALPAK IC (250 mm x 20 mm x 5 μ m), mobile phase: EtOH/CO₂ (3:7), flow rate 33 ml.min⁻¹ at 40 °C, detection (220 - 400 nm). Analysis postpreparative SFC: SFC chromatograms were recorded using a CHIRALPAK IC (250 mm x 4.6 mm x 5 μ m), mobile phase: EtOH/CO₂ (1:1), flow rate 4 ml.min⁻¹ at 40 °C, detection (220 - 400 nm).

Figure S1. Chiral SFC spectra of the racemic mixture and after separation of each isomer (ee >99 %)

Optical study absorbance and emission neutral form

Absorbance & fluorescence spectra

Figure S2. Absorbance spectra for both enantiomers measured in dichloromethane at 50 μ M.

Figure S3. Normalized fluorescence of the basic form both enantiomers (20 μ M in dichloromethane) after excitation at 385 nm.

Specific rotation $\alpha_{\rm D}$

 $\alpha_{D^{20}}$ (isomer 1): + 1208 (c 5.10⁻⁵, CHCl₃)

 $\alpha_{\rm D^{20}}$ (isomer 2): - 1130 (c 1.10⁻⁴, CHCl_3)

Circular dichroism (CD) analysis

Figure S4. CD spectra were obtained from 50 μ M in DCM. Black line: First enantiomer eluted. Red line: second enantiomer eluted. Black dotted line: molecular attenuation coefficient.

Circularly Polarized Luminescence (CPL) study

Figure S5. Superimposition of ΔI and luminescence spectra (first graph) and g_{lum} values and luminescence spectra (second graph) depending on wavelength for both enantiomers measured at 50 μ M in DCM after excitation at 385 nm. Black line: First enantiomer eluted. Red line: second enantiomer eluted. Black dotted line: fluorescence.

Optical study absorbance and emission acidic form

Absorbance & fluorescence spectra

Figure S6. Absorbance spectra for both enantiomers measured in a 10^{-1} M solution of TFA in dichloromethane at 50 μ M.

Figure S7. Normalized fluorescence of the acidic form both enantiomers (20 μ M in 10⁻¹M solution of TFA in dichloromethane) after excitation at 470 nm.

Circular dichroism (CD) analysis

Figure S8. CD spectra were obtained from 50 μ M in DCM. Black line: First enantiomer eluted. Red line: second enantiomer eluted. Black dotted line: molecular attenuation coefficient.

Circularly Polarized Luminescence (CPL) study

Figure S9. Superimposition of ΔI and luminescence spectra (first graph) and g_{lum} values and luminescence spectra (second graph) depending on wavelength for both enantiomers measured at 50 μ M in DCM with 10 M⁻¹ of TFA after excitation at 470 nm. Black line: First enantiomer eluted. Red line: second enantiomer eluted. Black dotted line: fluorescence.

Comparison of the chiroptical study responses of both enantiomers in neutral and protonated state

Figure S10. Black solid lines: first enantiomer eluted; red solid lines: second enantiomer eluted; black dotted lines: luminescences

pH-triggered switch by CPL

Figure S11. Measurement of the g_{lum} upon protonation/deprotonation

To evaluate the robustness of the compound upon protonation, a series of acidification and basification was realized. To a solution of E1 (50 μ M in DCM) was successively added 1,98.10⁻⁵ mol of TFA and 1,98.10⁻⁵ mol DBU. The CPL response was measured upon every protonation state changes. This procedure was repeated 3 times and demonstrated the efficiency of the pH-triggered switch with no significant decrease of the *g*_{lum} values.

pKa determination

The pKa was determined by slow acidification of the solution by addition of TFA aliquots and measurement of the absorbance and fluorescence.

Figure S.12. Absorbance and fluorescence spectra (@385 nm) depending on the pH.

Optical properties of compound C-31

Scheme S7. Structure and picture of compound C-31 in its neutral or protonated state upon addition of TFA.

Chiral SFC analysis

Preparative separation: SFC chromatograms were recorded using a CHIRALPAK IC (250 mm x 20 mm x 5 μ m), mobile phase : EtOH /CO₂ (1:1), flow rate 33 ml.min⁻¹ at 40 °C, detection (220 - 400 nm). Analysis postpreparative SFC: SFC chromatograms were recorded using a CHIRALPAK IC (250 mm x 4.6 mm x 5 μ m), mobile phase : EtOH /CO₂ (1:1), flow rate 4 ml.min⁻¹ at 40 °C, detection (220 - 400 nm).

Figure S13. Chiral SFC spectra of the racemic mixture and after separation of each isomer

Optical study absorbance and emission basic form

Absorbance & fluorescence spectra

Figure S14. Absorbance spectra for both enantiomers measured in chloroform at 50 μ M.

Figure S15. Normalized fluorescence of the basic form both enantiomers (50 μM in chloroform) after excitation at 400 nm.

Circular dichroism (CD) analysis

Figure S16. CD spectra were obtained from 50 μ M solution in chloroform. Black line: First enantiomer eluted. Red line: second enantiomer eluted. Black dotted line: molecular attenuation coefficient.

Circularly Polarized Luminescence (CPL) study

Figure S17. Superimposition of ΔI and luminescence spectra (first graph) and g_{lum} values and luminescence spectra (second graph) depending on wavelength for both enantiomers measured at 50 μ M in chloroform after excitation at 350 nm. Black line: First enantiomer eluted. Red line: second enantiomer eluted. Black dotted line: fluorescence.

Optical study absorbance and emission acidic form

Absorbance & fluorescence spectra

Figure S18. Absorbance spectrum of both enantiomers measured of solutions at 50 μ M chloroform with 50 equivalents of TFA.

Figure S19. Fluorescence spectra measured after excitation at 465 nm of a solution at 50 μ M chloroform with 50 equivalents of TFA.

Circular dichroism analysis

Figure S20. CD spectra were obtained from 50 μ M solution in chloroform with 50 eq of TFA. Black line: First enantiomer eluted. Red line: second enantiomer eluted. Black dotted line: molecular attenuation coefficient.

Circularly Polarized Luminescence (CPL) study

Figure S21. Superimposition of ΔI and luminescence spectra (first graph) and g_{lum} values and luminescence spectra (second graph) depending on wavelength for both enantiomers measured at 50 μ M in chloroform with 50 eq of TFA after excitation at 380 nm. Black line: First enantiomer eluted. Red line: second enantiomer eluted. Black dotted line: fluorescence.

IV. Crystallographic data

The data were collected at 100(2) K either on a Nonius Kappa-CCD area detector diffractometer⁹ using graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) (C-29), or on a Bruker D8 Quest diffractometer equipped with an Incoatec Microfocus Source (IµS 3.0 Mo) and a PHOTON III area detector, and operated through the APEX3 software¹⁰ (C-30.0.5CH₂Cl₂, C-35 and C-36). The crystals were mounted into glass capillaries or on Mitegen micromounts with a protective coating of Paratone-N oil (Hampton Research). The data were processed with HKL2000¹¹ (C-29) or SAINT¹² (C-30.0.5CH₂Cl₂, C-35 and C-36), and absorption effects for C-30.0.5CH₂Cl₂, C-35 and C-36 were corrected empirically with the program SADABS.^{13,14}All structures were solved by intrinsic phasing with SHELXT,¹⁵ expanded by subsequent difference Fourier synthesis and refined by full-matrix least-squares on F² with SHELXL¹⁶ using the ShelXle interface.¹⁷ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were introduced at calculated positions and were treated as riding atoms with an isotropic displacement parameter equal to 1.2 times that of the parent atom. In compound C-29, atoms N2 and N3 are partly disordered over the positions occupied by C5 and C25, respectively, and the two sets of positions were refined with occupancy parameters constrained to sum to unity and constraints (EXYZ and EADP) for nitrogen and carbon atoms occupying the same sites. Crystal data and structure refinement parameters are given in Table S3. The molecular plots were drawn with ORTEP-3/POV-Ray.¹⁸

Dihedral angles, for **C-29** (°): N3–C10–C9–C4 = 9.7(2), C10–C9–C4–C3 = 13.2(3), C9–C4–C3–C17 = 18.4(3), C4–C3–C17–C21 = 17.8(3), C3–C17–C21–C25 = 15.6(2). For **C-30** (°): C15–C10–C6–C3 = 6.9(3), C10–C6–C3–C4 = 8.9(4), C6–C3–C4–C16 = 21.5(4), C3–C4–C16–C20 = 23.0(3), C4–C16–C20–C27 = 9.1(3). For **C-35** (°): N3–C8–C7–C2 = 10.8(2), C8–C7–C2–C1 = 13.1(2), C7–C2–C1–C18 = 16.5(3), C2–C1–C18–C19 = 20.7(2), C1–C18–C19–C23 = 17.7(2). For **C-36** (°): C18–C14–C10–C9 = 16.6(2), C14–C10–C9–C4 = 24.5(2), C10–C9–C4–C3 = 20.3(3), C9–C4–C3–C25 = 7.4(3), C4–C3–C25–C26 = 10.3(3).

Comments:

Crystals of **C-30** and **C-36** suitable for crystallographic analysis were obtained by slow evaporation of a dichloromethane and chloroform solution, respectively. Crystals of **C-29** and **C-35** were obtained by slow diffusion of hexanes in dichloromethane at room temperature.

In all four cases, the sequence of torsion angles reflects the asymmetry of the molecule. For **C-29**, the central torsion angle is the largest, and one of the terminal angles is the smallest (not necessarily that involving N3 due to the disorder affecting the nitrogen atoms, see Experimental Section); the sum of the five angles amounts to 74.7°.

The central angle and one of the adjoining angles in both **C-30** and **C-36** are larger than any angle in **C-29**; the other three angles are much smaller in **C-30**, the sum being 69.4°, while one larger terminal angle in **C-36** results in a larger sum of 79.1°. The angles in **C-35** follow the same trend as those in **C-36**, with a slightly smaller sum of 78.8°.

	C-29	C-30 ·0.5CH ₂ Cl ₂	C-35	C-36
chemical formula	$C_{26}H_{15}N_3$	$C_{25.5}H_{15}CIN_2S$	$C_{32}H_{19}N_3$	$C_{27}H_{16}N_2$
M (g mol ⁻¹)	369.41	416.90	445.50	368.42
cryst syst	orthorhombic	orthorhombic	monoclinic	monoclinic
space group	Pbca	Pccn	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> (Å)	14.9185(8)	11.2768(5)	11.0041(9)	7.8038(2)
<i>b</i> (Å)	12.3307(5)	12.0743(4)	15.3437(9)	17.4799(5)
<i>c</i> (Å)	18.6931(11)	27.7032(12)	12.9414(9)	13.0285(3)
β (deg)			103.077(3)	96.2329(12)
$V(\text{\AA}^3)$	3438.7(3)	3772.1(3)	2128.4(3)	1766.71(8)
Ζ	8	8	4	4
refins collcd	100228	104632	68551	37573
indep reflns	3257	3586	4036	3337
obsd reflns [$I > 2\sigma(I)$]	2554	3269	3451	2878
$R_{ m int}$	0.028	0.051	0.056	0.054
params refined	263	267	316	262
R_1	0.046	0.039	0.038	0.040
wR_2	0.106	0.094	0.093	0.098
S	1.047	1.063	1.032	1.049
$\Delta \rho_{\min}$ (e Å ⁻³)	-0.21	-0.45	-0.21	-0.18
$\Delta ho_{\rm max}$ (e Å ⁻³)	0.15	0.58	0.43	0.42

Table S3. Crystal Data and Structure Refinement Details

V. Full computation details

Density functional theory (DFT) calculations were performed using Gaussian 16.19 Geometry optimizations were carried out for the gas-phase with the M06-2X functional,²⁰ using the 6-31+G(d,p) basis set, and a tight convergence factor (opt=tight), method which was successfully used in our last work on 1,3-dipolar cycloadditions between sydnones and arynes.¹ Normal mode vibrational analysis on the stationary points allowed us to confirm they are minima (zero imaginary frequencies) or transition structures (TS, one imaginary frequency). TSs were followed along their reaction coordinates to verify that they connect the expected minima. ZPE, enthalpy and free energy corrections were obtained using a standard state of 1 atm pressure and 298 K temperature using Goodvibes v2.0.3.²¹ Free energies were computed using Truhlar's quasiharmonic oscillator approximation, setting all frequencies below 100 cm⁻¹ to 100 cm⁻¹.^{22,23} To obtain accurate energies, single-point energy refinements were then performed at the M06-2X/6-311+G(2d,2p) level of theory, for the gas-phase or using the SMD solvation model²⁴ for THF. The free energies presented in the manuscript were then obtained by adding the free energy corrections obtained from the frequency analysis to the singlepoint electronic energies. Visualizations of the computed structures were prepared using CYLview.²⁵ Frontier molecular orbitals (FMOs) and their energies, as well as natural bond orbitals (NBO), were computed at the HF/6-311+G(2d,2p) level, using the M06-2X optimized geometries. Non-covalent interactions (NCI) and the molecular orbitals composition analyses were carried out using Multiwfn software,²⁶ and atoms contributions to MOs were calculated by Hirshfeld method.²⁷

Time-dependent DFT calculations (TD-DFT) were performed using the B3LYP functional, the 6-311+G(2d,2p) basis set, Grimme's D3 correction with Becke-Johnson (BJ) damping,²⁸ and the IEF-PCM solvation model²⁹ for dichloromethane. The ground state (S₀) and first excited state (S₁) were optimized for the two helicenes **C-29** and **C-29·H**⁺ and the oscillator and rotatory strengths of their first 100 vertical transitions were obtained. Vibrational analysis of both states confirmed their geometries are minima on their respective potential energy surfaces. Oscillator and rotatory strengths were fitted to Gaussian functions with a half-width at half-height of 0.2 eV to obtain the predicted spectra, which were normalized to 1 for UV-Vis spectra, or to -100 for CD spectra. For the emission spectra from the S₁ optimized geometry, only the S₁ \rightarrow S₀ transition is considered. Frontier molecular orbitals (FMOs) and their energies were obtained using the NBO formalism (pop=(full,NBO) keyword in Gaussian 16). Natural Transition Orbitals (NTOs) were computed using the above methods, using the pop=(Orbitals,NTO,SaveNTO) keywords. Density maps were generated by subtracting the computed density at the S₀ from the density at the S₁ state.

XYZ coordinates of all computed structures are listed in this document and provided in a .zip archive as a separate Supporting Information file. The Gaussian output files for all optimization and frequency analysis, both for the DFT and TD-DFT sections of this work, have been archived and are available for download on Zenodo (DOI 10.5281/zenodo.4268325).

Additional figures, tables and discussion

Potential energy surfaces for the 5 computed systems

	TS1	ΔΔG*1	int1	TS2	int2	TS3	products
C-14	10.6	17	-34.4	-24.0	-34.4	-35.1	-131.6
S-14	12.3	1.7	-40.5	-36.9	-44.8	-45.5	-140.8
C-29	10.4	26	-36.3	-34.0	-38.4	-38.9	-136.0
S-29	13.0	2.0	-41.0	-39.1	-44.0	-44.7	-138.2
C-33	10.9	2.2	-38.6	-32.2	-36.5	-37.1	-133.9
S-33	13.1	2.2	-40.4	-37.0	-44.8	-45.6	-140.2
C-32	11.3	1.4	-36.5	-29.6	-36.6	-37.4	-134.0
S-32	12.7		-41.5	-38.8	-48.0	-48.8	-143.9
C-37	11.5	4.4	-30.3	-29.9	-36.0	-36.7	-132.4
S-37	15.9		-33.5	-31.7	-36.7	-37.3	-131.4
C-36	12.2	4 0	-27.2	-26.3	-33.2	-33.9	-129.3
S-36	16.2	-1.0	-33.1	-30.0	-38.5	-39.3	-132.6

Table S4: Stationary points of the computed system potential energy surfaces Free energy values (in kcal/mol) calculated at the M06-2X/6-311+G(2d,2p)/SMD(THF)// M06-2X/6-31+G(d,p) level of theory

Noteworthly, in addition of providing an important stabilization of the TS leading to **C-37**, the large aromatic backbones also make this final pyrazole helicene product the only one calculated lower in energy than the less sterically hindered S-shape isomer **S-37**.

Figure S22: Potential energy surface for the reaction between 1a and 38c

Figure S23: Potential energy surface for the reaction between 1b and 38c

Figure S24: Potential energy surface for the reaction between 1b and 38b

Figure S25: Potential energy surface for the reaction between 1a and 38b

Figure S26: Potential energy surface for the reaction between 1p and 38a

Transition structures geometries

products	ΔΔG±1	D (°)	dista	ances
P	-		from N2	from C4
C-14	1 7	-2.7	Cext 2.48	Cint 2.95
S-14	1.7	-10.9	C _{int} 2.41	C _{ext} 2.65
C-29	2.6	-4.5	C _{ext} 2.45	C _{int} 2.77
S-29	2.0	-34.1	C _{int} 2.35	C _{ext} 3.10
C-32	1.4	-13.4	C _{ext} 2.38	Cint 2.74
S-32		-9.3	C _{int} 2.48	C _{ext} 2.55
C-33	2.2	-1.3	C _{ext} 2.50	Cint 2.82
S-33	2.2	-34.1	C _{int} 2.34	C _{ext} 3.10
C-36	4.0	14.6	C _{ext} 2.20	Cint 3.41
S-36	4.0	-8.5	Cint 2.32	C _{ext} 2.49
C-37		-3.8	C _{ext} 2.25	Cint 2.91
S-37	4.4	-9.7	Cint 2.32	Cext 2.50

Table S5: TS geometries

• C-shape products computed structures

Figure S27: Computed structure of the helical products (M06-2X/6-31+G(d,p)) and dihedral angles along the helicene backbone

Aromatic interactions

Optimized TS1 structures leading to the C-shaped products C-29, C-32, C-33, C-36 and C-37 were stripped of the reacting sydnone and aryne functional groups (which were replaced by hydrogen atoms), so that their polycyclic backbones remained in the same orientation and distance. Single-point energy calculations at the M06-2X/6-311+G(2d,2p)/SMD(THF) level of theory were done on these aromatic dimers.

The energies of the two parts of the dimers were then computed independently. The interaction

energy was then obtained from $\Delta E_{int,ar} = \Delta E_{dimer} - (\Delta E_{part1} + \Delta E_{part2})$

Figure S28: Aromatic dimers (right) vs. TS (left) geometries Energy values obtained from single point energy calculation at the M06-2X/6-311+G(2d,2p)/SMD(THF) level.

Distortion/interaction, angles and aromatic dimer energies

Distortion/interaction analysis:³⁰

Distortion/interaction analysis was performed by splitting the transition structures optimized at the M06-2X/6-31+G(d,p) level in two fragments: the sydnone (*syd*) and the aryne (*a*). Single-point energies of these fragments were taken at the M06-2X/6-311+G(2d,2p) level. The difference in energy between the distorted fragments and their ground states is called distortion energy (ΔE^{+}_{dist}), and the interaction energy (ΔE^{+}_{int}) is calculated using the activation energy (E_{a}) such as

$\mathsf{E}_{\mathsf{a}} = \Delta \mathsf{E}^{\texttt{*}} = \Delta \mathsf{E}^{\texttt{*}}_{\mathsf{dist},\mathsf{syd}} + \Delta \mathsf{E}^{\texttt{*}}_{\mathsf{dist},\mathsf{a}} + \Delta \mathsf{E}^{\texttt{*}}_{\mathsf{int}} = \Delta \mathsf{E}^{\texttt{*}}_{\mathsf{dist},\mathsf{tot}} + \Delta \mathsf{E}^{\texttt{*}}_{\mathsf{int}}$

$$\begin{split} &\Delta E^{*}_{dist,syd} = \text{distortion energy of the sydnone} \\ &\Delta E^{*}_{dist,a} = \text{distortion energy of the aryne} \\ &\Delta E^{*}_{dist,tot} = \text{total distortion energy (sydnone + aryne)} \end{split}$$

Whereas the distortion energies do not allow to explain the calculated differences in activation energy between the C- and S- regioisomers, we observed a good correlation with the interaction energies, in accordance with the involvement of stabilizing π -stacking forces in the selectivity (**Table S6**).

Houk/Garg aryne distortion model for [4+2] cycloadditions:³¹

The Houk/Garg model on aryne distortion to explain the regioselectivity of 1,3-dipolar cycloaddition between substituted arynes and azides rely on the modification of the aryne angles between the ground-state and the transition structure. An unsymmetrical substitution of the aryne induces a difference in the values of the aryne angles compared with a symmetrical aryne like benzyne. A transition structure will be favored if the modification of those angles in route to the TS goes in the same direction than the deformation induced by the substitution, and in the contrary will be disfavored if both substitution and cycloaddition have opposite effects on the aryne distortion. However, for the studied systems, the modification of the aryne angles in the course of the (3+2) cycloaddition does not correlate with the difference in activation energy observed between the regioisomers.

distortion interaction							angles modification	aromatic interactions
transition structures	ΔE_{a}	Ea	ΔE^{+}_{int}	$\Delta E^{\dagger}_{\text{dist,tot}}{}^{a}$	$\Delta E^{\dagger}_{dist,syd}{}^{\textbf{b}}$	$\Delta E^{\dagger}_{dist,a}{}^{c}$	aryne angles int./ext. ^d	$\Delta E^{+}_{int,ar}$
TS1 S-14	1 1	-6.4	-9.7	3.3	2.7	0.6	+1.7/-3.9	
TS1 C-14	1.1	-7.5	-9.0	1.5	1.1	0.4	-5.4/+3.4	-0.8
							38a ^e -1.0/+1.5	
TS1 S-33	.	-2.8	-5.7	2.8	1.2	1.5	+3.8/-5.6	
TS1 C-33	2.2	-5.1	-6.8	1.7	1.2	0.5	-4.0/+2.6	-0.0
							38c ^e -0.1/+0.1	
TS1 S-29		-3.0	-5.8	2.7	1.2	1.6	+3.6/-5.3	
TS1 C-29	2.9	-5.9	-8.2	2.3	1.6	0.6	-3.9/+2.2	-1.3
							38c ^e -0.1/+0.1	
TS1 S-32	17	-3.4	-7.2	3.9	3.0	0.8	+0.4/-2.3	
TS1 C-32	1.7	-5.0	-8.2	3.1	2.2	0.9	-3.2/+1.3	-1.0
							38a ^e -1.0/+1.5	
TS1 S-37	12	-0.8	-8.5	7.7	4.7	3.0	-1.9/-1.1	
TS1 C-37	4.5	-5.1	-10.6	5.5	2.7	2.9	-7.8/+5.0	-3.3
							38b ^e +3.6/-1.9	
TS1 S-36	27	-0.4	-8.3	7.9	5.0	2.9	-2.1/-0.9	
TS1 C-36	5.7	-4.1	-7.3	3.2	1.2	2.0	-9.5/+7.4	-1.9
							38b ^e +3.6/-1.9	

Table S6 Distortion/interaction analysis.

Energy values (in kcal/mol) calculated at the M06-2X/6-311+G(2d,2p)/SMD(THF)// M06-2X/6-31+G(d,p) level of theory; **[a]** total distortion energy (aryne + sydnone); **[b]** sydone distortion energy; **[c]** aryne distortion energy; **[d]** modification of the aryne angles between the TS and the ground state; **[e]** distortion of the aryne vs. benzyne

• Frontier molecular orbitals

FMOs and their energies were computed at the HF/6-311+G(2d,2p) level, using the M06-2X optimized geometries. In all cases, the smallest FMO gap was with the HOMO of the sydnone and the LUMO of the aryne (**Table S7**). The proper HOMO/LUMO symmetries for arynes were HOMO-3/LUMO for **38a**, HOMO-2/LUMO for **38b** and HOMO-4/LUMO+1 for **38c**

Figure S29: FMOs for sydnones **1a**, **1b**, **1p** and arynes **38a**, **38b**, **38c**. Orbitals were computed at the HF/6-311+G(2d,2p) level of theory on the M06-2X-optimized geometries. Orbital coefficients were calculated by Hirshfeld method using the Multiwfn software.

reaction	LUMO _{aryne} – HOMO _{sydnone} (eV)	LUMO _{sydnone} - HOMO _{aryne} (eV)
38c + 1b	9.1	11.0
38c + 1a	9.5	11.2
38b + 1b	9.1	11.2
38b + 1a	9.5	11.1
38a + 1p	9.5	11.1

Table S7: FMOs gaps for each studied system

Non-covalent interactions analysis

We also performed an NCI analysis in order to understand the kind of interactions involved in TS1 **C-32**. This analysis highlights weak interactions between the aromatic backbone of the aryne and the pyridine-like nitrogen on the sydnone. However, similar forces are found in TS1 **C-33**, for which we calculated a binding aromatic energy of 0 kcal/mol. These results suggest that, even though those weak interactions are indeed present, they do not influence the aromatic interactions we calculated as shown above.

Figure S30: Non-covalent interaction analysis

Natural Bond Orbital (NBO) analysis of TS1 C-32

Figure S31: Charges distribution from NBO analysis on **TS1 C-32**, calculated at the HF/6-311+G(2d,2p) level on the M06-2X-optimized geometries

Racemization barriers and transition structures

Figure S32: Transition structures and free energy barriers for the racemization of helicenes C-29, C-29.H+ and C-31, computed at the M06-2X/6-311+G(2d,2p)/SMD(THF)//M06-2X/6-31+G(d,p) level of theory.

Energies, corrections and single-point energies for all computed structure

			1b + 38	3c → C-29			
			M06-2X/6-31+G(d,p)		M06-2X/6-3	11+G(2d,2p)
		optim	ization energies and	l corrections		SPE	SPE THF
structure	E	ZPE	н	G(T)	qh-G(T)	E	E
38c	-554.037619	0.159126	-553.868251	-553.913116	-553.913102	-554.171416	-554.188540
1b	-797.913914	0.193570	-797.707478	-797.759230	-797.757859	-798.118646	-798.139638
TS1 C-29	-1351.966543	0.353957	-1351.589535	-1351.664644	-1351.659982	-1352.303439	-1352.337552
TS1 S-29	-1351.961237	0.353711	-1351.584316	-1351.661065	-1351.655076	-1352.298222	-1352.333007
int1 C-29	-1352.051678	0.357785	-1351.671960	-1351.743073	-1351.740056	-1352.386297	-1352.417055
int1 S-29	-1352.054757	0.357540	-1351.675071	-1351.747127	-1351.743887	-1352.389701	-1352.423853
TS2 C-29	-1352.046462	0.356638	-1351.668386	-1351.737856	-1351.735606	-1352.380333	-1352.412673
TS2 S-29	-1352.051908	0.356867	-1351.673477	-1351.743866	-1351.741176	-1352.386232	-1352.420688
int2 C-29	-1352.051862	0.356728	-1351.673004	-1351.743742	-1351.741626	-1352.386420	-1352.418974
int2 S-29	-1352.058205	0.357088	-1351.678840	-1351.750752	-1351.747994	-1352.393182	-1352.427996
TS3 C-29	-1352.051242	0.355881	-1351.673525	-1351.743716	-1351.741688	-1352.385522	-1352.419167
TS3 S-29	-1352.057476	0.356208	-1351.679267	-1351.750704	-1351.747994	-1352.392219	-1352.428293
C-29	-1163.668713	0.343602	-1163.305381	-1163.371082	-1163.369414	-1163.945286	-1163.974341
S-29	-1163.667919	0.343825	-1163.304207	-1163.371130	-1163.368796	-1163.945091	-1163.977763
carbone dioxide	-188.515916	0.010339	-188.501668	-188.525358	-188.525358	-188.578482	-188.579811

			1p + 38	3a → C-32			
			M06-2X/6-31+G(d,p)		M06-2X/6-3	11+G(2d,2p)
		optim	ization energies and	l corrections		SPE	SPE THF
structure	E	ZPE	н	G(T)	qh-G(T)	E	E
38a	-538.003841	0.170800	-537.822637	-537.867745	-537.867740	-538.132560	-538.148012
1p	-660.356720	0.134032	-660.212534	-660.257636	-660.257636	-660.531482	-660.554216
TS1 C-32	-1198.373457	0.306157	-1198.046788	-1198.116936	-1198.112331	-1198.675029	-1198.710235
TS1 S-32	-1198.370548	0.306122	-1198.043791	-1198.115254	-1198.109738	-1198.672118	-1198.707590
int1 C-32	-1198.463082	0.310539	-1198.133267	-1198.198498	-1198.196447	-1198.762458	-1198.791895
int1 S-32	-1198.469982	0.310418	-1198.140059	-1198.206414	-1198.203767	-1198.769217	-1198.799457
TS2 C-32	-1198.452601	0.309381	-1198.124358	-1198.188709	-1198.186730	-1198.751107	-1198.780162
TS2 S-32	-1198.466541	0.309769	-1198.137844	-1198.202624	-1198.200474	-1198.764973	-1198.794956
int2 C-32	-1198.461144	0.309845	-1198.131829	-1198.197211	-1198.195509	-1198.760486	-1198.790925
int2 S-32	-1198.480817	0.310180	-1198.151037	-1198.217272	-1198.215134	-1198.779985	-1198.809220
TS3 C-32	-1198.460427	0.308909	-1198.132320	-1198.197226	-1198.195594	-1198.759521	-1198.791419
TS3 S-32	-1198.480059	0.309201	-1198.151510	-1198.217380	-1198.215247	-1198.778946	-1198.809701
C-32	-1010.077245	0.296560	-1009.763566	-1009.823859	-1009.822587	-1010.318620	-1010.345983
S-32	-1010.093409	0.296737	-1009.779381	-1009.840632	-1009.839019	-1010.334699	-1010.361456
carbone dioxide	-188.515916	0.010339	-188.501668	-188.525358	-188.525358	-188.578482	-188.579811

			1a + 3	8c → C-33				
			M06-2X/6-31+G(d,p)		M06-2X/6-3	M06-2X/6-311+G(2d,2p)	
		optim	ization energies and	d corrections		SPE	SPE THF	
structure	E	ZPE	Н	G(T)	qh-G(T)	Е	E	
38c	-554.037619	0.159126	-553.868251	-553.913116	-553.913102	-554.171416	-554.188540	
1a	-644.329539	0.146126	-644.173188	-644.218305	-644.218305	-644.498904	-644.517541	
TS1 C-33	-1198.379445	0.306303	-1198.052571	-1198.122902	-1198.118312	-1198.681235	-1198.714136	
TS1 S-33	-1198.376694	0.306398	-1198.049770	-1198.119871	-1198.115614	-1198.678313	-1198.710594	
int1 C-33	-1198.470733	0.310448	-1198.140991	-1198.206437	-1198.204189	-1198.770031	-1198.798430	
int1 S-33	-1198.471105	0.310422	-1198.141242	-1198.207402	-1198.204832	-1198.770607	-1198.801045	
TS2 C-33	-1198.460044	0.309493	-1198.131723	-1198.195913	-1198.193952	-1198.758573	-1198.787657	
TS2 S-33	-1198.464571	0.309428	-1198.136165	-1198.201061	-1198.198887	-1198.763361	-1198.794924	
int2 C-33	-1198.464429	0.309564	-1198.135279	-1198.201087	-1198.199118	-1198.763632	-1198.793821	
int2 S-33	-1198.474329	0.309804	-1198.144833	-1198.211392	-1198.209074	-1198.773951	-1198.807023	
TS3 C-33	-1198.464188	0.308770	-1198.136177	-1198.201363	-1198.199471	-1198.763183	-1198.794196	
TS3 S-33	-1198.473873	0.308918	-1198.145557	-1198.211642	-1198.209354	-1198.773230	-1198.807474	
C-33	-1010.081360	0.296528	-1009.767701	-1009.828070	-1009.826739	-1010.322592	-1010.349081	
S-33	-1010.086361	0.296238	-1009.772721	-1009.834424	-1009.832558	-1010.328071	-1010.358274	
carbone dioxide	-188.515916	0.010339	-188.501668	-188.525358	-188.525358	-188.578482	-188.579811	

			1a + 3	8b → C-36				
			M06-2X/6-31+G((d,p)		M06-2X/6-3	M06-2X/6-311+G(2d,2p)	
		optim	ization energies and	d corrections		SPE	SPE THF	
structure	E	ZPE	н	G(T)	qh-G(T)	E	E	
38b	-691.592096	0.218103	-691.360921	-691.412325	-691.411604	-691.756346	-691.775400	
1a	-644.329539	0.146126	-644.173188	-644.218305	-644.218305	-644.498904	-644.517541	
TS1 C-36	-1335.932046	0.365365	-1335.543418	-1335.619067	-1335.614346	-1336.263874	-1336.299451	
TS1 S-36	-1335.925808	0.365601	-1335.537040	-1335.612585	-1335.607679	-1336.257637	-1336.293589	
int1 C-36	-1336.006726	0.368928	-1335.615723	-1335.686252	-1335.684157	-1336.336318	-1336.367150	
int1 S-36	-1336.014109	0.369501	-1335.622476	-1335.693907	-1335.691144	-1336.344196	-1336.376997	
TS2 C-36	-1336.005534	0.368330	-1335.615713	-1335.684745	-1335.682963	-1336.334589	-1336.365750	
TS2 S-36	-1336.008375	0.368482	-1335.618222	-1335.688519	-1335.685970	-1336.337663	-1336.371484	
int2 C-36	-1336.014855	0.368681	-1335.623955	-1335.694590	-1335.692733	-1336.344384	-1336.376170	
int2 S-36	-1336.019608	0.368988	-1335.628282	-1335.700123	-1335.697419	-1336.349747	-1336.384732	
TS3 C-36	-1336.014567	0.367839	-1335.624832	-1335.694930	-1335.693106	-1336.343861	-1336.376632	
TS3 S-36	-1336.018644	0.367924	-1335.628607	-1335.700122	-1335.697394	-1336.348485	-1336.385138	
C-36	-1147.629264	0.355561	-1147.253793	-1147.320045	-1147.318082	-1147.900866	-1147.929167	
S-36	-1147.630562	0.355453	-1147.254998	-1147.322298	-1147.319893	-1147.902650	-1147.933864	
carbone dioxide	-188.515916	0.010339	-188.501668	-188.525358	-188.525358	-188.578482	-188.579811	

			1b + 38	3b → C-37			
			M06-2X/6-31+G((d,p)		M06-2X/6-3	11+G(2d,2p)
		optim	ization energies and	d corrections		SPE	SPE THF
structure	E	ZPE	н	G(T)	qh-G(T)	E	E
38b	-691.592096	0.218103	-691.360921	-691.412325	-691.411604	-691.756346	-691.775400
1b	-797.913914	0.193570	-797.707478	-797.759230	-797.757859	-798.118646	-798.139638
TS1 C-37	-1489.518708	0.412722	-1489.080316	-1489.159968	-1489.155665	-1489.885730	-1489.923140
TS1 S-37	-1489.510506	0.412916	-1489.071765	-1489.153418	-1489.147346	-1489.877753	-1489.916313
int1 C-37	-1489.596427	0.416200	-1489.155567	-1489.231035	-1489.228863	-1489.960967	-1489.994328
int1 S-37	-1489.597825	0.416683	-1489.156318	-1489.233576	-1489.230015	-1489.963378	-1489.999700
TS2 C-37	-1489.596360	0.415853	-1489.156578	-1489.230041	-1489.228396	-1489.960655	-1489.994030
TS2 S-37	-1489.595119	0.415903	-1489.154956	-1489.230763	-1489.227552	-1489.959986	-1489.996619
int2 C-37	-1489.604744	0.415795	-1489.164194	-1489.239468	-1489.237743	-1489.969327	-1490.002892
int2 S-37	-1489.601877	0.416210	-1489.160734	-1489.237972	-1489.234763	-1489.967276	-1490.004047
TS3 C-37	-1489.604231	0.414950	-1489.164840	-1489.239538	-1489.237904	-1489.968575	-1490.003234
TS3 S-37	-1489.600698	0.415220	-1489.160786	-1489.237604	-1489.234440	-1489.965814	-1490.004236
C-37	-1301.219331	0.402742	-1300.794281	-1300.864368	-1300.863128	-1301.526040	-1301.556368
S-37	-1301.213242	0.402989	-1300.787639	-1300.860184	-1300.857298	-1301.520810	-1301.554644
carbone dioxide	-188.515916	0.010339	-188.501668	-188.525358	-188.525358	-188.578482	-188.579811

Full computational spectra showing all transitions

Figure S33: Experimental and computational spectra of **C-29** (blue) and **C-29•H**+ (orange). Top: Experimental absorption spectra (color), along with oscillator strengths for all transitions (grey bars) and full predicted spectra (black curves) from TD-DFT calculations. Bottom: Experimental circular dichroism (CD) spectra for the (+)-enantiomer (full color) and (–)-enantiomer (dashed color), along with rotatory strengths for all transitions (grey bars) and full predicted spectra (black curves) from TD-DFT calculations.

Figure S34. Experimental emission spectra (dashed curves) recorded in CH_2Cl_2 (C = 5 × 10⁻⁵ M), along oscillator strength for S1 \rightarrow S0 transition (bars) and predicted spectra (full curves) from TD-DFT calculations.

Comparison of HOMO and LUMO with NTOs

Figure S35: Comparison of the HOMO and LUMO orbitals of the S0 (ground) state of C-29, with the Natural Transition Orbitals (NTOs) for the S0 \rightarrow S1 transition.

Orbital contributions for the $S_0 \rightarrow S_1$ transition of **C-29**:

HOMO \rightarrow LUMO (0.69)

HOMO-1 \rightarrow LUMO+1 (-0.12)

Natural transition orbital contributions for the $S_0 \rightarrow S_1$ transition of **C-29**:

HOTO \rightarrow LUTO (0.96)

Orbital contributions for the $S_1 \rightarrow S_0$ transition from the 1st excited state of **C-29**:

LUMO \rightarrow HOMO (0.70)

NTO contributions for the $S_1 \rightarrow S_0$ transition from the 1st excited state of **C-29**:

LUTO \rightarrow HOTO (0.98)

Figure S36: Comparison of the HOMO and LUMO orbitals of the S0 (ground) state of C-29·H⁺, with the Natural Transition Orbitals (NTOs) for the S0 \rightarrow S1 transition.

Orbital contributions for the $S_0 \rightarrow S_1$ transition of **C-29·H**⁺:

HOMO \rightarrow LUMO (0.70)

Natural transition orbital contributions for the $S_0 \rightarrow S_1$ transition of **C-29·H**⁺:

HOTO \rightarrow LUTO (0.99)

Orbital contributions for the $S_1 \rightarrow S_0$ transition from the 1st excited state of **C-29·H**⁺:

LUMO \rightarrow HOMO (0.71)

NTO contributions for the $S_1 \rightarrow S_0$ transition from the 1st excited state of **C-29·H**⁺: LUTO \rightarrow HOTO (1.00)

Frontier Molecular Orbitals energies

Orbital	C-29 (S ₀)	C-29·H ⁺ (S ₀)
LUMO+4	-0.02183	-0.0539
LUMO+3	-0.04135	-0.07496
LUMO+2	-0.04818	-0.08545
LUMO+1	-0.06693	-0.09483
LUMO	-0.0783	-0.12863
НОМО	-0.20602	-0.23407
HOMO-1	-0.22477	-0.25071
HOMO-2	-0.24163	-0.27029
HOMO-3	-0.24937	-0.28149
HOMO-4	-0.26117	-0.30329

Table S8: Natural Bond Orbitals (NBOs) energies (in eV) for C-29 and C-29·H⁺ in their S₀ states.

Protonation of C-29 lowers the LUMO energy more than the HOMO energy, reducing the HOMO-LUMO gap from 0.12772 eV for C-29 to 0.10544 for C-29·H⁺.

Electronic density changes during S₀ – S₁ transitions

Figure S37: Difference between the S_1 and S_0 densities $(S_1 - S_0)$ for the $S_0 \rightarrow S_1$ transition of both compounds. Left: Isosurface of $S_1 - S_0$ with an isovalue of 0.0004. Right: $S_1 - S_0$ mapped on the S_0 density, using an isovalue of 0.04. The mapped density is color-coded between -2.5 x 10⁻³ (red) and 2.5 x 10⁻³ (blue). A blue region indicates an area where the difference between the S_1 and S_0 densities is positive, so that more electronic density is found at that position in the S_1 state than the S0 state. The opposite is true for red regions, indicating more electronic density at the S_0 state than the S_1 state.

For both compounds, there is significant intramolecular charge-transfer character, from the pyrazole ring and the polyaromatic section from the sydnone partner in the S_0 state, to the pyridine ring in the S_1 state.
Calculation of the glum values

The luminescence dissymmetry factor g_{lum} of a given transition (e.g. S_1 to S_0) is given by the equation $g_{lum} = 4R_{1-0}/D_{1-0}$, where $R = \|\mu_e\| \cdot \|\mu_m\| \cos \theta$ is the transition rotatory strength, $D = \|\mu_e\|^2$ is the transition dipole strength, μ_e and μ_m are the electric and magnetic transition dipole moments, respectively, and θ the angle between the two. To compute g_{lum} , the rotatory and dipole strength for the $S_1 \rightarrow S_0$ transition from the S_1 state of **C-29** and **C-29**·H⁺ were extracted from the Gaussian output. The rotatory strength is given directly from the velocity gauge in units of 10^{-40} esu² cm². The dipole strength is the square of the electric dipole moment as the length gauge, in au. Considering 1 au = 2.541746 D = 10^{-18} esu cm, that value is obtained in units of 10^{-40} esu² cm². From there, the g_{lum} value can be computed at the wavelength of the transition.

