Supplementary Information

Table of Contents

I.	Culture experiment growth rate and carbonate chemistry data	3-7
II.	Summary of elemental ratio measurements	8-9
III.	Summary of generalized additive models (GAMs)	
	A. Complete list of candidate models	9 – 14
	B. Table of likelihood ratio test results	15 - 23
	C. Diagnostic plots for final models	24 - 31
	D. Figures showing final model components	32
IV.	Description of inorganic partition coefficient selection	33 - 38
V.	Scatterplot arrays of elemental ratios versus carbonate chemistry and other	
	measured parameters	39 – 75
	A. American Lobster (Homarus americanus)	40 - 41
	B. American Oyster (Crassostrea virginica)	42 - 43
	C. Bay Scallop (Argopecten irradians)	44 - 45
	D. Blue Crab (Callinectes sapidus)	46 - 47
	E. Blue Mussel (<i>Mytilus edulis</i>)	48 - 49
	F. Conch (Strombus alatus)	50 - 51
	G. Temperate Coral (Oculina arbuscula)	52 - 53
	H. Coralline Red Algae (<i>Neogoniolithon spectabile</i>)	54 - 55
	I. Gulf Shrimp (Penaeus plebejus)	56 - 57
	J. Halimeda Green Algae (Halimeda incrassata)	58 – 59
	K. Hard Clam (Mercenaria mercenaria)	60 - 61
	L. Limpet (Crepidula fornicata)	62 - 63
	M. Pencil Urchin (<i>Eucidaris tribuloides</i>)	64 - 65
	N. Periwinkle (<i>Littorina littorea</i>)	66 – 67
	O. Purple Urchin (Arbacia punctulata)	68 - 69
	P Serpulid Worm (Hydroides crucigera)	70 - 71
	O. Soft Clam (<i>Mya arenaria</i>)	72 - 73
	R Whelk (Urosalpinx cinerea)	74 - 75
VI	Links to GitHub repositories containing the code used to generate plots	76
, 1,	A. Element-to-calcium ratio boxplots	10
	B Scatterplots of element-to-calcium ratios vs. carbonate chemistry and	lother
	measured parameters with linear fits	
	C Scatterplots of element-to-calcium ratios vs. carbonate chemistry and	lother
	measured parameters with quadratic fits	
	D Akaike Information Criterion (AIC) analysis: comparisons between 1	inear and
	audratic fits	
	F Non metric multidimensional scaling (NMDS) plots	
VП	Phylogenetic analysis	
v 11.	A Methods and results of phylogenetic trees	77 70
	B. Link to Nexus file for Time calibrated phylogenetic trac	70
	C Additional phylogenetic signal results	70 90
	D. Tabulated regults of relative contribution comparison	77 - 60
	D. Tabulated results of relative contribution comparison	00 - 01

VIII.	List of Supplementary Files	82
IX.	References	83 - 85

I. Culture experiment growth rate and carbonate chemistry data

Here we reproduce data from Ries et al. (2009) for the carbonate chemistry of culture water and organismal net calcification rates as determined by the buoyant weight method.

Table S1. Modified from Ries *et al.* (2009). Tabulated information of the carbonate chemistry parameters in the culture tanks the organisms were grown in. Each group of organisms was grown at four different pCO_2 conditions for the original experiment.

Tank	pCO ₂ (SD)	Sal(SD)	Temp(SD)	pH(SD)	DIC(SD)*
Lobster/Crab/Shrimp (I)	409(5.66)	32.0(0.169)	24.9(0.179)	8.03(0.0562)	1678(139)
Lobster/Crab/Shrimp (II)	606(7.26)	31.8(0.148)	25.0(0.141)	7.85(0.0962)	1732(119)
Lobster/Crab/Shrimp (III)	903(11.74)	32.1(0.969)	25.0(0.152)	7.72(0.0575)	1744(155)
Lobster/Crab/Shrimp (IV)	2856(53.73)	31.9(0.187)	25.1(0.114)	7.31(0.0348)	1860(169)
Conch/Limpet/Periwinkle (I)	409(5.66)	31.8(0.088)	25.1(0.110)	8.09(0.0304)	1568(101)
Conch/Limpet/Periwinkle (II)	606(7.26)	31.8(0.228)	24.9(0.152)	8.00(0.0719)	1634(147)
Conch/Limpet/Periwinkle (III)	903(11.74)	31.9(0.191)	24.9(0.148)	7.86(0.0734)	1733(78)
Conch/Limpet/Periwinkle (IV)	2856(53.73)	31.7(0.110)	24.9(0.134)	7.31(0.0348)	2097(111)
Coralline red alga/Halimeda (I)	409(5.66)	31.8(0.207)	25.0(0.055)	8.19(0.0317)	1738(50)
Coralline red alga/Halimeda (II)	606(7.26)	31.7(0.118)	25.0(0.152)	8.05(0.0604)	1786(101)
Coralline red alga/Halimeda (III)	903(11.74)	31.5(0.155)	25.1(0.164)	7.91(0.0286)	1903(46)
Coralline red alga/Halimeda (IV)	2856(53.73)	31.8(0.258)	24.9(0.130)	7.49(0.0216)	2350(33)
Pencil urchin/Purple urchin (I)	409(5.66)	31.9(0.269)	25.1(0.122)	8.04(0.0574)	1563(127)
Pencil urchin/Purple urchin (II)	606(7.26)	31.8(0.099)	25.0(0.152)	7.90(0.0510)	1623(145)
Pencil urchin/Purple urchin (III)	903(11.74)	31.7(0.218)	24.9(0.114)	7.77(0.0241)	1707(108)
Pencil urchin/Purple urchin (IV)	2856(53.73)	31.7(0.218)	25.0(0.148)	7.36(0.0328)	1921(73)
Coral/Serpulid worm (I)	409(5.66)	31.7(0.208)	25.0(0.191)	8.11(0.0628)	1738(47)
Coral/Serpulid worm (II)	606(7.26)	31.6(0.353)	24.9(0.129)	8.03(0.0376)	1824(32)
Coral/Serpulid worm (III)	903(11.74)	31.7(0.426)	24.9(0.141)	7.85(0.0519)	1907(30)
Coral/Serpulid worm (IV)	2856(53.73)	31.5(0.633)	25.2(0.058)	7.48(0.0332)	2070(40)
Clams/Mussel/Scallop/Oyster (I)	409(5.66)	32.1(0.288)	25.1(0.148)	8.15(0.0404)	1598(112)

Clams/Mussel/Scallop/Oyster (II)	606(7.26)	31.7(0.199)	25.1(0.110)	8.02(0.0803)	1684(126)
Clams/Mussel/Scallop/Oyster (III)	903(11.74)	31.9(0.251)	25.0(0.158)	7.83(0.0452)	1749(87)
Clams/Mussel/Scallop/Oyster (IV)	2856(53.73)	31.9(0.240)	25.0(0.084)	7.45(0.0370)	2071(51)

*Calculated

Table S2. Modified from Ries *et al.* (2009). Tabulated information about the net calcification rate results calculated from the buoyant weighing technique. Briefly, organisms were suspended by an aluminum wire hanging from a bottom-loading scale in an aquarium with filtered seawater. Net calcification rates were calculated as the %-weight difference between the organisms' initial and final buoyant weights. A calibration curve of final buoyant weight vs. dry CaCO₃ weight was used to estimate the final dry CaCO₃ weight of the organisms.

Organism	Scientific name	<i>p</i> CO ₂ (SD)	Avg net calcification rate (SD)
			wt-%/60-day
American lobster	Homarus americanus	409(5.66)	353.0(91.0)
American lobster	Homarus americanus	606(7.26)	349.5(39.6)
American lobster	Homarus americanus	903(11.74)	376.3(58.6)
American lobster	Homarus americanus	2856(53.73)	606.1(164.6)
Blue crab	Callinectes sapidus	409(5.66)	433.8(138.0)
Blue crab	Callinectes sapidus	606(7.26)	598.2(116.7)
Blue crab	Callinectes sapidus	903(11.74)	600.9(117.3)
Blue crab	Callinectes sapidus	2856(53.73)	724.0(109.2)
Gulf shrimp	Penaeus plebejus	409(5.66)	15.3(11.4)
Gulf shrimp	Penaeus plebejus	606(7.26)	17.3(7.4)
Gulf shrimp	Penaeus plebejus	903(11.74)	27.5(9.4)
Gulf shrimp	Penaeus plebejus	2856(53.73)	37.8(13.7)
Conch	Strombus alatus	409(5.66)	2.0(0.5)
Conch	Strombus alatus	606(7.26)	0.8(1.2)
Conch	Strombus alatus	903(11.74)	1.2(1.4)
Conch	Strombus alatus	2856(53.73)	-3.1(2.0)
Limpet	Crepidula fornicata	409(5.66)	12.4(9.5)
Limpet	Crepidula fornicata	606(7.26)	22.2(6.8)
Limpet	Crepidula fornicata	903(11.74)	33.0(5.0)
Limpet	Crepidula fornicata	2856(53.73)	21.2(7.0)
Whelk	Urosalpinx cinerea	409(5.66)	2.9(1.9)
Whelk	Urosalpinx cinerea	606(7.26)	0.7(1.1)

