Supporting Information

Enantio- and Regioselective CuH-Catalyzed Conjugate Reduction of Yne-Allenones

Jia-Yin Wang¹, Guigen Li^{1,2*}, Wen-Juan Hao³ & Bo Jiang^{3*}

¹Institute of Chemistry & BioMedical Sciences, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, P. R. China

²Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States; email: guigen.li@ttu.edu (G.L.).

³School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China; email jiangchem@jsnu.edu.cn (B.J.)

Context

General Information	.S2
X-Ray Absolute Configuration Structure of Product 3c	.82
Characterization Data of Compound 1p	.S2
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 1p	
General Procedure for the Synthesis of Product 4	S4
Characterization Data of Compound 4	S4
General Procedure for the Synthesis of Products 3	S4
Characterization Data of Compounds 3a-3dd	.S4-S14
Copies of Chiral HPLC Analyses of Products 3a-3dd and 4	.S15-S44
Copies of ¹ H and ¹³ C NMR Spectra for Compounds 3a-3dd and 4	.S45-S104

Experimental

General Information

¹H NMR (¹³C NMR) spectra were measured on a Bruker DPX 400 MHz spectrometer in CDCl₃ (DMSO- d_6) with chemical shift (δ) given in ppm relative to TMS as internal standard [(s = singlet, d = doublet, t = triplet, brs = broad singlet, m = multiplet), coupling constant (Hz)]. HRMS (ESI) was determined by using microTOF-QII HRMS/MS instrument (BRUKER). X-Ray crystallographic analysis was performed with a Siemens SMART CCD and a Siemens P4 diffractometer.

Yne-Allenones were prepared according to literature procedures (See *J. Org. Chem.* **2009**, *74*, 2224 and *Angew. Chem., Int. Ed.* **2017**, *56*, 15570). Dimethoxy(methyl)silane, chiral ligands (L_1 - L_8) and other reagents, unless otherwise noted, were purchased from commercial vendors and used without further purification. The single-crystal of (*R*)-**3c** was grown from the mixed solution of ethanol and acetone (V/V =3:1).

Figure S1. The ORTEP Drawing of Absolute Configuration of Product (*R*)-3c

1-(2-(3,3-dimethylbut-1-yn-1-yl)phenyl)buta-2,3-dien-1-one (1p)

¹H NMR (400 MHz, DMSO) (δ , ppm): 8.00 (d, J = 16.0 Hz, 1H), 7.85-7.81 (m, 1H), 7.43-7.41 (m, 1H), 7.31 (d, J = 16.0 Hz, 1H), 6.20-6.17 (m, 1H), 5.64 (d, J = 6.4 Hz, 2H), 1.34 (s, 9H). ¹³C NMR (100 MHz, DMSO) (δ , ppm): 216.3, 188.3, 139.9, 135.5, 132.8, 130.8, 128.9, 126.8, 124.7, 124.4, 105.5, 96.5, 81.1, 77.2, 31.0, 28.4.

General procedure for the synthesis of compound 4

A solution of 3c (0.1 mmol) in dry DCM was stirred at -78 °C, then the ozone generated by the ozone generator was passed into the solution until TLC (petroleum ether/ethyl acetate 10:1) revealed that conversion of the starting material 3c was completed and the ozone was stopped. Next, the solution was quenched with dimethyl sulphide (6.0 mL) and the reaction mixture was adjusted to room temperature and stirred for 12 h. At last, the solvent was evaporated under reduced pressure, and the crude products were purified through preparative thin layer chromatography (petroleum ether/ethyl acetate 10:1) to get desired products **4** as white solid.

(R)-2-(2-(4-ethylphenyl)-2-oxoethyl)-2,3-dihydronaphthalene-1,4-dione (4)

White solid (instable); 56.3 mg, 92% yield; mp: 111-113 °C; $[\alpha]_D^{20} = -192.2$ (c = 0.116, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.11-8.08 (m, 2H), 7.97 (d, *J* = 8.0 Hz, 2H), 7.79-7.76 (m, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 3.90-3.72 (m, 2H), 3.30-3.05 (m, 3H), 2.75 (q, *J* = 7.6 Hz, 2H), 1.28 (d, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.2, 196.7, 195.4, 150.5, 135.4, 135.3, 134.3, 134.1, 128.4, 128.2, 127.0, 126.6, 43.4, 43.0, 38.4, 29.0, 15.2. IR (KBr, *v*, cm⁻¹): 2966, 2928, 1752, 1685, 1605, 1560, 1413, 828, 780; HRMS (ESI) m/z calcd for C₂₀H₁₈NaO₃ [M+Na]⁺ 329.1154, found 329.1156; HPLC: 98% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =70/30, flow rate: 0.6 mL/min, detector: 254 nm, t_R(major) = 12.515 min, t_R(minor) = 19.747 min.

General procedure for the synthesis of compounds 3

Example for the synthesis of **3a**:

In an Ar-filled glove box, $Cu(OAc)_2$ (10 mol %), (*R*,*R*)-Ph-BPE (10 mol %), MeONa (1.5 equiv.), 1-(2-(phenylethynyl)phenyl)buta-2,3-dien-1-one (1a, 0.2 mmol) and DCE (2.0 mL) were added to a Schlenk tube. The resulting mixture was stirred for 20 minutes at room temperature and then Me(MeO)₂SiH (0.6 mmol) were added successively. The Schlenk tube was removed from the dry box and the mixture was stirred in the oil bath at 50 °C for 12 hours. The mixture was concentrated under vacuum and the crude product was purified by column chromatography on silica with a mixture of ethyl acetate/petroleum ether (1:50) to get chiral desired products **3a**.