Parameter	C-29	C-29·H⁺
Transition wavelength	473.44	640.82
Rotatory strength (10 ⁻⁴⁰ esu ² cm ²)	33.7965	-12.097
Dipole strength (au ²)	3.1738	0.9626
Dipole strength (10 ⁻⁴⁰ esu ² cm ²)	205035.0619	62186.25956
Blum	0.000659331	-0.000778114

• Visualizations of the magnetic and electric dipole vectors

The electric (obtained from the velocity gauge) and magnetic dipole vectors corresponding to the $S_1 \rightarrow S_0$ transition from the S_1 state of **C-29** and **C-29·H**⁺ were extracted from the Gaussian output and visualized on top of the molecules using Vesta 3.5.2.

Parameter	C-29	C-29·H⁺
	Electric dipole moment (au)	
Х	-1.7291	-0.9492
Υ	-0.4084	-0.2469
Z	0.1311	0.0273
Norm	1.7815	0.9812
	Magnetic dipole moment (au)	
Х	-0.0607	0.0091
Y	0.2647	0.2179
Z	1.1046	0.3551
Norm	1.1375	0.4167
θ (between electric and magnetic dipoles)	85.92°	97.22°

DFT-optimized geometries and vibrational frequencies (TS)

sydnones			
1a			
Ν	-1.42054	0.99689	0.00009
Ν	-2.72321	0.94650	0.00009
0	-3.00204	-0.38817	-0.00003
С	-1.85158	-1.17490	-0.00009
С	-0.79437	-0.20620	-0.00000
0	-1.87826	-2.38204	-0.00020
С	0.62523	-0.30135	-0.00002
С	1.29631	-1.53992	-0.00013
С	1.35983	0.91004	0.00007
С	2.67811	-1.55652	-0.00014
С	2.76617	0.86004	0.00006
С	3.41770	-0.35844	-0.00005
Н	3.33024	1.78857	0.00013
Н	4.50185	-0.39397	-0.00006
С	0.63047	2.15418	0.00018
С	-0.71860	2.20361	0.00019
Н	-1.33344	3.09309	0.00027
Н	1.18020	3.08982	0.00026
Н	3.20093	-2.50748	-0.00022
Н	0.71325	-2.45535	-0.00020
1b			
Ν	2.52409	0.37674	-0.00005
Ν	3.60761	-0.34274	-0.00013
0	3.15483	-1.61950	-0.00020
С	1.77479	-1.70284	-0.00016
С	1.33684	-0.31509	-0.00006
0	1.23990	-2.78766	-0.00021

С

С

С

С

С

С

С

С

С

Н

Н

С

0.09052

-1.23315

0.18712

-2.37196

-1.46307

-0.97639

-3.67357

-2.21618

-2.74239

-0.62622

-0.84461

-3.86288

0.41205

-0.18465

1.82106

0.67460

-1.58349

2.64517

0.11917

2.09322

-2.09475

-2.26755

3.72317

-1.24184

0.00003

0.00002

0.00012

0.00011

-0.00007

0.00021

0.00011

0.00021

-0.00007

-0.00014

0.00028

0.00002

Н	-4.52285	0.79679	0.00018
н	-3.10525	2.71677	0.00027
Н	-2.88117	-3.17100	-0.00014
Н	-4.86593	-1.65647	0.00002
С	1.46897	2.46047	0.00012
С	2.61853	1.76058	0.00004
Н	3.62643	2.15148	0.00004
Η	1.51676	3.54419	0.00020
1р			
Ν	-1.38208	0.99903	0.00009
Ν	-2.68053	0.97619	0.00009
0	-2.99466	-0.34295	-0.00002
С	-1.85663	-1.17446	-0.00010
С	-0.77684	-0.22081	-0.00002
0	-1.94581	-2.37013	-0.00020
С	0.64619	-0.31628	-0.00003
С	1.38697	0.89390	0.00007
С	2.54140	-1.57840	-0.00014
С	2.78749	0.80361	0.00006
С	3.37605	-0.44479	-0.00005
Н	3.38723	1.70986	0.00014
Н	4.45336	-0.56287	-0.00006
С	0.67540	2.14675	0.00018
С	-0.67121	2.20205	0.00019
Н	-1.28321	3.09356	0.00026
Н	1.23461	3.07671	0.00026
Н	2.97995	-2.57352	-0.00022
Ν	1.21960	-1.53357	-0.00013

arynes

38a			
С	1.50698	0.72527	0.00001
С	0.81672	1.98832	0.00001
С	-0.54055	2.05295	0.00001
С	0.71178	-0.46666	-0.00000
Н	1.40598	2.90079	0.00002
Н	-1.04188	3.01692	0.00001
С	3.65449	-0.51906	0.00001
С	2.93269	0.67142	0.00001
С	1.53743	-1.59937	-0.00001
С	2.77616	-1.60436	-0.00000
Н	4.73664	-0.55255	0.00001
Н	3.47653	1.61284	0.00002

С	-0.72461	-0.40349	-0.00000
С	-1.51611	-1.57149	-0.00001
С	-1.35046	0.86616	-0.00000
С	-2.89137	-1.48323	-0.00002
Н	-1.01936	-2.53808	-0.00002
С	-2.76266	0.93071	-0.00000
С	-3.52009	-0.22071	-0.00001
Н	-3.49369	-2.38595	-0.00002
Н	-3.24288	1.90554	-0.00000
Н	-4.60364	-0.15832	-0.00001
38b			
С	-2.51995	0.38001	-0.00003
С	-2.48683	1.80834	-0.00004
С	-1.30004	2.47460	-0.00003

С	-2.48683	1.80834	-0.00004
С	-1.30004	2.47460	-0.00003
С	-1.25968	-0.32212	-0.00001
Н	-3.42493	2.35546	-0.00005
Н	-1.28301	3.56086	-0.00003
С	-3.88813	-1.69479	-0.00004
С	-3.77193	-0.31122	-0.00005
С	-1.54112	-1.69132	-0.00002
С	-2.62027	-2.29627	-0.00003
Н	-4.84469	-2.20300	-0.00005
Н	-4.67598	0.29277	-0.00006
С	-0.00684	0.37635	-0.00000
С	-0.04910	1.78365	-0.00001
С	1.16683	2.53997	0.00001
С	2.37398	1.92012	0.00003
Н	1.09940	3.62420	0.00000
Н	3.29463	2.49718	0.00003
С	1.28025	-0.29636	0.00002
С	2.46428	0.49137	0.00003
С	1.42810	-1.70486	0.00002
С	3.73082	-0.13770	0.00005
Н	0.55457	-2.34587	0.00002
Н	4.61943	0.48794	0.00006
С	3.84127	-1.50889	0.00005
С	2.67364	-2.29574	0.00004
Н	4.81789	-1.98206	0.00006
Н	2.75102	-3.37830	0.00004

38c

С	1.48411	0.73026	0.00001
С	0.79160	1.99246	0.00001
С	-0.56593	2.05573	0.00001
С	0.69469	-0.46477	0.00000

.00001
00001
.00001
.00001
.00001
.00001
.00001
.00002
.00000
.00000
.00003
.00000
.00001
0.00001
.00000
0.00001
0.00001

1b + 38c → C-29

TS1 C-29

С	3.70920	0.50551	0.17035
С	4.36707	1.77606	0.33209
С	3.66431	2.93976	0.34673
С	2.28926	0.49763	0.01625
Н	5.44765	1.79160	0.44356
Н	4.17624	3.89053	0.46862
С	3.84939	-1.95946	0.01603
С	4.45061	-0.71306	0.16481
С	1.76594	-0.79071	-0.14403
С	2.46937	-1.82606	-0.12360
Н	4.41232	-2.88542	0.01295
Н	5.52987	-0.65699	0.28423
С	1.54050	1.72721	0.04212
С	2.23491	2.94818	0.20634
С	-0.48996	2.77614	-0.05984
С	1.46684	4.13175	0.22826
С	0.09964	4.04995	0.09481
Н	-1.57017	2.68358	-0.16857
Н	1.96370	5.09094	0.35036
Н	-0.52431	4.93692	0.10616
С	-3.29484	1.32546	-2.06298
С	-0.96115	-2.38158	2.32992
С	-2.47633	0.32594	-1.58362
С	-0.12303	-3.14737	1.60513
С	-1.77771	-1.37386	1.72243
С	-4.19553	1.99569	-1.21149

С	-1.68936	-1.11672	0.33857
С	-2.51764	-0.06592	-0.22260
С	-0.75045	-1.93054	-0.39568
С	-2.67481	-0.64173	2.55525
С	-3.41343	0.63112	0.63955
С	-4.24461	1.65307	0.11881
С	-3.47369	0.32213	2.03186
С	-0.33758	-2.10674	-1.79516
Ν	-0.07929	-2.93017	0.24351
Ν	0.79607	-3.58762	-0.48490
0	0.55621	-3.14971	-1.75452
0	-0.63162	-1.60157	-2.85008
Н	-3.23525	1.59923	-3.11143
Н	-1.78838	-0.15844	-2.26107
н	-1.02449	-2.53782	3.40128
н	0.52907	-3.92970	1.96838
Н	-4.83821	2.77884	-1.60135
Н	-2.70506	-0.87859	3.61465
н	-4.16400	0.87706	2.66060
Н	-4.92240	2.16250	0.79844
Ν	0.19682	1.65132	-0.08602
~	· · ·	10	c a a -1

One imaginary frequency: -106.39 cm⁻¹

TS1 S-29

С	-3.18159	1.97089	-0.98660
С	-4.56332	2.12382	-1.35807
С	-5.48350	1.16485	-1.07646
С	-2.80164	0.77943	-0.29022
Н	-4.86329	3.03427	-1.86909
Н	-6.52523	1.30032	-1.35367
С	-0.87339	2.85098	-0.97507
С	-2.21776	2.97008	-1.30695
С	-1.45160	0.83567	0.03735
С	-0.57606	1.68855	-0.24210
Н	-0.15085	3.60982	-1.25596
Н	-2.55915	3.85234	-1.84296
С	-3.75610	-0.27338	-0.05490
С	-5.10491	-0.05982	-0.42934
С	-4.21238	-2.37998	0.71854
С	-6.02617	-1.09411	-0.16448
С	-5.58521	-2.25812	0.42207
Н	-3.83490	-3.30067	1.15960
Н	-7.07123	-0.96029	-0.43180
Н	-6.26313	-3.07501	0.64314
С	5.47721	1.67969	0.42810

С	0.99095	-2.47319	-0.63361
С	4.23276	1.11771	0.61358
С	0.02643	-2.03198	0.19735
С	2.27732	-1.84576	-0.69802
С	6.41466	1.09276	-0.44340
С	2.56082	-0.70419	0.08386
С	3.85687	-0.06748	-0.06628
С	1.50853	-0.26360	0.96501
С	3.25262	-2.39392	-1.58266
С	4.80441	-0.64916	-0.95896
С	6.07683	-0.05255	-1.12375
С	4.47818	-1.82318	-1.70253
С	1.30923	0.77570	1.98209
Ν	0.34039	-0.95894	1.00737
Ν	-0.59291	-0.46561	1.79760
0	0.03771	0.54351	2.45227
0	1.99157	1.64329	2.47182
Н	5.73216	2.58751	0.96527
Н	3.53953	1.59084	1.29460
Н	0.78433	-3.31993	-1.27909
Н	-0.99229	-2.38663	0.30037
Н	7.39273	1.54343	-0.57860
Н	2.98923	-3.27767	-2.15615
Н	5.22445	-2.24052	-2.37232
Н	6.78073	-0.51942	-1.80723
Ν	-3.32126	-1.43418	0.48989
<u> </u>	· · · · · · · · · · · · · · · · · · ·	10	- - - - - 1

One imaginary frequency: -105.33 cm⁻¹

int1 C-29

С	-3.31110	0.94536	-0.01115
С	-3.81310	2.28609	-0.18087
С	-2.98315	3.34974	-0.28855
С	-1.90172	0.71291	0.04788
Н	-4.89007	2.42044	-0.22565
н	-3.37487	4.35412	-0.42285
С	-3.80483	-1.42135	0.21260
С	-4.23457	-0.11596	0.08090
С	-1.46752	-0.62886	0.15407
С	-2.43220	-1.61939	0.23308
н	-4.48643	-2.26145	0.28485
н	-5.29541	0.11203	0.03736
С	-1.02428	1.86963	-0.03497
С	-1.56154	3.16551	-0.21721
С	1.12615	2.67442	-0.01918
С	-0.65528	4.24036	-0.31269

С	0.69791	4.00034	-0.22141	C	-5.09526	-1.58243	0.83243
Н	2.18638	2.44013	0.07877	C	-6.12084	0.33324	-0.16239
Н	-1.03858	5.24746	-0.45522	C	-6.26171	-0.88774	0.45701
Н	1.42283	4.80358	-0.29217	Н	-5.17105	-2.54464	1.33402
С	3.33934	0.67214	2.14319	Н	-6.98807	0.91433	-0.46516
С	0.19432	-2.05042	-2.49338	Н	-7.23878	-1.31105	0.66214
С	2.25812	0.04696	1.57367	C	4.30016	2.06503	1.51134
С	-0.70369	-2.74923	-1.78946	C	1.46806	-2.33738	-1.82147
С	1.26136	-1.33761	-1.78879	С	3.27538	1.21061	1.18765
С	4.51787	0.91092	1.39721	С	0.32123	-2.45169	-1.13268
С	1.18418	-1.05581	-0.42661	С	2.57648	-1.53455	-1.29696
С	2.28275	-0.39987	0.22247	С	5.55697	1.96589	0.86791
С	-0.12692	-1.47339	0.23057	С	2.40759	-0.68894	-0.20329
С	2.42315	-0.98979	-2.53288	С	3.44466	0.20937	0.18891
С	3.45369	-0.10414	-0.53786	С	1.02783	-0.64785	0.39168
С	4.56213	0.53733	0.07907	С	3.83980	-1.58737	-1.94751
С	3.49576	-0.41048	-1.92396	C	4.70198	0.13832	-0.48270
С	-0.19529	-2.07766	1.67413	С	5.74822	1.02145	-0.10828
Ν	-0.58983	-2.73406	-0.40060	С	4.87488	-0.79311	-1.54040
Ν	-1.79887	-2.93717	0.32189	С	0.72725	-0.69805	1.91817
0	-1.24917	-2.95810	1.65997	N	0.25408	-1.87073	0.12299
0	0.44958	-1.91977	2.66404	N	-1.00515	-1.47785	0.65693
Н	3.28027	0.99816	3.17684	0	-0.55424	-1.18049	2.01701
Н	1.36483	-0.08810	2.16222	0	1.38108	-0.41994	2.87665
Н	0.20940	-2.09812	-3.57552	Н	4.14573	2.81929	2.27625
Н	-1.47130	-3.39647	-2.19789	Н	2.33204	1.29487	1.71212
Н	5.36886	1.39925	1.86143	Н	1.59879	-2.86693	-2.75727
Н	2.44686	-1.22153	-3.59377	Н	-0.53629	-3.04618	-1.42670
Н	4.39139	-0.16584	-2.48868	Н	6.36112	2.64018	1.14429
Н	5.44440	0.73264	-0.52490	Н	3.96657	-2.27237	-2.78090
Ν	0.29569	1.65410	0.07353	Н	5.83857	-0.84372	-2.03999
				Н	6.70247	0.94057	-0.62205

int1 S-29

С	-2.20539	1.84162	-0.82396
С	-3.36571	2.59806	-1.21944
С	-4.61820	2.12070	-1.02644
С	-2.37901	0.55422	-0.23299
Н	-3.20961	3.56974	-1.67909
Н	-5.48693	2.69879	-1.32907
С	0.22974	1.69360	-0.66361
С	-0.91622	2.38138	-1.02709
С	-1.19541	-0.12639	0.07803
С	0.05485	0.42357	-0.12139
Н	1.22066	2.11230	-0.81185
Н	-0.83713	3.36409	-1.48313
С	-3.72536	0.05603	0.00349
С	-4.82928	0.84272	-0.40339

TS2 C-29					
С	-3.29533	0.74837	-0.03416		
С	-3.84020	2.08261	0.00459		
С	-3.05281	3.17510	-0.13967		
С	-1.88760	0.56731	-0.18639		
Н	-4.90861	2.18981	0.16874		
Н	-3.47152	4.17615	-0.08552		
С	-3.68188	-1.65188	0.05709		
С	-4.16439	-0.35762	0.08533		

-0.75103

-1.79443

-1.13540

0.61739

-0.08256

-0.02460

Ν

С

С

-3.87309

-1.39079

-2.30325

Н	-4.32794	-2.51998	0.12371	C	0.18042	1.77537	-0.65593
н	-5.22986	-0.17259	0.18434	C	-0.98285	2.45387	-0.98322
С	-1.08459	1.73487	-0.51560	C	-1.20364	-0.10828	-0.00655
С	-1.65493	3.02677	-0.43611	C	0.04154	0.47608	-0.17536
С	0.92128	2.57576	-1.24240	Н	1.15766	2.22684	-0.79166
С	-0.82337	4.12635	-0.72772	Н	-0.92462	3.45671	-1.39657
С	0.47935	3.90647	-1.11744	C	-3.73586	0.03184	-0.03400
Н	1.93239	2.35882	-1.58312	C	-4.85879	0.81492	-0.39259
Н	-1.22674	5.13317	-0.65680	C	-5.06514	-1.66405	0.74374
н	1.14851	4.72754	-1.34948	C	-6.13757	0.27192	-0.15782
С	0.23797	-3.35445	-1.59055	C	-6.24845	-0.97645	0.41133
Н	-0.27066	-4.20811	-2.02232	Н	-5.11714	-2.64688	1.20686
Ν	-1.59727	-3.07888	0.05272	Н	-7.01901	0.84924	-0.42457
С	1.41816	-2.84404	-1.98987	Н	-7.21502	-1.42583	0.61055
Ν	-0.38710	-2.75973	-0.53524	C	4.01221	2.37965	1.28334
Н	1.95132	-3.28626	-2.82108	C	1.83971	-2.78253	-1.44040
0	-1.17790	-3.08401	1.48807	C	3.07622	1.41566	1.00046
С	2.02005	-1.73540	-1.25302	C	0.58643	-2.77975	-0.94282
С	-0.03264	-1.51930	0.13082	C	2.78649	-1.73809	-1.05431
С	-0.22638	-2.10904	1.58929	C	5.31284	2.30985	0.72948
С	3.34305	-1.33136	-1.60044	C	2.43938	-0.68872	-0.20374
С	1.36726	-1.08190	-0.21040	C	3.38419	0.32584	0.13721
Н	3.84056	-1.84645	-2.41728	C	1.02247	-0.61764	0.28556
0	0.33342	-1.85785	2.61290	C	4.11313	-1.78904	-1.57214
С	3.97898	-0.32971	-0.92706	C	4.69816	0.25586	-0.41031
С	2.01756	-0.04008	0.51946	C	5.64469	1.26504	-0.09573
С	3.33500	0.34511	0.14653	C	5.03371	-0.82800	-1.26584
Н	4.98712	-0.03189	-1.20345	C	0.69122	-0.72482	1.81616
С	1.38315	0.68623	1.56547	N	0.24002	-1.78309	-0.08380
С	3.97487	1.41656	0.82447	N	-0.99641	-1.49508	0.47220
С	2.01891	1.72391	2.19816	0	-0.56368	-1.26096	1.88651
Н	1.50754	2.26459	2.98825	0	1.34045	-0.44046	2.77792
С	3.33401	2.09730	1.82859	Н	3.75489	3.19641	1.95021
Н	3.82894	2.91690	2.33982	Н	2.09925	1.47532	1.46660
Н	0.37333	0.42907	1.86351	Н	2.15832	-3.56998	-2.11039
Н	4.98388	1.68934	0.52576	Н	-0.18427	-3.51288	-1.14962
Ν	0.16850	1.53001	-0.95942	Н	6.04337	3.07686	0.96527
One	e imaginary fr	equency: -10	5.46 cm ⁻¹	Н	4.37850	-2.61318	-2.22811

н

Н

Ν

int2 C-29

6.03913

6.64112

-3.85394

TS2 S-29

С	-2.25929	1.88277	-0.79471
С	-3.43811	2.63396	-1.14316
С	-4.67886	2.12362	-0.95995
С	-2.40207	0.56566	-0.26476
Н	-3.30536	3.62869	-1.55868
Н	-5.56182	2.69773	-1.22680

С	-3.25034	-0.84252	0.04170
С	-4.33498	0.09994	0.16637

One imaginary frequency: -106.46 cm⁻¹

-0.87842

1.19206

-1.18591

-1.67525

-0.52349

0.53253

С	-4.13946	1.43100	0.00819	C	-2.33140	1.97741	-0.58694
С	-1.92947	-0.35742	-0.19461	С	-3.53054	2.74447	-0.80740
н	-5.32037	-0.28910	0.40634	С	-4.75697	2.18615	-0.67588
Н	-4.95923	2.13359	0.12937	С	-2.43653	0.59894	-0.23966
С	-2.49440	-3.15517	0.02153	Н	-3.42505	3.78922	-1.08517
С	-3.50924	-2.22538	0.15434	н	-5.65633	2.77129	-0.84679
С	-0.88159	-1.29917	-0.13587	С	0.11384	1.89874	-0.52223
С	-1.21039	-2.64917	-0.12332	С	-1.06923	2.58857	-0.73276
Н	-2.67076	-4.22430	0.05251	С	-1.22069	-0.07818	-0.10192
н	-4.53214	-2.55094	0.31805	С	0.01735	0.54731	-0.19434
С	-1.77424	1.03853	-0.57154	Н	1.07229	2.39061	-0.63855
С	-2.85670	1.93200	-0.40454	Н	-1.03496	3.63573	-1.01944
С	-0.44890	2.67765	-1.47050	С	-3.75473	0.00870	-0.05979
С	-2.64125	3.28486	-0.73436	С	-4.89949	0.80844	-0.29012
С	-1.42397	3.66954	-1.25186	С	-5.03594	-1.80250	0.51071
н	0.50651	2.93535	-1.92373	С	-6.16276	0.21152	-0.10866
н	-3.44505	4.00301	-0.59424	С	-6.23859	-1.10350	0.29063
Н	-1.22085	4.70109	-1.51733	Н	-5.06011	-2.83826	0.84205
С	0.59565	2.50743	2.02131	н	-7.06004	0.80035	-0.28069
С	3.06218	-2.01707	-1.39774	н	-7.19226	-1.59638	0.44382
С	0.64625	1.27147	1.43067	C	3.85776	2.57295	1.12420
С	2.11125	-2.95230	-1.26391	C	2.10228	-2.99225	-0.92641
С	2.84257	-0.64424	-0.93587	C	2.97047	1.56087	0.85517
С	1.55808	3.49800	1.70256	C	0.77837	-2.91323	-0.72276
С	1.71171	-0.29773	-0.20632	C	2.94963	-1.80190	-0.81599
С	1.65786	0.94996	0.48279	C	5.17586	2.53352	0.60784
С	0.66467	-1.35867	-0.00970	C	2.46140	-0.62085	-0.26604
С	3.85368	0.33198	-1.16090	C	3.34905	0.44906	0.05058
С	2.66172	1.92281	0.21885	C	1.00511	-0.58762	0.09150
С	2.57377	3.20319	0.82938	C	4.31056	-1.86843	-1.22364
С	3.74786	1.58813	-0.63446	C	4.70061	0.37403	-0.39635
С	0.85330	-2.06473	1.40312	C	5.58719	1.44928	-0.12495
Ν	0.84421	-2.55418	-0.85320	C	5.14771	-0.80022	-1.05879
Ν	0.00585	-3.45284	-0.19565	C	0.67908	-0.94446	1.58958
0	0.50406	-3.35635	1.24618	Ν	0.21818	-1.65272	-0.55047
0	1.26006	-1.59014	2.42341	Ν	-0.99305	-1.51208	0.12505
Н	-0.18607	2.72784	2.74142	0	-0.53563	-1.52640	1.58705
Н	-0.09341	0.52477	1.69868	0	1.35269	-0.75574	2.56204
Н	4.02345	-2.27756	-1.82427	Н	3.55244	3.40103	1.75605
Н	2.20119	-3.99347	-1.54998	Н	1.98514	1.58156	1.30783
Н	1.50135	4.47694	2.16795	Н	2.56110	-3.94195	-1.17362
Н	4.71494	0.05711	-1.76314	Н	0.07547	-3.73570	-0.78150
н	4.51245	2.33560	-0.82857	Н	5.86363	3.34597	0.81876
Н	3.33929	3.94007	0.60023	Н	4.67225	-2.78625	-1.67815
Ν	-0.61548	1.40908	-1.14857	Н	6.17969	-0.85077	-1.39513
				Н	6.60771	1.38475	-0.49290
	6.20			N	-3.83853	-1.27452	0.34501

int2 S-29

TS3 C-29

С	-3.20871	-0.94619	0.03720	,
С	-4.31956	-0.03832	0.17783	
С	-4.16487	1.29961	0.02736	-
С	-1.90667	-0.41937	-0.20652	
Н	-5.29078	-0.45787	0.42399	(
Н	-5.00404	1.97645	0.16173	(
С	-2.38520	-3.23572	-0.01355	(
С	-3.42428	-2.33937	0.14033	(
С	-0.82906	-1.32949	-0.16487	I
С	-1.11647	-2.68904	-0.17116	I
Н	-2.52810	-4.30997	0.01106	(
Н	-4.43518	-2.69682	0.31165	(
С	-1.79639	0.98099	-0.57961	(
С	-2.90259	1.84129	-0.39543	(
С	-0.53209	2.66126	-1.48984	ł
С	-2.73062	3.20189	-0.72007	ł
С	-1.53210	3.62390	-1.25138	(
Н	0.40819	2.94919	-1.95624	(
Н	-3.55285	3.89580	-0.56544	(
Н	-1.36200	4.66222	-1.51363	(
С	0.48128	2.53706	1.98594	(
С	3.14423	-1.93086	-1.36137	ł
С	0.58326	1.29620	1.41281	ł
С	2.22753	-2.90066	-1.23578	ł
С	2.87493	-0.56601	-0.90682	(
С	1.41209	3.55696	1.66623	(
С	1.72205	-0.25430	-0.19490	(
С	1.61636	0.99897	0.48031	(
С	0.70581	-1.34375	-0.01545	(
С	3.85718	0.44048	-1.12610	(
С	2.58970	2.00252	0.21805	(
С	2.44946	3.28670	0.81095	(
С	3.70012	1.69715	-0.61511	(
С	0.88860	-2.04887	1.43764	(
Ν	0.94811	-2.54395	-0.82693	(
Ν	0.10950	-3.45058	-0.26352	(
0	0.57909	-3.32242	1.32163	(
0	1.27322	-1.48643	2.42908	(
Н	-0.31625	2.73807	2.69429	1
Н	-0.12862	0.52545	1.68570	1
Н	4.12011	-2.16076	-1.77244	(
Н	2.35430	-3.93983	-1.51341	(
Н	1.31507	4.53914	2.11799	I
Н	4.73608	0.18872	-1.71274	I
Н	4.44115	2.46880	-0.80570	I
Н	3.19261	4.04642	0.58288	I

N -0.65648 1.38707 -1.17177 One imaginary frequency: -359.56 cm⁻¹

TS3 S-29

С	-2.33291	1.97531	-0.57444
С	-3.53087	2.74913	-0.77348
С	-4.75795	2.19215	-0.64061
С	-2.43770	0.59276	-0.24939
Н	-3.42442	3.79832	-1.03351
Н	-5.65718	2.78273	-0.79230
С	0.11369	1.89753	-0.51959
С	-1.06980	2.58835	-0.71650
С	-1.21880	-0.08750	-0.12667
С	0.01984	0.54009	-0.21197
Н	1.07061	2.39304	-0.63033
Н	-1.03703	3.63953	-0.98833
С	-3.75529	0.00002	-0.07965
С	-4.90012	0.80762	-0.28241
С	-5.03718	-1.82455	0.44559
С	-6.16372	0.20894	-0.10695
С	-6.23995	-1.11586	0.25740
Н	-5.06170	-2.87018	0.74438
Н	-7.06067	0.80422	-0.25702
Н	-7.19365	-1.61037	0.40503
С	3.86696	2.58520	1.06558
С	2.09252	-3.01319	-0.87436
С	2.97684	1.56870	0.82400
С	0.76992	-2.93598	-0.66392
С	2.94124	-1.82376	-0.78398
С	5.18049	2.53482	0.53891
С	2.45472	-0.63216	-0.25480
С	3.34730	0.44239	0.03643
С	0.99903	-0.58496	0.09482
С	4.30075	-1.90250	-1.19488
С	4.69552	0.35628	-0.41786
С	5.58549	1.43555	-0.17461
С	5.13915	-0.83205	-1.05785
С	0.66580	-0.89776	1.63467
Ν	0.21440	-1.67325	-0.49583
Ν	-0.99944	-1.51072	0.08723
0	-0.52331	-1.45566	1.68589
0	1.40128	-0.64607	2.55542
Н	3.56837	3.42424	1.68605
Н	1.99882	1.59289	1.29134
Н	2.55082	-3.96739	-1.10536
Н	0.06507	-3.75742	-0.70277

Н	5.87082	3.35035	0.72865	
Н	4.65879	-2.83071	-1.63083	
Н	6.16940	-0.89023	-1.39808	
Н	6.60344	1.36182	-0.54784	
Ν	-3.83998	-1.29522	0.28568	
One imaginary frequency: -350.26 cm ⁻¹				

C-29

С	3.14779	0.83070	0.34658
С	4.16823	-0.16988	0.39646
С	3.91931	-1.46170	0.04174
С	1.83497	0.47551	-0.02265
Н	5.15893	0.12598	0.73094
Н	4.69498	-2.21978	0.10393
С	2.58422	3.20682	0.48868
С	3.49011	2.20308	0.62063
С	0.82107	1.49202	0.06869
С	1.23219	2.85282	0.19793
Н	2.84685	4.25043	0.62308
Н	4.52102	2.42532	0.88197
С	1.61678	-0.84085	-0.57020
С	2.64146	-1.81900	-0.48236
С	0.22514	-2.28847	-1.68501
С	2.35483	-3.11261	-0.97498
С	1.13874	-3.35987	-1.56389
Н	3.11033	-3.89030	-0.89488
Н	0.88408	-4.33912	-1.95415
С	-2.07496	3.45653	-0.43954
Н	-2.09797	4.53501	-0.52016
Ν	0.22147	3.71715	0.06034
С	-3.10820	2.61504	-0.66745
Ν	-0.85004	2.93128	-0.10511
Н	-4.06769	3.01408	-0.97613
С	-2.96765	1.20946	-0.41989
С	-0.59101	1.57106	-0.02458
С	-4.08805	0.33670	-0.58130
С	-1.73807	0.69774	0.03084
Н	-5.00863	0.74821	-0.98529
С	-3.99929	-0.98043	-0.25177
С	-1.71131	-0.63157	0.59197
С	-2.82352	-1.48883	0.38285
Н	-4.84057	-1.65016	-0.40744
С	-2.77465	-2.82134	0.86162
Н	-0.72754	-2.43865	-2.19023
С	-0.65772	-1.09367	1.41836
С	-0.64763	-2.38054	1.90427

Н	0.14969	-0.41802	1.67532
С	-1.69869	-3.26991	1.59165
Н	-3.61939	-3.47590	0.66322
Н	-1.67334	-4.29112	1.95854
Н	0.17365	-2.71165	2.53212
Ν	0.44731	-1.08230	-1.21133

S-29

С	2.31579	-1.83523	-0.42447
С	3.50586	-2.62235	-0.54710
С	4.73737	-2.07449	-0.37137
С	2.40644	-0.46516	-0.12079
Н	3.40119	-3.67639	-0.78882
Н	5.63692	-2.67631	-0.46927
С	-0.13216	-1.79508	-0.50541
С	1.04357	-2.46801	-0.63843
С	1.16202	0.26419	-0.04173
С	-0.09457	-0.41343	-0.15774
Н	-1.07083	-2.29723	-0.70557
Н	1.03918	-3.51643	-0.92165
С	3.70865	0.12391	0.08301
С	4.86719	-0.68998	-0.04907
С	4.98651	1.96281	0.59016
С	6.12814	-0.08741	0.15213
С	6.19775	1.24658	0.47054
Н	5.00753	3.01934	0.85172
Н	7.02634	-0.69193	0.05312
Н	7.14667	1.74594	0.63278
С	-0.86129	3.02719	-0.01749
Н	-0.14036	3.83048	0.05486
Ν	1.00335	1.58909	0.08233
С	-2.19051	3.15962	-0.22223
Ν	-0.32197	1.76552	0.05548
Н	-2.62074	4.14877	-0.32973
С	-3.04448	2.00680	-0.25546
С	-1.06689	0.60420	-0.03336
С	-4.44628	2.16191	-0.48466
С	-2.50283	0.72629	-0.04480
Н	-4.82766	3.15828	-0.68895
С	-5.28062	1.08749	-0.47241
С	-3.40722	-0.37965	0.17303
С	-4.79096	-0.20359	-0.10308
Н	-6.33999	1.20372	-0.68275
С	-2.99807	-1.60049	0.76327
С	-5.68082	-1.29087	0.07144
С	-3.88944	-2.63199	0.95869
С	-5.23956	-2.49223	0.57507

Н	-5.93259	-3.31549	0.71508
Н	-3.55329	-3.55061	1.42913
Н	-6.72976	-1.14683	-0.17322
Н	-1.97925	-1.70086	1.11587
Ν	3.79505	1.43675	0.40805

1p + 38a → C-32

TS1 C-32

С	-2.10862	2.16271	0.52349	
С	-3.45520	1.92957	0.97665	
С	-4.08017	0.74365	0.75280	
С	-1.44562	1.10824	-0.17814	
н	-3.96902	2.72461	1.51010	
Н	-5.09505	0.58481	1.10761	
С	-0.14348	3.66070	0.37928	
С	-1.45307	3.40312	0.77592	
С	-0.12525	1.43726	-0.52551	
С	0.39272	2.55086	-0.26844	
н	0.35337	4.60625	0.56150	
н	-2.00716	4.17707	1.30171	
С	-2.11531	-0.14013	-0.44027	
С	-3.43367	-0.32527	0.04077	
С	-2.13633	-2.36640	-1.38819	
С	-4.08164	-1.55792	-0.20115	
С	-3.44422	-2.56272	-0.89855	
Н	-1.64313	-3.15164	-1.95299	
Н	-5.09389	-1.70043	0.16815	
Н	-3.95349	-3.50402	-1.08072	
С	2.59862	1.06791	1.60285	
Н	2.87578	2.02198	2.03057	
Ν	2.72417	2.12471	-0.50066	
С	2.26714	-0.05077	2.27972	
Ν	2.57999	1.02707	0.21429	
Н	2.27697	-0.03094	3.36428	
0	2.63437	1.69273	-1.79407	
С	1.90654	-1.26682	1.59635	
С	2.17302	-0.04949	-0.48916	
С	2.22287	0.36223	-1.88241	
С	1.57213	-2.45731	2.26225	
С	1.87561	-1.27753	0.18073	
Н	1.57894	-2.48960	3.34824	
0	2.03146	-0.19039	-2.92785	
С	1.23314	-3.56604	1.51467	
С	1.24351	-3.46135	0.11089	
Н	0.96191	-4.50357	1.98616	
н	0.98284	-4.32320	-0.49874	

Ν	1.55512	-2.35950	-0.55034	
С	-1.48377	-1.17211	-1.16657	
Н	-0.48348	-1.01036	-1.56138	
One imaginary frequency: -140.35 cm ⁻¹				

TS1 S-32

С	-2.03600	2.05915	0.33219
С	-3.29648	2.71730	0.11027
С	-4.41716	2.01364	-0.19795
С	-1.99660	0.63342	0.21774
Н	-3.33738	3.79970	0.19472
Н	-5.35963	2.52908	-0.36219
С	0.37218	2.21651	0.87317
С	-0.86663	2.80783	0.65552
С	-0.70384	0.14748	0.44470
С	0.31409	0.82643	0.72781
Н	1.25533	2.79020	1.13146
Н	-0.96122	3.88792	0.73797
С	-3.18436	-0.11722	-0.09941
С	-4.39731	0.58102	-0.31104
С	-4.31355	-2.21954	-0.50502
С	-5.56295	-0.15427	-0.62543
С	-5.52363	-1.52876	-0.72221
Н	-4.29118	-3.30250	-0.57448
Н	-6.49390	0.38270	-0.78729
Н	-6.42576	-2.08279	-0.96189
С	1.33678	-1.45734	-1.66251
Н	0.52147	-1.96656	-2.15896
Ν	0.33059	-2.10202	0.36639
С	2.32519	-0.75626	-2.25242
Ν	1.33651	-1.55541	-0.27585
Н	2.34241	-0.67999	-3.33433
0	0.68965	-2.02925	1.68139
С	3.35968	-0.11265	-1.47913
С	2.19864	-0.87767	0.51684
С	1.82990	-1.24387	1.87672
С	4.42639	0.59381	-2.05569
С	3.30621	-0.17797	-0.06577
Н	4.50434	0.66777	-3.13691
0	2.29042	-1.03625	2.96088
С	5.35863	1.18763	-1.22802
С	5.19897	1.06248	0.16388
Н	6.19781	1.74346	-1.63026
Н	5.91714	1.52397	0.83723
С	-3.16233	-1.52532	-0.19809
Н	-2.22487	-2.04482	-0.01927

 N
 4.20718
 0.40326
 0.74221

 One imaginary frequency: -139.90 cm⁻¹

int1 C-32

C	1.82098	-2.19762	-0.47965
С	3.19207	-2.10569	-0.91565
С	3.87494	-0.93883	-0.84956
С	1.16391	-1.02133	-0.00039
Н	3.65848	-2.99877	-1.32183
Н	4.89758	-0.87422	-1.21088
С	-0.19406	-3.54617	-0.22107
С	1.14339	-3.43033	-0.56429
С	-0.22730	-1.12501	0.17973
С	-0.83702	-2.36696	0.11935
Н	-0.72964	-4.48803	-0.25577
Н	1.69428	-4.30015	-0.91020
С	1.96353	0.16641	0.25609
С	3.29376	0.22286	-0.22843
С	2.25930	2.35307	1.26314
С	4.05755	1.38926	-0.01837
С	3.54293	2.45029	0.70011
н	1.87185	3.15498	1.88380
н	5.07050	1.42836	-0.40994
н	4.14238	3.34055	0.86201
С	-2.54804	-0.89435	-1.63522
н	-2.95487	-1.77021	-2.12827
Ν	-2.27999	-2.21705	0.35633
С	-2.16499	0.23169	-2.25853
Ν	-2.52217	-0.93953	-0.24042
н	-2.25812	0.32517	-3.33382
0	-2.37636	-1.82192	1.75365
С	-1.77145	1.39344	-1.45995
С	-1.44861	-0.17390	0.42229
С	-1.85646	-0.54446	1.85618
С	-1.74192	2.69178	-1.97466
С	-1.49364	1.24656	-0.08431
н	-1.93499	2.85754	-3.03099
0	-1.75523	0.03347	2.89095
С	-1.49456	3.75794	-1.11941
С	-1.30222	3.49517	0.23567
н	-1.46988	4.77784	-1.48722
н	-1.14395	4.30449	0.94317
Ν	-1.29105	2.26152	0.74485
С	1.48996	1.22417	1.05484
Н	0.52948	1.14762	1.55041

int1 S-32

С	-1.74773	1.98439	0.16492
С	-2.97268	2.72751	0.03062
С	-4.15406	2.09870	-0.16818
С	-1.78296	0.55767	0.07479
Н	-2.92394	3.81085	0.09226
Н	-5.07327	2.66864	-0.27186
С	0.67691	2.02510	0.50911
С	-0.53745	2.67948	0.38121
С	-0.52540	-0.05333	0.16948
С	0.64901	0.64250	0.37330
Н	1.60408	2.55817	0.69256
Н	-0.57729	3.76310	0.44677
С	-3.06020	-0.12280	-0.10404
С	-4.23334	0.66367	-0.23413
С	-4.42300	-2.12453	-0.31589
С	-5.48234	0.03229	-0.41594
С	-5.58124	-1.34178	-0.45988
Н	-4.49564	-3.20716	-0.33660
Н	-6.36897	0.65262	-0.51560
Н	-6.54724	-1.81709	-0.59700
С	1.32709	-1.31497	-1.80543
Н	0.57303	-1.76820	-2.43922
N	-0.17741	-1.49270	0.10113
С	2.45275	-0.72984	-2.25061
N	1.14664	-1.47263	-0.43546
Н	2.66303	-0.69163	-3.31275
0	0.16809	-1.81682	1.48319
С	3.44110	-0.20274	-1.30515
С	1.72279	-0.44923	0.44855
С	1.37426	-1.18887	1.75511
С	4.71770	0.21562	-1.68566
С	3.12052	-0.08069	0.06396
Н	5.02384	0.14131	-2.72563
0	1.92377	-1.27444	2.80482
С	5.58246	0.72597	-0.72325
С	5.14060	0.82063	0.59472
Н	6.58123	1.05551	-0.98795
Н	5.78348	1.22755	1.37006
С	-3.18861	-1.53026	-0.14033
Н	-2.31074	-2.15206	-0.02645
N	3.92170	0.43410	0.98627

