
HOW DO DIFFERENT SPECIES OF DISINFECTION BY-PRODUCTS COMPARE TO WATER QUALITY GUIDELINES?

Pieter J. K. Aukes, Tammy Guo, Jordyn Atkins, Jason J. Venkiteswaran, Richard J. Elgood, Michael English, & Sherry L. Schiff wilfrid laurier University of Waterloo Wilfrid Laurier University Wilfrid Laurier University of Waterloo Wilfrid Laurier University of Waterloo Wilfrid Laurier University of Waterloo

So, what is...

Chlorine

Drinking water is commonly treated with **chlorine** to ensure we have safe water to drink. It is an **important and** critical component in the treatment of drinking water.

DBP disinfection by-product Chlorine **reacts** with DOC to form DBPs that range in abundance and toxicity. Currently, it is too difficult to

regulate every DBP species.

We monitor & set guidelines for two DBP groups:

HAA

haloacetic acids

trihalomethanes chloroform

THM

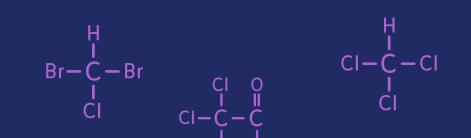
bromoform chlorodibromomethane dichlorobromomethane

promodichloroacetic acid HAA HAA HAA oromochloroacetic acid

BUT the current guidelines for THM & HAA are confusing. Why?

It's like *cotton candy* and *jam*:

(and you can compare it to DBPs):


CI OH

both are considered 'sweets' but are different products THM and HAAs are both DBPs. but describe different species

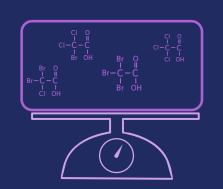
I I Br OH

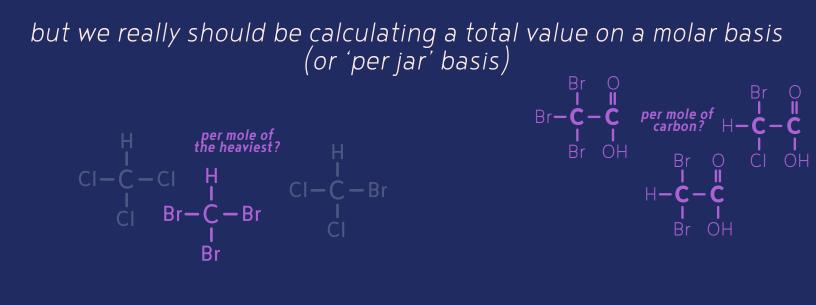
Br OH

let's say we have a mixed box of cotton candy and jam and were asked to calculate how much there was

> if you just weighed the box, you would have a total weight of the sweets but

it would be skewed by how much jam is in the box as jam is *much heavier* than the cotton candy




alternatively, you could just count the jars of cotton candy and jam you have

knowing how much cotton candy and jam are in a jar, you gain a better understanding of the 'total' sweets you have

when we add chlorine to water with DOC, we form different species of THM and HAAs; each with differing molecular weights



current guidelines add up the total weights of each DBP species, regard less of their individual molecular weight

So, how do guidelines compare to the range in individual species?

The guidelines are a 'boxed weight', so we created a tool to unpack this box and look at the different jars of sweets to see what we actually have.



Here, you can **convert guideline** concentrations to molar units for a customizable combination of DBP species

What are the original THM guideline values?	Conversions	
Enter guideline (ug/L):	That means a guideline of 100 ug/L of all THM species is	
100	equivalent to:	
What would you like to convert in terms of?	0.4 to 0.84 umol/L THM 0.4 to 0.84 umol C/L THM 4.8 to 10 ug C/L THM this will automatically update based on your input	
All THM - pick all (or specific) DBP species	where the upper limit is calculated as if chloroform and provide a range forms 100% of THM, and the lower limit is calculated as if bromoform forms 100% of THM weights of each species	

Let's take a look at how DBP is comprised of various species:

We sampled a number of Canadian boreal lakes (Ontario and Northwest Territories) just to see how different DOC mixtures affect the formation of THM and HAA species:

In untreated lake water, not only do we find **different abundances** of THM and HAA species, but we also find these **abundances vary with DOC** concentration, especially among HAA.

What about the toxicity of various DBP species?

Our expertise lies with understanding how a warming climate will alter DOC and DBP concentrations. In terms of health effects, others have found that:

- overall, there is a lack of toxicological data for DBP in humans¹
- THM & HAA species **differ** in toxicity^{1,2}
- more **problematic DBP species** than the ones currently regulated can be formed^{1,2}
- how the water is treated can influence the amount of DBPs formed^{3,4}
- 1) Richardson et al. 2007 Plewa et al. 2017 Williams et al. 2019 4) Huang et al. 2017

What do we take away from this?

• Can examine how guidelines relate to different THM & HAA species

• Accounting for DBP species may be more important in HAA than THM (where it is mostly chloroform)

• How do we combine what we know of DBP speciation, current guideline values, and relative toxicity?

If you'd like to continue the conversation, or if you have questions, feel free to reach out to paukes@wlu.ca

We'd like to thank the Community of Wekweètì, Wek'èezhìi Land & Water Board, Bruce Hanna, Jenny Hickman, Roy Judas, Roberta Judas, Jordan Reid, and:

GLOBAL WATER FUTURES SOLUTIONS TO WATER THREATS IN AN ERA OF GLOBAL CHANGE

Aukes *et al.*, 2021 – DOI: 10.6084/m9.figshare.14582946