(R)-1-phenyl-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3a)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 36.9 mg, 75% yield; $[\alpha]_D^{20} = +69.9$ (c = 0.256, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.11-8.09 (m, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.66-7.56 (m, 3H), 7.44-7.31 (m, 4H), 3.29-3.22 (m, 2H), 3.20-3.16 (m, 1H), 2.72-7.65 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 198.0, 137.5, 136.7, 136.4, 135.2, 133.6, 132.5, 128.7, 128.5, 128.2, 128.1, 126.0, 125.0, 46.1, 35.9, 35.8. IR (KBr, *v*, cm⁻¹): 2949, 2922, 1685, 1602, 1529, 1451, 829, 728; HRMS (ESI) m/z calcd for C₁₈H₁₄NaO [M+Na]⁺ 269.0942, found 269.0944; HPLC: >99% ee (Daicel Chiralpak OD-H, hexane/i-PrOH =90/10, flow rate: 0.6 mL/min, detector: 254 nm, t_R(major) =11.412 min.

(R)-1-(p-tolyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3b)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 32.2 mg, 62% yield; $[\alpha]_D^{20} = +629.5$ (c = 0.156, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.12-8.10 (m, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.62-7.53 (m, 3H), 7.42-7.35 (m, 1H), 7.23 (d, *J* = 7.6 Hz, 2H), 3.33-3.14 (m, 3H), 2.73-2.66 (m, 2H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.9, 138.5, 137.5, 136.8, 135.1, 133.5, 132.4, 132.4, 129.3, 128.1, 127.8, 125.9, 124.9, 46.1, 35.8, 35.7, 21.4. IR (KBr, *v*, cm⁻¹): 3005, 2909, 1683, 1592, 1510, 1461, 815, 750; HRMS (ESI) m/z calcd for C₁₉H₁₆NaO [M+Na]⁺ 283.1099, found 283.1095; HPLC: >99% ee (Daicel Chiralpak IA, hexane/i-PrOH =99/1, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 13.340 min, t_R(major) = 15.718 min.

(R)-1-(4-ethylphenyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3c)

White solid after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 39.7 mg, 66% yield; mp: 140-142 °C; $[\alpha]_D^{20}$ = -1008.8 (c = 0.26, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.11-8.09 (m, 1H), 7.82 (d, *J* = 7.6 Hz, 1H), 7.65-7.54 (m, 3H), 7.42-7.36 (m, 1H), 7.26 (d, *J* = 8.4 Hz, 2H), 3.32-3.15 (m, 3H), 2.74-2.64 (m, 4H), 1.28 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.9, 144.9, 137.5, 136.8, 135.2, 133.4, 132.6, 132.4, 128.1, 128.0, 127.8, 126.0, 124.9, 46.1, 35.8, 35.7, 28.8, 15.5. IR (KBr, *v*, cm⁻¹): 3005, 2965, 1683, 1594, 1507, 1462, 831, 765; HRMS (ESI) m/z calcd for C₂₀H₁₉O [M+H]⁺ 275.1436, found 275.1437; HPLC: >99% ee (Daicel Chiralpak AD-H, hexane/i-PrOH =90/10, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 7.741 min, t_R(major) = 8.550 min.

(R)-1-(4-(tert-butyl)phenyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3d)

White solid after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 38.7 mg, 64% yield; mp: 118-120 °C; $[\alpha]_D^{20} = +632.1$ (c = 0.468, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.10-8.08 (m, 1H), 7.82 (d, J = 7.6 Hz, 1H), 7.61-7.57 (m, 3H), 7.48-7.41 (m, 2H), 7.40-7.33 (m, 1H), 3.29-3.14 (m, 3H), 2.71-2.61 (m, 2H), 1.36 (s,

9H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.9, 151.7, 137.4, 136.8, 135.4, 133.4, 132.4, 128.0, 127.8, 125.8, 125.5, 124.9, 46.1, 35.8, 35.7, 34.8, 31.2. IR (KBr, *v*, cm⁻¹): 3005, 2961, 1685, 1594, 1507, 1462, 3, 833, 750; HRMS (ESI) m/z calcd for C₂₂H₂₃O [M+H]⁺ 303.1749, found 303.1751; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =99/1, flow rate: 0.6 mL/min, detector: 254 nm, t_R(major) = 17.509 min, t_R(minor) = 26.991 min.

(R)-1-(4-methoxyphenyl)-2a,3-di-hydrocyclobuta[a]naphthalen-4(2H)-one (3e)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 32.6 mg, 59% yield; $[\alpha]_D^{20} = +709.5$ (c = 0.2, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.09-8.07 (m, 1H), 7.77 (d, *J* = 7.6 Hz, 1H), 7.64-7.49 (m, 3H), 7.42-7.31 (m, 1H), 7.01-6.86 (m, 2H), 3.85 (s, 3H), 3.30-3.12 (m, 3H), 2.72-2.58 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 198.0, 159.8, 137.2, 137.0, 133.7, 133.5, 132.3, 128.1, 127.6, 127.4, 124.7, 114.0, 55.3, 46.1, 35.7, 35.6. HRMS (ESI) m/z calcd for C₁₉H₁₇O₂ [M+H]⁺ 277.1229, found 277.1231; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =99/1, flow rate: 1.0 mL/min, detector: 254 nm, t_R(minor) = 13.628 min, t_R(major) = 18.175 min.