Whelk	Urosalpinx cinerea	903(11.74)	0.7(0.6)
Whelk	Urosalpinx cinerea	2856(53.73)	-1.5(0.9)
Periwinkle	Littorina littorea	409(5.66)	3.8(2.9)
Periwinkle	Littorina littorea	606(7.26)	1.9(1.6)
Periwinkle	Littorina littorea	903(11.74)	0.9(2.1)
Periwinkle	Littorina littorea	2856(53.73)	-1.2(3.4)
Coralline red algae	Neogoniolithon spectabile	409(5.66)	5.7(2.9)
Coralline red algae	Neogoniolithon spectabile	606(7.26)	14.5(6.6)
Coralline red algae	Neogoniolithon spectabile	903(11.74)	10.7(4.7)
Coralline red algae	Neogoniolithon spectabile	2856(53.73)	3.6(3.5)
Halimeda green alga	Halimeda incrassata	409(5.66)	23.9(12.5)
Halimeda green alga	Halimeda incrassata	606(7.26)	43.9(7.8)
Halimeda green alga	Halimeda incrassata	903(11.74)	25.4(3.0)
Halimeda green alga	Halimeda incrassata	2856(53.73)	6.0(2.6)
Pencil urchin	Eucidaris tribuloides	409(5.66)	8.7(6.4)
Pencil urchin	Eucidaris tribuloides	606(7.26)	5.6(2.7)
Pencil urchin	Eucidaris tribuloides	903(11.74)	5.6(3.1)
Pencil urchin	Eucidaris tribuloides	2856(53.73)	-18.3(7.3)
Purple urchin	Arbacia punctulata	409(5.66)	8.2(5.7)
Purple urchin	Arbacia punctulata	606(7.26)	39.4(5.0)
Purple urchin	Arbacia punctulata	903(11.74)	42.8(3.8)
Purple urchin	Arbacia punctulata	2856(53.73)	28.5(1.9)
Coral	Oculina arbuscula	409(5.66)	11.8(1.2)
Coral	Oculina arbuscula	606(7.26)	11.6(1.2)
Coral	Oculina arbuscula	903(11.74)	11.1(1.5)
Coral	Oculina arbuscula	2856(53.73)	3.8(1.7)
Serpulid worm	Hydroides crucigera	409(5.66)	3.5(4.1)
Serpulid worm	Hydroides crucigera	606(7.26)	5.5(3.8)

Serpulid worm	Hydroides crucigera	903(11.74)	2.3(4.0)
Serpulid worm	Hydroides crucigera	2856(53.73)	1.3(3.8)
Hard clam	Mercenaria mercenaria	409(5.66)	1.0(0.6)
Hard clam	Mercenaria mercenaria	606(7.26)	0.7(0.3)
Hard clam	Mercenaria mercenaria	903(11.74)	0.5(0.4)
Hard clam	Mercenaria mercenaria	2856(53.73)	-1.4(0.4)
Blue mussel	Mytilus edulis	409(5.66)	4.4(2.2)
Blue mussel	Mytilus edulis	606(7.26)	3.1(2.5)
Blue mussel	Mytilus edulis	903(11.74)	3.6(3.4)
Blue mussel	Mytilus edulis	2856(53.73)	3.1(3.2)
Soft clam	Mya arenaria	409(5.66)	17.5(3.5)
Soft clam	Mya arenaria	606(7.26)	7.7(3.6)
Soft clam	Mya arenaria	903(11.74)	0.2(6.9)
Soft clam	Mya arenaria	2856(53.73)	-8.1(6.9)
Bay scallop	Argopecten irradians	409(5.66)	6.9(2.1)
Bay scallop	Argopecten irradians	606(7.26)	6.3(0.8)
Bay scallop	Argopecten irradians	903(11.74)	4.8(4.2)
Bay scallop	Argopecten irradians	2856(53.73)	2.3(1.9)
Oyster	Crassostrea virginica	409(5.66)	1.9(0.3)
Oyster	Crassostrea virginica	606(7.26)	1.6(0.3)
Oyster	Crassostrea virginica	903(11.74)	1.1(0.3)
Oyster	Crassostrea virginica	2856(53.73)	0.3(0.4)

II. Summary of element-to-calcium ratio measurements from this study.

Organism	Li/Ca (SD)	B/Ca (SD)	Na/Ca (SD)	Mg/Ca (SD)	Zn/Ca (SD)	Sr/Ca (SD)	Cd/Ca (SD)	Ba/Ca (SD)	U/Ca (SD)
Temperate Coral	7.30 (0.43)	582.31 (36.53)	23.14*	4.22 (0.36)	4.16 (2.20)	9.61 (0.38)	0.04 (0.06)	15.25 (2.07)	879.07 (123.26)
Halimeda Algae	20.50*	96.42*	11.86 (1.35)	4.50 (3.84)	0.13 (0.10)	9.98 (0.70)	0.344*	27.76 (7.39)	33.15*
Soft Clam	5.41 (0.58)	26.10 (4.35)	22.40*	0.77 (0.15)	2.10 (1.07)	2.50 (0.27)	0.05 (0.07)	7.57 (4.73)	40.47 (19.86)
Conch	5.18 (0.76)	15.62 (2.06)	25.90 (1.74)	0.77 (0.30)	1.50 (0.89)	1.80 (0.28)	0.01 (0.01)	4.43 (2.56)	18.47 (8.69)
Hard Clam (Quahog)	8.40 (0.83)	49.26 (12.23)	22.04*	15.87 (29.04)	98.29 (112.28)	2.27 (0.86)	0.01 (0.00)	1.59 (19.36)	286.75 (227.15)
Limpet	4.87 (0.34)	16.58 (3.50)	22.50 (2.27)	1.11 (0.39)	2.27 (2.33)	1.58 (0.18)	0.01 (0.01)	6.78 (8.19)	58.68 (19.23)
Whelk	5.43 (0.86)	15.96 (2.90)	23.22 (1.51)	0.98 (0.48)	6.52 (10.83)	2.06 (0.22)	0.98 (2.81)	5.21 (5.88)	63.24 (28.87)
Serpulid Worm	49.24 (9.73)	475.05 (56.13)	19.79*	162.24 (22.34)	6.23 (3.21)	5.69 (0.74)	0.59 (0.50)	86.68 (67.65)	504.18 (127.97)
Blue Mussel	7.00 (1.23)	41.25 (10.03)	22.00*	29.00 (30.49)	163.23 (202.26)	2.46 (1.55)	0.03 (0.02)	52.97 (85.99)	6.30 (1.34)
Periwinkle	14.51 (4.33)	2.89 (0.96)	16.74 (2.96)	3.95 (1.52)	6.69 (5.35)	1.16 (0.12)	0.00 (0.00)	1.53 (0.54)	8.68 (5.48)
American Oyster	23.94 (4.40)	101.85 (10.01)	20.98*	10.97 (1.48)	27.92 (15.44)	1.00 (0.12)	0.02 (0.01)	1.02 (0.15)	9.06 (2.52)
Bay Scallop	11.97 (2.54)	32.97 (7.37)	21.88*	19.32 (4.01)	9.59 (6.10)	1.41 (0.07)	0.00 (0.00)	5.82 (2.02)	3.74 (2.03)
American Lobster	30.87*	195.76*	31.45 (16.13)	74.62 (22.82)	730.34 (370.28)	5.21 (0.94)	0.399*	123.95 (49.17)	24.01*
Blue Crab	33.36*	212.37*	20.02 (3.81)	58.26 (6.93)	211.13 (86.27)	5.30 (0.36)	0.413*	44.19 (27.77)	31.54*
Gulf Shrimp	31.39*	198.75*	17.41 (4.63)	51.57 (10.64)	1064.94 (583.68)	5.61 (1.81)	0.415*	70.58 (49.73)	33.58*
Coralline Red Algae	45.40 (3.75)	425.42 (60.88)	15.42 (1.22)	264.42 (11.68)	75.35 (34.44)	3.23 (0.22)	1.37 (0.53)	24.46 (5.56)	140.63 (15.76)
Pencil Urchin	51.63 (1.24)	323.72 (55.84)	20.57 (1.40)	68.45 (7.38)	5.27 (3.10)	2.11 (0.07)	0.43 (0.11)	10.57 (3.11)	13.23 (5.53)
Purple Urchin	57.00 (4.86)	395.40 (15.54)	23.62 (1.36)	76.37 (5.90)	2.12 (1.05)	2.21 (0.09)	0.23 (0.03)	7.25 (2.40)	5.91 (1.01)

Table S3. Summary of element-to-calcium ratio measurements. "*" denotes an imputed value (see methods and Figure 4).