TS2 C-32

C -2.21623 -1.91154 -0.65572

С	-3.52547	-1.63186	-1.19261	С	-1.85078	0.57618	-0.06093
С	-4.04820	-0.38426	-1.16123	Н	-3.12835	3.74544	-0.51638
С	-1.42809	-0.83066	-0.14499	Н	-5.23068	2.47523	-0.67217
Н	-4.07530	-2.45345	-1.64295	С	0.54711	2.19609	0.12707
Н	-5.02178	-0.17910	-1.59771	С	-0.69565	2.77051	-0.08637
С	-0.45869	-3.53671	-0.21090	С	-0.56655	0.03966	0.09743
С	-1.73196	-3.23370	-0.66394	С	0.58101	0.80859	0.18708
С	-0.06870	-1.12182	0.08573	Н	1.45134	2.78572	0.23161
С	0.33687	-2.45237	0.11734	Н	-0.78307	3.84932	-0.17939
Н	-0.07416	-4.54893	-0.16494	С	-3.10006	-0.17432	-0.11199
Н	-2.38439	-4.02197	-1.02799	С	-4.30658	0.53526	-0.34127
С	-2.09788	0.43712	0.11255	С	-4.38084	-2.23720	0.01100
С	-3.37467	0.67496	-0.45557	С	-5.52985	-0.16579	-0.40303
С	-2.23954	2.56691	1.26199	С	-5.57210	-1.53298	-0.23306
С	-4.01636	1.90850	-0.22589	Н	-4.40833	-3.31192	0.15946
С	-3.44886	2.85250	0.60781	Н	-6.44248	0.39626	-0.58198
Н	-1.82339	3.27366	1.97306	Н	-6.51881	-2.06158	-0.27939
Н	-4.98425	2.08857	-0.68585	С	1.64073	-1.99198	-1.36845
Н	-3.95748	3.79407	0.78997	Н	1.00105	-2.73541	-1.82962
С	3.21875	-1.25851	-1.07888	Ν	-0.16164	-1.38055	0.24221
Н	3.73438	-2.17998	-1.32229	C	2.89472	-1.68609	-1.76458
Ν	1.76508	-2.52833	0.44641	Ν	1.12645	-1.35812	-0.27726
С	3.48915	-0.04251	-1.59014	Н	3.34059	-2.20196	-2.60484
Ν	2.19688	-1.38343	-0.18960	0	0.18238	-1.45468	1.69458
Н	4.28381	0.09073	-2.31193	C	3.66502	-0.67111	-1.04785
0	1.81464	-2.06165	1.87175	С	1.69178	-0.21740	0.41880
С	2.74442	1.11010	-1.10444	С	1.35240	-0.74123	1.84666
С	1.29310	-0.37330	0.34564	С	4.98480	-0.34905	-1.38682
С	1.51864	-0.72447	1.84662	С	3.10527	0.06336	0.02172
С	3.06831	2.40692	-1.52683	Н	5.47466	-0.88210	-2.19714
С	1.70675	0.99977	-0.14432	0	1.91856	-0.62002	2.88654
Н	3.85069	2.53872	-2.26926	С	5.65206	0.64950	-0.69035
0	1.45130	-0.03732	2.81990	С	4.97935	1.32461	0.32786
С	2.40998	3.50161	-0.99109	Н	6.67547	0.91244	-0.93500
С	1.44128	3.27405	-0.01487	Н	5.46307	2.12280	0.88356
Н	2.64825	4.51154	-1.30649	С	-3.17071	-1.57413	0.07199
Н	0.91281	4.09882	0.45619	Н	-2.26786	-2.13658	0.26751
Ν	1.10734	2.05321	0.39529	N	3.72204	1.04199	0.67567
С	-1.58126	1.37454	1.02483	One	imaginary fr	equency: -10	7.13 cm ⁻¹
Н	-0.66984	1.15735	1.56579				

One imaginary frequency: -102.97 cm⁻¹

TS2 S-32

С	-1.87538	2.00068	-0.18532
С	-3.13203	2.66421	-0.41277
С	-4.28741	1.96542	-0.49677

int2 C-32

С	-2.49224	-1.80639	0.00546
С	-3.85773	-1.50896	0.35699
С	-4.28736	-0.23281	0.49389
С	-1.56101	-0.73275	-0.14178
Н	-4.53014	-2.34357	0.53392

Н	-5.30909	-0.01993	0.79568	С	0.50252	0.92840	0.05241
С	-0.79284	-3.48954	-0.45646	Н	1.27334	2.93989	0.18365
С	-2.09968	-3.15207	-0.16078	Н	-1.03705	3.90581	0.01080
С	-0.20127	-1.10642	-0.24815	С	-3.14011	-0.23002	-0.13868
С	0.11546	-2.44090	-0.47765	С	-4.39239	0.43035	-0.22861
Н	-0.46979	-4.51178	-0.61581	С	-4.30810	-2.36263	-0.15298
Н	-2.85542	-3.92592	-0.06356	С	-5.58132	-0.32772	-0.28832
С	-2.09112	0.61874	-0.24346	С	-5.54593	-1.70498	-0.25326
С	-3.43174	0.86871	0.14122	н	-4.27316	-3.44674	-0.11583
С	-1.89854	2.93353	-0.95565	н	-6.52969	0.19811	-0.35893
С	-3.94533	2.18046	0.06486	н	-6.46655	-2.27802	-0.29753
С	-3.18508	3.20563	-0.45947	С	1.90522	-2.27718	-0.78350
н	-1.32346	3.71916	-1.43568	н	1.37854	-3.20675	-0.96464
н	-4.96595	2.36145	0.39082	N	-0.13773	-1.28812	-0.00960
н	-3.59456	4.20844	-0.52900	С	3.24196	-2.14244	-0.77156
С	3.29244	-1.07976	-1.20670	N	1.09794	-1.13866	-0.65640
Н	3.84948	-1.91139	-1.62221	Н	3.87328	-3.00321	-0.95887
N	1.56260	-2.60458	-0.55772	0	0.30212	-1.44568	1.44968
С	3.79046	0.14779	-0.99297	C	3.86445	-0.82942	-0.57874
N	1.93526	-1.32654	-0.99743	C	1.65186	-0.04421	0.15719
Н	4.82021	0.36730	-1.24936	C	1.41439	-0.68449	1.57198
0	1.93597	-2.54127	0.92528	C	5.21847	-0.57559	-0.79983
C	2.96551	1.20129	-0.40097	C	3.07618	0.26047	-0.15970
C	1.20213	-0.50889	-0.01763	H	5.87636	-1.37792	-1.12233
C	1.66626	-1.27316	1.29568	0	2.05507	-0.55531	2.57265
C	3.43002	2.50455	-0.20437	C	5.70671	0.71214	-0.60470
C	1.67283	0.91140	0.07979	C	4.82589	1.71189	-0.19762
Н	4.41567	2.78488	-0.56578	с Н	6.75390	0.94307	-0.76570
0	1.80241	-0.83258	2,39755	н	5,17471	2,72865	-0.04117
C	2,63407	3,41868	0.47472	C	-3,13056	-1.64310	-0.09655
C	1.39837	2,99495	0.96188	с Н	-2.18961	-2.17001	-0.01659
H	2.97050	4.43518	0.64694	N	3.52556	1.49451	0.02811
н	0.75872	3.66767	1.52680		0.01000		0.01011
N	0 92926	1 76021	0 77595				
C	-1.36782	1.66326	-0.85158				
н	-0.39769	1.45166	-1.28246	тс	3 (-32		
	0100700	1.10100	1.202.10	15	5 C-52		
				С	-2.48071	-1.80540	0.00912
int2	S-32			С	-3.84267	-1.51318	0.37413
C	-2 03263	2 00637	-0 08253	С	-4.27650	-0.23770	0.51037
c	-3 33189	2.00037	-0 17398	С	-1.55697	-0.72927	-0.15335
c	-4 45467	1 86732	-0.25016	Н	-4.50979	-2.34973	0.56144
C	-1 92890	0 58000	-0.23010	Н	-5.29596	-0.02837	0.82222
Ч	-2 22715	3 70261	-0 120202	C	-0.78420	-3.48619	-0.47286
ц	-2.20/12	3.70201 2 22702	-0.10092	C	-2.08487	-3.15269	-0.15830
C	U 303E3	2.33/92	-0.32130 0.00571	C	-0.19580	-1.09787	-0.28000
C	0.33333 _0 22267	2.31423 2 22061	0.05574	C	0.12187	-2.43196	-0.51632
C	-0.0000/	2.02301 0.10560	0.00/01	н	-0.45859	-4.50777	-0.63093
C	-0.01100	0.10209	-0.03220				

Н	-2.83713	-3.92810	-0.04799
С	-2.09201	0.61954	-0.25180
С	-3.42980	0.86570	0.14541
С	-1.91514	2.93298	-0.97189
С	-3.94952	2.17546	0.07022
С	-3.19852	3.20158	-0.46462
Н	-1.34780	3.71977	-1.45921
Н	-4.96750	2.35340	0.40592
Н	-3.61243	4.20261	-0.53344
С	3.31467	-1.10320	-1.18030
Н	3.87168	-1.94253	-1.57886
Ν	1.55233	-2.59550	-0.61378
С	3.81107	0.12453	-0.96601
Ν	1.95625	-1.34334	-0.97361
Н	4.84704	0.33657	-1.20345
0	1.89500	-2.52925	1.01707
С	2.98378	1.18342	-0.39056
С	1.19751	-0.50827	-0.03808
С	1.63652	-1.27704	1.32521
С	3.45856	2.48187	-0.18459
С	1.67805	0.90495	0.06145
Н	4.45561	2.75045	-0.52296
0	1.73015	-0.74881	2.39981
С	2.65698	3.40498	0.47392
С	1.40380	2.99495	0.92872
Н	3.00002	4.41780	0.65426
Н	0.75704	3.67632	1.47509
Ν	0.92561	1.76602	0.73380
С	-1.37812	1.66561	-0.86904
Н	-0.41051	1.45686	-1.30695
~	· · ·	25	a ca 1

С	-3.13942	-0.23586	-0.14233
С	-4.39386	0.42170	-0.22752
С	-4.30324	-2.37064	-0.12939
С	-5.58170	-0.33940	-0.27550
С	-5.54301	-1.71602	-0.23043
Н	-4.26647	-3.45418	-0.08012
Н	-6.53160	0.18396	-0.34358
Н	-6.46260	-2.29136	-0.26517
С	1.89752	-2.29456	-0.76489
Н	1.36698	-3.22415	-0.93158
Ν	-0.14332	-1.27534	-0.07540
С	3.23380	-2.15636	-0.75566
Ν	1.09472	-1.15464	-0.63523
Н	3.86450	-3.02069	-0.92856
0	0.31220	-1.39741	1.53132
С	3.85817	-0.84462	-0.57047
С	1.64441	-0.03700	0.13548
С	1.39947	-0.65346	1.59544
С	5.21684	-0.60163	-0.77855
С	3.07017	0.25357	-0.17344
Н	5.87387	-1.41201	-1.08218
0	2.09932	-0.45094	2.55196
С	5.70948	0.68503	-0.59386
С	4.82791	1.69499	-0.21144
Н	6.75980	0.90867	-0.74408
Н	5.18081	2.71191	-0.06499
С	-3.12694	-1.64887	-0.08553
Н	-2.18549	-2.17383	0.00050
Ν	3.52449	1.48869	0.00071
One imaginary frequency: -358.43 cm ⁻¹			

One imaginary frequency: -358.63 cm⁻¹

TS3 S-32

С	-2.03720	2.00079	-0.09393
С	-3.33715	2.61058	-0.17864
С	-4.45913	1.85792	-0.25197
С	-1.93092	0.57730	-0.10069
Н	-3.39436	3.69524	-0.18362
Н	-5.43691	2.32673	-0.31949
С	0.39022	2.31572	0.07754
С	-0.89305	2.82672	-0.00340
С	-0.60903	0.10403	-0.07870
С	0.50415	0.93009	0.01530
Н	1.26806	2.94284	0.17349
Н	-1.04490	3.90243	0.00796

C-32

С	2.38968	1.66877	0.40398
С	3.70094	1.21321	0.74547
С	4.03367	-0.10427	0.66852
С	1.39623	0.73454	0.04874
Н	4.43000	1.94812	1.07612
Н	5.02424	-0.44652	0.95496
С	0.92562	3.59406	0.00547
С	2.12880	3.08651	0.37674
С	0.05675	1.25545	-0.09392
С	-0.13769	2.66676	-0.20759
Н	0.73654	4.65874	-0.07350
Н	2.95327	3.75281	0.61573
С	1.80466	-0.61940	-0.24380

С	3.11107	-1.04621	0.11917
С	1.42917	-2.78425	-1.29010
С	3.51098	-2.37880	-0.14868
С	2.68314	-3.24002	-0.82944
Н	4.50231	-2.69605	0.16406
Н	3.00594	-4.25368	-1.04568
С	-3.43465	1.76890	-0.54343
Н	-3.90173	2.71163	-0.79584
Ν	-1.41823	3.00285	-0.41213
С	-4.06963	0.59025	-0.37690
Ν	-2.06714	1.83813	-0.37101
Н	-5.14332	0.53158	-0.51369
С	-3.33354	-0.57179	0.04742
С	-1.25701	0.74367	-0.12687
С	-3.95845	-1.78749	0.37556
С	-1.92731	-0.49184	0.21223
Н	-5.03328	-1.88647	0.24925
С	-3.19961	-2.82766	0.87115
С	-1.82031	-2.62022	1.04834
Н	-3.64789	-3.77775	1.13926
Н	-1.19593	-3.40641	1.46711
Н	0.80129	-3.43947	-1.88608
С	1.00303	-1.50870	-0.99997
Н	0.05417	-1.16075	-1.38879
Ν	-1.20018	-1.49593	0.73523

С	2.05647	-2.43346	0.00001
Н	1.50097	-3.36190	0.00002
Ν	-0.05772	-1.33462	0.00001
С	3.40322	-2.32017	0.00001
Ν	1.27905	-1.29405	0.00000
Н	4.01515	-3.21497	0.00001
С	4.03267	-1.02357	-0.00000
С	1.79964	-0.02261	-0.00000
С	5.42673	-0.84180	-0.00001
С	3.22575	0.14006	-0.00001
Н	6.08214	-1.70864	-0.00000
С	5.93868	0.43935	-0.00002
С	5.04128	1.52338	-0.00002
Н	7.00761	0.62024	-0.00002
Н	5.42038	2.54256	-0.00003
Ν	3.72527	1.39214	-0.00002
С	-2.97548	-1.73299	0.00002
н	-2.02912	-2.25523	0.00002

1p + 38c → C-33

TS1 C-33

С	-2.92805	-1.49933	-0.37512
С	-4.25144	-0.93554	-0.42982
С	-4.46198	0.39375	-0.24040
С	-1.83173	-0.62302	-0.10633
Н	-5.09063	-1.59689	-0.62629
Н	-5.46722	0.80415	-0.28292
С	-1.45437	-3.47997	-0.53990
С	-2.71638	-2.89479	-0.58243
С	-0.60229	-1.29232	-0.06284
С	-0.48299	-2.51936	-0.26928
Н	-1.29129	-4.53932	-0.69826
н	-3.58304	-3.52015	-0.78231
С	-2.04905	0.78808	0.08221
С	-3.37014	1.29053	0.01609
С	-1.17544	2.86418	0.47573
С	-3.54821	2.67730	0.20514
С	-2.44902	3.47157	0.43691
Н	-0.28801	3.46972	0.65201
н	-4.54909	3.09948	0.16454
н	-2.54447	4.54137	0.58704
С	2.45002	-1.49209	-1.70924
н	2.46672	-2.38435	-2.32008
N	1.95932	-2.89651	0.13263
С	2.61800	-0.22085	-2.13594

S-32

С	-1.87755	1.89413	-0.00001
С	-3.16741	2.51375	-0.00001
С	-4.30576	1.77197	-0.00000
С	-1.78015	0.48853	0.00000
Н	-3.21611	3.59915	-0.00001
Н	-5.28090	2.25163	-0.00000
С	0.55217	2.24497	-0.00001
С	-0.71364	2.74336	-0.00001
С	-0.43645	-0.04174	0.00000
С	0.69322	0.83107	-0.00001
Н	1.43097	2.87885	-0.00002
Н	-0.87749	3.81716	-0.00002
С	-2.98393	-0.31322	0.00001
С	-4.24633	0.34439	0.00001
С	-4.15304	-2.44905	0.00002
С	-5.43883	-0.41763	0.00001
С	-5.40003	-1.79207	0.00002
Н	-4.11722	-3.53421	0.00003
Н	-6.38970	0.10893	0.00001
Н	-6.32024	-2.36774	0.00003

Ν	2.23068	-1.70438	-0.35406
Н	2.79363	-0.04811	-3.19265
0	1.79355	-2.67095	1.47731
С	2.57724	0.90352	-1.23541
С	2.09161	-0.68937	0.52043
С	1.82077	-1.32299	1.79139
С	2.78345	2.22760	-1.66747
С	2.31482	0.66103	0.13290
Н	2.98133	2.41935	-2.71831
0	1.67779	-0.89876	2.90998
С	2.73754	3.26720	-0.75918
С	2.26045	1.72485	1.05295
С	2.47957	3.01160	0.60223
Н	2.90240	4.28608	-1.09413
Н	2.04057	1.51032	2.09382
Н	2.44965	3.83842	1.30547
Ν	-0.97078	1.57347	0.30686
One imaginary frequency: -74.49 cm ⁻¹			

С 2.04818 0.97444 1.93744 С 4.27767 -1.56720 -1.81790 С 3.36909 -0.22938 -0.00083 Н 4.17346 -2.38400 -2.52653 0 2.71690 1.86268 2.40388 С 5.42596 -0.79901 -1.79447 С 4.54118 0.55130 0.01624 С 5.55468 0.26104 -0.87634 Н 6.23327 -1.01155 -2.48743 Н 4.62162 1.36454 0.73053 Н 6.46157 0.85690 -0.87046 Ν -2.38470 -1.59524 0.42889 One imaginary frequency: -103.95 cm⁻¹

0.60906

-1.29607

0.01230

2.42966

-0.92209

0.88426

int1 C-33

0

С

С

0.80546

3.22625

2.28165

TS1	TS1 S-33					
С	-2.64378	1.88725	-0.83527			
С	-4.04748	1.92017	-1.15024			
С	-4.85635	0.85889	-0.89500			
С	-2.12104	0.70296	-0.22457			
Н	-4.45636	2.82297	-1.59499			
Н	-5.91675	0.90416	-1.12715			
С	-0.43487	2.99291	-0.84483			
С	-1.79612	2.99484	-1.12586			
С	-0.77296	0.87868	0.06428			
С	0.00547	1.82832	-0.19084			
Н	0.19748	3.83560	-1.10359			
Н	-2.24307	3.86717	-1.59658			
С	-2.95528	-0.45390	-0.02435			
С	-4.33276	-0.35640	-0.33717			
С	-3.16788	-2.63782	0.63049			
С	-5.13563	-1.49188	-0.10347			
С	-4.55766	-2.63746	0.39370			
Н	-2.68294	-3.54018	0.99818			
Н	-6.19916	-1.44889	-0.32385			
Н	-5.14203	-3.52970	0.58904			
С	1.00392	-1.80560	-0.03606			
Н	0.03389	-2.28471	0.02581			
Ν	0.24392	-0.41846	1.72379			
С	2.00031	-2.05622	-0.91354			
Ν	1.19784	-0.78163	0.88392			
Н	1.86552	-2.85171	-1.63895			

С	-2.45185	-1.60702	-0.43459
С	-3.79449	-1.15381	-0.69936
С	-4.14257	0.14854	-0.57238
С	-1.44992	-0.66127	-0.05898
Н	-4.52817	-1.89289	-1.00834
Н	-5.15646	0.47835	-0.78099
С	-0.87306	-3.45423	-0.31632
С	-2.15003	-2.97954	-0.55388
С	-0.13398	-1.14140	0.08558
С	0.09038	-2.50351	-0.01273
Н	-0.61766	-4.50622	-0.37686
Н	-2.94593	-3.66432	-0.83138
С	-1.85327	0.71799	0.15344
С	-3.18070	1.11761	-0.12538
С	-1.27140	2.82844	0.83363
С	-3.51265	2.47081	0.08439
С	-2.55447	3.33902	0.55861
Н	-0.49005	3.47903	1.22345
Н	-4.52390	2.81006	-0.12453
Н	-2.77382	4.38669	0.73176
С	2.20152	-1.47813	-1.68899
Н	2.33780	-2.39842	-2.24576
Ν	1.51127	-2.78840	0.21873
С	2.19768	-0.24481	-2.22020
Ν	2.12815	-1.60671	-0.29727
Н	2.34339	-0.10951	-3.28557
0	1.68398	-2.51378	1.64214
С	2.16296	0.92698	-1.33744

С	1.30736	-0.59529	0.39324
С	1.55776	-1.15164	1.80370
С	2.57285	2.19118	-1.78150
С	1.80099	0.76987	0.01315
Н	2.84427	2.32430	-2.82517
0	1.63381	-0.61356	2.86550
С	2.66847	3.25431	-0.89147
С	1.92585	1.82584	0.91033
С	2.36774	3.06651	0.45969
Н	2.99811	4.22630	-1.24521
Н	1.65674	1.67237	1.94990
Н	2.47227	3.88919	1.16040
Ν	-0.93514	1.56727	0.64738

С	3.10396	-0.11017	0.08625
Н	4.94011	0.40761	-2.72518
0	1.86577	-1.37761	2.73137
С	5.61859	0.75396	-0.70962
С	4.03395	0.26845	1.04697
С	5.30019	0.69939	0.64600
Н	6.60233	1.09007	-1.02200
Н	3.76963	0.21158	2.09856
Н	6.03358	0.98880	1.39132
Ν	-3.08825	-1.46318	-0.19768

TS2 C-33

С	-2.75204	-1.44386	-0.26178
С	-4.10185	-0.94115	-0.31753
С	-4.37288	0.38280	-0.24979
С	-1.65783	-0.53597	-0.11068
Н	-4.90635	-1.66428	-0.41631
Н	-5.39511	0.74810	-0.29131
С	-1.27257	-3.36899	-0.33390
С	-2.54527	-2.83485	-0.36233
С	-0.35722	-1.08772	-0.06190
С	-0.22898	-2.46688	-0.19518
Н	-1.07862	-4.43270	-0.41230
Н	-3.40987	-3.48236	-0.47282
С	-1.96157	0.88654	-0.07631
С	-3.30268	1.33322	-0.14145
С	-1.16755	3.03907	0.00245
С	-3.53147	2.72342	-0.11922
С	-2.46241	3.58863	-0.04798
Н	-0.29077	3.68324	0.05701
Н	-4.55209	3.09444	-0.16482
Н	-2.60192	4.66385	-0.03372
С	2.77359	-1.58267	-1.51079
Н	3.06614	-2.49886	-2.00968
Ν	1.18076	-2.85860	-0.11616
С	3.26908	-0.35537	-1.75278
Ν	1.77999	-1.71207	-0.58087
Н	4.03363	-0.21481	-2.50577
0	1.43447	-2.71125	1.37015
С	2.86082	0.77116	-0.91530
С	1.14502	-0.67783	0.21340
С	1.35597	-1.37460	1.60923
С	3.53714	1.99952	-1.02039
С	1.87007	0.63496	0.08054
Н	4.28717	2.11568	-1.79787
0	1.44802	-0.88179	2.69421
С	3.29054	3.03285	-0.13047

int1 S-33

С	-1.76980	1.97208	0.22995
С	-3.00129	2.71397	0.13872
С	-4.18593	2.09177	-0.06970
С	-1.79720	0.55284	0.07915
Н	-2.95595	3.79408	0.24412
Н	-5.10902	2.66083	-0.13719
С	0.65187	1.98673	0.56420
С	-0.55725	2.65604	0.46714
С	-0.54993	-0.07997	0.14080
С	0.62221	0.60930	0.37750
Н	1.58388	2.50998	0.75476
Н	-0.58973	3.73661	0.57339
С	-3.07386	-0.11748	-0.11426
С	-4.25283	0.66119	-0.19338
С	-4.24765	-2.06800	-0.37014
С	-5.47379	-0.01658	-0.38206
С	-5.47794	-1.38986	-0.47386
Н	-4.21665	-3.15375	-0.42799
Н	-6.39605	0.55487	-0.44796
Н	-6.39759	-1.94668	-0.61563
С	1.30573	-1.16418	-1.88445
Н	0.56201	-1.57713	-2.55679
Ν	-0.20312	-1.51479	-0.00839
С	2.41065	-0.50292	-2.27213
Ν	1.13172	-1.45565	-0.53120
Н	2.60984	-0.35800	-3.32752
0	0.13835	-1.90203	1.36456
С	3.41148	-0.06556	-1.28982
С	1.69821	-0.48578	0.41190
С	1.32213	-1.27937	1.67273
С	4.68321	0.37309	-1.66999

С	1.66968	1.65880	1.00781
С	2.37068	2.85366	0.90703
Н	3.83373	3.96836	-0.22354
Н	0.95407	1.51210	1.80807
Н	2.20589	3.64005	1.63688
Ν	-0.92866	1.74255	-0.01223
0	imaginan, fra	auanau 10	1 20 amo-1

One imaginary frequency: -101.29 cm⁻¹

TS2 S-33

С	-1.93328	1.99265	-0.25578
С	-3.20635	2.63125	-0.47298
С	-4.35593	1.91697	-0.51402
С	-1.88119	0.57409	-0.10307
Н	-3.22121	3.70974	-0.60113
Н	-5.31095	2.40849	-0.67759
С	0.48636	2.20967	0.02214
С	-0.76049	2.77538	-0.19341
С	-0.59917	0.03689	0.05413
С	0.53946	0.82442	0.12286
Н	1.38444	2.81606	0.08327
Н	-0.85360	3.85048	-0.31739
С	-3.11993	-0.18907	-0.11607
С	-4.34246	0.49155	-0.32748
С	-4.18436	-2.20777	0.08234
С	-5.52531	-0.27398	-0.33406
С	-5.45261	-1.63328	-0.13010
Н	-4.09249	-3.27745	0.25689
Н	-6.47955	0.22081	-0.49523
Н	-6.34104	-2.25501	-0.12467
С	1.67303	-2.03481	-1.32917
Н	1.05835	-2.81460	-1.76310
Ν	-0.18147	-1.37880	0.20316
С	2.93155	-1.72397	-1.70437
Ν	1.10171	-1.32716	-0.31264
Н	3.41008	-2.27888	-2.50080
0	0.15956	-1.42063	1.67534
С	3.67761	-0.67261	-1.00970
С	1.66174	-0.18827	0.37882
С	1.29478	-0.67880	1.81552
С	5.00988	-0.38835	-1.34259
С	3.08889	0.07516	0.03480
Н	5.48202	-0.95253	-2.14217
0	1.84660	-0.47561	2.85624
С	5.72840	0.59056	-0.66496
С	3.81336	1.04579	0.72194
С	5.13614	1.30933	0.37371

Н	6.75893	0.78880	-0.94269
Н	3.34301	1.57727	1.54507
Н	5.70104	2.06222	0.91288
Ν	-3.05867	-1.52009	0.08991
One	imaginary fre	equency: -11	7.58 cm ⁻¹

int2 C-33

С	-2.68532	-1.59494	-0.01429
С	-4.05037	-1.17701	0.18701
С	-4.39295	0.13133	0.24340
С	-1.64983	-0.61423	-0.08677
Н	-4.80520	-1.95041	0.29644
Н	-5.42349	0.43361	0.40671
С	-1.11545	-3.41673	-0.36555
С	-2.40366	-2.97153	-0.14447
С	-0.32065	-1.08784	-0.16172
С	-0.12137	-2.44891	-0.36906
Н	-0.87072	-4.46324	-0.50682
Н	-3.22724	-3.67727	-0.09367
С	-2.04944	0.78174	-0.18583
С	-3.40283	1.14614	0.01381
С	-1.45993	2.94551	-0.67377
С	-3.73711	2.50967	-0.09866
С	-2.76197	3.42280	-0.43578
Н	-0.66639	3.62861	-0.97143
Н	-4.76601	2.82040	0.06298
Н	-2.98487	4.47889	-0.53972
С	3.10155	-1.37304	-1.30300
Н	3.55516	-2.25909	-1.73106
Ν	1.30313	-2.73403	-0.47892
С	3.68630	-0.17193	-1.20145
Ν	1.75773	-1.50998	-0.95635
Н	4.69699	-0.03094	-1.56623
0	1.71381	-2.66976	1.00722
С	3.00317	0.95219	-0.55700
С	1.14137	-0.59823	0.02102
С	1.54235	-1.38074	1.34638
С	3.63844	2.19754	-0.44893
С	1.75257	0.77118	0.06471
Н	4.59199	2.34524	-0.94832
0	1.68351	-0.92959	2.44594
С	3.08421	3.21511	0.31597
С	1.24903	1.76402	0.90124
С	1.89941	2.98778	1.01815
Н	3.59207	4.17115	0.39616
Н	0.34368	1.57529	1.46650

Н	1.48950	3.75645	1.66543
Ν	-1.11648	1.67641	-0.55824
in+7	c 22		
mtz	3-33		
С	-2.08802	2.00622	-0.15716
С	-3.40068	2.59047	-0.25808
С	-4.51271	1.81948	-0.29766
С	-1.95297	0.58738	-0.11527
Н	-3.47615	3.67316	-0.30047
Н	-5.49919	2.26830	-0.37402
С	0.33083	2.33372	0.00163
С	-0.95329	2.84182	-0.10276
С	-0.63792	0.11241	-0.06143
С	0.47089	0.94777	0.01194
н	1.18300	3.00036	0.04912
н	-1.10450	3.91672	-0.14134
С	-3.15060	-0.24065	-0.13010
С	-4.41563	0.38699	-0.22684
С	-4.10247	-2.32282	-0.04485
С	-5.55777	-0.43815	-0.23835
С	-5.40728	-1.80321	-0.14889
Н	-3.94826	-3.39646	0.03736
н	-6.54233	0.01617	-0.31320
н	-6.26217	-2.47036	-0.15162
С	1.86829	-2.25265	-0.84086
н	1.32682	-3.17139	-1.03276
Ν	-0.16333	-1.27739	-0.03270
С	3.20339	-2.11990	-0.85977
Ν	1.07259	-1.11506	-0.66667
н	3.82791	-2.97620	-1.08625
0	0.26510	-1.41430	1.44034
С	3.83969	-0.82133	-0.61676
С	1.63247	-0.02323	0.14405
С	1.36002	-0.64166	1.56726
С	5.20845	-0.62896	-0.82810
С	3.07098	0.25898	-0.13504
н	5.80591	-1.45442	-1.20506
0	1.97729	-0.46859	2.57845
С	5.80601	0.59762	-0.55282
С	3.67805	1.47100	0.17241
С	5.04439	1.64739	-0.04433
н	6.86993	0.72968	-0.72172
н	3.09526	2.27457	0.60891
н	5.51138	2.59682	0.19519
Ν	-3.01377	-1.57838	-0.03544

С	-2.67662	-1.59469	-0.01768
С	-4.04030	-1.17880	0.19321
С	-4.38391	0.12952	0.25239
С	-1.64407	-0.61282	-0.09825
Н	-4.79355	-1.95291	0.30820
Н	-5.41360	0.43038	0.42357
С	-1.10794	-3.41563	-0.38107
С	-2.39345	-2.97236	-0.14917
С	-0.31409	-1.08432	-0.18545
С	-0.11426	-2.44484	-0.39762
Н	-0.86217	-4.46210	-0.52071
Н	-3.21572	-3.67900	-0.09057
С	-2.04509	0.78222	-0.19534
С	-3.39721	1.14545	0.01518
С	-1.46218	2.94579	-0.69130
С	-3.73393	2.50867	-0.09550
С	-2.76260	3.42220	-0.44189
Н	-0.67234	3.62963	-0.99697
Н	-4.76168	2.81855	0.07476
Н	-2.98720	4.47803	-0.54477
С	3.11989	-1.38521	-1.28547
Н	3.57616	-2.27445	-1.70310
Ν	1.30007	-2.72910	-0.51657
С	3.69838	-0.18072	-1.18816
Ν	1.77811	-1.52264	-0.93400
Н	4.71153	-0.04004	-1.54638
0	1.68477	-2.66254	1.07391
С	3.01107	0.94387	-0.55138
С	1.13979	-0.60024	0.01208
С	1.51357	-1.38666	1.37158
С	3.64834	2.18833	-0.44050
С	1.75488	0.76455	0.05975
Н	4.60674	2.33288	-0.93144
0	1.61705	-0.87671	2.45467
С	3.08883	3.20801	0.31678
С	1.24497	1.76129	0.88877
С	1.89683	2.98346	1.00834
Н	3.59742	4.16335	0.40024
Н	0.33637	1.57415	1.44872
Н	1.48302	3.75388	1.65106
N	-1.11604	1.67735	-0.57757
One	imaginary fre	equency: -30	1.31 cm⁻¹

TS3 S-33

|--|

С	-2.09217	1.99725	-0.17292	С	-2.55587	1.48804	-0.41556
С	-3.40620	2.58025	-0.25477	С	-3.85708	0.93702	-0.63677
С	-4.51804	1.80791	-0.27739	С	-4.10611	-0.39272	-0.48194
С	-1.95415	0.57991	-0.13280	С	-1.47235	0.63775	-0.11478
Н	-3.48351	3.66291	-0.29414	н	-4.65616	1.61441	-0.92566
Н	-5.50626	2.25550	-0.33633	Н	-5.09615	-0.80326	-0.65889
С	0.32810	2.33275	-0.03909	С	-1.21245	3.50819	-0.10533
С	-0.95761	2.83612	-0.13094	С	-2.39252	2.91964	-0.42980
С	-0.63517	0.10727	-0.09031	C	-0.16961	1.24167	-0.00575
С	0.47286	0.94630	-0.02996	C	-0.08337	2.66274	0.11102
Н	1.17826	3.00205	0.00414	Н	-1.09504	4.58455	-0.04301
Н	-1.11260	3.91057	-0.16753	Н	-3.26703	3.52620	-0.64802
С	-3.14942	-0.25008	-0.14290	C	-1.76774	-0.73629	0.21493
С	-4.41714	0.37585	-0.21555	C	-3.07308	-1.25296	-0.00505
С	-4.09584	-2.33553	-0.07475	C	-1.06424	-2.72020	1.13939
С	-5.55797	-0.45164	-0.21851	C	-3.31049	-2.60432	0.33179
С	-5.40357	-1.81709	-0.14771	C	-2.30572	-3.34950	0.90020
Н	-3.93838	-3.41009	-0.01334	Н	-4.29564	-3.02895	0.15570
Н	-6.54436	0.00157	-0.27333	Н	-2.45515	-4.38588	1.18230
Н	-6.25710	-2.48597	-0.14466	С	3.23665	1.98879	0.64560
С	1.86030	-2.28872	-0.77023	Н	3.61905	2.96123	0.92561
Н	1.31532	-3.21192	-0.92517	Ν	1.15791	3.08907	0.36657
Ν	-0.16664	-1.27184	-0.04616	C	3.94994	0.84771	0.55975
С	3.19449	-2.15191	-0.80582	Ν	1.88690	1.96705	0.35708
Ν	1.06862	-1.14718	-0.61310	Н	5.00758	0.85645	0.79768
Н	3.81819	-3.01517	-1.00709	С	3.33600	-0.35953	0.06886
0	0.27621	-1.33275	1.55216	C	1.17617	0.81758	0.07442
С	3.83210	-0.84860	-0.60237	C	4.11077	-1.50622	-0.20195
С	1.62768	-0.01596	0.13083	С	1.95035	-0.36487	-0.23139
С	1.35138	-0.57256	1.60807	Н	5.16615	-1.49686	0.05610
С	5.20266	-0.66903	-0.81715	С	3.54885	-2.60590	-0.81706
С	3.06574	0.24816	-0.15557	С	1.41458	-1.47029	-0.92276
Н	5.79710	-1.50870	-1.16647	С	2.19841	-2.57093	-1.20745
0	2.01678	-0.30741	2.57500	Н	4.15481	-3.48050	-1.03087
С	5.80437	0.56244	-0.57916	Н	1.76902	-3.40939	-1.74656
С	3.67818	1.46706	0.11457	Н	-0.25747	-3.27009	1.62087
С	5.04500	1.63035	-0.10461	Н	0.38584	-1.43786	-1.25584
Н	6.86914	0.68528	-0.74929	Ν	-0.80002	-1.47359	0.81182
Н	3.09861	2.28564	0.52622				
Н	5.51562	2.58453	0.10745				
Ν	-3.00874	-1.58926	-0.07266				
One	e imaginary fro	equency: -32	1.44 cm ⁻¹	S-33	3		

С 0.00001 -1.94220 1.89105 С -3.24460 2.48699 0.00001 С -4.37130 -0.00000 1.72676 С -1.80957 0.49007 -0.00000

Н	-3.31232	3.57135	0.00001	C	2.94866	0.75930	-1.24067
Н	-5.35627	2.18584	-0.00000	C	4.13758	2.27645	0.79283
С	0.47830	2.26507	0.00001	C	3.42541	2.05780	-1.51240
С	-0.79224	2.75368	0.00001	C	4.01769	2.80094	-0.51152
С	-0.46343	-0.03274	-0.00000	Н	3.31840	2.46303	-2.51428
С	0.66147	0.85451	0.00001	Н	4.38750	3.79828	-0.72506
Н	1.31903	2.94829	0.00002	C	2.32928	-0.06317	-2.24305
Н	-0.96328	3.82608	0.00002	C	1.93487	-1.33341	-1.98819
С	-3.00026	-0.32672	-0.00001	Н	1.46025	-2.01115	-2.68465
С	-4.27524	0.30256	-0.00001	Н	2.16939	0.33980	-3.23743
С	-3.96321	-2.41094	-0.00002	C	-0.75699	-1.39924	-0.10133
С	-5.42197	-0.52130	-0.00001	C	-0.43133	-2.60653	-0.20894
С	-5.27443	-1.88657	-0.00002	C	-1.17101	-3.78024	-0.28158
Н	-3.81282	-3.48911	-0.00003	C	-2.11619	-1.00365	-0.03386
Н	-6.40630	-0.05966	-0.00001	Н	-0.78080	-4.78742	-0.36648
н	-6.12998	-2.55307	-0.00003	C	-2.52032	-3.47135	-0.22164
С	2.02399	-2.40760	-0.00001	C	-3.00742	-2.13226	-0.10937
Н	1.45408	-3.32719	-0.00002	Н	-3.25274	-4.27354	-0.26439
Ν	-0.07956	-1.31828	-0.00001	C	-2.64369	0.33827	0.06832
С	3.36954	-2.30486	-0.00001	C	-4.41728	-1.90889	-0.08509
Ν	1.25708	-1.26078	-0.00001	C	-4.04639	0.49051	0.05841
н	3.97436	-3.20455	-0.00001	C	-4.91037	-0.64485	-0.01127
С	4.01215	-1.01453	0.00000	C	-1.81852	1.53627	0.16959
С	1.78337	0.00913	0.00000	C	-4.64375	1.79071	0.11196
С	5.41618	-0.89521	0.00001	C	-2.45339	2.81088	0.20992
С	3.21575	0.15902	0.00001	C	-3.87987	2.90860	0.17331
Н	6.01773	-1.80002	0.00000	C	-0.40214	1.52022	0.25323
С	6.02041	0.34605	0.00002	C	-1.68003	3.99198	0.30198
С	3.85129	1.41664	0.00002	C	0.32953	2.68474	0.35361
С	5.22968	1.50817	0.00002	C	-0.30803	3.93919	0.37163
Н	7.10250	0.42584	0.00002	Н	-5.08792	-2.76202	-0.13558
Н	3.25490	2.32029	0.00002	н	-5.98303	-0.47199	-0.00390
Н	5.70327	2.48453	0.00003	н	-5.72800	1.85854	0.09644
Ν	-2.87280	-1.67580	-0.00002	н	-4.33447	3.89500	0.20659