(R)-1-(4-fluorophenyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3f)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 36.6 mg, 69% yield; $[\alpha]_D^{20} = +201.6$ (c = 0.127, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.11-8.09 (m, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.63-7.57 (m, 3H), 7.44-7.34 (m, 1H), 7.15-7.04 (m, 2H), 3.31-3.09 (m, 3H), 2.72-2.61 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.7, 163.9, 161.4 (¹*J*_{CF} = 247.4 Hz), 136.5, 136.2, 135.7(1), 135.7(9), 133.6, 132.4, 131.4(2), 131.4(8) (⁴*J*_{CF} = 3.7 Hz), 128.2, 128.1, 127.8, 127.7 (³*J*_{CF} = 8.2 Hz), 124.6, 115.7, 115.5 (²*J*_{CF} = 21.5 Hz), 46.0, 35.8, 35.8. IR (KBr, ν , cm⁻¹): 2980, 2865, 1700, 1636, 1454, 823, 754; HRMS (ESI) m/z calcd for C₁₈H₁₄FO [M+H]⁺ 265.1029, found 265.1026; HPLC: >99% ee (Daicel Chiralpak IC, hexane/i-PrOH =70/30, flow rate: 0.6 mL/min, detector: 254 nm, t_R(major) = 11.156 min, t_R(minor) = 11.846 min.

(R)-1-(4-chlorophenyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3g)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 45.7 mg, 72% yield; $[\alpha]_D^{20} = +540.8$ (c = 0.279, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.11-8.09 (m, 1H), 7.81 (d, *J* = 7.6 Hz, 1H), 7.66-7.56 (m, 3H), 7.44-7.31 (m, 4H), 3.29-3.22 (m, 2H), 3.26-3.16 (m, 1H), 2.71-2.63 (m, 2H). ¹³C NMR (100 MHz, 100 MHz) (100 MHz).

CDCl₃) (δ , ppm): 197.6, 137.0, 136.3, 136.1, 134.1, 133.6, 133.5, 132.5, 128.8, 128.2, 128.2, 127.2, 124.7, 45.9, 35.9, 35.1. IR (KBr, *v*, cm⁻¹): 2940, 2911, 1683, 1591, 1477, 1407, 855, 763; HRMS (ESI) m/z calcd for C₁₈H₁₄ClO [M+H]⁺ 281.0733, found 281.0733; HPLC: 96% ee (Daicel Chiralpak IC, hexane/i-PrOH =90/10, flow rate: 0.6 mL/min, detector: 254 nm, t_R(major) = 15.755 min, t_R(minor) = 17.453 min.

(R)-1-(2-chlorophenyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3h)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 25.3 mg, 45% yield; $[\alpha]_D^{20} = +228.3$ (c = 0.12, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.06 (d, *J* = 7.6 Hz, 1H), 7.68-7.61 (m, 1H), 7.49-7.47 (m, 2H), 7.44-7.33 (m, 2H), 7.27-7.21 (m, 2H), 3.50-3.45 (m, 1H), 3.33-3.24 (m, 1H), 3.20-3.15 (m, 1H), 2.90-2.86 (m, 1H), 2.75-2.68 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.7, 139.9, 135.9, 135.8, 133.9, 133.3, 132.8, 132.4, 130.4, 129.2(2), 129.2(0), 128.3, 127.9, 126.5, 124.8, 45.9, 39.7, 37.0. IR (KBr, *v*, cm⁻¹): 3005, 2988, 1682, 1594, 1474, 1430, 896, 750; HRMS (ESI) m/z calcd for C₁₈H₁₄ClO [M+H]⁺ 281.0733, found 281.0732; HPLC: >99% ee (Daicel Chiralpak AS-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 9.556 min, t_R(major) = 10.219 min.

(R)-1-(3-chlorophenyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3i)

White solid after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 38.6 mg, 63% yield; mp: 80-82 °C; $[\alpha]_D^{20} = +492.5$ (c = 0.518, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.11-8.09 (m, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.63-7.59 (m, 1H), 7.57-7.56 (m, 1H), 7.53-7.51 (m, 1H), 7.42-7.38 (m, 1H), 7.36-7.27 (m, 2H), 3.27-3.15 (m, 3H), 2.71-2.61 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.4, 138.0, 136.8, 136.1, 135.8, 134.7, 133.6, 132.5, 129.8, 128.4, 128.3, 128.2, 126.0, 124.8, 124.0, 45.9, 36.0, 35.7. IR (KBr, *v*, cm⁻¹): 2975, 2922, 1682, 1507, 1456, 1417, 762, 700; HRMS (ESI) m/z calcd for C₁₈H₁₄ClO [M+H]⁺ 281.0733, found 281.0725; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 11.725 min, t_R(major) = 13.959 min.

(R)-1-(4-bromophenyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3j)

White solid after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 32.4 mg, 50% yield; mp: 95-97 °C; $[\alpha]_D^{20}$ = +520.5 (c = 0.336, acetone);¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.11-8.08 (m, 1H), 7.73 (d, *J* = 7.6 Hz, 1H), 7.61-7.57 (m, 1H), 7.56-7.45 (m, 4H), 7.43-7.36 (m, 1H), 3.25-3.15 (m, 3H), 2.72-2.61 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.5, 137.2, 136.3, 136.1, 133.9, 133.6, 132.5, 131.8, 128.3, 128.2, 127.4, 124.7, 122.3, 45.9, 35.9, 35.7. IR (KBr, *v*, cm⁻¹): 3061, 2908, 1682, 1594, 1486, 1396, 820, 750; HRMS (ESI) m/z calcd for C₁₈H₁₄BrO

 $[M+H]^+$ 325.0228, found 325.0221; HPLC: >99% ee (Daicel Chiralpak AS-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 11.319 min, t_R(major) = 13.121 min.