III. Summary of generalized additive models (GAMs) from this study. A. Complete list of candidate models **Table S4.** Generalized additive model results. Within the model formulae, "*" and "+" indicate interactive and additive models, respectively. Invalid models are noted with a "n.s." in the % Deviance Explained column. **Bolded** model rows indicate the most likely model determined by lrtest().

Li				
Model	Formula	% Deviance Explained	Model Likelihood	n
li.mod	Li.Ca ~ Mg.Ca	64.60%	678.43	181
li.mod2	Li.Ca ~ Phylum	91.00%	554.36	181
li.mod3	Li.Ca ~ Mg.Ca + Phylum	94.30%	513.65	181
li.mod4	Li.Ca ~ Mg.Ca * Phylum	94.30%	508.04	181
li.mod9	Li.Ca ~ Carbonate.Material	72.10%	656.96	181
li.mod10	Li.Ca ~ Phylum + Carbonate.Material	94.20%	515.28	181
li.mod11	Li.Ca ~ Phylum * Carbonate.Material	94.20%	515.28	181
li.mod12	Li.Ca ~ Carbonate.Material + Phylum	94.20%	515.28	181
li.mod13	Li.Ca ~ Carbonate.Material * Phylum	94.20%	515.28	181
li.mod14	Li.Ca ~ Mg.Ca + Carbonate.Material	78.10%	634.79	181
li.mod15	Li.Ca ~ Mg.Ca * Carbonate.Material	95.60%	489.49	181
li.mod16	Li.Ca ~ Mg.Ca * Phylum + Carbonate.Material	96%	482.14	181
li.mod17	Li.Ca ~ Mg.Ca + Phylum + Carbonate.Material	95.50%	490.79	181
li.mod18	Li.Ca ~ Mg.Ca * Carbonate.Material + Phylum	95.90%.	482.74	181
li.mod19	Li.Ca ~ Mg.Ca * Carbonate.Material * Phylum	n.s.		
В				
Model	Formula	Deviance Explained	Model Likelihood	n
b.mod	B.Ca ~ Mg.Ca	5.54%	1302	188
b.mod2	B.Ca ~ Phylum	97.80%	950.21	188
b.mod3	B.Ca ~ Mg.Ca + Phylum	97.90%	945.28	188

b.mod4	B.Ca ~ Mg.Ca * Phylum	98.20%	927.98	188
b.mod9	B.Ca ~ Carbonate.Material	28%	1277	188
b.mod10	B.Ca ~ Phylum + Carbonate.Material	97.80%	947.41	188
b.mod11	B.Ca ~ Phylum * Carbonate.Material	97.80%	947.41	188
b.mod12	B.Ca ~ Carbonate.Material + Phylum	97.80%	947.41	188
b.mod13	B.Ca ~ Carbonate.Material * Phylum	97.80%	947.41	188
b.mod14	B.Ca ~ Mg.Ca + Carbonate.Material	35.20%	1266.9	188
b.mod15	B.Ca ~ Mg.Ca * Carbonate.Material	94.1%	1041.8	188
b.mod16	B.Ca ~ Mg.Ca * Phylum + Carbonate.Material	98.20%	927.548	188
b.mod17	B.Ca ~ Mg.Ca + Phylum + Carbonate.Material	97.90%	944.38	188
b.mod18	B.Ca ~ Mg.Ca * Carbonate.Material + Phylum	98.20%	930.11	188
b.mod19	B.Ca ~ Mg.Ca * Carbonate.Material * Phylum	98.20%	927.51	188
Zn				
Model	Formula	Deviance Explained	Model Likelihood	n
zn.mod	Zn.Ca ~ Mg.Ca	2.89%	1928.7	279
zn.mod2	Zn.Ca ~ Phylum	59.10%	1863.9	282
zn.mod3	Zn.Ca ~ Mg.Ca + Phylum	61.70%	1799	279
zn.mod4	Zn.Ca ~ Mg.Ca * Phylum	n.s.		
zn.mod9	Zn.Ca ~ Carbonate.Material	27.60%	1944.4	282
zn.mod10	Zn.Ca ~ Phylum + Carbonate.Material	59.10%	1863.8	282
zn.mod11	Zn.Ca ~ Phylum * Carbonate.Material	59.10%	1863.8	282
zn.mod12	Zn.Ca ~ Carbonate.Material + Phylum	59.10%	1863.8	282
zn.mod13	Zn.Ca ~ Carbonate.Material * Phylum	59.10%	1863.8	282
zn.mod14	Zn.Ca ~ Mg.Ca + Carbonate.Material	32.80%	1877.3	279
zn.mod15	Zn.Ca ~ Mg.Ca * Carbonate.Material	34.70%	1873.3	279
zn.mod16	Zn.Ca ~ Mg.Ca * Phylum + Carbonate.Material	n.s.		
zn.mod17	Zn.Ca ~ Mg.Ca + Phylum + Carbonate.Material	61.80%	1798.8	279

cd.mod10	Cd.Ca ~ Phylum + Carbonate.Material	76.10%	-24.375	148
cd.mod9	Cd.Ca ~ Carbonate.Material	50.90%	29.034	148
cd.mod4	Cd.Ca ~ Mg.Ca * Phylum	76.30%	-24.999	148
cd.mod3	Cd.Ca ~ Mg.Ca + Phylum	75.50%	-22.599	148
cd.mod2	Cd.Ca ~ Phylum	75.20%	-21.578	148
cd.mod	Cd.Ca ~ Mg.Ca	71.90%	-12.355	148
Model	Formula	Deviance Explained	Model Likelihood	n
Cd				
sr.mod19	Sr.Ca ~ Mg.Ca * Carbonate.Material * Phylum	99%	85.891	239
sr.mod18	Sr.Ca ~ Mg.Ca * Carbonate.Material + Phylum	98.90%	99.973	239
sr.mod17	Sr.Ca ~ Mg.Ca + Phylum + Carbonate.Material	98.50%	133.55	239
sr.mod16	Sr.Ca ~ Mg.Ca * Phylum + Carbonate.Material	99%	85.993	239
sr.mod15	Sr.Ca ~ Mg.Ca * Carbonate.Material	77.60%	454.81	239
sr.mod14	Sr.Ca ~ Mg.Ca + Carbonate.Material	33.30%	584.93	239
sr.mod13	Sr.Ca ~ Carbonate.Material * Phylum	97.40%	207.7	254
sr.mod12	Sr.Ca ~ Carbonate.Material + Phylum	97.40%	207.7	254
sr.mod11	Sr.Ca ~ Phylum * Carbonate.Material	97.40%	207.7	254
sr.mod10	Sr.Ca ~ Phylum + Carbonate.Material	97.40%	207.7	254
sr.mod9	Sr.Ca ~ Carbonate.Material	25.70%	634.92	254
sr.mod4	Sr.Ca ~ Mg.Ca * Phylum	98.70%	115.35	239
sr.mod3	Sr Ca \sim Mg Ca + Phylum	98.00%	167.86	239
sr.mod?	Sr.Ca ~ Phylum	97.00%	228.07	254
ar mod	Sr Co - Mg Co	Explained	Likelihood	
Sr Model	Formula	Davianca	Model	n
zn.mod19	Phylum	n.s.		
	Zn.Ca ~ Mg.Ca * Carbonate.Material *	:		
zn.mod18	Zn.Ca ~ Mg.Ca * Carbonate.Material +	61.90%	1798.3	279