1a + 38b → C-36

TS1 C-36

Ν	2.14760	-1.83838	-0.71635
Ν	1.72470	-3.03916	-0.36163
0	2.05006	-3.12105	0.97477
С	2.56886	-1.93618	1.46091
С	2.61068	-1.08066	0.29341
0	2.90641	-1.77322	2.60483
С	3.08351	0.23845	0.07156
С	3.67256	1.01247	1.09414

С	-1.81852	1.53627	0.16959	
С	-4.64375	1.79071	0.11196	
С	-2.45339	2.81088	0.20992	
С	-3.87987	2.90860	0.17331	
С	-0.40214	1.52022	0.25323	
С	-1.68003	3.99198	0.30198	
С	0.32953	2.68474	0.35361	
С	-0.30803	3.93919	0.37163	
Н	-5.08792	-2.76202	-0.13558	
Н	-5.98303	-0.47199	-0.00390	
Н	-5.72800	1.85854	0.09644	
Н	-4.33447	3.89500	0.20659	
Н	-2.19888	4.94678	0.32611	
Н	0.12191	0.57379	0.25222	
Н	1.41070	2.62780	0.43142	
Н	0.27670	4.85050	0.45003	
Н	4.59861	2.87692	1.57020	
Н	3.75305	0.59453	2.09247	
One imaginary frequency: - 89.10cm ⁻¹				

TS1 S-36

Ν	-1.51618	1.07318	0.76119
Ν	-0.36006	0.78590	1.33865
0	-0.65993	-0.28565	2.15182

С	-1.90024	-0.82014	1.85764	int	1 C-36		
С	-2.42262	0.07716	0.84164	•			0.05605
0	-2.35620	-1.79157	2.40213	N	1.61410	2.44840	-0.25635
С	-3.70439	0.19958	0.22116	N	2.92501	1.93360	-0.22747
С	-4.72241	-0.75162	0.40640	0	3.03909	1.76285	1.23/35
С	-3.89942	1.31189	-0.63080	C	1.79499	1.36534	1.66419
С	-5.92532	-0.58638	-0.25656	C	0.89249	1.36626	0.39930
С	-5.13364	1.45446	-1.28980	0	1.54290	1.09337	2.79794
С	-6.13268	0.51595	-1.10492	C	-0.54619	1.74025	0.57788
Н	-5.29149	2.30711	-1.94412	C	-1.33568	1.18435	1.58009
Н	-7.08246	0.62988	-1.61684	C	-1.08312	2.6/618	-0.33105
С	-2.82350	2.26390	-0.78478	C	-2.6/216	1.55855	1.69708
С	-1.66303	2.14805	-0.10338	C	-2.42187	3.05574	-0.18158
Н	-0.82390	2.83058	-0.13651	Ĺ	-3.20960	2.50238	0.82107
Н	-2.95602	3.11103	-1.44927	н	-2.84533	3.78129	-0.8/12/
С	-0.87342	-1.24124	-0.58949	Н	-4.24947	2.79969	0.91601
С	0.22842	-0.66592	-0.37960	C	-0.25941	3.20319	-1.42197
С	1.52617	-1.18792	-0.48353	C	1.07782	3.06090	-1.3/598
С	-1.00867	-2.58877	-0.96308	н	1.78324	3.4/186	-2.08903
С	1.45548	-2.59604	-0.76362	н	-0.72443	3./6138	-2.22566
С	0.20796	-3.24688	-1.01381	C	1.4/5//	0.09884	-0.341/0
С	2.79321	-0.53544	-0.29376	C	2.74934	0.53885	-0.64889
С	2.66785	-3.35160	-0.73869	C	3.81915	-0.2/2/6	-1.01994
С	3.84973	-2.75556	-0.42089	C	1.20043	-1.30036	-0.3/024
С	3.93757	-1.34848	-0.18880	н	4.78850	0.15423	-1.25084
С	5.20124	-0.76789	0.15425	C	3.59637	-1.62833	-0.95070
С	2.94889	0.90510	-0.21969	L	2.33728	-2.15004	-0.56402
С	4.21273	1.44392	0.14418	Н	4.40688	-2.32/51	-1.13464
С	5.32588	0.56886	0.35601	C	-0.08373	-1.93842	-0.12926
С	4.37956	2.84561	0.24074	C	2.24397	-3.54329	-0.24525
С	1.92439	1.81559	-0.57709	C	-0.08291	-3.25917	0.35723
С	3.35045	3.70454	-0.06731	C	1.11087	-4.04612	0.30648
С	2.11981	3.17759	-0.50670	C	-1.36169	-1.35337	-0.47669
Н	-1.94827	-3.09422	-1.15892	C	-1.29708	-3.85595	0.82332
Н	0.23140	-4.31076	-1.23683	C	-2.55808	-1.98128	-0.03254
Н	2.62522	-4.41792	-0.94104	C	-2.48611	-3.211/2	0.69140
Н	4.76095	-3.34358	-0.35469	C	-1.48031	-0.27052	-1.38142
Н	6.05742	-1.42757	0.26486	C	-3.81340	-1.43800	-0.39498
Н	6.28063	1.00225	0.64086	C	-2.71324	0.20479	-1./6519
Н	5.34915	3.23249	0.54287	L U	-3.89486		-1.24497
Н	3.49196	4.77850	-0.00125	н	3.12609	-4.16310	-0.3/5/0
Н	1.32743	3.85568	-0.81211	н	1.06641	-5.0/651	0.64/59
Н	0.98233	1.42997	-0.94837	н	-1.24475	-4.84234	1.27542
Н	-6.71819	-1.31442	-0.11971	н	-3.406/8	-3.05955	1.05510
Н	-4.54351	-1.59484	1.06625	н	-4./1409	-1.91646	-0.01952
One	imaginary fre	equency: -21	8.47 cm ⁻¹	н		U.1/0/3	-1.80108
				н	-2.//109	1.02832	-2.4/038
				Н	-4.801/5	U.U384b	-1.53501

Н	-3.29047	1.11666	2.47137
Н	-0.90186	0.45970	2.26260

int1 S-36

Ν	-1.34646	-1.29495	0.47576	
Ν	-0.05122	-0.79669	0.83828	
0	-0.40719	-0.25903	2.15459	
С	-1.69044	0.22334	2.05522	
С	-2.10232	-0.04392	0.59870	
0	-2.27328	0.74249	2.95813	
С	-3.52705	-0.17231	0.17993	
С	-4.54721	0.60891	0.70950	
С	-3.76906	-1.07589	-0.87520	
С	-5.83838	0.49818	0.18974	
С	-5.06771	-1.16888	-1.38401	
С	-6.09304	-0.38605	-0.85686	
Н	-5.27351	-1.86498	-2.19249	
Н	-7.09637	-0.47122	-1.26210	
С	-2.67301	-1.91295	-1.37960	
С	-1.50521	-1.99832	-0.71828	
Н	-0.69993	-2.67375	-0.98391	
Н	-2.84533	-2.53859	-2.24766	
С	-1.19788	0.94069	-0.15421	
С	0.07141	0.43491	0.01328	
С	1.23989	1.12919	-0.36157	
С	-1.43150	2.20285	-0.69971	
С	0.99952	2.46996	-0.80516	
С	-0.31558	2.95475	-1.01069	
С	2.60719	0.66188	-0.22814	
С	2.10617	3.36976	-0.93452	
С	3.35072	2.98644	-0.55084	
С	3.62589	1.62959	-0.18394	
С	4.95494	1.25466	0.19259	
С	2.99125	-0.73341	-0.18576	
С	4.31038	-1.07704	0.21549	
С	5.26865	-0.04208	0.45213	
С	4.68873	-2.43926	0.28720	
С	2.15757	-1.77309	-0.66270	
С	3.82482	-3.43329	-0.10880	
С	2.55947	-3.08835	-0.62721	
Н	-2.43894	2.58706	-0.82585	
Н	-0.43038	3.96826	-1.38470	
Н	1.91336	4.38420	-1.27092	
Н	4.17509	3.69396	-0.55870	
Н	5.70439	2.03615	0.28072	
Н	6.26896	-0.31981	0.77238	
Н	5.69076	-2.68245	0.63001	

4.12812	-4.47419	-0.06282
1.90661	-3.86476	-1.01451
1.20753	-1.51363	-1.11314
-6.64080	1.09988	0.60348
-4.33129	1.28592	1.53052
	4.12812 1.90661 1.20753 -6.64080 -4.33129	4.12812-4.474191.90661-3.864761.20753-1.51363-6.640801.09988-4.331291.28592

TS2 C-36

Ν	-1.61008	-2.33076	-0.44693
Ν	-2.91527	-1.87704	-0.37949
0	-3.05898	-1.82371	1.12107
С	-1.83480	-1.42745	1.57936
С	-0.90182	-1.33319	0.32063
0	-1.58431	-1.22216	2.72858
С	0.52388	-1.72542	0.55364
С	1.29345	-1.07123	1.51346
С	1.06542	-2.77978	-0.21296
С	2.62177	-1.43319	1.70918
С	2.40302	-3.13701	0.01135
С	3.17388	-2.47016	0.95413
Н	2.83429	-3.94654	-0.57164
Н	4.21031	-2.75722	1.10343
С	0.26373	-3.47880	-1.21664
С	-1.06272	-3.25093	-1.29699
Н	-1.75608	-3.76007	-1.95601
Н	0.72724	-4.22286	-1.85176
С	-1.48506	-0.02273	-0.32984
С	-2.75993	-0.44509	-0.66570
С	-3.82925	0.39197	-0.97443
С	-1.19256	1.36942	-0.32206
Н	-4.80342	-0.01456	-1.22108
С	-3.59469	1.74192	-0.83986
С	-2.32189	2.23853	-0.46618
Н	-4.40236	2.45450	-0.97932
С	0.11216	1.97721	-0.12412
С	-2.19181	3.62416	-0.12789
С	0.15720	3.29598	0.36509
С	-1.02534	4.10220	0.37500
С	1.36181	1.35863	-0.51493
С	1.40189	3.86856	0.77687
С	2.58722	1.95815	-0.11252
С	2.57012	3.19694	0.60039
С	1.42745	0.25523	-1.40152
С	3.81637	1.36905	-0.49293
С	2.63532	-0.27233	-1.79665
С	3.84513	0.26724	-1.31460
Н	-3.06731	4.26113	-0.21270
Н	-0.94811	5.12871	0.72198

Н	1.39003	4.85723	1.22690	
Н	3.51398	3.62514	0.92642	
Н	4.73984	1.82704	-0.14862	
Н	0.51015	-0.17113	-1.79542	
Н	2.65124	-1.11653	-2.47916	
Н	4.79224	-0.17183	-1.61195	
Н	3.22306	-0.90887	2.44436	
Н	0.84888	-0.26967	2.09672	
One imaginary frequency: -99.31 cm ⁻¹				

TS2 S-36

Ν	-1.30838	1.11418	0.31269
Ν	-0.06673	0.70608	0.76975
0	-0.47653	0.14892	2.10563
С	-1.73030	-0.36600	1.92921
С	-2.08205	-0.10320	0.43205
0	-2.36448	-0.90516	2.78584
С	-3.50836	0.05977	0.02636
С	-4.42347	-0.96985	0.23002
С	-3.90075	1.27501	-0.57892
С	-5.74568	-0.82340	-0.18324
С	-5.23640	1.39808	-0.98743
С	-6.14568	0.36332	-0.79772
Н	-5.55842	2.32503	-1.45389
Н	-7.17413	0.48595	-1.12266
С	-2.95524	2.38109	-0.74785
С	-1.69295	2.28084	-0.28254
Н	-0.93979	3.05963	-0.32259
Н	-3.28928	3.30124	-1.20937
С	-1.12020	-1.09339	-0.23747
С	0.12588	-0.53810	-0.01791
С	1.33477	-1.17887	-0.34106
С	-1.26692	-2.37923	-0.75803
С	1.17778	-2.53885	-0.75857
С	-0.10478	-3.08841	-0.99882
С	2.66642	-0.62376	-0.19906
С	2.33671	-3.37764	-0.83127
С	3.54777	-2.91013	-0.43287
С	3.73895	-1.52722	-0.10823
С	5.03802	-1.05960	0.26742
С	2.96141	0.79426	-0.20860
С	4.25507	1.22955	0.18799
С	5.26971	0.26346	0.47601
С	4.55640	2.61286	0.20568
С	2.07266	1.76660	-0.73239
С	3.64362	3.53933	-0.23992

С	2.40401	3.10198	-0.75111	
Н	-2.24597	-2.81482	-0.92886	
н	-0.16012	-4.11411	-1.35245	
Н	2.21160	-4.41092	-1.14130	
Н	4.41141	-3.56845	-0.40152	
Н	5.83221	-1.78990	0.39406	
Н	6.24791	0.61373	0.79341	
н	5.53989	2.92546	0.54589	
Н	3.88902	4.59639	-0.23831	
Н	1.71464	3.82248	-1.18081	
Н	1.13589	1.44706	-1.17512	
Н	-6.45828	-1.62477	-0.02000	
Н	-4.10109	-1.87695	0.73420	
One imaginary frequency: -122.04 cm ⁻¹				

int2 C-36

Ν	2.42093	-0.82773	-0.93644
N	2.49367	-2.20819	-0.73678
0	2.82998	-2.29101	0.76643
С	2.14512	-1.27498	1.31972
С	1.47271	-0.46835	0.12940
0	2.08323	-1.03496	2.49022
С	1.43411	0.98810	0.47050
С	0.46452	1.51688	1.31652
С	2.51783	1.78140	0.04953
С	0.48389	2.86904	1.64395
С	2.52336	3.14091	0.38480
С	1.50377	3.68674	1.15608
Н	3.34686	3.76400	0.04662
Н	1.51788	4.74402	1.40132
С	3.64722	1.17308	-0.65999
С	3.61176	-0.10596	-1.06016
Н	4.41355	-0.62623	-1.57065
Н	4.53152	1.77149	-0.84634
С	0.34259	-1.44026	-0.28099
С	1.07382	-2.54105	-0.70228
С	0.55368	-3.81909	-0.87908
С	-1.06700	-1.54215	-0.17745
Н	1.18760	-4.64285	-1.18615
С	-0.77996	-3.97728	-0.56331
С	-1.58744	-2.87612	-0.19136
Н	-1.23647	-4.96219	-0.59297
С	-2.00718	-0.44323	-0.06352
С	-2.93530	-3.09889	0.24241
С	-3.27128	-0.71026	0.49076

С	-3.70564	-2.06405	0.66643
С	-1.75826	0.87919	-0.59673
С	-4.15430	0.36938	0.80885
С	-2.64537	1.93650	-0.25457
С	-3.82447	1.65289	0.50300
С	-0.71994	1.15856	-1.52085
С	-2.38213	3.24810	-0.71601
С	-0.50354	2.43670	-1.98405
С	-1.31839	3.50223	-1.55039
Н	-3.30432	-4.11984	0.27572
Н	-4.69862	-2.24003	1.07029
Н	-5.09439	0.13891	1.30208
Н	-4.48354	2.47481	0.76886
Н	-3.05296	4.04867	-0.41557
Н	-0.08678	0.35305	-1.87886
Н	0.30443	2.62242	-2.68470
Н	-1.12450	4.51114	-1.90022
Н	-0.29454	3.28085	2.27782
Н	-0.31876	0.87287	1.70481

int2 S-36

Ν	-1.27462	-1.04913	-0.12464
Ν	-0.07821	-0.71920	0.52654
0	-0.57275	-0.33540	1.91596
С	-1.79471	0.21122	1.72990
С	-2.05589	0.16528	0.18070
0	-2.49581	0.64794	2.59458
С	-3.49589	0.05443	-0.19986
С	-4.30267	1.15417	-0.46597
С	-4.05054	-1.24247	-0.16613
С	-5.65920	0.98142	-0.74059
С	-5.41205	-1.39937	-0.44116
С	-6.21096	-0.29730	-0.73229
Н	-5.84357	-2.39626	-0.42149
Н	-7.26654	-0.43586	-0.94281
С	-3.20178	-2.39173	0.16494
С	-1.86681	-2.27452	0.21504
Н	-1.17276	-3.08054	0.42415
Н	-3.66634	-3.35600	0.33556
С	-1.05322	1.20711	-0.29395
С	0.17198	0.59378	-0.08390
С	1.41533	1.22137	-0.26562
С	-1.11997	2.55420	-0.66091
С	1.32604	2.62622	-0.51617
С	0.07540	3.24336	-0.74843
С	2.71878	0.59842	-0.13323
С	2.51261	3.42360	-0.42936

С	3.68575	2.86221	-0.04018
С	3.81446	1.44288	0.11608
С	5.07937	0.88541	0.48452
С	2.96723	-0.81928	-0.30134
С	4.22720	-1.34632	0.09402
С	5.25884	-0.46088	0.53735
С	4.48296	-2.73273	-0.03796
С	2.06948	-1.69200	-0.96718
С	3.55990	-3.56730	-0.62214
С	2.35733	-3.02844	-1.12501
Н	-2.05909	3.06507	-0.83130
Н	0.06599	4.30678	-0.96998
Н	2.43662	4.49141	-0.61212
Н	4.56892	3.47634	0.11189
Н	5.88985	1.56485	0.73265
Н	6.21012	-0.88352	0.84858
Н	5.44048	-3.11815	0.30177
Н	3.77020	-4.62623	-0.73297
Н	1.65877	-3.66771	-1.65589
Н	1.15842	-1.29726	-1.40127
Н	-6.28154	1.84494	-0.95005
Н	-3.88505	2.15377	-0.44145

TS3 C-36

2.45056	-0.82820	-0.91041
2.50145	-2.18758	-0.76767
2.80821	-2.29511	0.84247
2.12283	-1.28495	1.34610
1.47405	-0.46317	0.12072
1.99500	-0.99892	2.50606
1.43486	0.99073	0.46113
0.46113	1.51761	1.30495
2.51763	1.78801	0.04483
0.47646	2.86909	1.63234
2.51841	3.14836	0.37953
1.49512	3.69083	1.14696
3.34191	3.77323	0.04469
1.50521	4.74800	1.39280
3.65329	1.18444	-0.65601
3.63398	-0.09900	-1.04354
4.44244	-0.62093	-1.54093
4.53510	1.78744	-0.83959
0.35492	-1.43013	-0.30354
1.09376	-2.52558	-0.72764
0.58274	-3.81089	-0.89511
-1.05411	-1.54388	-0.19156
1.22297	-4.63069	-1.19958
	2.45056 2.50145 2.80821 2.12283 1.47405 1.99500 1.43486 0.46113 2.51763 0.47646 2.51841 1.49512 3.34191 1.50521 3.65329 3.63398 4.44244 4.53510 0.35492 1.09376 0.58274 -1.05411 1.22297	2.45056-0.828202.50145-2.187582.80821-2.295112.12283-1.284951.47405-0.463171.99500-0.998921.434860.990730.461131.517612.517631.788010.476462.869092.518413.148361.495123.690833.341913.773231.505214.748003.653291.184443.63398-0.099004.44244-0.620934.535101.787440.35492-1.430131.09376-2.525580.58274-3.81089-1.05411-1.543881.22297-4.63069

С	-0.74683	-3.97822	-0.57444		
С	-1.56309	-2.88150	-0.20179		
Н	-1.19632	-4.96643	-0.60069		
С	-2.00082	-0.45203	-0.07199		
С	-2.90739	-3.11508	0.23429		
С	-3.26162	-0.72925	0.48568		
С	-3.68516	-2.08589	0.66012		
С	-1.76225	0.87458	-0.60011		
С	-4.15081	0.34343	0.81084		
С	-2.65483	1.92460	-0.25000		
С	-3.83007	1.63016	0.50981		
С	-0.72898	1.16547	-1.52629		
С	-2.40119	3.24004	-0.70545		
С	-0.52194	2.44722	-1.98397		
С	-1.34179	3.50532	-1.54202		
Н	-3.26846	-4.13879	0.26875		
Н	-4.67563	-2.26999	1.06654		
Н	-5.08764	0.10475	1.30635		
Н	-4.49330	2.44679	0.78151		
Н	-3.07603	4.03484	-0.39877		
Н	-0.09331	0.36515	-1.89118		
Н	0.28199	2.64154	-2.68690		
Н	-1.15546	4.51721	-1.88727		
Н	-0.30385	3.27831	2.26560		
Н	-0.31891	0.87049	1.69391		
One imaginary frequency: -305.07 cm ⁻¹					

One	ima	ginary	frec	luency	: -305	.07	cm ⁻¹
		0					

TS3 S-36

Ν	1.27277	-1.05981	-0.08232
Ν	0.07212	-0.72952	0.46387
0	0.59750	-0.23149	1.97666
С	1.78615	0.27632	1.73601
С	2.05226	0.16057	0.15464
0	2.55597	0.77004	2.51844
С	3.49168	0.03166	-0.20931
С	4.30604	1.12195	-0.49474
С	4.04270	-1.26536	-0.14007
С	5.66365	0.93767	-0.75086
С	5.40703	-1.43411	-0.39776
С	6.21201	-0.34268	-0.70687
Н	5.83447	-2.43175	-0.34906
Н	7.26929	-0.48895	-0.90288
С	3.19058	-2.40433	0.20988
С	1.85601	-2.28454	0.26652
Н	1.15707	-3.07945	0.49819
Н	3.65250	-3.36579	0.40257

С	1.05958	1.18448	-0.34597
С	-0.16726	0.57181	-0.13520
С	-1.41281	1.21036	-0.29283
С	1.12743	2.53613	-0.70154
С	-1.31860	2.61437	-0.53571
С	-0.06540	3.22766	-0.77670
С	-2.71659	0.59515	-0.14203
С	-2.49781	3.41919	-0.43358
С	-3.66953	2.86414	-0.02998
С	-3.80339	1.44635	0.12672
С	-5.06450	0.89669	0.52031
С	-2.97898	-0.82167	-0.30520
С	-4.23337	-1.34035	0.11694
С	-5.25070	-0.44804	0.58007
С	-4.50106	-2.72504	-0.00866
С	-2.10365	-1.70059	-0.99188
С	-3.59700	-3.56635	-0.61265
С	-2.40304	-3.03534	-1.14315
Н	2.06730	3.04671	-0.86813
Н	-0.05464	4.29222	-0.99290
Н	-2.41721	4.48696	-0.61446
Н	-4.54657	3.48329	0.13633
Н	-5.86553	1.58160	0.78353
Н	-6.19776	-0.86456	0.91166
Н	-5.45346	-3.10380	0.35227
Н	-3.81672	-4.62390	-0.71797
Н	-1.72125	-3.67888	-1.69038
Н	-1.20173	-1.31066	-1.44843
Н	6.29148	1.79396	-0.97334
Н	3.89215	2.12323	-0.49720
One	imaginary fre	equency: -35	6.84 cm⁻¹

C-36

-2.66752	1.85251	-0.18950
-3.91837	1.32297	-0.60272
-4.06102	-0.01184	-0.85614
-1.55445	0.98822	-0.02594
-4.74590	2.00921	-0.76011
-4.98973	-0.40938	-1.25524
-1.38880	3.85448	0.41800
-2.55929	3.26921	0.06255
-0.26756	1.64873	0.07208
-0.21498	3.04230	0.38408
-1.30733	4.90976	0.65336
-3.46891	3.85913	-0.00950
	-2.66752 -3.91837 -4.06102 -1.55445 -4.74590 -4.98973 -1.38880 -2.55929 -0.26756 -0.21498 -1.30733 -3.46891	-2.667521.85251-3.918371.32297-4.06102-0.01184-1.554450.98822-4.745902.00921-4.98973-0.40938-1.388803.85448-2.559293.26921-0.267561.64873-0.214983.04230-1.307334.90976-3.468913.85913

С	-1.80720	-0.42970	0.02937	C	-2.53084	0.61641	-0.02490
С	-3.01699	-0.91359	-0.52176	С	-2.86928	-0.77874	0.22873
С	-1.12500	-2.78273	0.42951	С	-3.58468	1.48055	-0.39975
С	-3.20066	-2.32267	-0.72528	С	-4.12028	-1.28134	-0.21957
С	-2.26150	-3.21773	-0.32882	С	-4.84854	0.94487	-0.81544
Н	-4.11011	-2.65257	-1.22000	С	-5.08244	-0.39066	-0.79773
С	3.17097	2.48715	0.34731	Н	-5.60874	1.63932	-1.16260
Н	3.56009	3.43959	0.68178	Н	-6.02804	-0.79775	-1.14514
Ν	1.03398	3.49899	0.52627	С	2.09100	-2.18589	-0.74596
С	3.89968	1.39377	0.04048	Н	1.37627	-2.95537	-1.00656
Ν	1.79590	2.43488	0.24818	N	0.20411	-0.80015	-0.36849
Н	4.97930	1.42580	0.13367	С	3.43460	-2.31225	-0.75305
С	3.26117	0.20977	-0.47402	N	1.52781	-0.98005	-0.38176
С	1.09092	1.30163	-0.10136	Н	3.88080	-3.25782	-1.03940
С	4.01800	-0.89881	-0.90480	С	4.28295	-1.20737	-0.38170
С	1.84999	0.18385	-0.61110	С	2.25747	0.12819	-0.02083
Н	5.09677	-0.87700	-0.77691	С	5.68662	-1.33026	-0.37846
С	3.40409	-1.98323	-1.49798	С	3.69403	0.02749	-0.00817
С	1.25338	-0.89650	-1.29198	Н	6.12915	-2.27963	-0.66718
С	2.01518	-1.96659	-1.71668	С	6.48844	-0.26700	-0.01442
Н	3.99501	-2.83339	-1.82309	С	4.52877	1.09908	0.36601
С	-0.93262	-1.39722	0.67794	С	5.90262	0.95412	0.36173
Н	-2.38842	-4.28066	-0.51515	Н	7.56824	-0.37325	-0.01555
С	0.05934	-1.03189	1.61836	С	-2.07782	-1.63053	1.03627
С	-0.23261	-3.72649	0.98685	С	-4.45676	-2.63797	0.00056
С	0.78105	-3.33074	1.83110	С	-2.44441	-2.93598	1.27939
С	0.89821	-1.97170	2.17873	С	-3.62752	-3.46257	0.72505
Н	0.15412	0.00578	1.91394	Н	-1.17911	-1.24221	1.49474
Н	1.65074	-1.65859	2.89568	Н	-1.82072	-3.55805	1.91383
Н	1.45962	-4.06338	2.25617	Н	-3.90107	-4.49780	0.90336
Н	-0.37977	-4.77850	0.75627	Н	-5.40541	-3.00518	-0.38214
Н	0.18997	-0.87655	-1.49492	Н	4.08994	2.04264	0.66543
Н	1.53505	-2.79534	-2.22698	Н	6.53193	1.78870	0.65317

S-36

С	-1.08293	2.59587	0.22914
С	-2.21629	3.43111	0.02396
С	-3.40704	2.89112	-0.36104
С	-1.21589	1.19205	0.11988
Н	-2.09438	4.50712	0.10976
Н	-4.25105	3.52759	-0.61230
С	1.35423	2.51620	0.51388
С	0.19129	3.21898	0.48052
С	0.03952	0.47170	0.02334
С	1.29576	1.12006	0.23482
Н	2.29226	3.02473	0.69999
н	0.20110	4.29491	0.62881

1b + 38b → C-37

TS1 C-37

Ν	0.45235	-3.11077	-0.11085
Ν	-0.62232	-3.71899	0.36440
0	-0.79534	-3.14614	1.60159
С	0.01655	-2.05339	1.78960
С	0.84111	-2.00606	0.57466
0	-0.00573	-1.42202	2.81388
С	1.99297	-1.26820	0.15236
С	2.45085	-0.03763	0.75948
С	2.69194	-1.78379	-0.95934
С	3.70745	0.48983	0.35063

С	1.66013	0.72498	1.65201	N	-0.67820	1.36362	0.81155
С	3.93466	-1.20852	-1.36375	N	0.43103	0.90567	1.36494
С	4.17902	1.69474	0.92172	0	-0.00422	-0.13572	2.14392
С	4.44867	-0.14155	-0.69632	С	-1.30351	-0.48330	1.86357
С	2.12627	1.91800	2.15922	C	-1.72371	0.49073	0.84101
Н	0.67344	0.38137	1.93000	0	-1.84727	-1.38254	2.45126
Н	4.46353	-1.65216	-2.20221	C	-2.95899	0.84154	0.18318
С	3.40541	2.39816	1.81486	C	-4.11822	-0.01880	0.10014
Н	5.15085	2.07052	0.61307	C	-2.98351	2.08551	-0.47491
Н	5.40617	0.28326	-0.98443	C	-5.29153	0.48145	-0.53524
Н	1.49320	2.49413	2.82609	C	-4.13228	-1.35773	0.56573
Н	3.76594	3.33242	2.23365	C	-4.17436	2.55051	-1.10750
С	2.14938	-2.88634	-1.69327	C	-6.44192	-0.33742	-0.62974
С	1.02376	-3.52021	-1.29459	C	-5.29829	1.78684	-1.11332
Н	0.54204	-4.35856	-1.77907	C	-5.26094	-2.13756	0.44237
Н	2.65299	-3.22433	-2.59254	Н	-3.25365	-1.77490	1.03707
С	-1.71694	-1.16386	-0.52942	Н	-4.16087	3.52726	-1.58187
С	-2.15767	-2.34007	-0.53725	C	-6.43340	-1.62458	-0.14782
С	-3.45830	-2.81992	-0.38324	Н	-7.32898	0.06980	-1.10697
С	-2.55059	-0.02748	-0.42736	Н	-6.20910	2.14223	-1.58648
Н	-3.76493	-3.85910	-0.38081	Н	-5.24260	-3.15870	0.80911
С	-4.33776	-1.76408	-0.20991	Н	-7.31895	-2.24653	-0.23037
С	-3.92064	-0.39644	-0.19858	C	-1.80238	2.89950	-0.53407
Н	-5.39386	-1.97168	-0.05615	C	-0.65919	2.53147	0.07893
С	-2.15812	1.35724	-0.42854	Н	0.27541	3.07601	0.10670
С	-4.86426	0.63133	0.10840	Н	-1.83160	3.83505	-1.08163
С	-3.10833	2.31150	-0.01752	C	-0.34474	-1.00391	-0.61046
С	-4.46093	1.92560	0.23184	C	0.81672	-0.56411	-0.39484
С	-0.83474	1.81056	-0.81792	C	2.04681	-1.22643	-0.51409
С	-2.72030	3.67790	0.17099	C	-0.63052	-2.32004	-1.01435
С	-0.47301	3.16501	-0.57686	C	1.81664	-2.61241	-0.81760
С	-1.44270	4.07901	-0.05230	C	0.50333	-3.11178	-1.07828
С	0.10265	0.99100	-1.49380	C	3.37977	-0.72343	-0.32222
С	0.82591	3.61669	-0.90626	C	2.93594	-3.50035	-0.80909
С	1.34858	1.46699	-1.84288	C	4.17812	-3.04658	-0.48624
С	1.73225	2.78166	-1.51915	C	4.42525	-1.66190	-0.23453
Н	-5.90128	0.35867	0.28271	C	5.74779	-1.23239	0.10870
Н	-5.17040	2.69760	0.51698	C	3.69748	0.68938	-0.23336
Н	-3.47011	4.38231	0.52055	C	5.01647	1.07728	0.12717
Н	-1.14401	5.10920	0.12226	C	6.02394	0.07931	0.32415
Н	1.08836	4.64769	-0.68259	C	5.34301	2.44989	0.23370
Н	-0.16509	-0.02476	-1.75862	C	2.78140	1.71400	-0.57649
Н	2.04473	0.81396	-2.36275	C	4.41786	3.42333	-0.06309
Н	2.72717	3.13702	-1.76986	C	3.13277	3.04404	-0.49892
One	imaginary fr	equency: -17	2.00 cm ⁻¹	н	-1.62067	-2.70909	-1.22696
				Н	0.40567	-4.16650	-1.32365

2.77294

5.01727

H H -4.55161

-3.73464

-1.02840

-0.43277

Н	6.52431	-1.98596	0.20694	
Н	7.02295	0.39851	0.60806	
Н	6.35195	2.72090	0.53308	
Н	4.68214	4.47348	0.00859	
Н	2.42246	3.81019	-0.79818	
Н	1.79853	1.44326	-0.94417	
One imaginary frequency: 214.22 cm ⁻¹				

One imaginary frequency: -214.22 cm⁻¹

int1 C-37

Ν	2.08340	-2.31812	-0.25009
Ν	3.34596	-1.74978	-0.04061
0	3.27451	-1.63747	1.43175
С	1.96498	-1.34315	1.71851
С	1.21571	-1.30373	0.33511
0	1.56911	-1.20285	2.83423
С	-0.22281	-1.74268	0.29946
С	-1.23168	-1.08430	1.06487
С	-0.55520	-2.76403	-0.58932
С	-2.58261	-1.51887	0.93471
С	-0.96856	0.04504	1.89000
С	-1.90279	-3.21341	-0.65685
С	-3.61223	-0.82856	1.62567
С	-2.88238	-2.61574	0.08378
С	-1.98761	0.70609	2.52919
Н	0.04717	0.39981	2.01330
Н	-2.14387	-4.02902	-1.33306
С	-3.32669	0.26629	2.40171
Н	-4.63535	-1.17808	1.51355
Н	-3.91342	-2.95173	0.00893
Н	-1.76146	1.57619	3.13742
Н	-4.12148	0.79597	2.91758
С	0.42494	-3.33396	-1.51232
С	1.73422	-3.07247	-1.34350
Н	2.54889	-3.47517	-1.93402
Н	0.09316	-3.99455	-2.30355
С	1.82427	0.00857	-0.30115
С	3.15262	-0.34809	-0.42968
С	4.20984	0.53790	-0.62784
С	1.46174	1.38129	-0.42096
Н	5.22914	0.17908	-0.71474
С	3.88954	1.87623	-0.58747
С	2.55078	2.31049	-0.42696
Н	4.67111	2.62875	-0.63801
С	0.11413	1.92043	-0.46368
С	2.29446	3.69518	-0.16095
С	-0.08131	3.24027	-0.01933

С	1.04043	4.11439	0.14766
С	-1.01663	1.22632	-1.04151
С	-1.40726	3.73578	0.18932
С	-2.32320	1.75187	-0.84702
С	-2.49124	2.98790	-0.14885
С	-0.86871	0.11920	-1.91152
С	-3.43670	1.09253	-1.41785
С	-1.96367	-0.47269	-2.50056
С	-3.26454	-0.00410	-2.23059
Н	3.13641	4.38067	-0.13456
Н	0.85538	5.14169	0.44879
Н	-1.52566	4.72621	0.62002
Н	-3.49893	3.35372	0.02905
Н	-4.42968	1.49112	-1.22741
Н	0.12437	-0.25614	-2.13928
Н	-1.81893	-1.31526	-3.17031
Н	-4.12254	-0.49520	-2.67912

int1 S-37

Ν	-0.51445	-1.54833	0.50649
Ν	0.68145	-0.86011	0.85205
0	0.21106	-0.27104	2.10507
С	-1.12983	-0.01211	1.94784
С	-1.44729	-0.40893	0.47567
0	-1.80402	0.41742	2.83281
С	-2.81556	-0.78363	-0.02287
С	-3.96206	0.04494	0.16910
С	-2.88221	-1.90790	-0.84185
С	-5.20353	-0.36060	-0.40687
С	-3.92568	1.28274	0.87313
С	-4.13154	-2.29059	-1.40229
С	-6.35747	0.44660	-0.22888
С	-5.25897	-1.55193	-1.17719
С	-5.05518	2.05093	1.01077
Н	-3.00042	1.62163	1.32110
Н	-4.17276	-3.18426	-2.01827
С	-6.29058	1.62796	0.46463
Н	-7.29494	0.11210	-0.66502
Н	-6.21084	-1.85347	-1.60583
Н	-4.99996	2.98948	1.55292
Н	-7.17710	2.24069	0.59223
С	-1.68731	-2.69111	-1.16681
С	-0.52889	-2.47306	-0.52449
Н	0.37934	-3.04887	-0.66055
Н	-1.76270	-3.48580	-1.89898
С	-0.63880	0.62712	-0.31791
С	0.67646	0.30249	-0.07269

С	1.76513	1.10079	-0.47872	Н	3.89591	-2.97390	0.06796
С	-1.00008	1.79587	-0.99191	Н	1.72098	1.60135	3.11159
С	1.38236	2.35817	-1.04641	Н	4.08409	0.82429	2.91409
С	0.02727	2.65226	-1.33583	С	-0.43842	-3.43592	-1.43419
С	3.17259	0.81605	-0.27180	С	-1.74615	-3.13678	-1.31047
С	2.37649	3.37359	-1.22346	Н	-2.55972	-3.57345	-1.87771
С	3.64292	3.17945	-0.77394	Н	-0.10999	-4.16882	-2.15989
С	4.06581	1.90138	-0.28480	С	-1.82018	0.04753	-0.29573
С	5.41607	1.72302	0.15541	С	-3.15275	-0.29439	-0.43405
С	3.71876	-0.51413	-0.10426	С	-4.20031	0.60601	-0.61425
С	5.05484	-0.66085	0.35652	С	-1.44212	1.41521	-0.40894
С	5.87322	0.49915	0.53047	н	-5.22368	0.26019	-0.70566
С	5.59137	-1.95661	0.54939	С	-3.86435	1.94046	-0.55795
С	3.03282	-1.68224	-0.51556	С	-2.51981	2.35784	-0.40393
С	4.86770	-3.07689	0.21413	н	-4.63750	2.70226	-0.59713
С	3.58911	-2.93126	-0.36299	С	-0.08801	1.93529	-0.46681
Н	-2.03953	2.03738	-1.19076	C	-2.24220	3.73880	-0.13990
Н	-0.19627	3.60502	-1.80757	C	0.12995	3.25380	-0.02955
Н	2.07596	4.32479	-1.65279	С	-0.97862	4.14227	0.15041
н	4.37594	3.97989	-0.82102	С	1.02715	1.21999	-1.04925
Н	6.06330	2.59456	0.19620	C	1.46462	3.73191	0.16239
Н	6.88774	0.37215	0.89779	С	2.34292	1.72682	-0.86708
Н	6.60273	-2.04764	0.93615	C	2.53446	2.96598	-0.18064
н	5.29219	-4.06595	0.35247	С	0.85809	0.10511	-1.90583
Н	3.04976	-3.80997	-0.70382	C	3.44308	1.04280	-1.43459
н	2.07468	-1.57773	-1.01025	C	1.94095	-0.51325	-2.49024
				C	3.25018	-0.06234	-2.23103
				Н	-3.07470	4.43529	-0.10308
TS2	2 C-37			Н	-0.77651	5.16765	0.44712
N	-2 09907	-2 25966	-0 32/16	Н	1.60155	4,72300	0.58602
N	-3 35529	-1 70824	-0.02410	н	3.54888	3,31806	-0.01362
0	-3 29334	-1 64204	1 38969	Н	4.44311	1.42778	-1.25322
c	-1 98765	-1 35422	1 68806	Н	-0.14173	-0.25587	-2.12708
c	-1 22564	-1 28638	0 20720	н	1.77976	-1.36288	-3.14709
0	-1 59126	-1 23962	2 80700	Н	4.09842	-0.57388	-2.67522
c	0 20652	-1 74690	0 29423	On	e imaginary fr	equency: -60	.47 cm ⁻¹
c	1 210052	-1 07876	1 05025		e		
C	0 53812	-2 80820	-0 54782				
C	2 56098	-1 51772	0.947.02	TS	7 S-37		
C	0 93990	0.05846	1 87093	13.	2 3 37		
c	1 88715	-3 25906	-0 59231	Ν	0.47761	-1.46014	0.33974
C	3 58522	-0.81718	1 63918	N	-0.68062	-0.84559	0.78699
C	2 86462	-2 63583	0 12914	0	-0.18319	-0.32928	2.09542
C	1 95313	0 72671	2 51215	С	1.14301	-0.04246	1.91489
н	-0 07763	0 41134	1 98617	C	1.44172	-0.37365	0.41035
н	2 12015	-4 00068	-1 22641	0	1.85046	0.36156	2.78777
r r	2.13013	۹.05500 ۵ 28778	2 29870	C	2.81477	-0.79116	-0.03381
н	4 60897	-1 16914	1 54118	C	3.92379	0.10413	0.06064
	1.000077						