(R)-1-(naphthalen-1-yl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3k)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 36.1 mg, 61% yield; $[\alpha]_D^{20} = +1094.3$ (c = 0.12, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.14-8.12 (m, 1H), 7.96 (s, 1H), 7.92-7.80 (m, 5H), 7.65-7.60 (m, 1H), 7.55-7.47 (m, 2H), 7.43-7.39 (m, 1H), 3.38-3.18 (m, 3H), 2.79-2.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.8, 137.5, 136.8, 136.7, 133.6, 133.4, 133.2, 132.6, 132.5, 128.2, 128.2, 128.2, 128.1, 127.8, 126.5, 126.4, 125.2, 124.9, 123.7, 46.1, 36.0, 35.8. IR (KBr, ν , cm⁻¹): 3005, 2989, 1684, 1592, 1458, 1275, 817, 750; HRMS (ESI) m/z calcd for C₂₂H₁₇O [M+H]⁺ 297.1279, found 297.1275; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(major) = 15.439 min, t_R(minor) = 18.025 min.

(R)-1-(thiophen-2-yl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3l)

White solid after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 40.1 mg,70% yield; mp: 102-104 °C; $[\alpha]_D^{20}$ = +1886.5 (c = 0.200, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.07-8.06 (m, 1H), 7.88 (d, *J* = 7.6 Hz, 1H), 7.64-7.60 (m, 1H), 7.39-7.33 (m, 2H), 7.20 (d, *J* = 3.5 Hz, 1H), 7.08 (dd, *J* = 5.0, 3.6 Hz, 1H), 3.41-3.24 (m, 1H), 3.22-3.11 (m, 2H), 2.77-2.66 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.6, 138.0, 135.9, 133.6, 133.4, 132.2, 130.6, 128.0, 127.9, 127.5, 125.9(2), 125.9(9), 125.1, 45.8, 36.4, 36.2. IR (KBr, *v*, cm⁻¹): 3059, 2911, 1680, 1591, 1560, 1463, 852, 709; HRMS (ESI) m/z calcd for C₁₆H₁₃OS [M+H]⁺ 253.0687, found 253.0694; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 12.618 min, t_R(major) = 13.255 min.

(R)-1-(cyclohex-1-en-1-yl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3m)

Colorless oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 27.5 mg, 55% yield; $[\alpha]_D^{20} = +43.9$ (c = 0.13, acetone); ¹H NMR (400 MHz, Acetone) (δ , ppm): 7.96 (d, J = 7.6 Hz, 1H), 7.74-7.55 (m, 2H), 7.39-7.36 (m, 1H), 6.00 (s, 1H), 3.13-2.96 (m, 2H), 2.67-2.52 (m, 2H), 2.46-2.34 (m, 2H), 2.21 (s, 2H), 1.82 (s, 1H), 1.65 (d, J = 41.6 Hz, 3H), 1.30 (s, 1H). ¹³C NMR (100 MHz, Acetone) (δ , ppm): 196.6, 139.9, 136.8, 133.8, 133.2, 133.1, 132.2, 128.0, 127.3, 126.0, 45.7, 35.1, 34.2, 27.1, 25.5, 22.3, 21.7. IR (KBr, *v*, cm⁻¹): 3051, 2949, 1676, 1592, 1509, 1445, 1423, 839, 760; HRMS (ESI) m/z calcd for C₁₈H₁₈NaO [M+Na]⁺ 273.1255, found 273.1245; HPLC: 98% ee (Daicel Chiralcel OJ-H, hexane/i-PrOH =70/30, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 8.186 min, t_R(major) = 8.642 min.

(R,E)-1-styryl-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3n)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 37.5 mg, 69% yield; $[\alpha]_D^{20}$ = +360.9 (c = 0.041, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.04 (d, *J* = 8.0 Hz, 1H), 7.59-7.50 (m, 4H), 7.41-7.34 (m, 3H), 7.31 (d, *J* = 7.6 Hz, 1H), 7.18 (d, *J* = 16.0 Hz, 1H), 6.72 (d, *J* = 15.6 Hz, 1H), 3.34-3.26 (m, 1H), 3.18-3.09 (m, 2H), 2.71-2.64 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.8, 137.7, 137.3, 136.8, 136.3, 133.6, 132.3, 132.0, 128.7, 128.2, 127.9, 127.7, 126.7, 124.9, 121.5, 45.8, 35.7, 34.7. IR (KBr, *v*, cm⁻¹): 3035, 2957, 1678, 1623, 1567, 1409, 887, 798; HRMS (ESI) m/z calcd for C₂₀H₁₇O [M+H]⁺ 273.1279, found 273.1272; HPLC: >99% ee (Daicel Chiralpak IA, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 10.639 min, t_R(major) = 11.536 min.