cd.mod11	Cd.Ca ~ Phylum * Carbonate.Material		76.10%	-24.375	148
cd.mod12	Cd.Ca ~ Carbonate.Material + Phylum		76.10%	-24.375	148
cd.mod13	Cd.Ca ~ Carbonate.Material * Phylum		76.10%	-24.375	148
cd.mod14	Cd.Ca ~ Mg.Ca + Carbonate.Material		73.10%	-18.025	148
cd.mod15	Cd.Ca ~ Mg.Ca * Carbonate.Material		75.70%	-22.949	148
cd.mod16	Cd.Ca ~ Mg.Ca * Phylum - Carbonate.Material	+	77.20%	-27.727	148
cd.mod17	Cd.Ca ~ Mg.Ca + Phylum - Carbonate.Material	+	76.40%	-25.156	148
cd.mod18	Cd.Ca ~ Mg.Ca * Carbonate.Material - Phylum	+	77.20%	-27.759	148
cd.mod19	Cd.Ca ~ Mg.Ca * Carbonate.Material * Phylum	*	77.60%	-29.046	148
Ba					
Model	Formula		Deviance Explained	Model Likelihood	n
ba.mod	Ba.Ca ~ Mg.Ca		17.00%	1281.5	270
ba.mod2	Ba.Ca ~ Phylum		57.80%	1265.2	285
ba.mod3	Ba.Ca ~ Mg.Ca + Phylum		64.30%	1167.5	270
ba.mod4	Ba.Ca ~ Mg.Ca * Phylum		68.70%	1149.9	270
ba.mod9	Ba.Ca ~ Carbonate.Material		21.30%	1354.1	285
ba.mod10	Ba.Ca ~ Phylum + Carbonate.Material		57.90%	1265	285
ba.mod11	Ba.Ca ~ Phylum * Carbonate.Material		57.90%	1265	285
ba.mod12	Ba.Ca ~ Carbonate.Material + Phylum		57.90%	1265	285
ba.mod13	Ba.Ca ~ Carbonate.Material * Phylum		57.90%	1265	285
ba.mod14	Ba.Ca ~ Mg.Ca + Carbonate.Material		22.50%	1272.3	270
ba.mod15	Ba.Ca ~ Mg.Ca * Carbonate.Material		35.20%	1247.9	270
ba.mod16	Ba.Ca ~ Mg.Ca * Phylum - Carbonate.Material	+	68.80%	1149.4	270
ba.mod17	Ba.Ca ~ Mg.Ca + Phylum - Carbonate.Material	+	65.60%	1162.6	270
ba.mod18	Ba.Ca ~ Mg.Ca * Carbonate.Material - Phylum	+	66.50%	1159	270
ba.mod19	Ba.Ca ~ Mg.Ca * Carbonate.Material Phylum	*	n.s.		
U					
1					

Model	Formula	Deviance Explained	Model Likelihood	n
u.mod	U.Ca ~ Mg.Ca	n.s.		
u.mod2	U.Ca ~ Phylum	91.60%	1078.5	175
u.mod3	U.Ca ~ Mg.Ca + Phylum	92.00%	1074	175
u.mod4	U.Ca ~ Mg.Ca * Phylum	92.60%	1067.5	175
u.mod9	U.Ca ~ Carbonate.Material	37.70%	1254.3	175
u.mod10	U.Ca ~ Phylum + Carbonate.Material	92.30%	1071.5	175
u.mod11	U.Ca ~ Phylum * Carbonate.Material	92.30%	1071.5	175
u.mod12	U.Ca ~ Carbonate.Material + Phylum	92.30%	1071.5	175
u.mod13	U.Ca ~ Carbonate.Material * Phylum	92.30%	1071.5	175
u.mod14	U.Ca ~ Mg.Ca + Carbonate.Material	41.30%	1249.1	175
u.mod15	U.Ca ~ Mg.Ca * Carbonate.Material	88.50%	1106.2	175
u.mod16	U.Ca ~ Mg.Ca * Phylum + Carbonate.Material	93%	1063.6	175
	U.Ca ~ Mg.Ca + Phylum +			
u.mod17	Carbonate.Material	92.40%	1070.1	175
u.mod18	U.Ca ~ Mg.Ca * Carbonate.Material + Phylum	92.70%	1066.7	175
u.mod19	U.Ca ~ Mg.Ca * Carbonate.Material * Phylum	n.s.		
Na				
Model	Formula	Deviance Explained	Model Likelihood	n
na.mod	Na.Ca ~ Mg.Ca	n.s.		
na.mod2	Na.Ca ~ Phylum	19.40%	409.7	124
na.mod3	Na.Ca ~ Mg.Ca + Phylum	27.60%	394.03	121
na.mod4	Na.Ca ~ Mg.Ca * Phylum	38.20%	384.39	121
na.mod9	Na.Ca ~ Carbonate.Material	4.39%	420.27	124
na.mod10	Na.Ca ~ Phylum + Carbonate.Material	26.40%	404.05	124
na.mod11	Na.Ca ~ Phylum * Carbonate.Material	26.40%	404.05	124
na.mod12	Na.Ca ~ Carbonate.Material + Phylum	26.40%	404.05	124
na.mod13	Na.Ca ~ Carbonate.Material * Phylum	26.40%	404.05	124
na.mod14	Na.Ca ~ Mg.Ca + Carbonate.Material	9.64%	407.41	121
na.mod15	Na.Ca ~ Mg.Ca * Carbonate.Material	16.60%	402.55	121

na.mod16	Na.Ca ~ Mg.Ca * Phylum + Carbonate.Material	38.70%	383.96	121
	Na.Ca ~ Mg.Ca + Phylum +			
na.mod17	Carbonate.Material	36%	386.5	121
	Na.Ca ~ Mg.Ca * Carbonate.Material +			
na.mod18	Phylum	37.30%	385.27	121
	Na.Ca ~ Mg.Ca * Carbonate.Material *			
na.mod19	Phylum	n.s.		

B. Table of likelihood ratio test results

Li

Table S5. Tabulated p-value results of likelihood ratio tests comparing candidate models.. Significant p-values (p < 0.05) infer that the models do not provide equal outcomes, and suggest that the better model is the one with a higher Model Likelihood score. Cells with "-" occur when there are missing Mg/Ca values for some of the replicates that have X/Ca data (X = Li, B, Zn, etc.) and thus causing models assessing phylum and/or mineralogy without Mg/Ca to have a different n and preventing it from being compared to the other models. Blank cells means that the model was invalid (p > 0.05). The cell color indicates which model performs better according to the log-likelihood ratio test. A white cell indicates that the model assigned to that column (i.e. the column label across the top) performed better than the cell assigned to that row (i.e. the row labels along the left side of the table); a gray cells indicates that the model assigned to that column performed worse than the model assigned to that row. A red cell indicates that the models were indistinguishable (p > 0.05) and that the model with the higher Model Likelihood should be used.

	li.mod	li.mo d2	li.mo d3	li.mo d4	li.mo d9	li.mo d10	li.mo d11	li.mo d12	li.mo d13	li.mo d14	li.mo d15	li.mo d16	li.mo d17	li.mo d18	li.mo d19
li.mo d		2.20E -16	2.20E -16	2.20E -16	4.741 E-10	2.20E -16	2.20E -16	2.20E -16	2.20E -16	4.96E -07	2.20E -16	2.20E -16	2.20E -16	2.20E -16	
li.mo d2	2.20E -16		2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16	
li.mo d3	2.20E -16	2.20E -16		0.024 1	2.20E -16	7.10E -1	7.10E -1	7.10E -1	7.10E -1	2.20E -16	8.84E -13	1.05E -11	1.96E -10	1.38E -12	
li.mo d4	2.20E -16	2.20E -16	2.20E -16		2.20E -16	4.91E -03	4.91E -03	0.004 912	0.004 912	2.20E -16	8.8E- 9	5.6E- 12	3.2E- 8	1.1E- 12	
li.mo d9	4.741 E-10	2.20E -16	2.20E -16	2.20E -16		2.20E -16	2.20E -16	2.20E -16	2.20E -16	1.20E -14	2.20E -16	2.20E -16	2.20E -16	2.20E -16	
li.mo d10	2.20E -16	2.20E -16	7.10E -1	2.20E -16	2.20E -16		1.00E +00	1.00E +00	1.00E +00	2.20E -16	2.20E -16	1.02E -12	5.30E -12	1.06E -13	
li.mo d11	2.20E -16	2.20E -16	7.10E -1	2.20E -16	2.20E -16	1.00E +00		1.00E +00	1.00E +00	2.20E -16	2.20E -16	1.02E -12	5.30E -12	1.06E -13	
li.mo d12	2.20E -16	2.20E -16	7.10E -1	2.20E -16	2.20E -16	1.00E +00	1.00E +00		1.00E +00	2.20E -16	2.20E -16	1.02E -12	5.30E -12	1.06E -13	
li.mo d13	2.20E -16	2.20E -16	7.10E -1	2.20E -16	2.20E -16	1.00E +00	1.00E +00	1.00E +00		2.20E -16	2.20E -16	1.02E -12	5.30E -12	1.06E -13	
li.mo d14	2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.70E -11	2.20E -16	2.20E -16	2.20E -16	2.20E -16		2.20E -16	2.20E -16	2.20E -16	2.20E -16	
li.mo d15	2.20E -16	2.20E -16	3.2E- 11	8.8E- 9	2.20E -16	6.8E- 13	6.8E- 13	6.8E- 13	6.8E- 13	2.20E -16		0.005	0.006 757	0.018 01	
li.mo d16	2.20E -16	2.20E -16	1.08E -11	5.6E- 12	2.20E -16	6.0E- 13	6.0E- 13	6.0E- 13	6.0E- 13	2.20E -16	0.005		0.001 468	0.201 1	
li.mo d17	2.20E -16	2.20E -16	1.2E- 10	3.2E- 8	2.20E -16	2.6E- 12	2.6E- 12	2.6E- 12	2.6E- 12	2.20E -16	2.20E -16	0.002		0.000 2428	
li.mo d18	2.20E -16	2.20E -16	5.1E- 12	1.1E- 12	2.20E -16	2.5E- 13	2.5E- 13	2.5E- 13	2.5E- 13	2.20E -16	0.004	0.27	0.001		