С	2.96288	-2.05804	-0.59900	int2	C-37		
С	5.18792	-0.30766	-0.45339	N	2 2 2 0 1 1	1 (0710	0.01200
С	3.83270	1.39716	0.65015	IN N	2.32811	-1.68/10	-0.81260
С	4.24379	-2.44668	-1.08735	N	3.52404	-1.08630	-0.42128
С	6.29632	0.57551	-0.38566	0	3.52805	-1.34957	1.09089
С	5.31486	-1.60240	-1.02447	C	2.23643	-1.25597	1.45658
С	4.92294	2.23050	0.70086	C	1.39364	-1.04260	0.12806
Н	2.90030	1.72175	1.09689	0	1.83294	-1.35557	2.57890
Н	4.35062	-3.43661	-1.52144	C	0.05651	-1./241/	0.22997
С	6.17114	1.82209	0.17364	C	-1.02354	-1.16626	0.97546
Н	7.24982	0.24090	-0.78562	C	-0.05392	-2.99707	-0.31909
н	6.28295	-1.91118	-1.40967	C	-2.29006	-1.81599	0.93188
Н	4.82843	3.20755	1.16400	C	-0.89727	0.00772	1.76910
н	7.02459	2.49051	0.22256	С	-1.31547	-3.65071	-0.31110
С	1.85615	-3.00692	-0.70995	C	-3.40027	-1.22812	1.59416
С	0.63872	-2.68673	-0.22873	С	-2.41109	-3.05615	0.25149
н	-0.23821	-3.32425	-0.22958	C	-1.98268	0.54148	2.41692
н	2.03031	-3.97979	-1.15007	Н	0.07418	0.47480	1.88529
С	0.62824	0.73106	-0.29343	Н	-1.39675	-4.62934	-0.77577
С	-0.68572	0.38084	-0.04556	C	-3.25624	-0.06872	2.31302
C	-1.79208	1.17016	-0.40439	Н	-4.36447	-1.72579	1.53013
C	0.94900	1.94288	-0.91045	Н	-3.38157	-3.54445	0.22148
C	-1.44521	2.46618	-0.90057	Н	-1.86207	1.43877	3.01578
C	-0.10041	2.79962	-1.18796	Н	-4.10920	0.37259	2.81913
C	-3.18933	0.82355	-0.23021	C	1.11382	-3.69585	-0.86032
C	-2.46934	3.46161	-1.01188	C	2.28581	-3.06423	-1.01466
C	-3.72949	3.19952	-0.57896	Н	3.20148	-3.50743	-1.38758
C	-4.11677	1.87800	-0.18062	Н	1.02296	-4.74413	-1.11905
C	-5.46545	1.62492	0.22496	C	1.75751	0.42232	-0.24953
C	-3.68990	-0.53398	-0.17146	C	3.12623	0.31618	-0.45229
c	-5 02816	-0 75555	0.25290	C	4.00735	1.38922	-0.52246
c	-5 88598	0 36180	0 50028	C	1.15395	1.70391	-0.30191
c	-5 52872	-2 07742	0 33653	Н	5.07100	1.23025	-0.65707
c	-2 96112	-1 64836	-0 65783	C	3.45282	2.63919	-0.33657
c	-4 76787	-3 14690	-0 07267	C	2.05569	2.81289	-0.20229
c	-3 48499	-2 91985	-0 61338	Н	4.08753	3.51918	-0.29065
н	1 97555	2.01000	-1 12796	С	-0.26276	1.98588	-0.43095
н	0 10143	3 77895	-1 61279	C	1.52768	4.11004	0.10552
н	-2 19851	<i>A 44</i> 683	-1 37989	С	-0.73150	3.23048	0.02242
н	-4 48679	3 978 <i>11</i>	-0 57704	C	0.19689	4.28259	0.31346
н	-6 1/259	2 16011	0.37704	С	-1.19813	1.09557	-1.08339
н	-6 90080	0 17/192	0.31525	С	-2.13789	3.46210	0.13783
н	-6 54263	-2 22661	0.04015	С	-2.59118	1.34559	-0.94802
н	-5 16551	-2.22001	-0.02084	С	-3.03405	2.52256	-0.26833
н	-2 01572	-2 75226	-1 01502	С	-0.79293	0.03549	-1.93174
н	-2.91970	-3.73230	-1.01050 -1.1020E	C	-3.52238	0.46046	-1.53911
Ono	-1.33413 imaginary fr	UC00+1.1 - 11 - יערמפווחפ	-1.12303 1 53 cm ⁻¹	С	-1.71995	-0.79048	-2.52959
One		-quency11	1.55 (11	С	-3.09789	-0.59965	-2.30728

Н	2.22404	4.93478	0.22584
Н	-0.19552	5.24539	0.62872
Н	-2.47313	4.40330	0.56483
Н	-4.10213	2.68330	-0.14838
Н	-4.58266	0.64901	-1.39251
Н	0.26241	-0.12148	-2.13183
Н	-1.38109	-1.59822	-3.17103
н	-3.81887	-1.27190	-2.76177
int2	S-37		
Ν	-0.44633	-1.43469	-0.05949
Ν	0.68514	-0.91508	0.56902
0	0.16654	-0.61180	1.96372
С	-1.13029	-0.26929	1.80530
С	-1.42514	-0.37837	0.26637
0	-1.86961	0.04945	2.69083
С	-2.83635	-0.75120	-0.08742
С	-3.90568	0.19256	-0.07108
С	-3.09558	-2.09925	-0.31651
С	-5.19400	-0.22211	-0.51915
С	-3.77093	1.51157	0.44662
С	-4.39784	-2.49873	-0.72532
С	-6.25877	0.71652	-0.55119
С	-5.40229	-1.58281	-0.86901
С	-4.82669	2.38863	0.43111
Н	-2.83985	1.80660	0.91712
Н	-4.57762	-3.54997	-0.93113
С	-6.08019	1.99975	-0.10051
Н	-7.22726	0.38863	-0.91923
Н	-6.38721	-1.89167	-1.20825
Н	-4.70571	3.38219	0.85110
Н	-6.90294	2.70706	-0.11848
С	-2.07046	-3.11980	-0.07959
С	-0.79158	-2.77096	0.12277
Н	0.03364	-3.44774	0.31276
Н	-2.36331	-4.16262	-0.06030
С	-0.61023	0.80381	-0.27642
С	0.70342	0.41215	-0.06216
С	1.82508	1.21715	-0.31656
С	-0.89419	2.07342	-0.78732
С	1.50487	2.56557	-0.66762
С	0.17216	2.93962	-0.95087
С	3.21620	0.82941	-0.17039
С	2.54195	3.55371	-0.64648
С	3.79028	3.22410	-0.22703
С	4.15462	1.85851	0.01713
С	5.49483	1.54246	0.40514

С	3.70082	-0.53198	-0.26942
С	5.03131	-0.81834	0.14148
С	5.89800	0.25031	0.53096
С	5.51801	-2.14637	0.07291
С	2.96612	-1.57290	-0.89219
С	4.75152	-3.15075	-0.46886
С	3.47706	-2.84673	-0.99170
Н	-1.90403	2.38671	-1.02070
Н	-0.01196	3.95790	-1.28171
Н	2.28943	4.57845	-0.90259
Н	4.55799	3.98565	-0.12225
Н	6.17972	2.36106	0.60757
Н	6.90648	0.01128	0.85688
Н	6.52602	-2.34835	0.42491
Н	5.13869	-4.16261	-0.53282
Н	2.90063	-3.61817	-1.49294
Н	2.00400	-1.35492	-1.34101

TS3 C-37

N	2.34769	-1.69621	-0.78818
N	3.51890	-1.07559	-0.47718
0	3.53182	-1.30491	1.16013
С	2.25738	-1.22671	1.48280
С	1.40146	-1.03659	0.12245
0	1.78349	-1.30929	2.58521
С	0.07053	-1.72323	0.23220
С	-1.01477	-1.16529	0.97247
С	-0.03721	-2.99939	-0.31168
С	-2.27872	-1.81951	0.92728
С	-0.89531	0.01117	1.76327
С	-1.29680	-3.65746	-0.30431
С	-3.39298	-1.23460	1.58536
С	-2.39520	-3.06308	0.25162
С	-1.98441	0.54212	2.40721
Н	0.07488	0.47853	1.88467
Н	-1.37346	-4.63861	-0.76443
С	-3.25523	-0.07308	2.30190
Н	-4.35478	-1.73674	1.52053
Н	-3.36440	-3.55384	0.22149
Н	-1.86817	1.44049	3.00532
Н	-4.11102	0.36558	2.80559
С	1.13063	-3.69743	-0.84932
С	2.30587	-3.07060	-0.99989
Н	3.22444	-3.51328	-1.36516
Н	1.04087	-4.74702	-1.10354
С	1.75352	0.41763	-0.26837
С	3.12064	0.31379	-0.48635

С	4.00225	1.39045	-0.54619
С	1.14813	1.69986	-0.30786
Н	5.06544	1.23323	-0.68609
С	3.44793	2.63604	-0.34528
С	2.04913	2.80808	-0.20449
Н	4.08133	3.51673	-0.29562
С	-0.26864	1.97968	-0.43355
С	1.52145	4.10303	0.10762
С	-0.73800	3.22386	0.02191
С	0.18977	4.27467	0.31528
С	-1.20478	1.08905	-1.08531
С	-2.14459	3.45468	0.13884
С	-2.59768	1.33817	-0.94732
С	-3.04047	2.51496	-0.26680
С	-0.80137	0.02855	-1.93404
С	-3.52950	0.45182	-1.53532
С	-1.72902	-0.79925	-2.52852
С	-3.10641	-0.60927	-2.30301
Н	2.21714	4.92792	0.23047
Н	-0.20262	5.23656	0.63334
Н	-2.47981	4.39522	0.56728
Н	-4.10850	2.67474	-0.14526
Н	-4.58954	0.63976	-1.38625
Н	0.25341	-0.12627	-2.13807
Н	-1.39120	-1.60702	-3.17046
Н	-3.82812	-1.28259	-2.75471

One imaginary frequency: -341.60 cm⁻¹

TS3 S-37

Ν	-0.44703	-1.44232	-0.00962
Ν	0.69427	-0.92864	0.49953
0	0.14321	-0.52035	2.03539
С	-1.11556	-0.21195	1.83392
С	-1.42035	-0.37631	0.26095
0	-1.93104	0.14398	2.64685
С	-2.83181	-0.75965	-0.06919
С	-3.90491	0.18204	-0.07741
С	-3.09147	-2.11290	-0.26836
С	-5.19028	-0.24614	-0.52048
С	-3.77625	1.51205	0.41196
С	-4.39305	-2.52610	-0.66670
С	-6.25685	0.68908	-0.58071
С	-5.39748	-1.61571	-0.83643
С	-4.83327	2.38672	0.36881
н	-2.85181	1.81450	0.88977
н	-4.57038	-3.58267	-0.84557

С	-6.08267	1.98337	-0.16123
Н	-7.22304	0.34991	-0.94448
Н	-6.38145	-1.93352	-1.16993
Н	-4.71729	3.38915	0.76863
Н	-6.90673	2.68833	-0.20051
С	-2.06507	-3.12637	-0.01836
С	-0.78546	-2.77820	0.17969
Н	0.04189	-3.44787	0.38227
Н	-2.35763	-4.16888	0.02141
С	-0.61440	0.78636	-0.30697
С	0.70104	0.39074	-0.10505
С	1.82495	1.20684	-0.33576
С	-0.89775	2.06569	-0.79837
С	1.50257	2.55743	-0.66798
С	0.16787	2.93200	-0.95111
С	3.21500	0.82298	-0.18044
С	2.53399	3.54956	-0.63042
С	3.78062	3.22047	-0.20437
С	4.14694	1.85470	0.02961
С	5.48282	1.54121	0.43544
С	3.70990	-0.53535	-0.28588
С	5.03443	-0.81898	0.14477
С	5.88969	0.25031	0.55810
С	5.52945	-2.14362	0.07187
С	2.99410	-1.57359	-0.93398
С	4.77864	-3.14695	-0.49336
С	3.51291	-2.84401	-1.03715
Н	-1.90706	2.38399	-1.02561
Н	-0.01603	3.95345	-1.27231
Н	2.27877	4.57597	-0.87690
Н	4.54411	3.98387	-0.08379
Н	6.16022	2.36138	0.65577
Н	6.89358	0.01303	0.89906
Н	6.53209	-2.34353	0.43998
Н	5.17229	-4.15611	-0.55978
Н	2.95015	-3.61289	-1.55748
Н	2.04063	-1.35491	-1.40021
One i	maginary fr	equency: -37	5.40 cm ⁻¹

C-37

С	3.39908	-0.73504	0.11012
С	3.76187	-2.09346	0.30406
С	2.81020	-3.07450	0.30919
С	2.03929	-0.39146	-0.10753
Н	4.80399	-2.32984	0.50068
Н	3.06868	-4.10254	0.54674

С	4.15324	1.59523	0.00705	С	-1.45225	2.52332	-0.27945
С	4.42905	0.27397	0.14247	С	-2.49240	3.45681	-0.54561
С	1.72346	1.01527	0.03355	С	-3.77018	3.02449	-0.74111
С	2.77846	1.97797	-0.02538	С	-1.76144	1.15208	-0.13473
Н	4.92452	2.35677	-0.02107	н	-2.23619	4.50650	-0.65755
Н	5.45634	-0.06473	0.24582	н	-4.55302	3.71879	-1.03394
С	1.11495	-1.45169	-0.42041	С	0.97240	2.15928	-0.12877
С	1.47493	-2.77387	-0.06628	С	-0.09279	2.99599	-0.24463
С	-1.11673	-2.30533	-1.08997	С	-0.61471	0.26586	-0.18808
С	0.48685	-3.81397	-0.08593	С	0.72509	0.75313	-0.10111
С	-0.78040	-3.57024	-0.50603	н	1.98077	2.55451	-0.14157
Н	0.77615	-4.80011	0.26752	н	0.06818	4.06603	-0.33856
С	0.16813	4.18834	-0.11271	С	-3.14100	0.73533	-0.09349
Н	0.66959	5.13664	-0.25274	С	-3.61299	-0.55002	0.40738
N	2.33614	3.23943	-0.04494	С	-4.11683	1.66172	-0.52640
С	-1.16878	3.97965	-0.13954	С	-4.95233	-0.94557	0.14641
N	1.00661	3.11394	0.05589	C	-5.46933	1.23985	-0.74826
Н	-1.83769	4.81216	-0.32595	C	-5.85582	-0.03424	-0.49103
C	-1.70890	2.68284	0.14661	Н	-6.17295	1.96612	-1.14589
C	0.56299	1.80960	0.20500	Н	-6.87231	-0.36176	-0.69114
C	-3.11959	2.46137	0.13336	C	0.99961	-2.66518	-0.94490
C	-0.84103	1.62278	0.46627	Н	0.17302	-3.34061	-1.12138
H	-3.76813	3.27566	-0.17722	N	-0.64783	-1.04476	-0.46398
C	-3.63815	1.24941	0.47670	C	2.30869	-2.93068	-1.15125
C	-1.39198	0.43151	1.06303	N	0.63589	-1.41000	-0.51993
C	-2.79520	0.22198	1.00205	Н	2.60519	-3.90276	-1.52829
Н	-4.70841	1.06935	0.42381	C	3.31286	-1.95481	-0.83713
C	-3.34172	-0.97288	1.52842	C	1.53652	-0.39393	-0.25724
C	-0.14872	-1.26587	-1.11993	C	4.69165	-2.24719	-1.07137
C	-0.60205	-0.49743	1,78355	C	2,93998	-0.71672	-0.28423
C	-1.16322	-1.63344	2.32236	с Н	4.94544	-3,19390	-1.53955
н	0.45308	-0.29694	1.92904	C	5.66234	-1.35369	-0.73970
C	-2.54061	-1.89370	2,16383	C	3.97120	0.14444	0.24783
н	-4.41286	-1.13644	1.44333	C	5.33209	-0.15360	-0.03695
н	-2.96970	-2.80438	2.57003	U H	6.70686	-1.56408	-0.95129
н	-0 53875	-2 33342	2 86856	C C	3 69654	1 21254	1 13671
н	-1 53870	-4 34826	-0 47684	C C	6 34984	0 70264	0 44811
C	-0.43376	-0.12910	-1.91150	C	4,70700	2,01079	1.62513
C C	-2 37769	-2 10921	-1 69582	C C	6 04656	1 77810	1 25001
C	-2 65963	-0.95081	-2 38647	н	6 83565	2 42203	1 62458
C	-1 65969	0.02920	-2 52535	н	4 47085	2.12205	2 31783
н	0 33060	0.62601	-2 05098	н	7 38229	0 47547	0 19650
н	-1 84933	0 91685	-3 12120	н	2 68075	1 36879	1 47768
н	-3 62002	-0 80872	-7 84981	C II	-2 84872	-1 37219	1 27040
н	-3 11562	-2 90429	-1 67/72	c r	-5 47160	-2 19906	0 60577
	3.11302	2.30723	1.024/0	c r	-3 33003	-2 56866	1 74525
				c r	-4 62615	-3.01041	1,38094
S-37				ч	-1 86842	-1 04391	1 58700
				11	1.00042	T.0 .001	1.00/00

Н	-2.73078	-3.16839	2.41522
Н	-4.99957	-3.96348	1.74221
Н	-6.44035	-2.49087	0.36405
CO ₂			
0	-0.00000	-1.16293	0.00587
0	-0.00000	1.16293	0.00587
С	-0.00000	-0.00000	-0.01565

Racemizations

TS racemization C-29

С	2.82220	-1.42650	0.66493
С	3.82598	-0.76215	1.43926
С	3.88891	0.59346	1.51701
С	1.76749	-0.69575	0.07245
Н	4.54394	-1.38067	1.97084
Н	4.63430	1.09562	2.12663
С	2.08104	-3.52610	-0.30340
С	2.97532	-2.84130	0.44333
С	0.61765	-1.46271	-0.40122
С	0.85986	-2.85692	-0.62774
Н	2.18175	-4.58045	-0.53493
Н	3.86070	-3.32647	0.84396
С	2.05222	0.71210	-0.12647
С	3.05786	1.35889	0.64926
С	1.82318	2.57906	-1.44836
С	3.31319	2.72411	0.40161
С	2.69334	3.34943	-0.65326
Н	4.04637	3.24350	1.01341
Н	2.89369	4.38541	-0.90305
С	-2.49596	-3.17552	-0.58171
Н	-2.61421	-4.19972	-0.90754
Ν	-0.23901	-3.55236	-0.90399
С	-3.39645	-2.43775	0.08991
Ν	-1.22542	-2.66730	-0.75544
Н	-4.37019	-2.84742	0.33232
С	-3.08368	-1.08308	0.43949
С	-0.81947	-1.36515	-0.46893
С	-4.01324	-0.34885	1.23988
С	-1.90371	-0.47676	-0.03596
Н	-4.85698	-0.88755	1.66154
С	-3.83077	0.97361	1.49140
С	-1.91478	0.97224	-0.06306
С	-2.82861	1.68582	0.76665

Н	-4.50771	1.52264	2.13953		
С	-2.85330	3.09873	0.73116		
Н	1.38559	3.01227	-2.34608		
С	-1.22734	1.70102	-1.05544		
С	-1.33737	3.07416	-1.13261		
Н	-0.64081	1.15543	-1.78112		
С	-2.11198	3.78896	-0.20016		
Н	-3.52453	3.62330	1.40571		
Н	-2.16637	4.87177	-0.25192		
Н	-0.83561	3.61057	-1.93109		
Ν	1.49308	1.33159	-1.18721		
One imaginary frequency: -41.31 cm ⁻¹					

TS racemization C-29.H⁺

С	2.60521	-1.66012	0.77846
С	3.62914	-1.04268	1.56759
С	3.82273	0.30477	1.58310
С	1.63290	-0.86773	0.11854
Н	4.25910	-1.69233	2.16781
Н	4.57450	0.76893	2.21193
С	1.70335	-3.70349	-0.16782
С	2.62645	-3.08708	0.60948
С	0.44580	-1.52360	-0.40442
С	0.56550	-2.94089	-0.58194
Н	1.71845	-4.77006	-0.36297
Н	3.43278	-3.64695	1.07210
С	2.08368	0.46601	-0.12634
С	3.11559	1.09098	0.62887
С	2.08551	2.32680	-1.62729
С	3.48780	2.40373	0.29447
С	2.96765	3.03595	-0.82527
Н	4.24213	2.90128	0.89758
Н	3.27838	4.03118	-1.11559
С	-2.81308	-2.91981	-0.67235
Н	-3.03211	-3.92635	-1.00161
Ν	-0.58385	-3.53148	-0.88075
С	-3.64965	-2.08440	-0.02940
Ν	-1.48673	-2.55112	-0.79502
Н	-4.66721	-2.39084	0.18351
С	-3.20156	-0.77815	0.35372
С	-0.97464	-1.29052	-0.51855
С	-4.03001	0.03326	1.19186
С	-1.95795	-0.29762	-0.09843
Н	-4.94156	-0.40457	1.58662
С	-3.65779	1.29601	1.52986
С	-1.78419	1.13855	-0.06156
С	-2.56774	1.91223	0.84012
Н	-4.24654	1.88746	2.22421
С	-2.38161	3.31257	0.90178
--	----------	---------	----------
Н	1.70710	2.69409	-2.57357
С	-1.06054	1.83921	-1.04910
С	-0.96286	3.21499	-1.03430
Н	-0.70928	1.27729	-1.90884
С	-1.57160	3.95840	-0.00512
Н	-2.94984	3.88043	1.63272
Н	-1.47087	5.03802	0.02039
Н	-0.46324	3.73872	-1.84394
Ν	1.67959	1.11146	-1.25356
Н	1.05661	0.58761	-1.86097
One imaginary frequency: -34.73 cm ⁻¹			

Н	-4.37290	-2.93784	0.71302
Н	-2.70756	-4.36976	-0.50226
Н	2.05714	-4.41896	-0.69990
Н	4.01899	-3.14761	0.31368
Н	4.60970	2.65252	1.23718
Н	3.33655	4.50142	0.16691
Н	1.38379	3.97005	-1.27253
Н	0.58226	1.62523	-1.47060
One imaginary frequency: -46.15 cm ⁻¹			

TS racemization C-31

Ν	-1.39542	1.52210	-1.08402
С	-1.55511	2.80898	-1.31728
С	-2.44234	3.63681	-0.60569
С	-3.24128	3.04329	0.34121
С	-3.14765	1.65361	0.56321
С	-2.13876	0.92341	-0.13259
С	-4.11887	0.96488	1.34270
С	-4.16263	-0.39017	1.26339
С	-3.16327	-1.13976	0.56611
С	-2.00936	-0.51023	0.04209
С	-3.42420	-2.54056	0.36411
С	-2.53990	-3.31922	-0.29353
С	-1.25345	-2.75847	-0.56131
С	-0.90449	-1.37872	-0.37179
Ν	-0.21516	-3.55406	-0.78013
Ν	0.84209	-2.74961	-0.64496
С	0.53881	-1.39817	-0.42675
С	2.05707	-3.36379	-0.46403
С	3.07459	-2.66968	0.08601
С	2.86868	-1.28310	0.29259
С	1.72027	-0.59510	-0.11118
S	4.11610	-0.28221	0.97933
С	3.21524	1.14838	0.56329
С	2.00323	0.84203	-0.09519
С	3.68738	2.45468	0.70054
С	2.98418	3.47839	0.08375
С	1.86912	3.17820	-0.71020
С	1.39642	1.87862	-0.81382
н	-0.94455	3.23000	-2.11586
Н	-2.50633	4.69574	-0.82951
Н	-3.98400	3.61511	0.89155
Н	-4.86512	1.52995	1.89316
Н	-4.96817	-0.94539	1.73591

TD-DFT-optimized	geometries	and
transition data		

C-29 (S₀ state)

С	3.12744	0.85400	0.35236
С	4.14327	-0.14283	0.41908
С	3.89953	-1.43426	0.06400
С	1.81333	0.49567	-0.03324
Н	5.12513	0.15189	0.76392
Н	4.67144	-2.18752	0.14198
С	2.55103	3.22340	0.48934
С	3.45998	2.22079	0.62595
С	0.80314	1.50640	0.06061
С	1.20846	2.87125	0.19519
Н	2.81938	4.26081	0.62579
Н	4.48230	2.44745	0.89584
С	1.60881	-0.81538	-0.58864
С	2.63677	-1.79360	-0.48097
С	0.25493	-2.27571	-1.73985
С	2.36618	-3.08487	-0.97691
С	1.16633	-3.33713	-1.59376
Н	3.11794	-3.85683	-0.88069
Н	0.92785	-4.31427	-1.98715
С	-2.12173	3.42949	-0.44503
Н	-2.18016	4.50119	-0.53133
Ν	0.18618	3.73087	0.05437
С	-3.14012	2.56754	-0.66225
Ν	-0.89057	2.93067	-0.11493
Н	-4.10189	2.94899	-0.96881
С	-2.97890	1.17167	-0.41214
С	-0.61180	1.56909	-0.02714

С	-4.07788	0.28023	-0.57101
С	-1.73440	0.67997	0.03880
н	-5.00271	0.67084	-0.97233
С	-3.96617	-1.03314	-0.23695
С	-1.68457	-0.64384	0.60156
С	-2.78792	-1.52053	0.39723
н	-4.79297	-1.71282	-0.39160
С	-2.71941	-2.84473	0.88340
н	-0.67746	-2.43238	-2.26963
С	-0.62792	-1.09005	1.42406
С	-0.60216	-2.37126	1.91964
н	0.16971	-0.41129	1.67357
С	-1.63855	-3.27270	1.61649
н	-3.54979	-3.51069	0.69061
н	-1.59904	-4.28692	1.98805
Н	0.22104	-2.68736	2.54460
Ν	0.45913	-1.06694	-1.25969

Excited state information

Excited State 1: Singlet-A 2.9250 eV 423.88 nm f=0.1147 <S**2>=0.000

95 -> 98 -0.12235

96 -> 97 0.68551

This state for optimization and/or secondorder correction.

Total Energy, E(TD-HF/TD-DFT) = -1164.41777513

Copying the excited state density for this state as the 1-particle RhoCl density.

Excited State 2: Singlet-A 3.1829 eV 389.53 nm	95 -> 99 -0.11516	
t=0.0388 <s**2>=0.000</s**2>	96 -> 99 0.16700	
95 -> 97 0.30105	96 ->100 0.31230	
96 -> 98 0.62592		
Excited State 3: Singlet-A 3.4720 eV 357.09 nm	Excited State 7: Singlet-A 3.9059 eV 317.43 nm f=0.1288 <s**2>=0.000</s**2>	
f=0.2599 <s**2>=0.000</s**2>	93 -> 97 -0.25951	
95 -> 97 0.58938	94 -> 97 -0.26088	
95 -> 98 0.10769	95 -> 98 0.31454	
96 -> 98 -0.29853	96 -> 99 -0.21331	
96 -> 99 -0.15641	96 ->100 0.43964	
Excited State 4: Singlet-A 3.6383 eV 340.77 nm f=0.0278 <s**2>=0.000</s**2>	Excited State 8: Singlet-A 3.9971 eV 310.18 nm f=0.1825 <s**2>=0.000</s**2>	
95 -> 98 0.48110	91 -> 97 -0.15104	
96 -> 99 0.44295	92 -> 97 0.34968	
96 ->100 -0.17902	93 -> 97 0.40723	
	94 -> 98 0.12929	
Excited State 5: Singlet-A 3.7899 eV 327.14 nm f=0.0583 <s**2>=0.000</s**2>	95 -> 98 0.25178	
93 -> 97 0.30258	96 -> 99 -0.23691	
94 -> 97 -0.29599		
95 -> 97 0.18289	Excited State 9: Singlet-A 4.1463 eV 299.02 nm f=0.0201 <s**2>=0.000</s**2>	
95 -> 98 -0.21130	91 -> 97 0.11230	
96 -> 99 0.31073	92 -> 97 -0.31374	
96 ->100 0.35697	93 -> 97 0.13121	
	93 -> 98 0.11964	
Excited State 6: Singlet-A 3.8557 eV 321.56 nm f=0.0354 <s**2>=0.000</s**2>	94 -> 98 0.54524	
92 -> 97 -0.12916		
93 -> 98 -0.10703	Excited State 10: Singlet-A 4.2152 eV 294.13 nm f=0.0796 <s**2>=0.000</s**2>	
94 -> 97 0.54147	91 -> 97 -0.11509	
95 -> 98 0.11205		

92 -> 97 0.32388	95 -> 99 -0.15694
93 -> 97 -0.30063	95 ->100 0.25911
93 -> 98 -0.13648	96 ->101 0.31328
94 -> 98 0.29967	
95 ->100 0.17775	Excited State 14: Singlet-A 4.4916 eV 276.03 nm f=0.1221 <s**2>=0.000</s**2>
96 ->101 -0.31036	91 -> 97 0.38696
	92 -> 98 -0.12112
Excited State 11: Singlet-A 4.2748 eV 290.03 nm f=0.0425 <s**2>=0.000</s**2>	93 -> 97 0.10403
91 -> 97 0.12159	94 -> 98 -0.15902
93 -> 98 -0.43509	94 ->100 -0.11413
95 -> 99 0.48845	95 ->100 0.43273
	96 ->101 -0.17629
Excited State 12: Singlet-A 4.3236 eV 286.76 nm f=0.0406 <s**2>=0.000</s**2>	96 ->102 -0.10197
92 -> 97 0.17123	Excited State 15: Singlet A 4 5225 eV/272 40
93 -> 97 -0.10607	nm f=0.0829 <s**2>=0.000</s**2>
93 -> 98 0.23010	90 -> 97 0.19121
94 -> 97 0.11319	91 -> 97 0.34248
94 -> 98 0.13641	92 -> 97 0.21995
95 -> 99 0.37391	93 -> 99 -0.13985
95 ->100 0.25213	94 -> 99 0.24749
96 ->100 0.10672	95 -> 99 -0.17846
96 ->101 0.36527	95 ->100 -0.16723
	96 ->101 0.29337
Excited State 13: Singlet-A 4.4313 eV 279.79 nm f=0.1227 <s**2>=0.000</s**2>	Excited State 16: Singlet A 4 5702 eV 270 75
91 -> 97 -0.19514	nm f=0.0300 <s**2>=0.000</s**2>
92 -> 97 -0.11856	90 -> 97 0.20652
92 -> 98 -0.28398	91 -> 97 -0.10016
93 -> 98 -0.31214	91 -> 98 -0.18185
94 -> 99 -0.17517	92 -> 98 0.49226

92 -> 99 -0.11055	92 -> 99 0.22104
93 -> 98 -0.14138	92 ->100 0.10202
94 -> 99 0.10273	93 -> 99 0.35591
94 ->100 0.14978	94 ->100 -0.16374
95 ->100 0.22255	
Excited State 17: Singlet-A 4.6261 eV 268.01	Excited State 20: Singlet-A 4.8438 eV 255.96 nm f=0.1050 <s**2>=0.000</s**2>
nm f=0.0236 <s**2>=0.000</s**2>	90 -> 97 0.18199
91 -> 97 -0.23154	91 -> 98 0.35713
92 -> 97 -0.11055	92 -> 99 -0.12854
92 -> 98 -0.15020	93 -> 99 -0.23985
93 -> 99 0.14829	94 ->100 0.19128
94 -> 99 0.57590	96 ->102 -0.25833
94 ->100 -0.10249	96 ->103 0.22733
	96 ->104 -0.24154
Excited State 18: Singlet-A 4.7336 eV 261.93 nm f=0.0288 <s**2>=0.000</s**2>	Evelted State 21, Singlet A 4 9024 eV/252 42
90 -> 97 0.21322	nm f=0.0902 <s**2>=0.000</s**2>
91 -> 98 0.11758	90 -> 97 0.39791
92 -> 98 -0.12568	90 -> 98 -0.10208

93 -> 98 0.11993

94 ->100 -0.14376

95 ->101 -0.13781

96 ->102 0.54399

Excited State 19: Singlet-A 4.7815 eV 259.30 nm f=0.0177 <S**2>=0.000

90 -> 97 0.28145

91 -> 97 0.10088

91 -> 98 0.28359

91 -> 99 -0.12721

92 -> 98 0.22959

Excited State 22: Singlet-A 4.9045 eV 252.80 nm f=0.2430 <S**2>=0.000

90 -> 98 -0.17389

91 -> 98 -0.33825

92 -> 98 -0.17527

93 -> 99 0.17375

93 ->100 -0.13172

94 ->101 0.11861

95 ->101 0.16931

96 ->102 -0.10103

91 -> 99 -0.11390

92 -> 99 0.22635	96 ->104 -0.14859
93 -> 99 0.18263	
94 ->100 0.42712	Excited State 26: Singlet-A 5.0411 eV 245.95
95 ->101 -0.30115	nm f=0.0446 <s**2>=0.000</s**2>
96 ->104 -0.11733	90 -> 98 -0.22071
	91 -> 99 0.10064
Excited State 23: Singlet-A 4.9387 eV 251.05	92 -> 99 -0.30266
nm f=0.0246 <s**2>=0.000</s**2>	92 ->100 0.28045
90 -> 98 -0.17945	93 -> 99 0.17760
92 -> 99 0.24391	93 ->100 0.40232
93 ->100 0.10523	95 ->102 -0.14098
94 ->100 0.12093	96 ->104 0.10232
95 ->101 0.55343	
96 ->102 0.18436	Excited State 27: Singlet-A 5.1323 eV 241.58 nm f=0.6091 <s**2>=0.000</s**2>
Evoited State 21: Singlet-1 / 9837 eV 218 78	90 -> 97 0.10430
nm f=0.0431 <s**2>=0.000</s**2>	90 -> 98 0.19594
92 -> 99 0.10523	91 -> 98 0.10045
96 ->103 0.58953	93 -> 98 0.10164
96 ->104 0.26337	94 ->100 0.23055
96 ->106 -0.13597	95 ->102 -0.11800
	96 ->103 -0.17399
Excited State 25: Singlet-A 5.0193 eV 247.01 nm f=0.0215 <s**2>=0.000</s**2>	96 ->104 0.48826
90 -> 98 0.19456	Excited State 28: Singlet A 5 2224 eV 226 Q1
91 -> 98 -0.23259	nm f=0.0294 <s**2>=0.000</s**2>
91 -> 99 -0.20125	90 -> 98 0.40143
91 ->100 -0.15791	91 -> 99 0.26578
92 -> 99 0.20489	93 -> 99 0.14080
92 ->100 0.14052	93 ->101 -0.13437

94 ->100 0.11227

94 ->101 0.22889

93 -> 99 -0.27065

93 ->100 0.32381

S114

95 ->102 -0.16176
96 ->102 0.13860
96 ->104 -0.16365
96 ->105 -0.15929
Excited State 29: Singlet-A 5.2466 eV 236.32 nm f=0.0393 <s**2>=0.000</s**2>
91 -> 99 0.17902
91 ->100 -0.20527
92 ->100 0.48833
92 ->101 0.11305
93 ->100 -0.31996

95 ->102 0.10031

Excited State 30: Singlet-A 5.2763 eV 234.99 nm f=0.0222 <S**2>=0.000

91 -> 99 0.10971

96 ->105 0.65869

96 ->106 0.66522

Excited State 31: Singlet-A 5.2934 eV 234.23	Excited State 34: S nm f=0.0189 <s**2< th=""></s**2<>
nm f=0.0727 <s**2>=0.000</s**2>	89 -> 97 0.23315
90 -> 99 0.11075	90 -> 98 -0.19409
91 ->100 -0.12163	91 -> 99 0.33010
93 ->100 0.12829	92 -> 99 0.22533
94 ->101 0.34070 95 ->102 0.52312	93 ->101 0.13968
	94 ->101 0.23337
	95 ->101 -0.11354
Excited State 32: Singlet-A 5.3193 eV 233.08 nm f=0.0033 <s**2>=0.000</s**2>	95 ->102 -0.11071
96 ->103 0.12444	95 ->103 -0.15030
96 ->104 0.10388	95 ->104 0.15856

: Singlet-A 5.4077 eV 229.27 **2>=0.000 5

Excited State 33: Singlet-A 5.3679 eV 230.97

nm f=0.0901 <S**2>=0.000

91 -> 99 -0.24072

91 ->100 0.14124

92 ->100 0.15127

92 ->101 -0.10876

93 ->100 -0.11153

93 ->101 -0.17115

94 ->100 -0.13402

94 ->101 0.38227

94 ->102 0.10075

95 ->103 0.12160

95 ->104 -0.12791

96 ->105 0.10313

96 ->107 0.11561

96 ->108 0.20880

```
96 ->108 0.13119
```

Excited State 35: Singlet-A 5.4532 eV 227.36	94 ->101 -0.10848
nm f=0.0192 <s**2>=0.000</s**2>	95 ->104 -0.20881
87 -> 97 0.10063	96 ->107 0.46727
88 -> 97 0.59222	96 ->108 0.22084
89 -> 97 0.20227	96 ->109 -0.13610
96 ->108 -0.11464	

Excited State 36: Singlet-A 5.4858 eV 226.01 nm f=0.0024 <S**2>=0.000 93 ->101 0.10628 95 ->103 0.61209 95 ->104 0.14981

95 ->106 -0.12572

96 ->107 -0.13673

Excited State 37: Singlet-A 5.5285 eV 224.26 nm f=0.0402 <S**2>=0.000

91 ->100 -0.19305

92 ->100 -0.11091

92 ->101 0.12907

93 ->101 0.35168

94 ->101 0.12610

95 ->102 -0.21240

95 ->104 -0.34711

96 ->107 -0.13709

Excited State 38: Singlet-A 5.5367 eV 223.93 nm f=0.0255 <S**2>=0.000

90 -> 98 0.10162

90 -> 99 0.10699

91 ->100 -0.21647

92 ->100 -0.12600

Excited State 39: Singlet-A 5.5767 eV 222.32 nm f=0.0678 <S**2>=0.000 89 -> 97 -0.13035

90 -> 99 -0.27847

91 -> 99 -0.12156

92 -> 99 -0.13220

92 ->101 0.11917

93 ->101 0.28651

95 ->104 0.34240

96 ->107 0.18215

96 ->108 0.12186

Excited State 40: Singlet-A 5.5877 eV 221.89 nm f=0.0066 <S**2>=0.000

89 -> 97 -0.10355

91 ->100 -0.31300

93 ->101 -0.16539

95 ->104 0.14487

96 ->107 -0.18650

96 ->108 0.38762

96 ->109 0.28527

Excited State 41: Singlet-A 5.6073 eV 221.11 nm f=0.1032 <S**2>=0.000

89 -> 97 0.30974

90 -> 98 0.11112

90 -> 99 0.11961	Excited State 44: Singlet-A 5.6987 eV 217.57
91 ->100 0.26864	nm 1=0.0535 <5···2>=0.000
92 ->101 0.19366	89 -> 97 0.13828
93 ->101 0.12433	90 -> 99 -0.30610
94 ->102 -0.12177	92 ->101 -0.11544
96 ->108 0.11019	94 ->102 0.17230
96 ->109 0 259/1	96 ->110 0.49402
30 - × 103 0.33341	

Excited State 42: Singlet-A 5.6224 eV 220.52 nm f=0.0919 <S**2>=0.000

89 -> 97 -0.19745

91 ->100 0.20102

93 ->101 0.10448

94 ->102 -0.19952

95 ->104 -0.20933

96 ->107 -0.27761

- 96 ->108 0.33382
- 96 ->109 -0.23782

Excited State 43: Singlet-A 5.6353 eV 220.01 nm f=0.0097 <S**2>=0.000

88 -> 97 0.15323

89 -> 97 -0.32989

90 -> 99 -0.15850

91 -> 99 0.12213

92 ->101 -0.10252

94 ->102 -0.19657

95 ->104 -0.13334

96 ->107 0.18295

96 ->108 -0.11497

96 ->109 0.37711

Excited State 46: Singlet-A 5.7453 eV 215.80 nm f=0.0175 <S**2>=0.000

Excited State 45: Singlet-A 5.7044 eV 217.35

nm f=0.0418 <S**2>=0.000

89 -> 97 -0.10251

90 -> 99 0.30202

94 ->102 -0.22973

95 ->102 -0.11825

95 ->105 0.14020

96 ->110 0.44883

96 ->111 0.10264

90 -> 99 -0.11766

93 ->103 0.12157

95 ->105 0.58626

95 ->106 0.10483

96 ->111 0.21403

Excited State 47: Singlet-A 5.7503 eV 215.61 nm f=0.0361 <S**2>=0.000

90 -> 99 -0.12453

90 ->100 -0.15647

91 ->100 0.10125

91 ->101 -0.20207

92 ->100 -0.11534	95 ->105 -0.11335
92 ->101 0.47974	95 ->106 0.52778
93 ->101 -0.22696	
94 ->102 0.14141	Excited State 51: Singlet-A 5.8257 eV 212.82 nm f=0.0350 <s**2>=0.000</s**2>
Excited State 48: Singlet-A 5 7936 eV 214 00	86 -> 97 -0.26915
nm f=0.1402 <s**2>=0.000</s**2>	88 -> 98 -0.13762
86 -> 97 0.13331	90 ->100 0.35015
87 -> 97 -0.18113	92 ->101 0.18395
89 -> 97 -0.10217	93 ->101 -0.13235
90 -> 99 0.16911	94 ->102 -0.13734
90 ->100 0.32943	95 ->106 -0.29332
91 ->101 -0.10273	96 ->111 0.13526
93 ->101 0.11127	
93 ->102 -0.26144	Excited State 52: Singlet-A 5.8351 eV 212.48
94 ->102 0.28656	nm f=0.0405 <s**2>=0.000</s**2>
95 ->106 -0.12462	87 -> 97 -0.19175
96 ->111 -0.16158	88 -> 98 0.42148
	89 -> 98 0.41324
Excited State 49: Singlet-A 5.8036 eV 213.63	90 ->100 -0.12921
nm f=0.0354 <s**2>=0.000</s**2>	95 ->106 -0.14117
86 -> 97 0.14168	
95 ->105 -0.21414	Excited State 53: Singlet-A 5.8794 eV 210.88
96 ->109 -0.12063	87 \ 07 0 29526
96 ->111 0.58648	87 -> 97 0.38330
	00 > 100 0 16902
Excited State 50: Singlet-A 5.8208 eV 213.00	90 ->100 0.10895
96 × 07 0 17092	95 ->102 -0.14599
86 -> 97 -0.17082	94 ->103 0.23706
89 -> 98 U.I5U4U	94 ->104 -0.15472
90 ->100 0.21379	
94 ->103 -0.18194	