(R)-1-(phenylethynyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3o)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 25.4 mg, 47% yield; $[\alpha]_D^{20}$ = +286.0 (c = 0.21, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.01 (d, *J* = 7.2 Hz, 1H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.61-7.57 (m, 1H), 7.54-7.49 (m, 2H), 7.41-7.34 (m, 4H), 3.34-3.25 (m, 1H), 3.16-3.06 (m, 2H), 2.77-2.65 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.2, 147.3, 135.1, 133.8, 132.1, 131.8, 128.7, 128.6, 128.4, 127.6, 126.7, 124.5, 122.8, 117.8, 93.9, 84.7, 45.3, 39.3, 36.9. IR (KBr, *v*, cm⁻¹): 3065, 2936, 1640, 1609, 1554, 1439, 847, 754; HRMS (ESI) m/z calcd for C₂₀H₁₄NaO [M+Na]⁺ 293.0942, found 293.0934; HPLC: 72% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =99/1, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 22.919 min, t_R(major) = 27.665 min.

(R)-7-methyl-1-(p-tolyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3q)

White solid after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 41.8 mg, 76% yield; mp: 114-116 °C; $[\alpha]_D^{20} = +439.8$ (c = 0.728, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.99 (d, *J* = 8.0 Hz, 1H), 7.60-7.51 (m, 3H), 7.26-7.14 (m, 3H), 3.24-3.09 (m, 3H), 2.67-2.60 (m, 2H), 2.45 (s, 3H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.7, 144.2, 138.4, 137.2, 136.9, 135.4, 132.5, 130.2, 129.3, 128.8, 128.1, 125.9, 125.2, 46.0, 35.9, 35.7, 22.0, 21.4. IR (KBr, *v*, cm⁻¹): 2989, 2931, 1683, 1600, 1510, 1467, 829, 747; HRMS (ESI) m/z calcd for C₂₀H₁₉O [M+H]⁺ 275.1436, found 275.1432; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =99/1, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 13.817 min, t_R(major) = 18.564 min.

(R)-1-(4-methoxyphenyl)-7-methyl-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3r)

White solid after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 32.0 mg, 55% yield; mp: 118-120 °C; $[\alpha]_D^{20} = +647.1$ (c = 0.384, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.98 (d, *J* = 8.0 Hz, 1H), 7.59-7.55 (m, 3H), 7.17-7.15 (m, 1H), 6.97-6.91 (m, 2H), 3.85 (s, 3H), 3.22-3.09 (m, 3H), 2.67-2.58 (m, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.8, 159.7, 144.2, 137.0, 136.9, 133.9, 130.1, 128.6, 128.2, 128.2, 127.4, 125.0, 114.0, 55.3, 46.0, 35.7, 35.7, 22.0. IR (KBr, *v*, cm⁻¹): 3004, 2907, 1675, 1606, 1510, 1463, 828, 764; HRMS (ESI) m/z calcd for C₂₀H₁₉O₂ [M+H]⁺ 291.1385, found 291.1381; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 12.597 min, t_R(major) = 15.511 min.

(R)-1-(4-chlorophenyl)-7-methyl-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3s)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 28.9 mg, 49% yield; $[\alpha]_D^{20} = +242.3$ (c = 0.104, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.00 (d, *J* = 8.0 Hz, 1H), 7.59-7.50 (m, 3H), 7.40-7.34 (m, 2H), 7.21 (d, *J* = 8.0 Hz, 1H), 3.23-3.12 (m, 3H), 2.69-2.59 (m, 2H), 2.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.4, 144.4, 137.2, 136.4, 135.8, 134.0, 133.6, 130.3, 129.3, 128.8, 128.3, 127.2, 125.0, 45.9, 36.0, 35.7, 22.0. IR (KBr, *v*, cm⁻¹): 3005, 2922, 1682, 1602, 1490, 1401, 825, 746; HRMS (ESI) m/z calcd for C₁₉H₁₆ClO [M+H]⁺ 295.0890, found 295.0885; HPLC: 99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 10.420 min, t_R(major) = 11.135 min.

(R)-1-(4-chlorophenyl)-7-fluoro-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3t)

White solid after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 23.8 mg, 40% yield; mp: 134-136 °C; $[\alpha]_D^{20} = +570.5$ (c = 0.200, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.14-8.10 (m, 1H), 7.54-7.50 (m, 2H), 7.41-7.34 (m, 3H), 7.09-7.04 (m, 1H), 3.26-3.12 (m, 3H), 2.69-2.60 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 196.1, 167.0, 164.5, 138.7, 138.6, 137.7, 135.8, 134.5, 133.1, 131.4, 131.3, 129.1, 129.0, 127.3, 115.7, 115.5, 111.3, 111.1, 45.6, 36.0, 35.9. IR (KBr, ν , cm⁻¹): 3005, 2989, 1684, 1600, 1491, 1401, 828, 763; HRMS (ESI) m/z calcd for C₁₈H₁₃CIFO [M+H]⁺ 299.0639, found 299.0640; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 11.232 min, t_R(major) = 12.095 min.

(R)-7-chloro-1-(p-tolyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3u)

White solid after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 35.3 mg, 60% yield; mp: 126-128 °C; $[\alpha]_D^{20}$ = +338.7 (c = 0.194, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.01 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 2.0 Hz, 1H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.32-7.30 (m, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 3.25-3.12 (m, 3H), 2.68-2.60 (m, 2H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 196.9, 139.9, 139.2, 139.0, 138.0, 133.6, 132.0, 130.6, 129.7, 129.4, 128.0, 126.0, 124.6, 45.8, 35.9, 35.7, 21.5. IR (KBr, *v*, cm⁻¹): 3005, 2985, 1685, 1586, 1511, 1416, 897, 764; HRMS (ESI) m/z calcd for C₁₉H₁₆ClO [M+H]⁺ 295.0890, found 295.0891; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 9.823 min, t_R(major) = 10.313 min.