	1		1		1	1	1		1	1	1	1	1	1	
li.mo d10															
u19															
В															
	b.mod	b.mo d2	b.mo d3	b.mo d4	b.mo d9	b.mo d10	b.mo d11	b.mo d12	b.mo d13	b.mo d14	b.mo d15	b.mo d16	b.mo d17	b.mo d18	b.mo d19
b.mo d		2.20E	2.20E	2.20E	1.09E	2.20E	2.20E	2.20E	2.20E	2.90E	4.99E -16	2.20E	2.20E	2.20E	2.20E
b.mo	2.20E	10	1.70E	1.87E	2.20E	6.00E	6.00E	6.00E	6.00E	2.20E	2.20E	1.20E	10	4.16E	7.80E
d2	-16		-03	-08	-16	-01	-01	-01	-01	-16	-16	-07	0.009	-07	-07
b.mo d3	2.20E -16	1.70E -03		5.58E -07	2.20E -16	4.00E -02	4.00E -02	4.00E -02	4.00E -02	2.20E -16	2.20E -16	3.48E -07	0.405 9	1.26E -05	2.13E -05
b.mo d4	2.20E -16	1.87E -08	5.58E -07		2.20E -16	1.85E -08	1.85E -08	1.85E -08	1.85E -08	2.20E -16	2.20E -16	0.647 7	7.51E -08	0.039 02	0.920 2
b.mo d9	1.09E -11	2.20E -16	2.20E -16	2.20E -16		2.20E -16	2.20E -16	2.20E -16	2.20E -16	6.81E -06	2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16
b.mo d10	2.20E -16	6.00E -01	4.00E -02	1.85E -08	2.20E -16		1.00E +00	1.00E +00	1.00E +00	< 2.2e- 16	< 2.2e- 16	1.69E -07	0.013 84	5.59E -07	1.38E -06
b.mo d11	2.20E -16	6.00E -01	4.00E -02	1.85E -08	2.20E -16	1.00E +00		1.00E +00	1.00E +00	< 2.2e- 16	< 2.2e- 16	1.69E -07	0.013 84	5.59E -07	1.38E -06
b.mo d12	2.20E -16	6.00E -01	4.00E -02	1.85E -08	2.20E -16	1.00E +00	1.00E +00		1.00E +00	< 2.2e- 16	< 2.2e- 16	1.69E -07	0.013 84	5.59E -07	1.38E -06
b.mo d13	2.20E -16	6.00E -01	4.00E -02	1.85E -08	2.20E -16	1.00E +00	1.00E +00	1.00E +00		< 2.2e- 16	< 2.2e- 16	1.69E -07	0.013 84	5.59E -07	1.38E -06
b.mo d14	2.90E -15	2.20E -16	2.20E -16	2.20E -16	6.81E -06	< 2.2e- 16	< 2.2e- 16	< 2.2e- 16	< 2.2e- 16		< 2.2e- 16	< 2.2e- 16	< 2.2e- 16	< 2.2e- 16	< 2.2e- 16
b.mo d15	4.99E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16	< 2.2e- 16	< 2.2e- 16	< 2.2e- 16	< 2.2e- 16	< 2.2e- 16		< 2.2e- 16	< 2.2e- 16	< 2.2e- 16	< 2.2e- 16
b.mo d16	2.20E -16	1.20E -07	3.48E -07	0.647 7	2.20E -16	1.69E -07	1.69E -07	1.69E -07	1.69E -07	< 2.2e- 16	< 2.2e- 16		8.67E -07	2.35E -02	0.969 9
b.mo d17	2.20E -16	0.009	0.405 9	7.51E -08	2.20E -16	0.013 84	0.013 84	0.013 84	0.013 84	< 2.2e- 16	< 2.2e- 16	8.67E -07		2.78E -06	7.55E -06
b.mo d18	2.20E -16	4.16E -07	1.26E -05	0.039 02	2.20E -16	5.59E -07	5.59E -07	5.59E -07	5.59E -07	< 2.2e- 16	< 2.2e- 16	2.35E -02	2.78E -06		0.158 4
b.mo d19	2.20E -16	7.80E -07	2.13E -05	0.920 2	2.20E -16	1.38E -06	1.38E -06	1.38E -06	1.38E -06	< 2.2e- 16	< 2.2e- 16	0.969 9	7.55E -06	0.158 4	
Zn															

	zn.mo d	zn.mo d2	zn.mo d3	zn.mo d4	zn.mo d9	zn.mo d10	zn.mo d11	zn.mo d12	zn.mo d13	zn.mo d14	zn.mo d15	zn.mo d16	zn.mo d17	zn.mo d18	zn.mo d19
zn.m od		-	< 2.2E- 16		-	-	-	-	-	< 2.2E- 16	< 2.2E- 16		< 2.2E- 16	< 2.2E- 16	
zn.m od2	-		-		< 2.2E- 16	9.96E -01	9.96E -01	9.96E -01	9.69E -01	_	-		-	-	
zn.m od3	< 2.2E- 16	-			-	-	-	-	-	2.20E -16	2.20E -16		7.70E -01	9.10E -01	
zn.m od4															
zn.m od9	-	< 2.2E- 16	-			< 2.2E- 16	< 2.2E- 16	< 2.2E- 16	< 2.2E- 16	-	-		-	-	
zn.m od10	-	9.96E -01	-		< 2.2E- 16		1.00E +00	1.00E +00	1.00E +00	-	-		-	-	
zn.m od11	-	9.96E -01	-		< 2.2E- 16	1.00E +00		1.00E +00	1.00E +00	-	-		-	-	
zn.m od12	-	9.96E -01	-		< 2.2E- 16	1.00E +00	1.00E +00		1.00E +00	-	-		-	-	
zn.m od13	-	9.69E -01	-		< 2.2E- 16	1.00E +00	1.00E +00	1.00E +00		-	-		-	-	
zn.m od14	< 2.2E- 16	-	2.20E -16		-	-	-	-	-		4.50E -02		< 2.2E- 16	< 2.2E- 16	
zn.m od15	< 2.2E- 16	-	2.20E -16		-	-	-	-	-	4.50E -02			< 2.2E- 16	< 2.2E- 16	
zn.m od16		-			-	-	-	-	-						
zn.m od17	< 2.2E- 16	-	7.70E -01		-	-	-	_	_	< 2.2E- 16	< 2.2E- 16			7.90E -01	
zn.m od18	< 2.2E- 16	-	9.10E -01		-	-	-	-	-	< 2.2E- 16	< 2.2E- 16		7.90E -01		
zn.m od19															
Sr															
	sr.mo d	sr.mo d2	sr.mo d3	sr.mo d4	sr.mo d9	sr.mo d10	sr.mo d11	sr.mo d12	sr.mo d13	sr.mo d14	sr.mo d15	sr.mo d16	sr.mo d17	sr.mo d18	sr.mo d19