Excited State 54: Singlet-A 5.9084 eV 209.84 nm f=0.0581 <s**2>=0.000</s**2>	Excited State 57: Singlet-A 5.9679 eV 207.75 nm f=0.0416 <s**2>=0.000</s**2>
86 -> 97 0.39704	86 -> 98 0.13605
87 -> 97 -0.21171	89 -> 98 0.18802
91 ->101 0.11941	93 ->102 -0.20505
93 ->102 -0.11865	94 ->103 -0.14822
94 ->102 -0.20807	94 ->104 -0.13430
94 ->103 0.20480	95 ->107 -0.12717
95 ->108 -0.13268	95 ->108 -0.19446
96 ->112 -0.21905	96 ->112 0.46500
	96 ->113 0.11049
Excited State 55: Singlet-A 5.9385 eV 208.78	
nm f=0.0249 <s**2>=0.000</s**2>	Excited State 58: Singlet-A 5.9834 eV 207.21
86 -> 97 -0.14809	nm f=0.2341 <s**2>=0.000</s**2>
87 -> 97 0.11688	90 -> 99 -0.10769
88 -> 98 -0.29199	91 ->101 -0.11548
89 -> 98 0.35069	94 ->102 -0.10445
90 ->100 -0.12318	94 ->104 0.54092
93 ->102 -0.20998	96 ->115 0.18697
94 ->103 0.29831	
96 ->112 -0.12283	Excited State 59: Singlet-A 6.0142 eV 206.15 nm f=0.0218 <s**2>=0.000</s**2>
Excited State 56: Singlet-A 5 9446 eV 208 56	86 -> 98 -0.11971
nm f=0.0732 <s**2>=0.000</s**2>	87 -> 97 0.10711
87 -> 97 -0.24085	87 -> 98 -0.13691
93 ->102 0.21955	90 ->100 0.16161
94 ->102 0.10139	90 ->101 -0.14751
94 ->103 0.41461	92 ->102 0.20033
95 ->106 0.13504	93 ->102 0.35012
96 ->112 0.35495	95 ->107 -0.29957

95 ->108 -0.27459

Excited State 60: Singlet-A 6.0488 eV 204.97 nm f=0.0115 <s**2>=0.000</s**2>	Excited State 63: Singlet-A 6.0964 eV 203.37 nm f=0.0023 <s**2>=0.000</s**2>
91 ->101 -0.18289	86 -> 97 -0.13527
94 ->104 0.11972	91 ->101 0.10501
95 ->109 -0.29337	93 ->103 0.18417
96 ->113 0.39239	94 ->105 -0.16120
96 ->114 0.14767	95 ->107 0.10480
96 ->115 -0.32125	95 ->108 -0.25299
	95 ->109 0.35209
Excited State 61: Singlet-A 6.0646 eV 204.44	96 ->113 0.18895
nm f=0.0031 <s**2>=0.000</s**2>	96 ->114 0.28941
87 -> 98 -0.12925	
91 ->101 0.13879	Excited State 64: Singlet-A 6.1140 eV 202.79
92 ->102 0.10421	nm f=0.0118 <s**2>=0.000</s**2>
93 ->103 0.22769	86 -> 98 0.15317
95 ->107 0.38682	87 -> 98 -0.24350
95 ->108 -0.20691	93 ->103 -0.11992
95 ->109 -0.30974	93 ->104 -0.10774
96 ->115 0.19344	94 ->104 -0.12319
	95 ->107 -0.17119
Excited State 62: Singlet-A 6.0874 eV 203.67	96 ->112 -0.17260
nm t=0.0891 <s**2>=0.000</s**2>	96 ->113 0.35724
86 -> 98 -0.20181	96 ->114 -0.11436
87 -> 97 0.12320	96 ->115 0.29474
91 ->101 0.48284	96 ->116 0.12174
92 ->101 0.17089	
93 ->103 -0.13953	Excited State 65: Singlet-A 6.1289 eV 202.30
94 ->104 0.14001	nm f=0.0544 <s**2>=0.000</s**2>
95 ->107 -0.15746	86 -> 98 0.11865
95 ->108 0.11484	92 ->102 0.30355
95 ->109 -0.11761	93 ->102 -0.10642
	93 ->103 0.27471

93 ->104 -0.27405	92 ->102 0.41342
95 ->107 -0.12940	93 ->103 -0.30836
95 ->108 0.22601	95 ->107 0.20355
95 ->110 0.10012	95 ->109 0.15968
96 ->113 -0.16826	95 ->110 -0.13670
96 ->115 -0.16321	96 ->114 -0.10082
	96 ->117 -0.10181

Excited State 66: Singlet-A 6.1403 eV 201.92 nm f=0.0104 <S**2>=0.000 Excited State 69: Singlet-A 6.1888 eV 200.34 nm f=0.0023 <S**2>=0.000 86 -> 97 0.14185 87 -> 98 0.27063 93 ->104 0.11200 93 ->103 0.29805 94 ->105 0.13941 95 ->108 0.16367 95 ->107 0.11982 95 ->109 0.13509 95 ->109 0.13327 95 ->110 -0.10382 95 ->110 0.57506 96 ->113 0.28357 96 ->115 0.10114 96 ->114 -0.13691 96 ->115 0.15906 Excited State 70: Singlet-A 6.1917 eV 200.24 nm f=0.0336 <S**2>=0.000 96 ->116 -0.18390

96 ->117 -0.11501

 Excited State 67: Singlet-A 6.1473 eV 201.69
 92 ->104 0.10646

 nm f=0.0050 <S**2>=0.000
 93 ->103 0.18482

 93 ->103 -0.11177
 93 ->104 0.47552

 95 ->109 -0.13102
 95 ->108 0.13443

 95 ->110 -0.11209
 95 ->110 -0.14962

 96 ->114 0.52798
 96 ->116 0.11730

 96 ->115 0.31295
 96 ->117 0.10553

 Excited State 68: Singlet-A 6.1778 eV 200.69
 Excited State 71: Singlet-A 6.2459 eV 198.51

 nm f=0.0204 <S**2>=0.000
 nm f=0.0081 <S**2>=0.000

 91 ->102 -0.14604
 86 -> 97 -0.12549

87 -> 98 -0.17254

92 ->102 0.19029

87 -> 98 0.34620	Excited State 74: Singlet-A 6.2914 eV 197.07
89 -> 99 -0.22735	nm f=0.0067 <s**2>=0.000</s**2>
90 ->101 -0.16757	87 -> 98 0.10126
93 ->104 0.15218	89 -> 99 0.12807
94 ->104 -0 11406	93 ->104 -0.10951
	94 ->106 0.27224
94 ->105 -0.25819	95 ->111 -0.33531
95 ->107 -0.10253	96 ->115 0.10052
95 ->109 -0.11793	06 >116 0 1/018
95 ->110 0.11005	30 ->110 0.14318
95 ->111 -0.13437	96 ->117 0.36119
96 ->116 0.14901	
	Excited State 75: Singlet-A 6.2975 eV 196.88 nm f=0.0058 <s**2>=0.000</s**2>

Excited State 72: Singlet-A 6.2620 eV 197.99 nm f=0.0081 <s**2>=0.000</s**2>	90 ->101 0.16121
87 -> 98 0.18973	94 ->105 -0.34024
92 ->102 0.14057	94 ->106 -0.15840
94 ->105 0 43523	95 ->110 0.16957
	95 ->111 0.26519

95 ->108 -0.12938

95 ->111 0.29154

96 ->117 0.20963

Excited State 73: Singlet-A 6.2836 eV 197.32 86 -> 98 -0.11524 nm f=0.0129 <S**2>=0.000 89 -> 98 0.10752 91 ->102 -0.13487 89 -> 99 0.11934 94 ->106 0.33204 90 ->101 -0.18842 95 ->108 -0.11197 92 ->102 -0.10323 95 ->111 0.16218 94 ->106 -0.14821 95 ->111 0.19103

96 ->116 0.50904

Excited State 76: Singlet-A 6.3310 eV 195.84 nm f=0.0923 <S**2>=0.000

90 ->101 0.38372

96 ->117 0.37011

96 ->116 0.16932

96 ->117 -0.23031

Excited State 77: Singlet-A 6.3414 eV 195.52 nm f=0.0208 <s**2>=0.000</s**2>	94 ->107 -0.16536
	96 ->117 -0.12861
86 -> 98 0.17803	
90 ->101 -0.28194	Excited State 80: Singlet-A 6.3923 eV 193.96
92 ->103 -0.10942	nm f=0.0706 <s**2>=0.000</s**2>
94 ->105 -0.16829	82 -> 97 0.12081
94 ->106 0.41670	84 -> 97 -0.12883
95 ->111 0.26701	85 -> 97 0.10639
96 ->116 -0.13375	88 -> 99 0.38808
	89 -> 99 0.25621
Excited State 78: Singlet-A 6.3592 eV 194.97	90 ->101 -0.18196
nm f=0.0374 <s**2>=0.000</s**2>	92 ->103 0.24437
84 -> 97 0.10897	92 ->104 -0.18911
86 -> 98 -0.10038	94 ->107 0.11756
87 -> 98 -0.12818	
87 -> 99 -0.10117	Excited State 81: Singlet-A 6.4233 eV 193.02
88 -> 99 -0.30549	nm f=0.0548 <s**2>=0.000</s**2>
91 ->104 0.12335	84 -> 97 -0.13354
92 ->103 0.33502	85 -> 97 0.28974
92 ->104 -0.23864	88 -> 99 0.11427
95 ->111 0.12242	89 -> 99 -0.23986
96 ->118 0.10750	91 ->102 -0.13434
	92 ->103 0.15667
Excited State 79: Singlet-A 6.3864 eV 194.14	92 ->104 0.21541
nm f=0.2105 <s**2>=0.000</s**2>	94 ->108 -0.10690
85 -> 97 0.13234	96 ->118 0.28123
86 -> 98 0.41291	96 ->119 0.11046
91 ->101 0.11603	
91 ->102 -0.11373	Excited State 82: Singlet-A 6.4333 eV 192.72
92 ->104 -0.22690 nm	nm f=0.0121 <s**2>=0.000</s**2>
93 ->104 0.12727	84 -> 97 -0.12368
94 ->102 0.13671	85 -> 97 0.20998

89 -> 99 -0.20816	96 ->118 0.36333
90 ->101 0.11252	96 ->119 0.11841
91 ->102 0.34754	
92 ->104 -0.17207	Excited State 85: Singlet-A 6.4683 eV 191.68
94 ->107 -0.18117	nm f=0.0156 <s**2>=0.000</s**2>
94 ->108 -0.21097	84 -> 97 -0.12289
96 ->118 -0.17193	92 ->103 -0.23240
96 ->119 -0.18407	92 ->104 -0.21759
	93 ->105 -0.24218
Excited State 83: Singlet-A 6.4398 eV 192.53	93 ->106 -0.13772
nm f=0.0041 <s**2>=0.000</s**2>	96 ->119 0.45622
88 -> 99 0.10402	
91 ->102 -0.12808	Excited State 86: Singlet-A 6.4790 eV 191.36
92 ->103 -0.20903	nm f=0.0018 <s**2>=0.000</s**2>
92 ->104 -0.17480	89 -> 99 -0.16/2/
93 ->106 -0.14497	92 ->103 -0.17574
94 ->107 -0.13656	92 ->104 -0.17009
95 ->112 -0.22835	93 ->105 0.48927
96 ->118 0.36521	94 ->108 0.15682
96 ->119 -0.29213	95 ->111 0.10330
	95 ->112 0.19778
Excited State 84: Singlet-A 6.4597 eV 191.94 nm f=0.0994 <s**2>=0.000</s**2>	Excited State 87: Singlet-A 6.4853 eV 191.18
84 -> 97 0.16714	nm f=0.0014 <s**2>=0.000</s**2>
85 -> 97 -0.18002	85 -> 97 0.13773
88 -> 99 0.13509	88 -> 99 -0.16393
90 ->101 0.11272	89 -> 99 0.24546
91 ->102 0.33530	89 ->100 0.16207
92 ->102 0.10409	93 ->105 0.32845
92 ->103 0.11911	94 ->108 -0.17145
94 ->107 -0.12962	95 ->112 -0.27881
95 ->112 0.15965	96 ->119 0.19341

	84 -> 97 -0.21530
Excited State 88: Singlet-A 6.5138 eV 190.34	85 -> 97 -0.10246
nm f=0.0041 <s**2>=0.000</s**2>	87 -> 99 -0.10820
84 -> 97 0.21246	88 ->100 -0.15072
84 -> 98 0.12742	89 -> 99 -0.10176
85 -> 97 -0.23062	89 ->100 0.18036
88 -> 99 0.26525	91 ->102 0.21326
89 -> 99 -0.19703	93 ->106 -0.17800
89 ->100 0.14506	94 ->107 0.20229
93 ->106 -0.14291	94 ->108 0.25482
94 ->108 -0.10807	95 ->112 -0.24507
95 ->112 -0.21834	
96 ->118 -0.19530	Excited State 91: Singlet-A 6 5429 eV 189 49
96 ->119 0.17218	nm f=0.0430 <s**2>=0.000</s**2>
	86 -> 98 0.11719
Excited State 89: Singlet-A 6.5235 eV 190.06	88 ->100 -0.12383
nm f=0.0092 <s**2>=0.000</s**2>	89 ->100 -0.12436
84 -> 97 -0.23781	91 ->103 0.11626
84 -> 98 -0.10327	92 ->103 -0.10709
85 -> 97 -0.14427	93 ->106 0.18530
89 ->100 -0.17535	94 ->107 0.33820
92 ->103 0.16751	94 ->108 -0.17425
92 ->104 0.14018	94 ->110 0.13968
93 ->106 -0.22540	95 ->113 -0.27216
94 ->107 -0.19689	95 ->115 0.17876
94 ->109 0.13199	
95 ->113 -0.19450	Excited State 92: Singlet-A 6 5474 eV 189 36
95 ->115 0.28270	nm f=0.0144 <s**2>=0.000</s**2>
	89 ->100 0.13855
Excited State 90: Singlet-A 6.5377 eV 189.64	93 ->106 0.45138
nm f=0.0628 <s**2>=0.000</s**2>	94 ->107 -0.22973

94 ->108 0.18896

83 -> 97 -0.13576

94 ->109 0.13953	84 -> 97 -0.24860
95 ->112 -0.11783	84 -> 98 -0.27855
95 ->113 -0.23961	85 -> 97 -0.16615
96 ->119 0.10030	85 -> 98 0.19793
	88 ->100 0.23244
Excited State 93: Singlet-A 6.5639 eV 188.89	89 ->100 0.29467
nm t=0.0152 <s** 2="">=0.000</s**>	94 ->107 0.12865
83 -> 97 0.10799	94 ->109 -0.13175
84 -> 97 -0.16332	
84 -> 98 0.40240	Excited State 96: Singlet-A 6.5885 eV 188.18
85 -> 98 -0.24564	nm f=0.0070 <s**2>=0.000</s**2>
88 ->100 0.28450	89 ->100 0.18835
95 ->112 0.16898	94 ->107 0.10509
95 ->113 -0.17166	94 ->109 0.48168
	95 ->114 0.29924
Excited State 94: Singlet-A 6.5695 eV 188.73 nm f=0.0272 <s**2>=0.000</s**2>	95 ->115 0.10841
84 -> 97 -0.22800	Excited State 97: Singlet- Λ 6 6262 eV 187 11
85 -> 97 -0.19838	nm f=0.0659 <s**2>=0.000</s**2>
87 -> 99 -0.10393	83 -> 97 0.10716
89 ->100 -0.13134	91 ->103 0.32817
91 ->104 0.11933	91 ->104 -0.22552
92 ->103 -0.10401	92 ->104 -0.12117
93 ->106 0.17270	94 ->109 0.11745
93 ->109 0.10443	94 ->110 -0.15268
94 ->108 -0.28934	95 ->113 0.18534
95 ->112 -0.11942	95 ->114 -0.20947
95 ->113 0.32532	95 ->115 0.17651
	96 ->122 -0.11793
Excited State 95: Singlet-A 6.5823 eV 188.36	

nm f=0.0433 <S**2>=0.000

83 -> 97 0.11332

Excited State 98: Singlet-A 6.6349 eV 186.87 nm f=0.0139 <S**2>=0.000

81 -> 97 -0.10557	85 -> 97 0.11451
82 -> 97 -0.21678	88 ->100 0.25778
83 -> 98 0.14700	90 ->102 -0.10782
84 -> 98 -0.17003	91 ->103 -0.17338
87 -> 99 -0.23432	94 ->108 0.10950
88 ->100 0.14278	94 ->109 -0.21856
89 ->100 -0.15475	94 ->110 -0.15506
90 ->104 -0.10275	95 ->114 0.12448
91 ->103 0.10440	95 ->115 0.34539
91 ->104 -0.17333	
95 ->112 -0.12393	Transition energies, wavelengths and
95 ->114 0.28114	oscillator strengths
	state E(eV) wavelength(nm)

95 ->115 -0.14736

Excited State 99: Singlet-A 6.6539 eV 186.33 nm f=0.0388 <S**2>=0.000

87 -> 99 0.11428

- 88 ->100 -0.24339
- 90 ->102 0.10292
- 91 ->104 -0.12545
- 93 ->108 0.16562
- 94 ->109 -0.21091
- 94 ->110 -0.13973
- 95 ->114 0.36814
- 95 ->115 0.15100
- 96 ->122 -0.13945

Excited State 100: Singlet-A 6.6564 eV 186.26 nm f=0.0177 <S**2>=0.000 82 -> 97 0.16282

83 -> 97 -0.12109

84 -> 97 0.11098

1 2.9250 423.88 0.1147 2 3.1829 389.53 0.0388 3 3.4720 357.09 0.2599 4 3.6383 340.77 0.0278 5 3.7899 327.14 0.0583 6 3.8557 321.56 0.0354 7 3.9059 317.43 0.1288 8 3.9971 310.18 0.1825 9 4.1463 299.02 0.0201

oscillator_strength

 $10\ 4.2152\ 294.13\ 0.0796$

- 11 4.2748 290.03 0.0425
- 12 4.3236 286.76 0.0406
- 13 4.4313 279.79 0.1227
- 14 4.4916 276.03 0.1221
- 15 4.5335 273.49 0.0829
- 16 4.5792 270.75 0.0300
- 17 4.6261 268.01 0.0236
- ------
- 18 4.7336 261.93 0.0288

19 4.7815 259.30 0.0177 20 4.8438 255.96 0.1050 21 4.8924 253.42 0.0902 22 4.9045 252.80 0.2430 23 4.9387 251.05 0.0246 24 4.9837 248.78 0.0431 25 5.0193 247.01 0.0215 26 5.0411 245.95 0.0446 27 5.1323 241.58 0.6091 28 5.2334 236.91 0.0294 29 5.2466 236.32 0.0393 30 5.2763 234.99 0.0222 31 5.2934 234.23 0.0727 32 5.3193 233.08 0.0033 33 5.3679 230.97 0.0901 34 5.4077 229.27 0.0189 35 5.4532 227.36 0.0192 36 5.4858 226.01 0.0024 37 5.5285 224.26 0.0402 38 5.5367 223.93 0.0255 39 5.5767 222.32 0.0678 40 5.5877 221.89 0.0066 41 5.6073 221.11 0.1032 42 5.6224 220.52 0.0919 43 5.6353 220.01 0.0097 44 5.6987 217.57 0.0535 45 5.7044 217.35 0.0418 46 5.7453 215.80 0.0175 47 5.7503 215.61 0.0361 48 5.7936 214.00 0.1402 49 5.8036 213.63 0.0354

50 5.8208 213.00 0.0041 51 5.8257 212.82 0.0350 52 5.8351 212.48 0.0405 53 5.8794 210.88 0.0317 54 5.9084 209.84 0.0581 55 5.9385 208.78 0.0249 56 5.9446 208.56 0.0732 57 5.9679 207.75 0.0416 58 5.9834 207.21 0.2341 59 6.0142 206.15 0.0218 60 6.0488 204.97 0.0115 61 6.0646 204.44 0.0031 62 6.0874 203.67 0.0891 63 6.0964 203.37 0.0023 64 6.1140 202.79 0.0118 65 6.1289 202.30 0.0544 66 6.1403 201.92 0.0104 67 6.1473 201.69 0.0050 68 6.1778 200.69 0.0204 69 6.1888 200.34 0.0023 70 6.1917 200.24 0.0336 71 6.2459 198.51 0.0081 72 6.2620 197.99 0.0081 73 6.2836 197.32 0.0129 74 6.2914 197.07 0.0067 75 6.2975 196.88 0.0058 76 6.3310 195.84 0.0923 77 6.3414 195.52 0.0208 78 6.3592 194.97 0.0374 79 6.3864 194.14 0.2105 80 6.3923 193.96 0.0706 81 6.4233 193.02 0.0548 82 6.4333 192.72 0.0121 83 6.4398 192.53 0.0041 84 6.4597 191.94 0.0994 85 6.4683 191.68 0.0156 86 6.4790 191.36 0.0018 87 6.4853 191.18 0.0014 88 6.5138 190.34 0.0041 89 6.5235 190.06 0.0092 90 6.5377 189.64 0.0628 91 6.5429 189.49 0.0430 92 6.5474 189.36 0.0144 93 6.5639 188.89 0.0152 94 6.5695 188.73 0.0272 95 6.5823 188.36 0.0433 96 6.5885 188.18 0.0070 97 6.6262 187.11 0.0659 98 6.6349 186.87 0.0139 99 6.6539 186.33 0.0388 100 6.6564 186.26 0.0177

Rotatory strengths (velocity) state XX YY ZZ R(velocity) E-M Angle 1 -5.2897 143.4736 -84.8774 17.7688 86.45 2 -3.5209 -7.4449 -30.0464 -13.6707 111.23 3 60.7966 452.5717 -200.1268 104.4138 83.66 4 77.3235 96.3750 -18.7920 51.6355 69.51 5 -69.8359 6.0562 -24.2665 -29.3487 112.27 6 470.0816 375.1235 -4.1900 280.3384 32.59 7 66.6581 176.4287 -16.3247 75.5874 81.34

8 -365.5878 47.4557 -290.2166 -202.7829 135.85

9 25.4673 -10.2640 6.5796 7.2610 72.68

10 -38.1949 5.9197 8.5364 -7.9129 95.88

11 12.5002 54.3339 -38.4912 9.4477 86.19

12 436.8622 216.3690 -13.4351 213.2654 42.13

13 -72.0073 -102.4195 -46.7687 -73.7318 124.93

14 101.0611 84.5621 -1.4917 61.3772 77.14

15 3.7344 24.4262 14.3553 14.1719 79.09

16 95.9761 1.3456 5.2419 34.1879 66.08

17 4.0111 -15.0655 10.8610 -0.0644 90.00

18 104.5724 33.9910 -16.3281 40.7451 71.15

19 16.4405 -15.9408 -11.5565 -3.6856 97.17

20 1.5554 -1.5120 82.4191 27.4875 72.51

21 199.3788 -160.3920 9.6825 16.2231 79.86

22 -454.8406 2.6014 -188.5315 -213.5902 162.03

23 - 29.3341 69.7511 - 44.6772 - 1.4201 90.66

24 -32.8725 10.7222 -2.2509 -8.1337 126.47

25 44.5584 -24.2968 14.7844 11.6820 73.37

26 -25.5303 18.1041 1.9735 -1.8176 91.87

27 -457.0079 -69.1297 -153.5110 -226.5495 163.23

28 -92.4552 16.9169 -57.0795 -44.2059 116.67

29 -54.5522 -69.8349 -16.9541 -47.1137 121.60

30 -51.8668 9.1393 -6.1275 -16.2850 113.00

31 -128.3287 27.1574 -71.3525 -57.5079 103.65

32 -3.5965 -2.1660 -1.7913 -2.5180 108.38

33 -127.7122 -12.7192 14.6092 -41.9407 113.35 34 3.4897 -29.1761 -21.3853 -15.6906 116.99 35 -67.1962 4.1935 -17.2841 -26.7623 113.90 36 0.7789 2.7941 -3.1035 0.1565 86.56 37 105.6553 -146.8483 -55.6114 -32.2681 114.75 38 38.4504 - 32.7776 32.8346 12.8358 65.28 39 -108.7433 -34.0156 -63.8236 -68.8608 117.49 40 -9.8945 -2.0758 -10.6859 -7.5521 107.77 41 201.2782 -63.5969 56.6632 64.7815 49.53 42 -112.1196 -30.4341 8.8479 -44.5686 120.15 43 - 49.7716 - 14.6357 - 15.2359 - 26.5477 130.78 44 -64.6990 -22.7025 -47.2518 -44.8844 120.57 45 95.5844 -34.7100 19.8557 26.9101 62.93 46 48.2217 -126.9797 14.3974 -21.4535 148.53 47 -100.4300 29.4310 -55.5104 -42.1698 131.45 48 -8.8280 -73.3929 19.3029 -20.9727 128.39 49 38.4320 -67.0318 10.6750 -5.9749 143.32 50 - 20.9849 1.6323 11.8749 - 2.4926 142.39 51 40.6452 13.8850 44.8283 33.1195 17.90 52 11.7510 -3.6755 32.6729 13.5828 73.07 53 3,7569 -10,2802 66,8629 20,1132 64,59 54 29.6307 -63.4772 16.9031 -5.6478 94.68 55 - 25.8004 5.0556 57.8692 12.3748 39.03 56 7.5868 -41.3935 37.0782 1.0905 85.86 57 61.9920 -14.2555 12.3232 20.0199 74.78 58 131.1012 -87.7410 189.1831 77.5144 49.05 59 -32.9010 26.7274 -0.1967 -2.1234 96.31 60 -1.3518 2.7074 -7.5801 -2.0749 119.12 61 -4.0569 -11.9021 -4.8956 -6.9516 118.71 62 -83.6882 -6.1378 -78.7683 -56.1981 124.07 63 0.2737 -8.9862 9.1337 0.1404 81.99 64 17.9224 11.4575 -5.8260 7.8513 54.52 65 59.6250 86.2592 53.5859 66.4900 44.51 66 -10.5134 10.6635 21.1310 7.0937 60.71 67 1.3945 -9.1742 12.9925 1.7376 77.21 68 53.8290 - 28.0959 18.4191 14.7174 71.35 69 16.7806 -31.8743 1.8376 -4.4187 105.69 70 136.4163 -54.5190 35.9202 39.2725 55.85 71 -16.7919 6.9570 -7.6208 -5.8186 113.51 72 -51.2077 32.5932 -4.0113 -7.5420 108.14 73 -2.6900 -1.2683 40.2777 12.1065 69.69 74 -32.7684 0.3861 15.0897 -5.7642 105.11 75 -34.4920 -0.1138 7.6686 -8.9791 133.90 76 14.8971 -50.2915 35.7952 0.1336 89.75 77 3.4506 6.2903 4.4643 4.7351 57.85 78 -33.8955 -109.4928 -42.9697 -62.1193 161.49 79 63.8669 -134.5276 102.2031 10.5141 85.56 80 13.0327 127.6468 71.7206 70.8000 25.69 81 -68.0964 9.6876 42.8855 -5.1745 101.49 82 -24.3431 2.2359 22.0348 -0.0241 90.00 83 9.3392 0.1962 6.5882 5.3746 67.80 84 9.2750 80.5538 -96.8489 -2.3400 93.41 85 -4.9984 -17.7852 -24.3456 -15.7097 165.75 86 -6.1704 8.4982 -0.1001 0.7426 82.31 87 18.8462 1.7676 0.0424 6.8854 47.34

88 -15.6526 4.1147 -24.5455 -12.0278 121.01

89 19.6094 2.5399 -3.2480 6.3004 38.51 90 -14.3452 15.6042 -67.1480 -21.9630 106.40 91 16.5508 -75.2681 -1.9525 -20.2233 119.99 92 4.3949 0.4841 6.0130 3.6307 70.13 93 -14.9370 -8.3885 -0.8553 -8.0603 104.38 94 -31.4067 -52.4420 39.9546 -14.6314 132.61 95 -0.0568 -13.8660 -30.5501 -14.8243 109.00 96 7.3185 12.1731 -7.2548 4.0789 78.23 97 -50.7527 18.5323 85.1030 17.6276 44.22 98 30.3058 -40.5900 7.3071 -0.9924 92.78 99 -21.2222 -12.6971 -5.2850 -13.0681 121.49 100 -8.7372 31.6209 -7.9100 4.9912 53.66

Transition dipoles

Ground to excited state transition electric dipole moments (Au):

Y Dip. S. state Х Ζ Osc. 1 1.1835 0.4292 -0.1268 1.6009 0.1147 2 -0.7050 0.0134 -0.0276 0.4980 0.0388 3 1.5704 -0.7349 -0.2229 3.0558 0.2599 4 0.5144 0.1258 -0.1782 0.3122 0.0278 0.1276 -0.7770 -0.0889 5 0.6279 0.0583 -0.2712 6 0.2426 -0.4924 0.3749 0.0354 7 0.6232 0.9568 -0.2049 1.3458 0.1288 8 0.6557 1.1909 -0.1254 1.8638 0.1825

9 0.1488 0.3835 0.1678 0.1974 0.0201 10 -0.4474 -0.7521 -0.0677 0.7704 0.0796 11 -0.6211 -0.1222 0.0738 0.4062 0.0425 12 -0.3173 -0.0904 -0.5240 0.3834 0.0406 13 0.8898 -0.4801 0.3293 1.1306 0.1227 14 0.3184 0.9518 0.3200 1.1097 0.1221 15 0.5154 -0.6779 0.1470 0.7468 0.0829 16 0.4502 0.0917 0.2365 0.2670 0.0300 17 -0.2565 0.3767 -0.0220 0.2081 0.0236 18 -0.0826 0.4324 -0.2331 0.2481 0.0288 19 0.3268 -0.2028 0.0548 0.1509 0.0177 20 -0.3823 0.8588 -0.0292 0.8846 0.1050 21 -0.7046 -0.3000 -0.4077 0.7527 0.0902 22 0.4278 1.3551 -0.0515 2.0220 0.2430 23 0.2156 0.3752 -0.1265 0.2032 0.0246 24 0.1369 -0.5316 0.2274 0.3531 0.0431 25 -0.2698 -0.2050 -0.2447 0.1747 0.0215 26 0.3871 0.4579 0.0399 0.3611 0.0446 -0.7225 27 2.0651 -0.2403 4.8444 0.6091

28 0.3106 0.3373 -0.1377 0.2292 47 -0.1965 -0.4531 0.1107 0.2562 0.0294 0.0361 48 -0.9333 0.2598 -0.2216 29 -0.5025 -0.1506 -0.1753 0.3059 0.9876 0.0393 0.1402 30 0.3360 -0.2396 0.0360 0.1716 49 -0.3271 -0.0576 -0.3723 0.2489 0.0222 0.0354 31 -0.0564 0.7460 50 -0.0297 0.0328 0.5608 0.1662 -0.0044 0.0285 0.0727 0.0041 32 -0.0044 0.1269 -0.0973 0.0256 51 0.1611 0.4524 0.1195 0.2449 0.0033 0.0350 33 0.0879 -0.8077 0.1585 0.6852 52 -0.1782 -0.4941 0.0849 0.2831 0.0901 0.0405 34 0.3267 -0.1087 0.1541 0.1423 53 -0.1555 0.4376 -0.0657 0.2200 0.0189 0.0317 0.4807 -0.2671 0.3145 35 -0.0297 0.3772 -0.0211 0.1436 54 0.4013 0.0192 0.0581 36 -0.0438 0.0548 0.1139 0.0179 55 -0.3718 -0.0745 -0.1646 0.1709 0.0024 0.0249 37 -0.0424 0.3356 0.4271 0.2969 56 -0.6865 -0.1186 -0.1309 0.5024 0.0402 0.0732 38 -0.3430 0.1373 -0.2270 57 0.4876 -0.0037 0.2160 0.2844 0.1880 0.0416 0.0255 39 -0.0737 0.6642 0.2230 58 1.1414 0.1874 0.4963 0.5087 1.5968 0.0678 0.2341 40 0.1114 0.1828 0.0452 59 -0.3308 0.0479 0.1768 -0.0847 0.1479 0.0066 0.0218 41 -0.7785 -0.1410 -0.3545 0.7516 60 0.0358 0.2753 0.0225 0.0776 0.1032 0.0115 42 -0.3319 -0.7111 -0.2274 61 -0.0943 0.0769 -0.0767 0.0207 0.6675 0.0919 0.0031 43 -0.0045 -0.2579 -0.0600 0.0702 62 -0.5316 -0.5576 0.0599 0.5971 0.0097 0.0891 44 -0.2882 0.5270 -0.1487 0.1006 0.0372 -0.0607 0.3829 63 0.0152 0.0535 0.0023 45 0.4438 -0.2006 0.2483 64 0.0702 0.2988 0.0889 0.2573 0.0790 0.0418 0.0118 46 -0.2748 -0.0401 -0.2169 0.1242 65 0.3814 0.2912 0.3630 0.3620 0.0175 0.0544

66 85 0.1034 0.2210 -0.0968 0.0689 0.2650 -0.1416 0.0904 0.0985 0.0104 0.0156 -0.1785 0.0947 67 0.0144 -0.0328 0.0332 86 0.0459 -0.0042 0.0111 0.0050 0.0018 -0.0616 68 0.1086 -0.3508 0.0017 0.1349 87 0.0085 0.0710 0.0089 0.0204 0.0014 69 -0.0872 88 -0.0815 -0.0287 0.0151 0.0555 -0.1500 0.0060 0.0256 0.0023 0.0041 70 -0.1663 -0.3458 -0.2720 0.2213 89 -0.0389 0.1657 0.1694 0.0576 0.0336 0.0092 71 0.1937 -0.0784 -0.0947 0.0526 90 -0.6147 0.0586 -0.1031 0.3919 0.0081 0.0628 72 0.1603 -0.1589 -0.0458 0.0530 91 -0.5022 -0.0463 -0.1187 0.2685 0.0081 0.0430 73 -0.2614 0.0051 -0.1235 0.0836 92 0.2787 -0.0506 0.0970 0.0896 0.0129 0.0144 74 -0.1463 -0.0617 -0.1349 0.0434 93 -0.1714 0.2452 -0.0721 0.0947 0.0067 0.0152 94 0.2970 75 -0.1636 -0.0449 -0.0939 0.0376 -0.2674 -0.0976 0.1693 0.0058 0.0272 76 0.2595 -0.2143 95 -0.1973 -0.4732 -0.6941 0.5951 -0.0737 0.2683 0.0923 0.0433 77 0.2351 -0.2764 0.0490 96 0.0387 -0.0752 -0.1899 0.1341 0.0432 0.0208 0.0070 78 0.4666 -0.0753 97 0.1033 0.5879 0.1280 0.2398 -0.2224 0.4058 0.0374 0.0659 79 -1.0351 -0.2807 -0.4419 1.3455 98 0.1205 -0.0293 0.2650 0.0856 0.2105 0.0139 80 0.5221 -0.2967 0.3007 0.4511 99 0.1578 0.4589 0.0483 0.2378 0.0706 0.0388 81 0.1706 0.5648 0.0161 0.3483 100 -0.2759 -0.1556 -0.0913 0.0548 0.0177 0.1087 82 0.0683 0.2689 0.0062 0.0770 Ground to excited state transition velocity 0.0121 dipole moments (Au): 83 Х Y 0.1180 0.1013 0.0429 0.0260 state Ζ Dip. S. Osc. 0.0041 1 -0.1270 -0.0461 0.0138 0.0185 0.1144 84 -0.7887 -0.0387 -0.0668 0.6280 0.0994

21 0.1269 0.0539 0.0736 0.0244 2 0.0823 -0.0015 0.0032 0.0068 0.0387 0.0905 3 -0.2007 0.0936 0.0284 0.0498 22 -0.0773 -0.2443 0.0096 0.0657 0.2604 0.2431 4 -0.0692 -0.0163 0.0238 0.0056 23 -0.0387 -0.0676 0.0230 0.0066 0.0280 0.0242 24 -0.0264 0.0973 -0.0406 0.0118 5 -0.0176 0.1084 0.0128 0.0122 0.0586 0.0430 6 -0.0338 0.0385 0.0698 0.0075 25 0.0498 0.0375 0.0450 0.0059 0.0352 0.0213 7 -0.0888 -0.1377 0.0294 0.0277 26 -0.0716 -0.0842 -0.0080 0.0123 0.1286 0.0442 27 0.1356 -0.3889 8 -0.0968 -0.1754 0.0191 0.0405 0.0457 0.1717 0.1838 0.6069 -0.0225 -0.0582 -0.0261 28 -0.0592 -0.0641 9 0.0046 0.0263 0.0083 0.0200 0.0288 10 0.0687 0.1169 0.0107 0.0185 29 0.0974 0.0292 0.0338 0.0115 0.0796 0.0397 30 -0.0649 0.0469 -0.0066 11 0.0975 0.0193 -0.0119 0.0100 0.0065 0.0425 0.0222 12 0.0510 0.0141 0.0834 0.0104 -0.1446 -0.0066 0.0211 0.0097 31 0.0409 0.0722 13 -0.1451 0.0782 -0.0538 32 0.0011 -0.0244 0.0174 0.0009 0.0301 0.1231 0.0031 14 -0.0528 -0.1572 -0.0531 33 -0.0170 0.1590 -0.0307 0.0303 0.0265 0.1224 0.0896 15 -0.0852 0.1133 -0.0251 0.0207 34 -0.0652 0.0222 -0.0304 0.0057 0.0829 0.0190 16 -0.0757 -0.0153 -0.0401 0.0076 35 0.0057 -0.0756 0.0054 0.0058 0.0300 0.0192 17 0.0441 -0.0645 0.0036 0.0061 36 0.0086 -0.0112 -0.0227 0.0007 0.0240 0.0024 18 0.0144 -0.0744 0.0402 0.0087 -0.0675 -0.0867 0.0074 37 0.0121 0.0282 0.0399 0.0698 -0.0281 0.0458 0.0078 19 -0.0575 0.0354 -0.0092 38 0.0046 0.0254 0.0176 39 0.0152 -0.1364 -0.0457 0.0209 20 0.0679 -0.1533 0.0052 0.0281 0.1053 0.0681

40 -0.0237 -0.0372 -0.0090 0.0020 59 0.0729 -0.0390 0.0186 0.0072 0.0066 0.0217 41 0.1592 0.0290 0.0729 0.0315 60 -0.0092 -0.0611 -0.0051 0.0038 0.1019 0.0115 42 0.0678 0.1471 0.0465 0.0284 61 0.0223 -0.0170 0.0170 0.0011 0.0917 0.0032 43 62 0.1177 0.1246 -0.0131 0.0295 0.0006 0.0527 0.0129 0.0029 0.0095 0.0880 44 0.0600 -0.1102 0.0316 0.0167 63 -0.0220 -0.0083 0.0127 0.0007 0.0533 0.0021 45 -0.0924 0.0418 -0.0515 0.0129 64 -0.0199 -0.0156 -0.0572 0.0039 0.0412 0.0116 46 0.0582 0.0085 0.0462 0.0056 65 -0.0858 -0.0658 -0.0817 0.0184 0.0176 0.0543 47 0.0416 0.0956 -0.0235 0.0114 66 -0.0230 -0.0500 0.0217 0.0035 0.0360 0.0103 48 0.1986 -0.0549 0.0472 0.0447 67 0.0393 -0.0039 0.0071 0.0016 0.1399 0.0048 49 0.0695 0.0120 0.0792 0.0112 68 -0.0249 0.0793 -0.0001 0.0069 0.0351 0.0203 50 0.0009 69 0.0196 0.0062 -0.0356 0.0013 0.0189 0.0070 0.0008 0.0023 0.0041 -0.0341 -0.0968 -0.0254 70 0.0381 0.0786 51 0.0112 0.0613 0.0114 0.0348 0.0334 52 0.0381 71 -0.0446 0.1062 -0.0184 0.0131 0.0181 0.0221 0.0028 0.0406 0.0082 53 0.0335 -0.0946 0.0143 0.0103 72 -0.0357 0.0365 0.0102 0.0027 0.0317 0.0079 54 -0.1041 0.0586 -0.0681 0.0189 73 0.0604 -0.0013 0.0285 0.0045 0.0581 0.0129 55 0.0809 0.0159 0.0359 0.0081 74 0.0344 0.0142 0.0311 0.0024 0.0247 0.0068 56 0.1485 0.0250 0.0282 75 0.0388 0.0104 0.0215 0.0235 0.0021 0.0717 0.0060 57 -0.1075 0.0007 76 0.1605 -0.0602 -0.0478 0.0139 0.0494 0.0318 0.0421 0.0912 58 -0.2508 -0.0416 -0.1116 0.0771 77 -0.0541 0.0639 -0.0117 0.0071 0.2337 0.0205