(R)-6-methyl-1-phenyl-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3v)

White solid after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 38.6 mg, 74% yield; mp: 72-74 °C; $[\alpha]_D^{20}$ = +444.2 (c = 0.484, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.91 (d, *J* = 0.4 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.64-7.62 (m, 2H), 7.42-7.38 (m, 3H), 7.34-7.32 (m, 1H), 3.25-3.14 (m, 3H), 2.69-2.62 (m, 2H), 2.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 198.2, 138.1, 136.4, 136.4, 135.2, 134.3, 134.1, 132.3, 128.6, 128.3, 128.2, 125.9, 124.9, 46.1, 35.9, 35.6, 21.4. IR (KBr, *v*, cm⁻¹): 3005, 2989, 1684, 1605, 1493, 1474, 825, 762; HRMS (ESI) m/z calcd for C₁₉H₁₇O [M+H]⁺ 261.1279, found 261.1278; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH = 95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 9.906 min, t_R(major) = 12.111 min.

(R)-6-methoxy-1-phenyl-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3w)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 33.8 mg, 61% yield; $[\alpha]_D^{20} = -464.1$ (c = 0.128, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.75 (d, *J* = 8.4 Hz, 1H), 7.62-7.59 (m, 3H), 7.42-7.37 (m, 2H), 7.33-7.27 (m, 1H), 7.17-7.15 (m, 1H), 3.89 (s, 3H), 3.25-3.13 (m, 3H), 2.70-2.61 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.9, 159.4, 136.1, 135.3, 135.2, 133.8, 130.0, 128.6, 128.1, 126.5, 125.8, 121.4, 110.7, 55.6, 45.9, 35.9, 35.5. IR (KBr, *v*, cm⁻¹): 3005, 1679, 1596, 1511, 1478, 828, 750; HRMS (ESI) m/z calcd for C₁₉H₁₇O₂ [M+H]⁺ 277.1229, found 277.1231; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 12.267 min, t_R(major) = 15.445 min.

(R)-6-methoxy-1-(p-tolyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3x)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 30.7 mg, 53% yield; $[\alpha]_D^{20} = -35.8$ (c = 0.226, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.73 (d, *J* = 8.4 Hz, 1H), 7.58 (d, *J* = 2.8 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.21-7.14 (m, 1H), 3.88 (s, 3H), 3.25-3.12 (m, 3H), 2.69-2.62 (m, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 198.0, 159.2, 138.1, 135.2, 134.9, 133.7, 132.6, 130.2, 129.2, 126.4, 125.7, 121.4, 110.6, 55.6, 46.0, 35.8, 35.5, 21.4. IR (KBr, *v*, cm⁻¹): 3005, 2989, 1680, 1599, 1511, 1478, 813, 750; HRMS (ESI) m/z calcd for C₂₀H₁₉O₂ [M+H]⁺ 291.1385, found 291.1381; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 10.727 min, t_R(major) = 12.598 min.

(R)-1-(4-fluorophenyl)-6-methoxy-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3y)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 42.3 mg, 72% yield; $[\alpha]_D^{20} = -116.3$ (c = 0.086, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.68 (d, *J* = 8.8 Hz, 1H), 7.61-7.54 (m, 3H), 7.17-7.14 (m, 1H), 7.09-7.05 (m, 2H), 3.89 (s, 3H), 3.23-3.12 (m, 3H), 2.68-2.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.7, 163.6, 161.2 (¹*J*_{CF} = 246.8 Hz), 159.4, 135.5(0), 135.5(8), 133.9(4), 133.9(5) (³*J*_{CF} = 8.6 Hz), 131.7, 131.6 (⁴*J*_{CF} = 3.3 Hz), 129.8, 127.5, 127.4, 126.2, 121.4, 115.7, 115.5 (²*J*_{CF} = 21.5 Hz), 110.8, 55.6, 45.9, 35.8, 35.6. IR (KBr, ν , cm⁻¹): 3005, 2989, 1685, 1597, 1508, 1462, 830, 763; HRMS (ESI) m/z calcd for C₁₉H₁₅NaFO₂ [M+Na]⁺ 317.0954, found 317.0957; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 11.816 min, t_R(major) = 12.692 min.

(R)-1-(4-chlorophenyl)-6-methoxy-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3z)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 54.6 mg, 88% yield; $[\alpha]_D^{20} = -38.4$ (c = 0.700, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.68 (d, *J* = 8.4 Hz, 1H), 7.59 (d, *J* = 2.8 Hz, 1H), 7.54-7.50 (m, 2H), 7.38-7.33 (m, 2H), 7.18-7.15 (m, 1H), 3.89 (s, 3H), 3.24-3.14 (m, 3H), 2.70-2.62 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 197.6, 159.6, 136.8, 133.9, 133.8, 133.8, 133.7, 129.6, 128.8, 127.0, 126.3, 121.4, 110.8, 55.6, 45.8, 36.0, 35.4. IR (KBr, *v*, cm⁻¹): 3005, 2989, 1685, 1598, 1492, 1474, 822, 766; HRMS (ESI) m/z calcd for C₁₉H₁₅ClNaO₂ [M+Na]⁺ 333.0658, found 333.0656; HPLC: >99% ee (Daicel Chiralcel OD-H, hexane/i-PrOH = 95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 12.583 min, t_R(major) = 13.148 min.