sr.mo d															
sr.mo d2			-	-	< 2.2E- 16	1.43E -09	1.43E -09	1.43E -09	1.43E -09	-	-	_	-	_	-
sr.mo d3		-		< 2.2E- 16	-	-	-	-	-	< 2.2E- 16	< 2.2E- 16	< 2.2E- 16	1.27E -15	< 2.2E- 16	< 2.2E- 16
sr.mo d4		-	< 2.2E- 16		-	-	-	-	-	< 2.2E- 16	< 2.2E- 16	1.78E -13	2.39E -07	1.34E -09	4.89E -12
sr.mo d9		< 2.2E- 16	-	-		< 2.2E- 16	< 2.2E- 16	< 2.2E- 16	< 2.2E- 16	-	-	-	-	-	-
sr.mo d10		1.43E -09	-	-	< 2.2E- 16		1	1	1	-	-	-	-	-	-
sr.mo d11		1.43E -09	-	-	< 2.2E- 16	1		1	1	-	-	-	-	-	-
sr.mo d12		1.43E -09	-	-	< 2.2E- 16	1	1		1	-	-	-	-	-	-
sr.mo d13		1.43E -09	-	-	< 2.2E- 16	1	1	1		-	-	-	-	-	-
sr.mo d14		-	< 2.2E- 16	< 2.2E- 16	-	-	-	-	-		< 2.2E- 16	< 2.2E- 16	< 2.2E- 16	< 2.2E- 16	< 2.2E- 16
sr.mo d15		-	< 2.2E- 16	< 2.2E- 16	-	-	-	-	-	< 2.2E- 16		< 2.2E- 16	< 2.2E- 16	< 2.2E- 16	< 2.2E- 16
sr.mo d16		-	< 2.2E- 16	1.78E -13	-	-	-	-	-	< 2.2E- 16	< 2.2E- 16		< 2.2E- 16	6.65E -05	0.903 3
sr.mo d17		-	1.27E -15	2.39E -07	-	-	-	-	-	< 2.2E- 16	< 2.2E- 16	< 2.2E- 16		8.98E -16	< 2.2E- 16
sr.mo d18		-	< 2.2E- 16	1.34E -09	-	-	-	-	-	< 2.2E- 16	< 2.2E- 16	6.65E -05	8.98E -16		0.000 4876
sr.mo d19		-	< 2.2E- 16	4.89E -12	-	-	-	-	-	< 2.2E- 16	< 2.2E- 16	0.903 3	< 2.2E- 16	0.000 4876	
Cd															
	cd.mo d	cd.mo d2	cd.mo d3	cd.mo d4	cd.mo d9	cd.mo d10	cd.mo d11	cd.mo d12	cd.mo d13	cd.mo d14	cd.mo d15	cd.mo d16	cd.mo d17	cd.mo d18	cd.mo d19

cd.m od		3.55E -04	4.00E -04	1.39E -03	7.78E -16	0.000 2132	0.000 2132	0.000 2132	0.000 2132	0.098	0.001 697	0.000 6463	0.000 264	0.000 3191	0.000 8435
cd.m od2	3.55E -04		0.153 3	0.232 9	< 2.2E- 16	0.061 07	0.061 07	0.061 07	0.061 07	<2.2E -16	0.433 6	0.050 48	0.091 24	0.067 18	9.30E -02
cd.m od3	4.00E -04	0.153 3		3.09E -01	< 2.2E- 16	0.059 47	0.059 47	0.059 47	0.059 47	0.000 1642	0.704 7	0.062 1	0.007 755	0.066 64	1.16E -01
cd.m od4	1.39E -03	0.232 9	3.09E -01		< 2.2E- 16	0.741 6	0.741 6	0.741 6	0.741 6	0.001 921	0.128 8	0.065 32	0.854 7	0.018 79	8.82E -02
cd.m od9	7.78E -16	< 2.2E- 16	< 2.2E- 16	< 2.2E- 16		< 2.2E- 16									
cd.m od10	0.000 2132	0.061 07	0.059 47	0.741 6	< 2.2E- 16		1	1	1	0.000 1396	9.13E -02	0.243 6	0.211 4	0.148 6	0.229 1
cd.m od11	0.000 2132	0.061 07	0.059 47	0.741 6	< 2.2E- 16	1		1	1	0.000 1396	9.13E -02	0.243 6	0.211 4	0.148 6	0.229 1
cd.m od12	0.000 2132	0.061 07	0.059 47	0.741 6	< 2.2E- 16	1	1		1	0.000 1396	9.13E -02	0.243 6	0.211 4	0.148 6	0.229 1
cd.m od13	0.000 2132	0.061 07	0.059 47	0.741 6	< 2.2E- 16	1	1	1		0.000 1396	9.13E -02	0.243 6	0.211 4	0.148 6	0.229 1
cd.m od14	0.098	<2.2E -16	0.000 1642	0.001 921	< 2.2E- 16	0.000 1396	0.000 1396	0.000 1396	0.000 1396		0.001 903	0.000 9463	0.000 2353	0.000 4185	0.001 349
cd.m od15	0.001 697	0.433 6	0.704 7	0.128 8	< 2.2E- 16	9.13E -02	9.13E -02	9.13E -02	9.13E -02	0.001 903		0.048 6	< 2.2E- 16	0.022 08	0.057 79
cd.m od16	0.000 6463	0.050 48	0.062 1	0.065 32	< 2.2E- 16	0.243 6	0.243 6	0.243 6	0.243 6	0.000 9463	0.048 6		0.273	0.799 8	2.68E -01
cd.m od17	0.000 264	0.091 24	0.007 755	0.854 7	< 2.2E- 16	0.211 4	0.211 4	0.211 4	0.211 4	0.000 2353	< 2.2E- 16	0.273		0.157 2	0.254 7
cd.m od18	0.000 3191	0.067 18	0.066 64	0.018 79	< 2.2E- 16	0.148 6	0.148 6	0.148 6	0.148 6	0.000 4185	0.022 08	0.799 8	0.157 2		4.62E -01
cd.m od19	0.000 8435	9.30E -02	1.16E -01	8.82E -02	< 2.2E- 16	0.229 1	0.229 1	0.229 1	0.229 1	0.001 349	0.057 79	2.68E -01	0.254 7	4.62E -01	
Ва															
	ba.mo d	ba.mo d2	ba.mo d3	ba.mo d4	ba.mo d9	ba.mo d10	ba.mo d11	ba.mo d12	ba.mo d13	ba.mo d14	ba.mo d15	ba.mo d16	ba.mo d17	ba.mo d18	ba.mo d19
ba.m		-	<	<	-	-	-	-	-	3.60E	1.61E	<	<	<	

od			2.2E- 16	2.2E- 16						-04	-12	2.2E- 16	2.2E- 16	2.2E- 16	
ba.m od2	-		-	-	< 2.2E- 16	0.845 2	0.845 2	0.845 2	0.845 2	-	-	-	-	_	
ba.m od3	< 2.2E- 16	-		3.98E -06	_	-	-	-	-	< 2.2E- 16	< 2.2E- 16	1.68E -05	0.007 526	0.004 476	
ba.m od4	< 2.2E- 16	-	3.98E -06		-	-	-	-	-	< 2.2E- 16	< 2.2E- 16	0.630 7	4.18E -05	2.03E -05	
ba.m od9	-	< 2.2E- 16	-	-		< 2.2E- 16	< 2.2E- 16	< 2.2E- 16	< 2.2E- 16	-	-	-	-	-	
ba.m od10	-	0.845 2	-	-	< 2.2E- 16		1	1	1	-	-	-	-	-	
ba.m od11	-	0.845 2	-	-	< 2.2E- 16	1		1	1	-	-	-	-	-	
ba.m od12	-	0.845 2	-	-	< 2.2E- 16	1	1		1	-	-	-	-	-	
ba.m od13	-	0.845 2	-	-	< 2.2E- 16	1	1	1		-	-	-	-	-	
ba.m od14	3.60E -04	-	< 2.2E- 16	< 2.2E- 16	-	-	-	-	-		1.53E -10	< 2.2E- 16	< 2.2E- 16	< 2.2E- 16	
ba.m od15	1.61E -12	-	< 2.2E- 16	< 2.2E- 16	-	-	-	-	-	1.53E -10		< 2.2E- 16	< 2.2E- 16	< 2.2E- 16	
ba.m od16	< 2.2E- 16	-	1.68E -05	0.630 7	-	-	-	-	-	< 2.2E- 16	< 2.2E- 16		0.000 4857	0.002 554	
ba.m od17	< 2.2E- 16	-	0.007 526	4.18E -05	-	-	-	-	-	< 2.2E- 16	< 2.2E- 16	0.000 1941		0.000 1941	
ba.m od18	< 2.2E- 16	-	0.004 476	2.03E -05	-	-	-	-	-	< 2.2E- 16	< 2.2E- 16	0.000 2624	0.000 1941		
ba.m od19															
U							1		1				1		1
	u.mod	u.mo d2	u.mo d3	u.mo d4	u.mo d9	u.mo d10	u.mo d11	u.mo d12	u.mo d13	u.mo d14	u.mo d15	u.mo d16	u.mo d17	u.mo d18	u.mo d19
u.mo d															