78 -0.1089 0.0178 -0.0296 0.0131 0.0372 79 0.2422 0.0657 0.1036 0.0737 0.2094 80 -0.1229 0.0697 -0.0714 0.0251 0.0711 81 -0.0400 -0.1332 -0.0035 0.0194 0.0547 82 -0.0158 -0.0637 -0.0022 0.0043 0.0122 83 -0.0281 -0.0249 -0.0101 0.0015 0.0043 84 0.1869 0.0086 0.0163 0.0353 0.0991 85 -0.0624 0.0339 -0.0207 0.0055 0.0154 86 -0.0219 -0.0108 0.0008 0.0006 0.0017 87 0.0136 -0.0023 -0.0163 0.0005 0.0013 88 -0.0132 0.0360 -0.0013 0.0015 0.0041 89 0.0089 -0.0395 -0.0402 0.0033 0.0090 90 0.1470 -0.0147 0.0249 0.0225 0.0623 91 0.1202 0.0116 0.0284 0.0154 0.0426 92 -0.0672 0.0114 -0.0235 0.0052 0.0144 93 0.0415 -0.0587 0.0176 0.0055 0.0152 94 0.0233 -0.0713 0.0642 0.0098 0.0269 95 0.0479 0.1147 0.0177 0.0158 0.0434 96 -0.0088 0.0183 0.0454 0.0025 0.0068

97 0.0657	-0.0255	-0.1430	0.0536	0.0240
98 0.0136	-0.0296	0.0071	-0.0636	0.0050
99 0.0388	-0.0386	-0.1123	-0.0115	0.0142
100 0.0179	0.0677	0.0383	0.0228	0.0066

Ground to excited state transition magnetic dipole moments (Au):

state	Х	Y	Z
1	-0.0554	0.2542	0.9273
2	-0.0733	0.1061	-0.1874
3	-0.1301	-0.3612	2.2585
4	-0.0816	0.1574	1.1020
5	0.0597	-0.1930	0.3610
6	-0.3917	-0.0912	2.2764
7	-0.1345	0.1425	1.8269
8	0.0129	0.7607	0.4327
9	-0.0870	0.0476	-0.2112
10	0.0802	-0.0585	-0.3599
11	-0.0014	-0.2307	-0.9175
12	-0.3245	-0.0713	1.9348
13	0.0427	-0.5006	0.1044
14	0.0917	0.0682	-1.1035
15	-0.1051	-0.0671	-0.3456
16	0.0654	-0.1726	-0.6669
17	-0.1304	-0.1249	-0.6611
18	-0.1350	0.1464	1.0667
19	0.1895	0.1813	-0.1885
20	-0.0218	-0.1320	0.3896
21	-0.1537	0.0142	0.4226

22	0.0472	0.6582	0.1143	53	0.1624	-0.1894	-0.3429
23	-0.0975	0.4403	1.0824	54	0.1651	-0.2256	-0.3702
24	-0.0609	-0.0750	0.0154	55	0.1598	-0.0110	-0.0358
25	0.1123	-0.2652	0.2998	56	0.0284	-0.0700	-0.0515
26	-0.0390	0.0128	0.3927	57	0.0797	0.1917	-0.5657
27	-0.0242	0.4468	-0.0922	58	-0.1806	0.1755	-0.3073
28	-0.0037	0.7538	0.4574	59	0.0247	0.1624	0.1370
29	-0.1433	-0.0695	-0.6679	60	-0.0360	0.0404	-0.0357
30	-0.0395	-0.2977	0.3033	61	-0.2378	-0.2020	-0.2767
31	0.2358	0.4045	-1.3042	62	-0.1329	-0.2527	0.4746
32	-0.2119	0.0510	-0.0351	63	0.0083	-0.0348	0.0023
33	-0.0465	-0.3114	-0.4434	64	0.1135	0.0062	-0.1722
34	0.2046	-0.2639	-0.1964	65	-0.1579	0.0317	-0.6374
35	0.5686	0.3194	-0.3460	66	-0.0591	-0.1728	-0.1473
36	-0.0766	-0.0225	-0.0238	67	0.0428	-0.1591	-0.0893
37	-0.3724	0.4672	-0.0800	68	0.4229	0.3118	0.0907
38	0.2458	0.1710	-0.0281	69	-0.4078	0.2727	-0.2694
39	-0.1115	0.6353	-0.6228	70	-0.3241	0.5223	0.1502
40	0.1123	0.2062	-0.4168	71	0.0541	0.1106	-0.2380
41	0.1435	-0.0167	0.4699	72	-0.2130	-0.3619	-0.1731
42	0.2514	-0.3866	0.0167	73	0.2351	-0.4425	-0.1017
43	0.3261	-0.3327	-0.4642	74	-0.0976	0.3643	-0.2395
44	0.3139	0.5141	-0.0654	75	-0.1512	-0.2334	-0.0249
45	-0.3619	-0.2840	-0.0456	76	-0.0604	-0.0373	0.1535
46	-0.1805	0.1183	-0.2104	77	-0.1019	-0.0097	0.0185
47	-0.0714	-0.4377	-0.2980	78	0.5083	-0.2469	0.0626
48	-0.0997	0.0586	0.0863	79	-0.1561	-0.0103	0.4723
49	-0.0620	0.0010	-0.0140	80	-0.2405	0.1910	-0.3876
50	0.0159	0.0672	0.0382	81	-0.1318	0.0756	0.1088
51	-0.0468	-0.2552	-0.1484	82	-0.0160	0.0092	-0.1438
52	-0.0965	0.0909	-0.3467	83	0.1090	-0.3499	0.0257

84	-0.0242	0.2083	0.0226
85	0.1558	-0.1164	0.1047
86	-0.0486	0.0452	0.2194
87	0.0987	0.2723	-0.3833
88	-0.1097	-0.3621	0.4886
89	-0.0579	-0.1193	-0.0551
90	-0.1392	0.4696	0.2000
91	-0.2247	0.1997	0.1428
92	-0.0007	0.0093	-0.1510
93	-0.0102	0.2456	0.3750
94	0.0571	-0.2001	0.0833
95	-0.0772	-0.1516	0.3310
96	-0.0735	-0.3437	0.2164
97	-0.1320	-0.0886	0.0405
98	0.1571	-0.2413	-0.0838
99	0.2078	0.0445	0.0466
100	0.0937	0.0013	-0.0534

C-29 (S1 state)

С	3.18532	0.69681	0.34572
С	4.10685	-0.36792	0.42652
С	3.76684	-1.63986	0.04175
С	1.82846	0.40370	-0.07032
Н	5.10492	-0.16231	0.78934
н	4.48870	-2.44194	0.12151
С	2.72959	3.09255	0.52089
С	3.58816	2.02736	0.63360
С	0.89226	1.45533	0.06346
С	1.36989	2.80775	0.22575
Н	3.04775	4.11119	0.68112
Н	4.61914	2.19149	0.91594
С	1.53165	-0.87459	-0.65016
С	2.49489	-1.92485	-0.54250
С	0.07539	-2.26219	-1.78175
С	2.15590	-3.18483	-1.04838
С	0.91449	-3.36067	-1.65953
Н	2.85908	-4.00217	-0.96599
Н	0.61369	-4.32101	-2.05194
С	-1.92520	3.51513	-0.45939
Н	-1.93782	4.58871	-0.54548
Ν	0.39689	3.70601	0.08041
С	-2.99932	2.69181	-0.69639
Ν	-0.74705	2.96174	-0.12044
Н	-3.93328	3.11833	-1.02531
С	-2.90348	1.30575	-0.43519
С	-0.52645	1.58898	-0.01723
С	-4.01461	0.43954	-0.63194
С	-1.67407	0.75637	0.06196
н	-4.91029	0.84503	-1.08045

С	-3.95433	-0.87108	-0.26399
С	-1.68686	-0.55388	0.64171
С	-2.82062	-1.39246	0.42657
Н	-4.79882	-1.52431	-0.43682
С	-2.83139	-2.69429	0.95805
Н	-0.88001	-2.35997	-2.28368
С	-0.66230	-1.02747	1.48952
С	-0.70840	-2.29733	2.02021
Н	0.16593	-0.38317	1.73277
С	-1.78732	-3.15040	1.73711
Н	-3.68765	-3.32690	0.76681
Н	-1.80997	-4.15002	2.14667
Н	0.09135	-2.63589	2.66339
Ν	0.36377	-1.04242	-1.30914

Excited state information

Excited State 1: Singlet-A 2.6188 eV 473.44 nm f=0.2036 <S**2>=0.000

96 -> 97 0.69721

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-DFT) = -1164.42390243

Copying the excited state density for this state as the 1-particle RhoCl density.

Rotatory strengths (velocity)

state XX YY ZZ R(velocity) E-M Angle

1 2.0219 224.5481 -125.1807 33.7965 85.94

Ground to excited state transition electric dipole moments (Au):

state X Y Z Dip. S. Osc. 1 1.7291 0.4084 -0.1311 3.1738 0.2036

Ground to excited state transition velocity dipole moments (Au):

state X Y Z Dip. S. Osc. 1 -0.1661 -0.0392 0.0128 0.0293 0.2030

Ground to excited state transition magnetic dipole moments (Au):

state X Y Z

1 -0.0607 0.2647 1.1046

C-29·H⁺ (S₀ state)

С	3.10700	0.92446	0.36210
С	4.14007	-0.05157	0.44293
С	3.93058	-1.35168	0.09981
С	1.79209	0.53985	-0.00899
Н	5.11282	0.26740	0.78934
Н	4.71369	-2.08929	0.18999
С	2.48585	3.28035	0.45432
С	3.41448	2.29894	0.61143
С	0.76122	1.52985	0.07263
С	1.14815	2.90327	0.17263
Н	2.73607	4.32442	0.56946
Н	4.43124	2.54857	0.87758
С	1.64836	-0.76942	-0.54812
С	2.68260	-1.73743	-0.45509
С	0.30592	-2.33936	-1.74615
С	2.44163	-3.02717	-0.95729
С	1.25166	-3.33834	-1.58437
Н	3.21475	-3.77587	-0.85907
Н	1.05651	-4.32317	-1.97513
С	-2.19548	3.39954	-0.44285
Н	-2.27384	4.46921	-0.53646
Ν	0.11329	3.74118	0.02555
С	-3.20002	2.51754	-0.64615
Ν	-0.95230	2.92564	-0.12107
Н	-4.16957	2.88109	-0.94876
С	-3.01539	1.12659	-0.39147
С	-0.65618	1.57089	-0.00508
С	-4.09379	0.21253	-0.54909
С	-1.76169	0.66022	0.06652
н	-5.02874	0.58353	-0.94411

С	-3.94951	-1.10107	-0.22611
С	-1.68173	-0.66500	0.62688
С	-2.76081	-1.56869	0.40178
н	-4.76022	-1.79790	-0.38661
С	-2.65591	-2.89758	0.86658
н	-0.62767	-2.47861	-2.26629
С	-0.61407	-1.09271	1.44656
С	-0.55194	-2.38371	1.91396
н	0.15554	-0.39226	1.72512
С	-1.56190	-3.30774	1.59049
н	-3.46774	-3.58257	0.66471
н	-1.49403	-4.32636	1.94417
н	0.27435	-2.68665	2.54071
Ν	0.53014	-1.12399	-1.24718
н	-0.17824	-0.41674	-1.39303

Excited state information
Excited State wavelength (nm) Oscillator strength
Transition wavelengths and oscillator strengths
Excited State 1: Singlet-A 2.3036 eV 538.21 nm f=0.0437 <s**2>=0.000</s**2>
96 -> 97 0.70268
This state for optimization and/or second- order correction.
Total Energy, E(TD-HF/TD-DFT) = - 1164.88706518
Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: Singlet-A 2.7810 eV 445.83 nm f=0.0665 <S**2>=0.000

95 -> 97 0.68763	95 -> 99 0.10129
96 -> 98 0.14726	96 -> 99 -0.26592
	96 ->100 0.55734
Excited State 3: Singlet-A 3.1966 eV 387.86 nm f=0.0332 <s**2>=0.000</s**2>	Excited State 8: Singlet-A 3.8155 eV 324.95 nm
94 -> 97 0.50931	f=0.3666 <s**2>=0.000</s**2>
95 -> 99 0.10201	92 -> 97 -0.17774
96 -> 98 0.45362	93 -> 97 -0.17935
96 -> 99 0.10267	95 -> 98 0.52418
	96 -> 99 0.19074
Excited State 4: Singlet-A 3.2975 eV 375.99 nm	96 ->100 0.27492
t=0.1040 <s**2>=0.000</s**2>	96 ->101 0.10719
93 -> 97 0.10550	
94 -> 97 -0.45998	Excited State 9: Singlet-A 3.9839 eV 311.21 nm
95 -> 97 -0.10802	t=0.0798 <s**2>=0.000</s**2>
96 -> 98 0.49130	95 -> 99 0.59772
	95 ->100 -0.14216
Excited State 5: Singlet-A 3.4475 eV 359.64 nm f=0.0666 <s**2>=0.000</s**2>	96 ->100 -0.14110
93 -> 97 0 21784	96 ->101 -0.27400
95 -> 98 -0.24592 96 -> 98 0 58671	Excited State 10: Singlet-A 4.1310 eV 300.13
96 ->100 0 14652	94 -> 98 0 62914
50 / 100 0.14052	95 ->100 0 25768
Evolted State C. Simplet A 2 5120 eV 252 02 em	
f=0.0109 <s**2>=0.000</s**2>	90->101-0.12108
93 -> 97 0.56959	Excited State 11 [.] Singlet-A 4 1499 eV 298 77
95 -> 98 0.33510	nm f=0.1108 <s**2>=0.000</s**2>
96 ->100 -0.22435	92 -> 97 0.64665
	95 -> 98 0.13563
Excited State 7: Singlet-A 3.6944 eV 335.60 nm	96 -> 99 0.10055
f=0.0737 <s**2>=0.000</s**2>	96 ->101 -0.10747
93 -> 97 0.25511	

	91 -> 97 0.15101	
Excited State 12: Singlet-A 4.1647 eV 297.70	93 -> 98 0.14190	
nm f=0.1137 <s**2>=0.000</s**2>	94 -> 99 0.63051	
92 -> 97 0.12498	94 ->100 0.10055	
93 -> 98 -0.20580	95 ->100 0.10527	
94 -> 98 -0.16842	96 ->101 0.11028	
95 -> 99 0.21975		
95 ->100 0.51731	Excited State 16: Singlet-A 4.6186 eV 268.45	
96 ->101 0.21323	nm f=0.1355 <s**2>=0.000</s**2>	
	91 -> 97 -0.19089	
Excited State 13: Singlet-A 4.3255 eV 286.64	93 -> 98 0.36510	
nm t=0.0259 <s**2>=0.000</s**2>	93 -> 99 -0.21092	
91 -> 97 0.44438	94 -> 99 -0.15060	
93 -> 98 0.34619	94 ->100 0.36183	
94 -> 99 -0.15404	96 ->101 0.25374	
95 -> 99 -0.11776		
95 ->100 0.19680	Excited State 17: Singlet-A 4.7082 eV 263.34	
96 ->101 -0.25997	nm f=0.0388 <s**2>=0.000</s**2>	
	93 -> 99 0.47042	
Excited State 14: Singlet-A 4.3726 eV 283.55	94 ->100 0.25176	
nm t=0.1655 <s**2>=0.000</s**2>	96 ->102 -0.41358	
91 -> 97 0.42109		
92 -> 98 0.10739	Excited State 18: Singlet-A 4.7484 eV 261.11	
93 -> 98 -0.14636	nm f=0.2621 <s**2>=0.000</s**2>	
94 -> 98 0.17253	93 -> 98 -0.30780	
94 -> 99 -0.12148	93 -> 99 -0.12657	
94 ->100 0.11139	93 ->100 0.19794	
95 ->100 -0.22999	94 ->100 0.44495	
96 ->101 0.36289	95 ->101 -0.19370	
	96 ->101 -0.14878	
Excited State 15: Singlet-A 4.4253 eV 280.17	96 ->102 0.12359	
nm f=0.0445 <s**2>=0.000</s**2>	96 ->103 -0.17521	

	89 -> 97 -0.38836	
Excited State 19: Singlet-A 4.7683 eV 260.02 nm f=0.1261 <s**2>=0.000</s**2>	90 -> 97 -0.18686	
	92 -> 98 -0.23867	
90 -> 97 0.10754	96 ->103 0.45557	
93 -> 98 -0.13034		
93 -> 99 -0.23768	Excited State 23: Singlet-A 5.0686 eV 244.61 nm f=0.1297 <s**2>=0.000</s**2>	
95 ->101 0.53667		
96 ->102 -0.25559	89 -> 97 0.39654	
96 ->103 -0.11530	90 -> 97 -0.16953	
	91 -> 98 0.20004	
Excited State 20: Singlet-A 4.8945 eV 253.31 nm f=0.0156 <s**2>=0.000</s**2>	92 -> 98 -0.20292	
	93 ->100 -0.31656	
89 -> 97 0.11482	94 ->101 0.12809	
90 -> 97 -0.25755	95 ->102 -0.12732	
91 -> 98 -0.13804	96 ->101 -0.10206	
92 -> 98 0.13817	96 ->103 0.14053	
93 -> 99 0.28941		
95 ->101 0.31831	Excited State 24: Singlet-A 5.0925 eV 243.46	
96 ->102 0.36800	nm f=0.0091 <s**2>=0.000</s**2>	
	89 -> 97 0.24871	
Excited State 21: Singlet-A 4.9121 eV 252.40 nm f=0.0097 <s**2>=0.000</s**2>	90 -> 97 -0.10500	
	91 -> 98 0.21703	
89 -> 97 0.18244	92 -> 98 0.30427	
90 -> 97 0.53728	93 ->100 0.36844	
92 -> 98 -0.13583	94 ->101 -0.11467	
93 -> 99 0.11670	95 ->102 0.13275	
93 ->100 0.10689	96 ->102 -0.14193	
96 ->102 0.11185	96 ->103 0.23602	
96 ->103 0.28958		
Excited State 22: Singlet-A 4.9646 eV 249.74 nm f=0.0227 <s**2>=0.000</s**2>	Excited State 25: Singlet-A 5.1438 eV 241.03 nm f=0.3342 <s**2>=0.000</s**2>	
	90 -> 97 -0.10643	
91 -> 98 0.13971	Excited State 28: Singlet-A 5.2617 eV 235.64	
---	---	--
92 -> 98 -0.32822	nm f=0.0882 <s**2>=0.000</s**2>	
92 -> 99 -0.11318	88 -> 97 0.29008	
92 ->100 -0.13541	91 -> 98 -0.19436	
93 ->100 0.33636	92 -> 98 -0.12873	
94 ->101 0.13012	92 -> 99 0.52405	
95 ->102 0.10646	95 ->102 0.11191	
95 ->103 0.19881	95 ->103 -0.11441	
96 ->103 -0.16880		
96 ->104 -0.22116	Excited State 29: Singlet-A 5.2801 eV 234.82 nm f=0.0369 <s**2>=0.000</s**2>	
	88 -> 97 0.51118	
Excited State 26: Singlet-A 5.1996 eV 238.45 nm f=0.0309 <s**2>=0.000</s**2>	91 -> 98 0.14897	
88 -> 97 0.23088	92 -> 99 -0.16284	
89 -> 97 -0 13849	94 ->101 -0.28228	
91 -> 98 0.20800	95 ->102 -0.27535	
92 -> 98 0.12577		
94 ->101 0.33417	Excited State 30: Singlet-A 5.3512 eV 231.69 nm f=0.1958 <s**2>=0.000</s**2>	
95 ->102 0.23198	88 -> 97 0.13768	
96 ->102 0.12287	91 -> 98 -0.23598	
96 ->104 0.33995	92 ->100 -0.10702	
	93 ->100 -0.14677	
Excited State 27: Singlet-A 5.2026 eV 238.31 nm f=0.1417 <s**2>=0.000</s**2>	94 ->101 -0.30167	
88 -> 97 -0.15470	94 ->102 -0.13490	
91 -> 98 -0.16540	95 ->102 0.39907	
92 -> 98 -0.20157	95 ->103 0.20041	
92 -> 99 -0.13338		
93 ->100 0.12788	Excited State 31: Singlet-A 5.4041 eV 229.43 nm f=0.0329 <s**2>=0.000</s**2>	
94 ->101 -0.14503	87 -> 97 0.14903	
96 ->104 0.53375	91 -> 98 -0.24028	

91 -> 99 0.22593	87 -> 97 0.26175
92 -> 98 0.14337	91 -> 99 -0.18005
94 ->101 0.18765	91 ->100 0.12778
95 ->102 -0.25551	92 ->100 0.47098
95 ->103 0.41977	93 ->101 -0.22670
	94 ->102 -0.18690

Excited State 32: Singlet-A 5.5090 eV 225.06 nm f=0.0358 <S**2>=0.000

87 -> 97 0.10117

88 -> 97 -0.10653

91 -> 99 -0.23764

92 -> 99 0.26432

93 ->101 0.11071

94 ->101 -0.15476

95 ->102 -0.10072

95 ->103 0.30335

96 ->105 0.21139

96 ->106 -0.30071

Excited State 36: Singlet-A 5.6588 eV 219.10 nm f=0.0209 <S**2>=0.000

Excited State 37: Singlet-A 5.6613 eV 219.00

Excited State 35: Singlet-A 5.6168 eV 220.74

95 ->103 -0.10669

87 -> 97 0.36225

91 ->100 0.22399

92 ->100 -0.33055

93 ->101 -0.24337

95 ->103 -0.17490

95 ->104 -0.22162

87 -> 97 -0.27447

91 -> 98 -0.15462

95 ->104 -0.19444

96 ->105 0.47718

96 ->107 0.17538

92 ->100 -0.17829

93 ->101 -0.19157

95 ->103 -0.12248

95 ->104 0.57891

nm f=0.0413 <S**2>=0.000

nm f=0.0757 <S**2>=0.000

Excited State 33: Singlet-A 5.5412 eV 223.75 nm f=0.0230 <S**2>=0.000

87 -> 97 -0.16819

91 -> 98 0.15713

91 -> 99 0.50255

92 ->100 0.16668

93 ->101 -0.22806

94 ->101 -0.12549

96 ->105 0.11373

96 ->106 -0.18198

Excited State 34: Singlet-A 5.5892 eV 221.83 nm f=0.1401 <S**2>=0.000

Excited State 38: Singlet-A 5.6961 eV 217.67	86 -> 97 0.13867		
nm f=0.0180 <s**2>=0.000 87 -> 97 0.23710 91 -> 98 0.12868 93 ->101 0.10101</s**2>	89 -> 98 0.31642		
	90 -> 98 0.43190 91 ->100 -0.31461 93 ->101 -0.15103 94 ->103 -0.12180		
			94 ->102 0.10136
			95 ->104 0.15447
96 ->105 0.33309			Excited State 42: Singlet-A 5.8080 eV 213.47
96 ->106 0.42597	nm f=0.0032 <s**2>=0.000</s**2>		
	86 -> 97 0.29963		
Excited State 39: Singlet-A 5.7282 eV 216.45	87 -> 97 0.11245		
nm f=0.0084 <s**2>=0.000 91 ->100 -0.14147</s**2>	89 -> 98 -0.18998		
	90 -> 98 -0.13398		
93 ->101 -0.14732	91 ->100 -0.27742		
95 ->104 0.11718	92 -> 99 -0.12862		
96 ->104 0.10720	93 ->102 -0.10348		
96 ->105 -0.16430	94 ->102 0.29479		
96 ->106 0.12422	96 ->106 -0.22722		
96 ->107 0.58177			
Excited State 40: Singlet-A 5.7481 eV 215.69	Excited State 43: Singlet-A 5.8427 eV 212.20 nm f=0.1141 <s**2>=0.000</s**2>		
00 -> 08 0 36655	86 -> 97 0.54161		
90 -> 98 0.30033	93 ->101 0.11679		
91 -> 99 0.11808	94 ->102 -0.35300		
91 ->100 0.16388			
93 ->101 0.33544	Excited State 44: Singlet-A 5.8789 eV 210.90		
94 ->103 0.13962	nm f=0.0127 <s**2>=0.000</s**2>		
96 ->106 -0.18128	89 -> 98 -0.17556		

96 ->107 0.25768

91 ->100 -0.13517 96 ->108 0.61858

Excited State 41: Singlet-A 5.7924 eV 214.05 nm f=0.0129 <S**2>=0.000

Excited State 45: Singlet-A 5.9391 eV 208.76 nm f=0.3945 <s**2>=0.000</s**2>	Excited State 48: Singlet-A 5.9857 eV 207.13 nm f=0.0200 <s**2>=0.000</s**2>	
86 -> 97 0.21813	85 -> 97 0.16778	
87 -> 97 -0.10034	89 -> 98 0.39730	
89 -> 98 0.16775	90 -> 98 -0.20045	
89 -> 99 -0.15369	92 ->101 -0.21147	
90 -> 99 -0.19156	93 ->102 -0.11293	
91 ->100 0.28604	94 ->103 0.29076	
93 ->102 0.10918	96 ->108 0.10195	
94 ->102 0.32423	96 ->109 -0.20923	
94 ->103 -0.14796		
96 ->108 0.20507	Excited State 49: Singlet-A 6.0023 eV 206.56 nm f=0.0784 <s**2>=0.000</s**2>	
Excited State 46: Singlet-A 5 9544 eV 208 22	85 -> 97 -0.23050	
nm f=0.0616 <s**2>=0.000</s**2>	89 -> 98 0.21323	
85 -> 97 0.44686	90 -> 98 -0.16178	
89 -> 99 -0.22393	93 ->102 -0.17433	
90 -> 99 -0.29651	96 ->109 0.47850	
94 ->102 -0.13936		
94 ->103 -0.24719	Excited State 50: Singlet-A 6.0163 eV 206.08 nm f=0.0115 <s**2>=0.000</s**2>	
Excited State 47: Singlet-A 5.9742 eV 207.53	85 -> 97 0.27522	
nm f=0.0507 <s**2>=0.000</s**2>	93 ->101 -0.12456	
85 -> 97 0.31044	93 ->102 0.12357	
89 -> 99 0.26481	94 ->103 0.35579	
90 -> 99 0.38951	96 ->109 0.39505	
91 ->100 0.11788		
94 ->102 0.10213	Excited State 51: Singlet-A 6.0727 eV 204.17	

nm f=0.0578 <S**2>=0.000

84 -> 97 -0.15006

88 -> 98 -0.33407

91 ->100 -0.10291

94 ->103 -0.27053

96 ->109 0.10995

92 ->101 -0.22871	90 -> 99 0.13150	
93 ->102 0.41704	94 ->104 0.31623	
95 ->105 0.15212	95 ->105 0.18031	
95 ->106 -0.11796	95 ->106 0.27175	
	95 ->107 -0.23722	
Excited State 52: Singlet-A 6.0950 eV 203.42 nm f=0.0195 <s**2>=0.000</s**2>	96 ->110 -0.10091	
93 ->102 -0 25904	96 ->111 -0.10300	
95 ->105 0 55872	96 ->113 -0.12527	
06 > 112 0 10907		
96 ->112 -0.10807	Excited State 56: Singlet-A 6.1752 eV 200.78 nm f=0.0018 <s**2>=0.000</s**2>	
Excited State 53: Singlet-A 6.1090 eV 202.95	84 -> 97 0.30295	
nm f=0.0072 <s**2>=0.000</s**2>	88 -> 98 -0.20398	
88 -> 98 0.10120 92 ->101 -0.14216 93 ->102 0.12745	89 -> 99 -0.14608	
	90 -> 99 0.12130	
	94 ->104 -0.25118	
94 ->104 -0.22033	95 ->105 -0.11712	
95 ->105 0.10962 95 ->106 0.50026	95 ->107 0.35839	
	96 ->108 0.11622	
95 ->107 0.18947	96 ->111 -0.15527	
96 ->111 0.12643		
Excited State 54: Singlet-A 6.1479 eV 201.67	Excited State 57: Singlet-A 6.1924 eV 200.22 nm f=0.0207 <s**2>=0.000</s**2>	
nm f=0.0022 <s**2>=0.000</s**2>	82 -> 97 0.11939	
96 ->110 0.62216	84 -> 97 0.28018	
96 ->111 -0.16334 96 ->112 -0.16432	88 -> 98 -0.17853	
	89 -> 99 0.17281	
	90 -> 99 -0.10089	
Excited State 55: Singlet-A 6.1671 eV 201.04 nm f=0.0073 <s**2>=0.000</s**2>	92 ->101 0.10711	
84 -> 97 0.26961	95 ->107 -0.11462	
89 -> 99 -0.12460	96 ->110 0.18824	
	96 ->111 0.34544	

96 ->112 0.29347	89 -> 99 -0.11581		
	92 ->101 -0.26434		
Excited State 58: Singlet-A 6.2075 eV 199.73	94 ->104 0.38289		
nm f=0.0404 <s**2>=0.000</s**2>	95 ->107 0.33451		
84 -> 97 0.11754	96 ->111 0.27830		
89 -> 98 -0.11106			
89 -> 99 0.24982	Excited State 61: Singlet-A 6.2556 eV 198.20		
90 -> 99 -0.17088	nm f=0.0086 <s**2>=0.000</s**2>		
92 ->101 -0.27569	92 ->101 -0.21210		
93 ->102 -0.22073	93 ->103 -0.20949		
93 ->103 0.31358	96 ->111 -0.36127		
94 ->103 -0.13587	96 ->112 0.42756		
95 ->106 0.11181			
95 ->108 -0.11033	Excited State 62: Singlet-A 6.2950 eV 196.96		
96 ->112 -0.16014	91 > 07 0 12506		
	81 -> 31 0.12230		
Excited State 59: Singlet-A 6.2265 eV 199.12	82 -> 97 -0.34629		
nm f=0.0048 <5**2>=0.000	83 -> 97 -0.18577		
82 -> 97 -0.11204	88 -> 98 -0.10008		
88 -> 98 -0.16101	89 -> 99 -0.20968		
89 -> 99 0.22332	90 -> 99 0.12578		
90 -> 99 -0.16459	91 ->101 0.34806		
91 ->101 -0.10736	93 ->103 0.19891		
92 ->101 0.30531	96 ->112 0.19067		
93 ->103 0.14549			
94 ->104 0.25368	Excited State 63: Singlet-A 6.3037 eV 196.68		
95 ->106 0.12042	nm f=0.0756 <s**2>=0.000</s**2>		
95 ->107 0.28744	82 -> 97 0.21951		
96 ->111 -0.12872	87 -> 98 -0.12928		
	88 -> 98 0.23616		
Excited State 60: Singlet-A 6.2406 eV 198.67 nm f=0.0111 <s**2>=0.000</s**2>	93 ->103 0.30248		
	95 ->108 0.34929		

96 ->111 -0.13573	81 -> 97 0.13885	
96 ->112 0.11830	83 -> 97 -0.25123	
96 ->114 0.12294	84 -> 97 0.21755	
	89 ->100 0.27168	
Excited State 64: Singlet-A 6.3163 eV 196.29	90 ->100 0.41739	
nm t=0.0213 <s**2>=0.000</s**2>	91 ->101 -0.14459	
81 -> 97 -0.28693	93 ->103 -0.10199	
82 -> 97 -0.27950	95 ->108 -0.11814	
83 -> 97 0.22297	96 ->113 -0.12337	
90 -> 99 -0.10908		
90 ->100 0.22877	Excited State 67: Singlet-A 6.3490 eV 195.28	
95 ->108 0.36720	nm f=0.0172 <s**2>=0.000</s**2>	
95 ->109 -0.10295	82 -> 97 -0.18310	
	84 -> 97 0.16195	
Excited State 65: Singlet-A 6.3289 eV 195.90	88 -> 99 -0.18359	
nm 1=0.0170 <s**2>=0.000</s**2>	90 ->100 -0.10009	
81 -> 97 0.26565	91 ->101 -0.15007	
83 -> 97 -0.24335	94 ->104 0.10542	
86 -> 98 0.10809	96 ->113 0.51624	
87 -> 98 0.12966		
88 -> 98 -0.10584	Excited State 68: Singlet-A 6.3701 eV 194.63	
88 -> 99 0.14861	nm f=0.1075 <s**2>=0.000</s**2>	
89 -> 99 0.11510	81 -> 97 0.14944	
89 ->100 -0.12781	82 -> 97 0.29668	
90 ->100 -0.18433	84 -> 97 -0.15842	
93 ->103 -0.14324	88 -> 98 -0.22557	
95 ->108 0.32931	88 -> 99 -0.14710	
95 ->109 -0.10581	90 ->100 0.29580	
96 ->113 -0.10230	91 ->101 0.19439	
	96 ->112 -0.11054	
Excited State 66: Singlet-A 6.3401 eV 195.56 nm f=0.0486 <s**2>=0.000</s**2>	96 ->113 0.18078	

Excited State 69: Singlet-A 6.3895 eV 194.04	89 ->100 0.13005	
nm t=0.0878 <s**2>=0.000</s**2>	95 ->109 0.42835	
87 -> 98 0.18683	96 ->114 0.18033	
88 -> 98 0.19818	96 ->115 0.17641	
88 -> 99 0.11629		
89 -> 99 0.12068	Excited State 72: Singlet-A 6.4518 eV 192.17	
89 ->100 0.13156	nm f=0.0116 <s**2>=0.000</s**2>	
91 ->101 0.39008	81 -> 97 -0.11405	
95 ->106 -0.12059	86 -> 98 -0.13559	
96 ->112 -0.10855	87 -> 98 -0.17743	
96 ->114 -0.23587	88 -> 99 0.25951	
96 ->115 -0.14378	89 ->100 -0.17517	
	90 ->100 0.10663	
Excited State 70: Singlet-A 6.4317 eV 192.77	91 ->101 -0.10974	
nm f=0.0655 <s**2>=0.000</s**2>	95 ->108 0.11625	
86 -> 98 0.21233	95 ->109 0.35971	
86 -> 99 -0.11638	96 ->114 -0.30139	
87 -> 98 0.10299		
88 -> 99 0.33382	Excited State 73: Singlet-A 6.4942 eV 190.91	
90 ->100 0.11114	nm f=0.0326 <s**2>=0.000</s**2>	
91 ->101 -0.12852	81 -> 97 0.14481	
93 ->103 0.13856	83 -> 97 0.15604	
93 ->104 0.21779	86 -> 98 -0.10472	
95 ->109 -0.27258	87 -> 98 -0.11639	
95 ->113 0.10248	89 ->100 0.47767	
96 ->113 0.20650	90 ->100 -0.16241	
	93 ->102 -0.11727	
Excited State 71: Singlet-A 6.4397 eV 192.53 nm f=0.0235 <s**2>=0.000</s**2>	96 ->114 -0.15114	
86 -> 98 0.28287	Excited State 71. Singlet-A 6 E112 av 100 22	
86 -> 99 -0.13104	nm f=0.0319 <s**2>=0.000</s**2>	
87 -> 98 0.22247	81 -> 97 0.23810	

83 -> 97 0.21228	95 ->110 0.44172
86 -> 98 -0.16575	96 ->115 0.24768
87 -> 99 0.10230	96 ->116 -0.35156
93 ->104 0.47049	96 ->117 0.10046

Excited State 75: Singlet-A 6.5231 eV 190.07 nm f=0.0098 <S**2>=0.000

81 -> 97 -0.25623

95 ->109 0.12434

83 -> 97 -0.25649

86 -> 98 0.17326

87 -> 99 -0.13461

88 -> 99 -0.21893

93 ->104 0.38719

96 ->113 -0.10764

Excited State 76: Singlet-A 6.5407 eV 189.56 nm f=0.1437 <S**2>=0.000

81 -> 97 -0.18082

83 -> 97 -0.20551

85 -> 98 0.18530

86 -> 98 -0.20760

88 -> 98 -0.10859

88 -> 99 0.24917

92 ->102 -0.12012

96 ->114 0.33624

Excited State 77: Singlet-A 6.5599 eV 189.00 nm f=0.0071 <S**2>=0.000

94 ->105 0.16836

94 ->106 0.12201

94 ->107 0.10525

Excited State 78: Singlet-A 6.5688 eV 188.75 nm f=0.0062 <S**2>=0.000

94 ->105 -0.12964 94 ->107 -0.15131 95 ->110 -0.35263 96 ->114 -0.26336 96 ->115 0.43359 96 ->116 -0.13085 96 ->117 0.11143

Excited State 79: Singlet-A 6.5940 eV 188.03 nm f=0.0098 <S**2>=0.000

85 -> 98 0.12672

86 -> 98 -0.15269

87 -> 98 0.22856

92 ->102 0.11977

94 ->106 -0.15617

95 ->110 0.10506

95 ->112 -0.15452

96 ->114 -0.10268

96 ->115 0.24431

96 ->116 0.39660

Excited State 80: Singlet-A 6.6097 eV 187.58 nm f=0.0363 <S**2>=0.000

87 -> 98 -0.11690

88 ->100 0.10476

92 ->102 -0.30722	Excited State 83: Singlet-A 6.6554 eV 186.29 nm f=0.0110 <s**2>=0.000</s**2>	
94 ->105 -0.15942		
94 ->106 0.26662	85 -> 98 0.25771	
95 ->110 0.19640	85 -> 99 -0.11379	
95 ->111 0.16344	87 -> 98 -0.14097	
96 ->115 0.10345	87 -> 99 -0.19150	
96 ->116 0.33039	92 ->102 0.18166	
	94 ->105 0.16353	
Excited State 81: Singlet-A 6 6232 eV 187 20	94 ->106 -0.15817	
nm f=0.0259 <s**2>=0.000</s**2>	95 ->111 0.28745	
84 -> 98 0.10953	95 ->112 0.27638	
85 -> 98 0.40664	96 ->117 -0.17801	
85 -> 99 -0.19935		
87 -> 98 0.16936	Excited State 84: Singlet-A 6.6722 eV 185.82	
88 -> 99 -0.16408	nm f=0.0338 <s**2>=0.000</s**2>	
88 ->100 0.10190	87 -> 98 -0.16375	
94 ->105 -0.21375	87 -> 99 -0.14387	
94 ->106 0.16194	88 ->100 0.16236	
96 ->115 -0 17217	92 ->102 0.33436	
96 ->116 -0.14283	94 ->106 0.12222	
	95 ->111 -0.24355	
Evolted State 27: Singlet A 5 6527 eV 196 27	96 ->116 0.10433	
nm f=0.0378 <s**2>=0.000</s**2>	96 ->117 0.38196	
87 -> 98 0.10952		
92 ->102 -0.14036	Excited State 85: Singlet-A 6.6847 eV 185.48	

- 94 ->105 0.30659
- 95 ->110 -0.10234
- 95 ->111 0.25585
- 96 ->115 -0.18039
- 96 ->117 0.42956

nm f=0.0030 <S**2>=0.000 94 ->105 0.31755

94 ->106 0.42578

94 ->107 -0.10285

94 ->108 -0.13285

95 ->110 -0.17210

95 ->112 -0.19537

96 ->117 -0.21482

Excited State 86 [.] Singlet-A 6 6975 eV 185 12	Excited State 88: Singlet-A 6.7241 eV 184.39 nm f=0.0240 <s**2>=0.000</s**2>	
nm f=0.0129 <s**2>=0.000</s**2>	86 -> 98 -0.11409	
85 -> 98 -0.17625	87 -> 98 0.10858	
86 -> 98 -0.12526	91 ->102 0.11043	
87 -> 98 0.11124	94 ->107 0.10274	
87 -> 99 -0.20753	95 ->112 0.10636	
88 ->100 0.33589	96 ->118 0.59960	
91 ->102 0.13951		
92 ->102 0.15488	Excited State 89: Singlet-A 6.7467 eV 183.77	
92 ->103 0.10079	nm f=0.0007 <s**2>=0.000</s**2>	
93 ->105 0.10374	87 -> 99 0.13643	
94 ->105 -0.11577	94 ->105 -0.10041	
95 ->111 0.31128 95 ->112 -0.16007	94 ->107 0.51564	
	95 ->110 -0.11453	
96 ->118 -0.11310	95 ->111 0.19899	
	95 ->112 -0.18828	
Excited State 87: Singlet-A 6.7033 eV 184.96 nm f=0.0101 <s**2>=0.000</s**2>	96 ->117 0.10361	
86 -> 98 -0.11014	Excited State 90: Singlet-A 6.7661 eV 183.24	
87 -> 98 0.17226	nm f=0.0123 <s**2>=0.000</s**2>	
87 -> 99 -0.14708	86 -> 99 0.17200	
88 ->100 0.15165	87 -> 98 0.10347	
92 ->102 -0.13938	87 ->100 0.14872	
94 ->105 0.15256	88 ->100 -0.26239	
94 ->106 0.12730	91 ->102 0.11688	
94 ->107 0.27371	91 ->103 -0.15041	
95 ->110 -0.12996	92 ->102 0.18877	
95 ->111 -0 18518	94 ->105 -0.12714	
95 ->112 0 29974	94 ->106 0.13371	
96 ->118 -0.22754	95 ->111 0.13438	