(R)-6-fluoro-1-phenyl-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3aa)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 26.1 mg, 54% yield; $[\alpha]_D^{20} = +432.6$ (c = 0.092, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.84-7.76(m, 2H), 7.62 (d, *J* = 7.2 Hz, 2H), 7.45-7.41 (m, 2H), 7.38-7.29 (m, 2H), 3.30-3.17 (m, 3H), 2.71-2.65 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 196.7, 163.4, 160.9 (${}^{1}J_{CF}$ = 248.1 Hz), 137.1, 135.1, 134.9, 134.5(2), 134.5(6), 133.0(2), 133.0(9) (${}^{4}J_{CF}$ = 3.2 Hz), 128.6, 128.5, 127.0, 126.9(${}^{3}J_{CF}$ = 7.2 Hz), 125.9, 120.9, 120.7 (${}^{2}J_{CF}$ = 22.4 Hz), 114.6, 114.4, 45.7, 35.7, 35.7. IR (KBr, *v*, cm⁻¹): 3005, 2988, 1686, 1603, 1521, 1445, 826, 750; HRMS (ESI) m/z calcd for C₁₈H₁₄FO [M+Na]⁺ 265.1029, found 265.1028; HPLC: 97% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 10.487 min, t_R(major) = 13.519 min.

(R)-6-fluoro-1-(p-tolyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3bb)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 31.2 mg, 56% yield; $[\alpha]_D^{20} = +303.0$ (c = 0.462, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 7.82-7.70 (m, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.32-7.26 (m, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 3.25-3.14 (m, 3H), 2.70-2.60 (m, 2H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 196.8, 160.0, 137.9, 135.2(¹*J*_{CF} = 269.9 Hz), 133.6, 133.5, 133.4, 132.3, 128.1, 127.8, 127.4, 126.2, 114.1, 55.4, 45.8, 35.8, 35.4. IR (KBr, ν , cm⁻¹): 3025, 2914, 1686, 1603, 1511, 1417, 813, 749; HRMS (ESI) m/z calcd for C₁₉H₁₆FO [M+H]⁺ 279.1185, found 279.1187; HPLC: >99% ee (Daicel Chiralpak IA, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 8.694 min, t_R(major) = 9.912 min.

(R)-6-chloro-1-phenyl-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3cc)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 35.4 mg, 63% yield; $[\alpha]_D^{20} = +127.0 (c = 0.126, acetone); {}^{1}H NMR (400 MHz, CDCl_3) (\delta, ppm): 8.07(d,$ *J*= 2.4 Hz, 1H), 7.77 (d,*J*= 8.4 Hz, 1H), 7.61 (d,*J* $= 7.2 Hz, 2H), 7.57-7.55 (m, 1H), 7.46-7.33 (m, 3H), 3.31-3.15 (m, 3H), 2.74-2.62 (m, 2H). {}^{13}C NMR (100 MHz, CDCl_3) (\delta, ppm): 196.6, 138.2, 134.9, 134.9, 134.8, 134.1, 133.6, 133.4, 128.7, 128.1, 126.3, 126.0, 45.7, 35.9, 35.6. IR (KBr,$ *v*, cm⁻¹): 3051, 2983, 1685, 1585, 1492, 1462, 825, 742; HRMS (ESI) m/z calcd for C₁₈H₁₄ClO [M+H]⁺ 281.0733, found 281.0734; HPLC: 96% ee (Daicel Chiralcel OD-H, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, t_R(minor) = 9.772 min, t_R(major) = 12.988 min.

(R)-6-chloro-1-(4-methoxyphenyl)-2a,3-dihydrocyclobuta[a]naphthalen-4(2H)-one (3dd)

Yellow oil after purification by column chromatography (petroleum ether/ethyl acetate = 50/1); 37.8 mg, 61% yield; $[\alpha]_D^{20} = +312.0$ (c = 0.150, acetone); ¹H NMR (400 MHz, CDCl₃) (δ , ppm): 8.03 (d, *J* = 2.4 Hz, 1H), 7.71 (d, *J* = 8.4 Hz, 1H), 7.59-7.47 (m, 3H), 6.96-6.90 (m, 2H), 3.85 (s, 3H), 3.26-3.12 (m, 3H), 2.70-2.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) (δ , ppm): 196.8, 160.0, 137.9, 135.2, 133.6, 133.5, 133.4, 132.3, 128.1, 127.8, 127.4, 126.2, 114.1, 55.4, 45.8, 35.8, 35.4. IR (KBr, *v*, cm⁻¹): 3004, 2932, 1685, 1602, 1510, 1420, 826, 748; HRMS (ESI) m/z calcd for C₁₉H₁₅ClNaO₂ $[M+Na]^+$ 333.0658, found 333.0657; HPLC: 99% ee (Daicel Chiralpak IA, hexane/i-PrOH =95/5, flow rate: 0.6 mL/min, detector: 254 nm, $t_R(minor) = 12.863 min$, $t_R(major) = 17.249 min$.