u.mo d2			3.09E -03	0.000 5158	2.20E -16	0.000 8784	0.000 8784	0.000 8784	0.000 8784	2.20E -16	5.82E -12	0.000 1017	0.000 7368	0.000 6387	
u.mo d3		3.09E -03		9.98E -03	2.20E -16	0.021 07	0.021 07	0.021 07	0.021 07	2.20E -16	1.21E -14	0.001 773	0.016 92	0.011 39	
u.mo d4		0.000 5158	9.98E -03		2.20E -16	0.046 86	0.046 86	0.046 86	0.046 86	2.20E -16	2.20E -16	0.020 21	0.077 22	0.222 3	
u.mo d9		2.20E -16	2.20E -16	2.20E -16		2.20E -16	2.20E -16	2.20E -16	2.20E -16	0.001 244	2.20E -16	2.20E -16	2.20E -16	2.20E -16	
u.mo d10		0.000 8784	0.021 07	0.046 86	2.20E -16		1	1	1	2.20E -16	2.20E -16	0.007 556	0.092 1	0.050 8	
u.mo d11		0.000 8784	0.021 07	0.046 86	2.20E -16	1		1	1	2.20E -16	2.20E -16	0.007 556	0.092 1	0.050 8	
u.mo d12		0.000 8784	0.021 07	0.046 86	2.20E -16	1	1		1	2.20E -16	2.20E -16	0.007 556	0.092 1	0.050 8	
u.mo d13		0.000 8784	0.021 07	0.046 86	2.20E -16	1	1	1		2.20E -16	2.20E -16	0.007 556	0.092 1	0.050 8	
u.mo d14		2.20E -16	2.20E -16	2.20E -16	0.001 244	2.20E -16	2.20E -16	2.20E -16	2.20E -16		2.20E -16	2.20E -16	2.20E -16	2.20E -16	
u.mo d15		5.82E -12	1.21E -14	2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16	2.20E -16		2.20E -16	2.20E -16	2.20E -16	
u.mo d16		0.000 1017	0.001 773	0.020 21	2.20E -16	0.007 556	0.007 556	0.007 556	0.007 556	2.20E -16	2.20E -16		0.011 65	0.011 98	
u.mo d17		0.000 7368	0.016 92	0.077 22	2.20E -16	0.092 1	0.092 1	0.092 1	0.092 1	2.20E -16	2.20E -16	0.011 65		0.085 35	
u.mo d18		0.000 6387	0.011 39	0.222 3	2.20E -16	0.050 8	0.050 8	0.050 8	0.050 8	2.20E -16	2.20E -16	0.011 98	0.085 35		
u.mo d19															
Na			•	•	•					•			•		
	na.mo d	na.mo d2	na.mo d3	na.mo d4	na.mo d9	na.mo d10	na.mo d11	na.mo d12	na.mo d13	na.mo d14	na.mo d15	na.mo d16	na.mo d17	na.mo d18	na.mo d19
na.m od															
na.m od2			-	-	4.29E -06	0.003 533	0.003 533	0.003 533	0.003 533	-	-	-	-	-	
na.m od3		-		6.92E -04	-	-	-	-	-	2.29E -07	2.00E -04	0.002 62	5.37E -04	0.003 623	
na.m od4		-	6.92E -04		-	-	-	-	-	8.87E -09	1.30E -08	0.652 2	0.121 2	0.183 6	
na.m od9		4.29E -06	-	-		4.26E -07	4.26E -07	4.26E -07	4.26E -07	-	-	-	-	-	
na.m od10		0.003 533	-	-	4.26E -07		1	1	1	-	-	-	-	-	
na.m od11		0.003 533	-	-	4.26E -07	1		1	1	-	-	-	-	-	

na.m od12	0.003 533	-	-	4.26E -07	1	1		1	_	_	_	-	-	
na.m od13	0.003 533	-	-	4.26E -07	1	1	1		-	-	-	-	-	
na.m od14	-	2.29E -07	8.87E -09	-	-	-	-	_		0.020 98	5.82E -08	4.36E -09	6.49E -08	
na.m od15	-	2.00E -04	1.30E -08	_	-	_	_	-	0.020 98		1.66E -07	< 2.23E -16	1.52E -07	
na.m od16	-	0.002 62	0.652 2	-	-	-	-	_	5.82E -08	1.66E -07		0.279 6	0.105 3	
na.m od17	-	5.37E -04	0.121 2	-	-	-	-	-	4.36E -09	< 2.23E -16	0.279 6		0.483 8	
na.m od18	_	0.003 623	0.183 6	-	-	-	-	-	6.49E -08	1.52E -07	0.105 3	0.483 8		
na.m od19														

C. Diagnostic plots for final models

Histogram of t

Figure S1. Diagnostic plots for Li.Ca ~ Mg.Ca * Phylum + Carbonate.Material. The left panel is a histogram of the residuals and the right panel is a Q-Q plot.

Figure S2. Diagnostic plots for B.Ca ~ Mg.Ca * Phylum. The left panel is a histogram of the residuals and the right panel is a Q-Q plot.

Figure S3. Diagnostic plots for Zn.Ca ~ Mg.Ca * Phylum. The left panel is a histogram of the residuals and the right panel is a Q-Q plot.

Figure S4. Diagnostic plots for Sr.Ca ~ Mg.Ca * Phylum + Carbonate.Material. The left panel is a histogram of the residuals and the right panel is a Q-Q plot.

Histogram of t

Figure S5. Diagnostic plots for Cd.Ca ~ Carbonate.Material. The left panel is a histogram of the residuals and the right panel is a Q-Q plot.

Figure S6. Diagnostic plots for Ba.Ca ~ Mg.Ca * Phylum. The left panel is a histogram of the residuals and the right panel is a Q-Q plot.

Figure S7. Diagnostic plots for U.Ca ~ Mg.Ca * Phylum + Carbonate.Material. The left panel is a histogram of the residuals and the right panel is a Q-Q plot.

Figure S8. Diagnostic plots for the li.mod (Na.Ca ~ Mg.Ca * Phylum). The left panel is a histogram of the residuals and the right panel is a Q-Q plot.

D. Figures showing final model components

Figure S9. Array of scatterplots displaying the model components of the final GAMs (See Table 2 in the main text). These scatterplots are similar to Figure 2 in that they plot eight of the elemental ratios against measured Mg/Ca for each of the samples.

IV. Description of inorganic partition coefficient selection

Inorganic partition coefficients for aragonite and calcite were selected based on conditions akin to those used for the Ries *et al.* (2009) culturing experiments: filtered seawater, 25°C and pH conditions in the range of 7.2 - 8.5, respectively. If the criteria were not met, a value that satisfied at least one criterion was used, as the inorganic partition coefficients present in the literature can differ considerably. The tabulated values, mineral growth rates, experimental conditions, and references can be found in Table S5.

In aragonite, for Sr/Ca and U/Ca, values of 1.13 and 0.248 were chosen, respectively because they were obtained from a precipitation experiment using filtered seawater at a temperature of 25.5 °C and within our pH range (DeCarlo et al., 2015). The experiments from Gabitov et al. (2011) used artificial seawater and were conducted at 25 °C, and thus were sufficient for determining our Mg/Ca partition coefficient in calcite as 4.72×10^{-4} . The experiments of Mavromatis *et al.* (2018) were conducted at 25 °C using electrolyte solutions (250 mM NaCl and 250 mM MgCl₂), providing us with a partition coefficient for Ba/Ca of 0.22. However, these experiments were conducted at a pH below our target range (6.3), so an additional value of 2.11 was selected from an experiment at an equivalent temperature and used similar apparatus, but a higher pH, up to 9.65 (Gaetani and Cohen, 2006). For B/Ca in aragonite, two inorganic partition coefficient values were chosen (defined here as B/Ca/[B(OH)4-]/[CO32-]): 2.48 and 0.02 (Holcomb, 2016; Mavromatis et al., 2015). The first value was because it was obtained from an experiment that used seawater, with a salinity range of 32 - 37 psu, a temperature of 25 °C, and an average pH of 8.05. For Li/Ca in aragonite, we chose an inorganic partition coefficient value of 3.21×10^{-2} because it was obtained from an experiment using filtered seawater at 25 °C (Gabitov et al., 2011). For Zn/Ca in aragonite, we chose an inorganic partition coefficient value of 5.7 because it was obtained from an experiment using stock solutions at 25 °C (Crocket et al., 1966).