95 ->112 0.31721

95 ->113 -0.10944

Excited State 91: Singlet-A 6.7821 eV 182.81 nm f=0.0494 <S**2>=0.000

85 -> 98 0.12651

86 -> 98 0.15282

87 -> 99 0.33341

88 ->100 0.21294

91 ->102 0.39620

95 ->113 -0.19751

Excited State 92: Singlet-A 6.8231 eV 181.71 nm f=0.0388 <S**2>=0.000

90 ->101 -0.17810

- 91 ->102 0.30691
- 92 ->103 -0.10677

94 ->108 -0.15793

- 95 ->113 0.47525
- 95 ->114 -0.13153

Excited State 93: Singlet-A 6.8324 eV 181.46 nm f=0.0109 <S**2>=0.000

80 -> 97 -0.26001

86 -> 99 -0.16808

87 -> 99 -0.12534

88 ->100 -0.27065

91 ->102 0.30519

92 ->103 0.12111

93 ->106 0.10889

95 ->112 -0.10429

95 ->113 -0.22589

96 ->119 0.10901

Excited State 94: Singlet-A 6.8414 eV 181.23 nm f=0.0034 <S**2>=0.000

80 -> 97 0.13707

96 ->117 -0.12282

96 ->119 0.61683

Excited State 95: Singlet-A 6.8589 eV 180.76 nm f=0.1923 <S**2>=0.000

80 -> 97 0.19501

86 -> 99 0.16578

86 ->100 0.10784

92 ->103 0.50296

95 ->114 -0.22140

96 ->119 -0.13541

Excited State 96: Singlet-A 6.8841 eV 180.10 nm f=0.0412 <S**2>=0.000

80 -> 97 0.28121

87 -> 99 -0.14561

91 ->102 0.12288

92 ->103 -0.17219

94 ->105 0.10168

94 ->108 0.46144

94 ->109 0.12551

95 ->112 -0.10363

96 ->119 -0.10608

Excited State 97: Singlet-A 6.8911 eV 179.92 nm f=0.0997 <S**2>=0.000

80 -> 97 -0.34120

87 -> 99 0.17306 90 ->101 -0.13696 91 ->102 -0.10243 92 ->103 0.19871 93 ->106 -0.14224 94 ->108 0.35084 94 ->109 0.10719 95 ->113 0.15332

Excited State 98: Singlet-A 6.9216 eV 179.13 nm f=0.0736 <S**2>=0.000

87 -> 99 -0.10450

90 ->101 -0.18814

92 ->103 0.19093

93 ->105 -0.22470

- 95 ->114 0.45322
- 95 ->115 0.15775
- 95 ->116 -0.11272

Excited State 99: Singlet-A 6.9316 eV 178.87 nm f=0.0201 <S**2>=0.000

80 -> 97 -0.24473

86 -> 98 0.13710

86 -> 99 0.41666

- 86 ->100 0.22252
- 87 -> 99 -0.10054
- 87 ->100 0.13815
- 90 ->101 0.13275
- 91 ->103 0.17321

92 ->103 -0.10820

93 ->105 -0.12091

96 ->120 -0.11801

Excited State 100: Singlet-A 6.9448 eV 178.53 nm f=0.0072 <S**2>=0.000 90 ->101 -0.17023 93 ->105 0.49991 93 ->106 0.29459 95 ->111 -0.11740 95 ->114 0.10325

Rotatory strengths (velocity) state XX YY ZZ R(velocity) E-M Angle 1 -26.3597 36.4557 -46.4826 -12.1289 98.73 2 66.0800 177.5915 -52.7033 63.6561 77.99 3 - 28.1561 - 42.4348 - 53.9540 - 41.5150 150.75 4 156.6506 276.0193 -58.3308 124.7797 71.87 5 8.5387 34.2373 -39.8997 0.9588 89.72 6 22.7565 27.7670 -9.4792 13.6815 80.80 7 262.4370 205.2894 -49.3266 139.4666 69.40 8 -42.6631 454.5357 -204.3882 69.1615 86.38 9 138.1406 62.4543 -28.8495 57.2485 77.22 10 67.2254 88.7260 3.0628 53.0047 57.39 11 -233.8141 -1.4443 -195.6955 -143.6513 143.90 12 -28.5022 30.9398 -26.4342 -7.9989 92.34 13 70.6560 -1.0462 24.2581 31.2893 58.60 14 -96.0169 -28.2025 -41.3036 -55.1743 128.78 15 -59.5585 1.8779 -22.9922 -26.8909 105.26 16 315.0339 -96.5047 54.6208 91.0500 63.70 17 -86.8101 0.3665 -26.2916 -37.5784 114.77 18 -101.5667 -42.7004 -37.3501 -60.5390 106.19

19 40.5386 -39.9954 -10.0154 -3.1574 92.33

20 281.1106 231.2368 4.6347 172.3273 13.11

21 -26.1078 -3.1621 -28.5410 -19.2703 130.24

22 34.3311 -27.4511 -36.2065 -9.7755 97.86

23 -31.3020 -60.2325 44.5654 -15.6564 103.92

24 44.0126 6.2397 -4.2687 15.3279 73.17

25 -349.1172 -27.3658 -113.1675 -163.2168 149.86

26 10.9753 59.4724 -18.5368 17.3036 79.36

27 -143.2987 -4.3735 -34.5799 -60.7507 116.24

28 -137.6419 24.5355 -141.8460 -84.9841 125.27

29 -10.5106 53.5301 -12.9578 10.0206 84.75

30 46.5609 -98.7094 96.7179 14.8565 80.19

31 170.4385 -60.7552 26.4306 45.3713 33.18

32 -120.7956 -9.6372 -22.3720 -50.9349 140.24

33 -106.7758 1.1083 -13.3276 -39.6651 169.22

34 -224.8911 7.9033 -23.8255 -80.2711 129.46

35 -154.9243 40.6988 -140.1886 -84.8047 132.77

36 -37.2665 -39.6174 12.6597 -21.4081 106.34

37 7.5393 -36.2621 -3.3492 -10.6907 105.17

38 64.4631 -68.0591 37.6333 11.3458 57.20

39 -45.0112 -2.6783 -12.2645 -19.9847 151.13

40 -161.6650 -3.0655 -43.7951 -69.5085 147.75

41 62.2982 -18.6544 -13.4772 10.0555 77.66

42 -18.6926 -7.2859 9.2860 -5.5641 147.36

43 - 45.0041 - 89.7099 - 39.2767 - 57.9969 130.03 44 12.1485 -4.0454 10.5823 6.2285 66.66 45 111.9065 -442.1310 209.4611 -40.2544 106.46 46 -77.2397 51.7569 19.9676 -1.8384 91.24 47 55.8150 34.3272 90.3319 60.1580 46.47 48 23.1113 0.1439 45.7599 23.0050 37.42 49 -48.8596 -30.4423 20.2737 -19.6761 129.33 50 -4.0624 -22.6655 -8.7631 -11.8304 112.78 51 49.0506 8.3760 79.5351 45.6539 55.34 52 -6.7289 -40.8751 -33.7489 -27.1176 135.56 53 39.3000 - 24.1665 - 0.9074 4.7420 41.85 54 -3.4787 0.9639 -1.0047 -1.1732 105.17 55 8.8764 -19.4597 21.1641 3.5270 60.25 56 10.8546 -2.9895 3.7174 3.8608 46.98 57 -21.6549 0.6521 44.4958 7.8310 61.26 58 19.3838 9.2099 53.1125 27.2354 74.92 59 21.9524 7.6769 -8.2094 7.1400 63.76 60 - 21.7457 14.5338 - 5.7159 - 4.3093 121.80 61 4.4352 -9.1776 32.2486 9.1687 69.33 62 35.6326 33.7342 18.3579 29.2416 63.98 63 136.4243 7.2046 79.7049 74.4446 52.52 64 15.3984 -37.0681 26.5092 1.6132 81.03 65 -33.2397 -21.7319 22.7499 -10.7406 125.85 66 -12.9755 -28.8407 1.6416 -13.3915 108.51 67 -50.6083 2.5983 17.8848 -10.0418 129.84 68 56.6505 -5.6560 47.0473 32.6806 64.42 69 27.2335 -38.0382 -1.5906 -4.1318 93.24

70 -33.1515 -74.1487 31.5392 -25.2537 149.36 71 -20.3466 -1.0925 10.9884 -3.4835 115.06 72 -12.5746 60.4563 -15.1489 10.9110 60.71 73 -40.2990 -15.3168 3.5833 -17.3442 109.22 74 -48.0941 4.2777 16.7759 -9.0135 106.17 75 16.7580 -12.7117 4.9092 2.9852 78.03 76 75.0042 -11.1606 -46.5561 5.7625 86.62 77 -3.7543 47.2278 2.8778 15.4504 41.65 78 -3.4990 -48.5516 -0.4135 -17.4880 149.88 79 25.2650 30.4919 14.7348 23.4972 11.63 80 41.0172 -121.1926 45.6741 -11.5004 103.12 81 3.0693 -36.6532 33.2378 -0.1154 90.37 82 113.3998 21.2742 28.2128 54.2956 55.32 83 -9.3266 28.7738 9.5338 9.6603 75.58 84 85.6540 - 39.8715 41.1532 28.9786 64.37 85 15.9375 6.6575 4.9525 9.1825 17.10 86 1.8537 11.7989 -26.6086 -4.3187 97.77 87 - 38.7470 - 9.2963 5.9174 - 14.0420 132.00 88 24.0847 5.9441 51.0246 27.0178 31.25 89 -4.4317 -7.2692 -3.8823 -5.1944 146.25 90 7.6034 -1.1837 -22.2206 -5.2670 110.77 91 17.3269 25.1992 -25.0825 5.8145 74.23 92 6.4636 -34.9773 -24.5338 -17.6825 147.01 93 28.6733 20.2832 -18.9778 9.9929 58.97 94 -3.2072 13.8794 1.6310 4.1011 53.70 95 -75.5427 -26.9265 116.1655 4.5654 84.38 96 0.6130 35.9182 -38.4483 -0.6390 91.94 97 9.4396 -79.1719 -87.7730 -52.5018 130.50 98 - 5.1787 - 9.8829 88.4987 24.4790 49.24 99 7.8051 -19.7789 -34.1197 -15.3645 128.01 100 -40.8901 -0.0177 -8.9718 -16.6265 159.19

Ground to excited state transition electric dipole moments (Au): state Х Υ Ζ Dip. S. Osc. 1 0.8211 0.3112 -0.0535 0.7740 0.0437 2 0.7239 -0.6280 -0.2397 0.9758 0.0665 3 -0.5958 0.2085 -0.1579 0.4233 0.0332 4 -0.8149 0.7016 0.3624 1.2876 0.1040 5 0.8871 -0.0160 0.0410 0.7889 0.0666 6 0.1833 -0.2945 -0.0761 0.1261 0.0109 7 -0.0041 -0.7963 -0.4244 0.8143 0.0737 1.4933 1.2748 8 -0.2591 3.9221 0.3666 9 0.2592 -0.7936 0.3466 0.8172 0.0798 10 0.1968 -0.1541 -0.1378 0.0815 0.0082 11 0.6782 0.7935 0.0221 1.0900 0.1108 12 1.0483 -0.0547 0.1116 1.1145 0.1137 -0.0405 13 0.4491 -0.2022 0.2442 0.0259 14 -0.2504 -1.1858 -0.2765 1.5452 0.1655 15 0.1356 -0.6262 -0.0156 0.4108 0.0445 0.9579 -0.1708 0.5009 1.1977 16 0.1355

17 0.0959 0.5721 0.0104 36 0.2942 -0.1993 0.1563 0.1507 0.3366 0.0388 0.0209 37 -0.0328 18 -0.5852 1.3358 -0.3558 2.2534 0.5160 0.1755 0.2981 0.2621 0.0413 19 -1.0066 0.0721 -0.2472 1.0796 38 -0.2037 -0.2211 -0.1958 0.1287 0.1261 0.0180 39 -0.0527 0.1794 -0.1583 20 0.0667 -0.0008 -0.3549 0.1304 0.0600 0.0156 0.0084 21 0.1397 0.2386 -0.0623 0.0803 40 0.2375 -0.5249 0.0172 0.3322 0.0097 0.0468 22 -0.2897 0.2501 -0.1995 0.1863 41 0.0376 0.2212 0.2010 0.0908 0.0227 0.0129 23 -0.6258 0.7472 -0.3078 1.0447 42 0.0221 -0.0959 0.1131 0.0225 0.1297 0.0032 24 0.0036 -0.2338 0.1360 0.0732 43 0.7859 -0.3570 0.2284 0.7973 0.0091 0.1141 25 -0.1986 -1.6073 -0.1694 2.6517 44 0.2487 0.0374 0.1585 0.0883 0.3342 0.0127 26 0.0681 0.4285 0.2326 0.2424 45 -1.4757 0.5242 -0.5088 2.7112 0.0309 0.3945 27 -0.0904 -1.0475 -0.0781 1.1114 46 0.5465 -0.2442 0.2530 0.4223 0.0616 0.1417 -0.3268 -0.7400 0.1727 47 -0.3921 0.3721 -0.2325 28 0.6842 0.3463 0.0882 0.0507 29 0.4588 0.2738 -0.0144 48 0.2677 -0.0509 0.2495 0.2856 0.1365 0.0369 0.0200 30 -0.4972 1.0607 -0.3481 1.4935 49 0.6991 0.0313 0.2078 0.5329 0.1958 0.0784 0.2715 0.3002 0.2913 0.2487 50 -0.2590 -0.0962 -0.0427 31 0.0782 0.0329 0.0115 32 0.1946 0.4671 0.0975 0.2656 51 0.4187 -0.3961 0.2378 0.3887 0.0358 0.0578 0.0115 0.4110 0.0050 -0.0995 0.3417 33 0.1691 52 0.0620 0.1305 0.0230 0.0195 34 -0.1928 -0.9887 -0.0915 53 1.0231 0.0157 -0.2018 -0.0834 0.0479 0.1401 0.0072 35 -0.1522 0.6966 0.2043 0.5501 54 0.0205 0.1181 0.0184 0.0147 0.0757 0.0022

55 -0.1924 -0.0983 -0.0376 0.0481 74 0.2262 -0.3254 0.2068 0.1999 0.0073 0.0319 75 -0.2233 56 0.0708 -0.0813 -0.0223 0.0121 0.0872 0.0623 0.0613 0.0018 0.0098 57 -0.0839 -0.3575 0.0416 0.1366 76 -0.8419 -0.3612 -0.2402 0.8970 0.0207 0.1437 77 0.0601 58 -0.0859 0.5069 0.0341 0.2655 0.0010 0.2017 0.0443 0.0404 0.0071 59 -0.0744 -0.1346 0.0887 0.0315 78 0.1910 -0.0403 0.0228 0.0386 0.0048 0.0062 60 0.0261 0.2291 -0.1390 0.0725 79 0.0260 0.1490 0.1941 0.0605 0.0111 0.0098 61 -0.2181 -0.0773 0.0488 0.0559 80 -0.4213 -0.0513 -0.2104 0.2244 0.0086 0.0363 62 -0.3180 0.0811 -0.1362 0.1262 81 0.3572 0.0780 0.1619 0.1599 0.0195 0.0259 63 0.5828 0.1955 0.3341 0.4895 82 0.4014 0.1373 0.2282 0.2321 0.0756 0.0378 64 -0.1864 -0.2562 -0.1924 0.1374 83 0.0335 -0.2011 0.1617 0.0677 0.0213 0.0110 -0.3535 -0.2131 -0.1912 65 -0.2531 0.0684 -0.2026 84 0.1098 0.2069 0.0170 0.0338 0.0782 -0.5473 -0.0831 85 -0.0362 0.0587 -0.1165 66 0.3126 0.0183 0.0486 0.0030 67 0.1932 -0.2517 86 -0.2794 -0.0149 -0.0127 0.0987 0.1104 0.0785 0.0172 0.0129 68 -0.7937 -0.0372 -0.2395 0.6886 87 0.1575 0.1693 0.0883 0.0613 0.1075 0.0101 69 -0.6368 -0.3464 -0.1882 0.5609 88 0.3250 -0.1329 0.1494 0.1456 0.0878 0.0240 70 0.5238 0.2012 0.3180 0.4160 89 -0.0413 -0.0324 -0.0355 0.0040 0.0655 0.0007 71 0.3664 0.0233 90 -0.2611 -0.0294 0.0713 0.1178 0.1487 0.0741 0.0235 0.0123 72 0.2496 -0.0915 -0.0497 91 0.4236 0.0732 0.3431 0.0180 0.2975 0.0116 0.0494 73 -0.4255 -0.0675 -0.1383 0.2047 92 0.4782 -0.0154 0.0581 0.2323 0.0326 0.0388

93 0.1652 -0.1724 -0.0903 0.0652 0.0109 94 -0.0909 -0.0952 0.0527 0.0201 10 0.0034 95 -0.3879 -0.9871 -0.1394 1.1443 11 0.1923 96 0.4795 0.1186 -0.0178 0.2442 12 0.0412 97 -0.6950 -0.3169 -0.0839 0.5906 13 0.0997 98 -0.2459 -0.6065 -0.0752 0.4340 14 0.0736 99 0.3285 0.0985 0.0279 0.1184 15 0.0201 100 0.0773 -0.1720 -0.0836 0.0425 16 0.0072

Ground to excited state transition velocity dipole moments (Au):

state	Х	Y	Z Dip. S	S. Osc.
1 0.043	-0.0696 36	-0.0261	0.0047	0.0055
2 0.066	-0.0742 57	0.0642	0.0246	0.0102
3 0.033	0.0701 33	-0.0248	0.0185	0.0059
4 0.104	0.0987 10	-0.0850	-0.0439	0.0189
5 0.066	-0.1120 52	-0.0056	0.0021	0.0126
6 0.011	-0.0242 L0	0.0381	0.0098	0.0021
7 0.073	0.0011 39	0.1082	0.0579	0.0151
8 0.366	-0.2091 56	-0.1790	0.0364	0.0771

9 -0.0383 0.1163 -0.0507 0.0176 0.0800 -0.0301 0.0237 0.0209 0.0019 0.0084 -0.1035 -0.1208 -0.0034 0.0253 0.1107 -0.1604 0.0083 -0.0172 0.0261 0.1137 0.0063 -0.0714 0.0321 0.0062 0.0258 0.0405 0.1908 0.0443 0.0400 0.1660 -0.0226 0.1019 0.0027 0.0109 0.0447 -0.1624 0.0291 -0.0852 0.0345 0.1355 17 -0.0166 -0.0990 -0.0018 0.0101 0.0388 0.1022 -0.2329 0.0686 18 0.0622 0.2620 19 0.1762 -0.0131 0.0436 0.0331 0.1261 20 -0.0111 0.0009 0.0636 0.0042 0.0154 21 -0.0248 -0.0426 0.0119 0.0026 0.0095 22 0.0532 -0.0452 0.0360 0.0062 0.0226 23 0.1162 -0.1392 0.0576 0.0362 0.1296 -0.0007 24 0.0433 -0.0251 0.0025 0.0089 25 0.0381 0.3035 0.0320 0.0946 0.3337 26 -0.0135 -0.0816 -0.0443 0.0088 0.0307 0.0168 27 0.2000 0.0156 0.0405 0.1412

0.0630 0.1422 -0.0336 28 47 0.0860 -0.0818 0.0517 0.0168 0.0253 0.0873 0.0509 29 -0.0888 -0.0533 0.0027 0.0107 48 -0.0593 0.0112 -0.0545 0.0066 0.0368 0.0200 30 0.0971 -0.2087 0.0683 0.0576 49 -0.1533 -0.0069 -0.0460 0.0257 0.1954 0.0776 50 0.0580 31 -0.0535 -0.0594 -0.0578 0.0097 0.0210 0.0091 0.0039 0.0327 0.0117 32 -0.0391 -0.0944 -0.0195 0.0108 51 -0.0928 0.0882 -0.0532 0.0192 0.0356 0.0574 33 -0.0024 -0.0835 -0.0011 0.0070 52 0.0224 -0.0763 -0.0137 0.0065 0.0229 0.0194 34 0.0398 0.2028 0.0189 0.0431 53 -0.0034 0.0454 0.0190 0.0024 0.1398 0.0072 35 0.0316 -0.1432 -0.0422 0.0233 54 -0.0049 -0.0269 -0.0037 0.0008 0.0752 0.0022 36 -0.0606 0.0415 -0.0323 0.0064 55 0.0434 0.0221 0.0088 0.0024 0.0206 0.0072 37 0.0071 -0.1074 -0.0360 0.0129 56 -0.0162 0.0183 0.0047 0.0006 0.0413 0.0018 38 0.0425 0.0463 57 0.0819 -0.0091 0.0410 0.0056 0.0194 0.0072 0.0179 0.0210 39 0.0110 -0.0375 0.0193 -0.1161 -0.0077 0.0322 0.0026 58 0.0139 0.0081 0.0407 40 -0.0497 59 0.0168 0.1110 -0.0039 0.0148 0.0308 -0.0199 0.0016 0.0467 0.0047 41 -0.0083 -0.0469 -0.0424 0.0041 60 -0.0062 -0.0527 0.0317 0.0038 0.0127 0.0111 42 -0.0047 0.0201 -0.0243 0.0010 61 0.0499 0.0181 -0.0113 0.0029 0.0032 0.0085 43 -0.1684 0.0767 -0.0486 0.0366 62 0.0737 -0.0185 0.0316 0.0068 0.0195 0.1136 44 -0.0539 -0.0082 -0.0333 -0.1340 -0.0454 -0.0771 0.0041 63 0.0260 0.0126 0.0747 45 0.3215 -0.1147 0.1105 64 0.1287 0.0437 0.0591 0.0449 0.0074 0.3931 0.0213 46 -0.1193 0.0535 -0.0562 0.0203 65 0.0591 -0.0164 0.0469 0.0060 0.0617 0.0171

66 85 -0.0184 0.1274 0.0195 0.0169 0.0095 -0.0143 0.0284 0.0011 0.0485 0.0030 -0.0458 0.0589 0.0688 0.0033 67 -0.0232 0.0061 86 0.0032 0.0047 0.0175 0.0129 68 0.1851 0.0087 0.0559 0.0375 87 -0.0390 -0.0417 -0.0218 0.0037 0.1067 0.0101 69 0.0814 0.0439 88 -0.0806 0.1482 0.0305 0.0326 -0.0374 0.0090 0.0867 0.0242 70 -0.1239 -0.0474 -0.0750 0.0232 89 0.0106 0.0075 0.0082 0.0002 0.0656 0.0006 71 -0.0272 -0.0866 -0.0053 0.0083 90 0.0643 0.0072 -0.0175 0.0045 0.0233 0.0120 72 -0.0587 0.0216 0.0116 0.0040 91 -0.1051 -0.0855 -0.0045 0.0184 0.0114 0.0492 73 0.1015 0.0162 0.0333 0.0117 92 -0.1199 0.0035 -0.0140 0.0146 0.0326 0.0387 74 -0.0547 0.0777 -0.0493 0.0115 93 -0.0406 0.0437 0.0225 0.0041 0.0319 0.0108 75 0.0532 -0.0209 94 -0.0147 0.0035 0.0226 0.0243 -0.0122 0.0013 0.0097 0.0033 76 0.2019 0.0868 0.0579 95 0.0979 0.2486 0.0516 0.0349 0.0726 0.1920 0.1432 77 -0.0136 0.0003 -0.0481 0.0025 96 -0.1207 -0.0296 0.0045 0.0155 0.0069 0.0408 78 -0.0454 0.0104 -0.0054 0.0022 97 0.1755 0.0799 0.0213 0.0377 0.0061 0.0991 79 -0.0060 -0.0361 -0.0467 0.0035 98 0.0619 0.1539 0.0192 0.0279 0.0097 0.0731 80 0.1016 0.0124 0.0509 0.0131 99 -0.0834 -0.0249 -0.0069 0.0076 0.0359 0.0200 81 -0.0865 -0.0188 -0.0394 0.0094 100 -0.0192 0.0438 0.0212 0.0027 0.0257 0.0071 82 -0.0973 -0.0332 -0.0559 0.0137 0.0373 Ground to excited state transition magnetic 83 0.0489 -0.0092 -0.0395 0.0040 dipole moments (Au): 0.0110 Х Υ Ζ state 84 0.0867 0.0522 0.0468 0.0124 1 -0.0102 0.2469 0.2959 0.0338

2	-0.1043	-0.1863	1.2946	33	-0.0655	0.4119	0.0158
3	-0.1958	0.2294	-0.0689	34	0.0314	-0.3848	0.3634
4	0.1768	0.2124	-1.4739	35	-0.0489	0.6151	-0.3642
5	0.0206	-0.1556	0.9157	36	-0.2972	-0.7664	0.1578
6	-0.0291	-0.0812	1.0112	37	-0.3113	0.0613	0.0179
7	-0.1910	-0.2378	1.8350	38	0.2383	0.0445	-0.0517
8	-0.1621	0.4270	2.3019	39	-0.2170	0.3225	-0.1044
9	0.2153	-0.1404	-1.1852	40	-0.0059	-0.5556	0.2403
10	-0.1254	0.0052	1.4458	41	0.0832	0.3167	-0.5807
11	0.0862	0.7000	-0.1584	42	-0.0758	-0.1195	0.1233
12	-0.0598	-0.2227	0.7514	43	0.0875	-0.3415	0.2450
13	-0.0508	-0.0717	0.5083	44	-0.1511	-0.1302	0.1054
14	-0.1044	-0.2167	0.1797	45	-0.0959	-0.2148	-0.2813
15	0.0392	-0.1905	0.6462	46	-0.2807	-0.4158	0.2308
16	0.0111	-0.0185	-0.7965	47	0.6038	-0.1262	-0.1198
17	0.0528	0.2807	-0.5903	48	-0.0687	0.1509	-0.2881
18	-0.1528	0.2671	0.5313	49	0.0692	0.0292	0.1651
19	-0.0858	0.0365	0.3037	50	-0.2814	0.3216	-0.1693
20	-0.3844	0.5013	1.9943	51	-0.1314	0.0315	-0.5315
21	0.1183	0.3493	0.2583	52	-0.3717	0.2029	0.1439
22	-0.4488	0.0678	0.5384	53	0.0317	0.1148	-0.0307
23	0.0977	0.2207	0.1216	54	0.0797	0.0450	-0.1261
24	0.0044	-0.1926	-0.8168	55	0.0316	0.1173	-0.0657
25	0.0025	-0.4016	-0.2844	56	0.0196	0.2176	0.0108
26	-0.0225	0.2498	-0.7702	57	-0.0667	0.0917	-0.1470
27	-0.0668	-0.2778	0.4743	58	0.3058	-0.1235	-0.7932
28	-0.1857	-0.5289	-0.5113	59	0.2135	-0.0923	-0.3109
29	-0.0708	0.0077	0.8677	60	0.0024	0.1146	0.0586
30	0.2914	0.0559	-0.0618	61	0.1940	0.1944	0.3778
31	-0.0952	-0.1378	-0.4314	62	-0.0056	-0.4145	0.6785
32	-0.1337	0.4669	0.2520	63	-0.0558	-0.2699	-0.6934

64	0.0852	0.0235	-0.0786
65	-0.1122	0.2053	-0.0128
66	0.2359	-0.0372	-0.2135
67	0.1605	-0.0780	-0.0868
68	0.0752	-0.1411	0.3538
69	-0.2369	0.2617	0.2209
70	0.0778	0.0970	0.1477
71	-0.0403	0.0490	0.0649
72	-0.2542	-0.0548	-0.2386
73	-0.2422	-0.2645	0.3389
74	0.2625	-0.0322	-0.1561
75	-0.0001	-0.2224	0.1098
76	-0.1167	0.0600	0.4186
77	-0.3491	-0.0643	-0.2299
78	0.3583	-0.0239	0.2570
79	-0.0341	-0.1823	-0.3725
80	-0.2897	-0.0268	0.3519
81	-0.0378	-0.1177	0.1424
82	-0.0287	-0.5861	-0.6089
83	0.2325	-0.2001	-0.5547
84	-0.1160	0.5739	0.2185
85	0.1340	-0.0544	0.2654
86	-0.0780	-0.1678	0.4470
87	0.0904	0.3278	-0.1149
88	-0.2841	0.2023	0.0311
89	-0.3919	-0.1716	-0.0039
90	-0.0681	0.1748	0.1397
91	-0.0833	0.0230	0.1427
92	0.1642	0.0749	-0.0440
93	0.1076	0.2737	0.1358
94	0.1851	0.0497	0.0831

95	-0.1174	0.0823	-0.1170
96	-0.0064	0.0713	0.1464
97	-0.4077	0.1831	0.0248
98	-0.0502	0.1714	0.1638
99	0.2434	-0.1716	0.0815
100	0.0267	-0.3563	-0.0888

C-29·H⁺ (S₁ state)

С	3.12503	0.88779	0.35285
С	4.10153	-0.11794	0.48614
С	3.82804	-1.41775	0.14576
С	1.80915	0.51449	-0.08761
Н	5.08009	0.15134	0.85701
Н	4.58102	-2.18231	0.27492
С	2.54936	3.26226	0.44385
С	3.45155	2.25852	0.60577
С	0.80643	1.52021	0.02146
С	1.20584	2.88829	0.15704
Н	2.80693	4.30234	0.56813
Н	4.46888	2.48381	0.89251
С	1.62331	-0.78093	-0.63209
С	2.59536	-1.78471	-0.46296
С	0.21466	-2.36688	-1.79860
С	2.32680	-3.09925	-0.92475
С	1.11177	-3.37156	-1.56488
Н	3.06106	-3.87445	-0.77557
Н	0.87373	-4.36995	-1.89702
С	-2.14663	3.43155	-0.40142
Н	-2.20949	4.50361	-0.48159
Ν	0.17590	3.72814	0.02780
С	-3.17954	2.56541	-0.58188
Ν	-0.91353	2.92977	-0.12872
Н	-4.15007	2.94518	-0.85731
С	-3.00173	1.17984	-0.35098
С	-0.62534	1.57521	-0.02884
С	-4.07129	0.26890	-0.52384
С	-1.72046	0.68685	0.08352

Н	-5.00829	0.63966	-0.91201
С	-3.92100	-1.05027	-0.21187
С	-1.64395	-0.64203	0.63219
С	-2.73316	-1.53129	0.41545
н	-4.73481	-1.74260	-0.37444
С	-2.65661	-2.84832	0.89605
н	-0.72327	-2.49695	-2.30909
С	-0.57840	-1.07578	1.44138
С	-0.53512	-2.36936	1.92488
н	0.20736	-0.38909	1.70719
С	-1.56242	-3.26988	1.63016
н	-3.47906	-3.52293	0.70501
н	-1.51596	-4.28391	1.99867
н	0.29660	-2.67992	2.53958
Ν	0.49823	-1.08895	-1.36907
н	-0.11793	-0.34656	-1.64660

Excited state information

Excited State 1: Singlet-A 1.9348 eV 640.82 nm f=0.0456 <S**2>=0.000

96 -> 97 0.70517

This state for optimization and/or secondorder correction.

Total Energy, E(TD-HF/TD-DFT) = -1164.89389215

Copying the excited state density for this state as the 1-particle RhoCl density.

Rotatory strengths (velocity)

state XX YY ZZ R(velocity) E-M Angle

1 -19.1639 28.1555 -45.2828 -12.0970 97.21

Ground to excited state transition electric dipole moments (Au):

state X Y Z Dip. S. Osc. 1 0.9492 0.2469 -0.0273 0.9626 0.0456

Ground to excited state transition velocity dipole moments (Au):

state X Y Z Dip. S. Osc. 1 -0.0675 -0.0172 0.0020 0.0049 0.0456

Ground to excited state transition magnetic dipole moments (Au):

state X Y Z

 $1 \qquad 0.0091 \quad 0.2179 \quad 0.355$

VI. REFERENCES

- Yen-Pon, E.; Champagne, P. A.; Plougastel, L.; Gabillet, S.; Thuéry, P.; Johnson, M.; Muller, G.; Pieters, G.; Taran, F.; Houk, K. N.; Audisio, D. Sydnone-based Approach to Hetero-helicenes Through 1, 3-Dipolar- Cycloadditions *J. Am. Chem. Soc.* **2019**, *141* (4).
- (2) Korner, C.; Starkov, P.; Sheppard, T. D. An Alternative Approach to Aldol Reactions: Gold-Catalyzed Formation of Boron Enolates from Alkynes *J. Am. Chem. Soc.* **2010**, *132* (17), 5968–5969.
- (3) Fürstner, A.; Mamane, V. Flexible synthesis of phenanthrenes by a PtCl2-catalyzed cycloisomerization reaction *J. Org. Chem.* **2002**, *67* (17), 6264–6267.
- (4) Pena, D.; Perez, D.; Guitian, E.; Castedo, L. Selective palladium-catalyzed cocyclotrimerization of arynes with dimethyl acetylenedicarboxylate: A versatile method for the synthesis of polycyclic aromatic hydrocarbons *J. Org. Chem.* **2000**, *65* (21), 6944–6950.
- (5) Weimar, M.; Correa Da Costa, R.; Lee, F. H.; Fuchter, M. J. scalable and expedient route to 1-Aza[6]helicene derivatives and its subsequent application to a chiral-relay asymmetric strategy *Org. Lett.* **2013**, *15* (7), 1706–1709.
- (6) Storch, J.; Čermák, J.; Karban, J. Synthesis of 1-(2-ethynyl-6-methylphenyl)- and 1-(2-ethynyl-6-methoxyphenyl)-naphthalene and their cyclization *Tetrahedron Lett.* **2007**, *48* (38), 6814–6816.
- (7) Powers, D. C.; Geibel, M. A. L.; Klein, J. E. M. N.; Ritter, T. Bimetallic palladium catalysis: Direct observation of Pd(III)-Pd(III) intermediates *J. Am. Chem. Soc.* **2009**, *131* (47), 17050–17051.
- (8) Tsai, H. Y.; Chang, Y. J.; Hu, J. W.; Chen, K. Y. Synthesis, crystal structure, spectroscopic properties, and DFT studies of 7,9-dibromobenzo[h]quinolin-10-ol *Crystals* **2017**, *7* (2), 1–11.
- (9) Hooft, R. W. W. COLLECT, Nonius BV: Delft, The Netherlands; 1998.
- (10) Bruker AXS. *APEX3 Crystallography Software Suite,* Version 2019.1-0; B. Madison, Wisconsin, USA 2019.
- (11) Zbyszek, O.; Wladek, M. Processing of X-Ray Diffraction Data Collected in Oscillation Mode *Methods Enzymol.* **1997**, *276*, 307–326.
- (12) Bruker Nano., Inc. SAINT, Version 8.40A; Wisconsin, USA 2019.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of Silver and Molybdenum Microfocus X-Ray Sources for Single-Crystal Structure Determination *J. Appl. Crystallogr.* 2015, 48, 3–10.
- (14) Bruker AXS SADABS, Bruker/Siemens Area Detector Absorption and Other Corrections, Version 2016/2; Madison, Wisconsin, USA 2016.
- (15) Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination *Acta Crystallogr. Sect. A* **2015**, *71*, 3–8.
- (16) Sheldrick, G. M. Crystal Structure Refinement with SHELXL Acta Crystallogr. Sect. C 2015, 71, 3–
 8.
- (17) Hubschle, C. B.; Sheldrick, G. M.; Dittrich, B. *ShelXle*: a Qt Graphical User Interface for SHELXL *J. Appl. Crystallogr.* **2011**, *44*, 1281–1284.
- (18) Farrugia, L. J. WinGX and ORTEP for Windows: an Update J. Appl. Crystallogr. **2012**, 45 (4), 849– 854.

- (19) Gaussian 16, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT 2016.
- (20) Zhao, Y.; Truhlar, D. G. Density functionals with broad applicability in chemistry *Acc. Chem. Res.* **2008**, *41* (2), 157–167.
- (21) Funes-Ardoiz, I.; Paton, R. S. 2018 GoodVibes: GoodVibes 2.0.3

http://doi.org/10.5281/zenodo.595246, https://github.com/bobbypaton/GoodVibes.

- (22) Zhao, Y.; Truhlar, D. G. Computational characterization and modeling of buckyball tweezers: density functional study of concave–convex Pi-Pi interactions *Phys. Chem. Chem. Phys.* **2008**, *10* (19), 2581–2583.
- Ribeiro, R. F.; Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation *J. Phys. Chem. B* 2011, *115* (49), 14556–14562.
- (24) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions *J. Phys. Chem. B* **2009**, *113* (18), 6378–6396.
- (25) CYLview, 1.0.565b; Legault, C. Y. Université de Sherbrooke 2009, http://www.cylview.org.
- (26) Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer *J. Comput. Chem.* **2012**, *33* (5), 580–592.
- (27) Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities *Theor. Chim. acta* **1977**, *44*, 129–138.
- (28) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory *J. Comput. Chem.* **2011**, *32* (7), 1456–1465.
- (29) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models *Chem. Rev.* **2005**, *105* (8), 2999–3093.
- (30) Bickelhaupt, F. M.; Houk, K. N. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model *Angew. Chemie - Int. Ed.* **2017**, *56* (34), 10070–10086.
- (31) Medina, J. M.; MacKey, J. L.; Garg, N. K.; Houk, K. N. The role of aryne distortions, steric effects, and charges in regioselectivities of aryne reactions *J. Am. Chem. Soc.* **2014**, *136* (44), 15798–15805.

VII. NMR Spectra ¹H & ¹³C

¹H NMR Spectrum (400 MHz, CD₂Cl₂) of **1e**

^1H NMR Spectrum (400 MHz, CDCl₃) of 1I

^{13}C NMR Spectrum (100 MHz, CDCl_3) of 1d

 $^{\rm 19}{\rm F}$ NMR Spectrum (376 MHz, CDCl₃) of 1m

¹³C NMR Spectrum (100 MHz, DMSO-d6) of **1p**

5.5 5.0 f1 (ppm)

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

6.0

. 9.5 9.0

8.5

8.0

. 7.5 7.0

6.5

0.5

¹³C NMR Spectrum (100 MHz, DMSO-d6) of **1q**

¹H NMR Spectrum (400 MHz, CDCl₃) of **3a**

^{13}C NMR Spectrum (100 MHz, CDCl_3) of 3a

^1H NMR Spectrum (400 MHz, CDCl_3) of 3b

 ^{13}C NMR Spectrum (100 MHz, CDCl_3) of 3b

^1H NMR Spectrum (400 MHz, CDCl_3) of 4b

$^{\rm 13}C$ NMR Spectrum (100 MHz, CDCl_3) of ${\bf 4b}$

 ^{13}C NMR Spectrum (100 MHz, CDCl₃) of **7b**

S182

$^{\rm 13}{\rm C}$ NMR Spectrum (100 MHz, CDCl_3) of ${\rm 8b}$

$^{\rm 13}{\rm C}$ NMR Spectrum (100 MHz, CDCl₃) of ${\rm 9b}$

$^{\rm 13}{\rm C}$ NMR Spectrum (100 MHz, CDCl_3) of ${\bf 11b}$

 ^1H NMR Spectrum (400 MHz, CDCl₃) of 11c

^1H NMR Spectrum (400 MHz, CDCl₃) of **11d**

^1H NMR Spectrum (400 MHz, CDCl₃) of 12b

$^{\rm 13}{\rm C}$ NMR Spectrum (100 MHz, CDCl₃) of C-21

$^{\rm 13}{\rm C}$ NMR Spectrum (100 MHz, CDCl_3) of C-27

 $^{\rm 13}{\rm C}$ NMR Spectrum (100 MHz, CDCl_3) of C-32

¹³C NMR Spectrum (100 MHz, CDCl₃) of **C-34**

30	170	160	150	0	140	130	120	110	100	90	80	70	60	50	40	30	20	10	(
				•			.=•			f1 (ppm	ı)								