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.608	4855996	100131	50.041	53.794
2	13.385	4848102	86005	49.959	46.206
Total		9704098	186136	100.000	100.000

$\Gamma CaK\pi$	Ret. Third	Alca	rieigin	Alca /0	ficigin 70
1	13.340	10841	434	0.020	0.046
2	15.718	53805793	945111	99.980	99.954
Total		53816634	945545	100.000	100.000

	VIIII	C				
峰 #	保留时间 [min]	类型	峰宽 [min]	峰面积 [mAU*s]	峰高 [mAU]	峰面积 %
1	7.741	BV E	0.2249	19.77050	1.30383	0.3287
2	8.550	VB R	0.2373	5995. 68799	407.24240	99.6713

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.869	84957991	1533317	50.303	60.655
2	23.124	83933736	994595	49.697	39.345
Total		168891727	2527912	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.509	31897246	435898	99.894	99.919
2	26.991	33854	352	0.106	0.081
Total		31931099	436250	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.968	4209276	127911	50.243	56.911
2	18.176	4168586	96845	49.757	43.089
Total		8377862	224756	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.628	3131	82	0.057	0.070
2	18.175	5520499	117953	99.943	99.930
Total		5523631	118035	100.000	100.000

рсак	time	type	wiuti	i Alca	mengine	Alta	
峰	保留时间	类型	峰宽	峰面积	峰高	峰面积	
#	[min]		[min]	[mAU*s]	[mAU]	%	
	·	-					
1	15.755	BB	0.2812	2599.72290	143.63481	97.8137	
2	17.453	BB	0.3435	58.10947	2.57324	2.1863	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.556	81661	3891	0.102	0.148
2	10.219	80241447	2618692	99.898	99.852
Total		80323108	2622583	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.319	60069	2308	0.129	0.188
2	13.121	46456382	1222994	99.871	99.812
Total		46516451	1225302	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.605	4223254	150689	50.437	74.114
2	18.472	4150120	52632	49.563	25.886
Total		8373374	203321	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.439	23619560	812183	100.002	100.000
2	18.025	-543	-0	-0.002	-0.000
Total		23619016	812182	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.668	3554322	85501	49.632	57.331
2	18.518	3607040	63635	50.368	42.669
Total		7161362	149136	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.817	323	26	0.004	0.020
2	18.564	7600750	129999	99.996	99.980
Total		7601073	130025	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.602	9616317	434413	50.039	54.074
2	15.616	9601176	368948	49.961	45.926
Total		19217492	803361	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.597	2545	156	0.023	0.038
2	15.511	11015633	414672	99.977	99.962
Total		11018179	414828	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.645	4204578	224243	49.090	50.794
2	10.247	4360488	217229	50.910	49.206
Total		8565066	441472	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.823	20984	1263	0.246	0.280
2	10.313	8508354	449361	99.754	99.720
Total		8529337	450624	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.370	6754627	293750	49.970	54.672
2	15.787	6762643	243544	50.030	45.328
Total		13517271	537294	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.267	2882	155	0.023	0.036
2	15.445	12651652	431285	99.977	99.964
Total		12654533	431439	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.793	11846308	481041	49.757	52.280
2	12.898	11962027	439077	50.243	47.720
Total		23808336	920118	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.727	5779	275	0.056	0.059
2	12.598	10280186	462814	99.944	99.941
Total		10285965	463089	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.742	722657	35107	49.898	50.420
2	9.914	725598	34523	50.102	49.580
Total		1448255	69630	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.694	62915	3891	0.235	0.281
2	9.912	26680589	1379996	99.765	99.719
Total		26743504	1383886	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.849	5856856	236379	50.099	51.969
2	13.430	5833733	218471	49.901	48.031
Total		11690589	454850	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.772	148853	6753	1.783	1.786
2	12.988	8199159	371440	98.217	98.214
Total		8348012	378193	100.000	100.000

¹³C NMR Spectrum of Compound 3a

¹H NMR Spectrum of Compound 3b

S48

¹H NMR Spectrum of Compound 3c

¹³C NMR Spectrum of Compound 3c

¹H NMR Spectrum of Compound 3d

¹³C NMR Spectrum of Compound 3d

¹H NMR Spectrum of Compound 3e

¹³C NMR Spectrum of Compound 3e

¹H NMR Spectrum of Compound 3f

¹³C NMR Spectrum of Compound 3g

¹³C NMR Spectrum of Compound 3h

¹H NMR Spectrum of Compound 3i

¹³C NMR Spectrum of Compound 3i

¹H NMR Spectrum of Compound 3j

¹H NMR Spectrum of Compound 3k

¹³C NMR Spectrum of Compound 3k

¹H NMR Spectrum of Compound 31

¹³C NMR Spectrum of Compound 31

¹H NMR Spectrum of Compound 3m

¹³C NMR Spectrum of Compound 3m

¹H NMR Spectrum of Compound 3n

¹³C NMR Spectrum of Compound 3n

¹H NMR Spectrum of Compound 30

¹³C NMR Spectrum of Compound 3p

¹H NMR Spectrum of Compound 3r

¹³C NMR Spectrum of Compound 3r

S81

S82

¹H NMR Spectrum of Compound 3t

¹³C NMR Spectrum of Compound 3t

¹H NMR Spectrum of Compound 3u

¹³C NMR Spectrum of Compound 3u

S87

¹³C NMR Spectrum of Compound 3v

¹H NMR Spectrum of Compound 3w

¹³C NMR Spectrum of Compound 3w

¹H NMR Spectrum of Compound 3x

¹³C NMR Spectrum of Compound 3x

¹H NMR Spectrum of Compound 3y

¹³C NMR Spectrum of Compound 3y

¹³C NMR Spectrum of Compound 3z

¹H NMR Spectrum of Compound 3aa

¹³C NMR Spectrum of Compound 3aa

400 MHz, CDCI₃

¹H NMR Spectrum of Compound 3bb

¹³C NMR Spectrum of Compound 3bb

¹H NMR Spectrum of Compound 3cc

¹³C NMR Spectrum of Compound 3cc

¹³C NMR Spectrum of Compound 4