In calcite, for Sr/Ca, Mg/Ca, Ba/Ca, B/Ca, inorganic partition coefficient values were 2.60 x 10⁻¹, 2.66 x 10^{-2} , 9.37 x 10^{-1} , and 4.14 x 10^{-3} , respectively, because they were obtained from an experiment using artificial seawater (Gabitiov et al., 2019). Caveats with these values are that the salinity of the artificial seawater is 25 psu, the pH was higher than 8.5, and the experiment was conducted at room temperature. Since these experiments were conducted outside our specified conditions, additional values were selected. For the Ba/Ca partition coefficient values of 4.0 x 10⁻ ³ - 9.0 x 10⁻³ from Mavromatis *et al.* (2018) were chosen. Likewise, for B/Ca the value from Mavromatis et al. (2015) of 1.4 x 10⁻⁶, derived from experiments using the specified conditions described previously, was included. For Li/Ca in calcite, the inorganic partition coefficient values of 0.00014 (Füger et al., 2019) was added to the Gabitov et al. (2019) value, it was obtained from an experiment similar to the one conducted in Mavromatis et al. (2018), using an NaCl solution at 25 °C. For Cd/Ca in calcite, a range of inorganic partition coefficient of 20 - 100 were chosen, these values were reported from a crystallization experiment that used a silica gel column (Katsikopoulos et al., 2008); however, the pH was low at 5.5 and the experimental temperature was not reported. For U/Ca in calcite, we chose an inorganic partition coefficient range of 0.02 -0.06 because it was obtained from calcite growth experiments conducted within our pH range (Weremeichik et al., 2017). For Zn/Ca in calcite, we chose an inorganic partition coefficient range of 9 - 158, with an average value of 54 because it was obtained from calcite growth experiments conducted at 25 °C (Mavromatis et al., 2018). We calculated and obtained the value of 54 by excluding data retrieved from experiments outside of our experimental pH range.

Table S6. The inorganic partition coefficients (K_x) selected for each of the elemental ratios.
Adjacent columns display relevant information, if provided, from the original studies these values
were extracted from, including precipitation rate experimental conditions.

K _x	Precipitation Rate	Experimental Conditions	Source
te			
1.13	3.03 x 10 ³ µmol/m ² hr*	Filtered seawater; 25.5 °C; pH = 7.2-8.5	DeCarlo et al., 2015
4.72 x 10 ⁻⁴	N/A	Filtered seawater; 25.5 °C	Gabitov et al., 2011
0.22	$-9.0 \le \log(r_p) \le -7.8$ mol/m ² /s*	Artificial solution with electrolytes: 250 mM NaCl and 25 mM MgCl ₂ ; 25 °C; pH = 6.3	Mavromatis <i>et al.</i> , 2018
2.11	$R = (\exp(10.4 - 2038/T))$ $(\Omega - 1)^{0.063T = 17.0*}$	Filtered seawater; 25 °C; high pH	Gaetini and Cohen, 2006
2.0 x 10 ⁻²	2.03 x 10 ⁻⁷ mol/m ² /s*	Estimations from DeCarlo et al., 2015	Mavromatis <i>et al.</i> , 2015
2.48	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Filtered seawater; 25 °C; Salinity = $32 - 37$ psu; average pH = 8.05	Holcomb et al., 2016
2.48 x 10 ⁻¹	3.03 x 10 ³ µmol/m ² hr	Filtered seawater; 25.5 °C; pH = 7.2-8.5	DeCarlo et al., 2015
3.21 x 10 ⁻²	N/A	Filtered seawater; 25 °C	Gabitov et al., 2011
5.7	N/A	Stock solutions; 25 °C	Crocket et al., 1966
	Kx te 1.13 4.72 x 10^{-4} 0.22 2.11 2.0 x 10^{-2} 2.48 2.48 x 10^{-1} 3.21 x 10^{-2} 5.7	KxPrecipitation Ratete1.13 $3.03 \ge 10^3 \ \mu mol/m^2hr^*$ $4.72 \ge 10^{-4}$ N/A 0.22 $-9.0 \le \log(r_p) \le -7.8 \ mol/m^2/s^*$ 2.11 $R = (\exp(10.4 - 2038/T)) \ (\Omega - 1)^{0.0637 = 17.0*}$ $2.0 \ge 10^{-2}$ $2.03 \ge 10^{-7} \ mol/m^2/s^*$ 2.48 $1.18 \ge 10^3 - 4.94 \ge 10^4 \ \mu mol/m^2hr^*$ $2.48 \ge 10^{-1}$ $3.03 \ge 10^3 \ \mu mol/m^2hr$ $3.21 \ge 10^{-2}$ N/A 5.7 N/A	KxPrecipitation RateExperimental Conditionste1.13 $3.03 \ge 10^3 \mu \text{mol/m}^2\text{hr*}$ Filtered seawater; $25.5 \degree\text{C}$; $pH = 7.2-8.5$ $4.72 \ge 10^{-4}$ N/AFiltered seawater; $25.5 \degree\text{C}$ 0.22 $-9.0 \le \log(r_p) \le -7.8$ $\text{mol/m}^2/\text{s*}$ Artificial solution with electrolytes: $250 \ \text{mM}$ NaCl and $25 \ \text{mM}$ MgCl ₂ ; $25 \degree\text{C}$; $pH = 6.3$ 2.11 R = (exp(10.4 - 2038/T)) $(\Omega - 1)^{0.0637=17.0*}$ Filtered seawater; $25 \degree\text{C}$; high pH $2.0 \ge 10^2$ $2.03 \ge 10^{-7} \ \text{mol/m}^2/\text{s*}$ Estimations from DeCarlo <i>et al.</i> , 2015 2.48 $1.18 \ge 10^3 - 4.94 \ge 10^4$ $\mu \ \text{mol/m}^2/\text{hr*}$ Filtered seawater; $25 \degree\text{C}$; $\text{Salinity} = 32 - 37 \ \text{psu;}$ $\text{average pH} = 8.05$ $2.48 \ge 10^{-1}$ $3.03 \ge 10^3 \ \mu \ \text{mol/m}^2/\text{hr}$ Filtered seawater; $25.5 \degree\text{C}$; $pH = 7.2-8.5$ $3.21 \ge 10^{-2}$ N/AFiltered seawater; $25 \degree\text{C}$; 5.7

Calcite				
Sr/Ca	2.59 x 10 ⁻¹	N/A	Artificial seawater; Room temperature; Salinity = 25 psu; pH > 8.5	Gabitov <i>et al.</i> , 2019
Mg/Ca	2.66 x 10 ⁻²	N/A	Artificial seawater; Room temperature; Salinity = 25 psu; pH > 8.5	Gabitov <i>et al.</i> , 2019
Ba/Ca	4.0 – 9.0 x 10 ⁻³	Average $\log(r_p) = -7.73$ mol/m ² /s*	Artificial solution with electrolytes: 250 mM NaCl and 25 mM MgCl ₂ ; 25 °C; pH = 6.3	Mavromatis <i>et al.</i> , 2018
	9.63 x 10 ⁻¹	N/A	Artificial seawater; Room temperature; Salinity = 25 psu; pH > 8.5	Gabitov et al., 2019

B/Ca	1.40 x 10 ⁻⁶	1.77 x 10 ⁻⁶ mol/m ² /s*	25 °C; pH = 7.4 - 8.55	Mavromatis <i>et al.</i> , 2015		
	4.14 x 10 ⁻³	N/A	Artificial seawater; Room temperature; Salinity = 25 psu; pH > 8.5	Gabitov <i>et al.</i> , 2019		
U/Ca	2.0 - 6.0 x 10 ⁻²	0.01 - 0.14 nm/s*	Growth rate; Stock solutions; pH = 7.86 - 8.17	Weremeichik <i>et al.</i> , 2017		
Li/Ca	1.4 x 10 ⁻⁴	$-8.1 \leq \log(R) \leq -7.1$ mol/m ² /s*	NaCl solution; 25 °C; Salinity = 18 psu	Fuger et al., 2019		
	4.9 x 10 ⁻³	N/A	Artificial seawater; Room temperature; Salinity = 25; pH > 8.5	Gabitov et al., 2019		
Zn/Ca	5.40 x 10 ¹	$-8.1 \leq \log(R) \leq -7.6$ mol/m ² /s*	Growth rate; 25 °C; $pH = 7.2 - 8.5$	Mavromatis <i>et al.</i> , 2018		
Cd/Ca	1.85 x 10 ¹	$log(\lambda) = -0.194log(R mol/m^2/s)$ + 1.46***	Growth rate; Stock solutions; 25 °C; pH = 7.3 – 7.5	Lorens et al., 1981		
Amorphous calcium carbonate						
Li	1.68 x 10 ⁻³	0.5 mL/min****	Artificial seawater; Room temperature; pH = 8.95 – 9.22	Evans et al., 2020		
Li B	1.68 x 10 ⁻³ 3.5 x 10 ⁻²	0.5 mL/min**** 0.5 mL/min****	Artificial seawater; Room temperature; $pH = 8.95 - 9.22$ Artificial seawater; Room temperature; $pH = 8.95 - 9.22$	Evans <i>et al.</i> , 2020 Evans <i>et al.</i> , 2020		
Li B Na	1.68 x 10 ⁻³ 3.5 x 10 ⁻² 2.6 x 10 ⁻³	0.5 mL/min**** 0.5 mL/min**** 0.5 mL/min****	Artificial seawater; Room temperature; $pH = 8.95 - 9.22$ Artificial seawater; Room temperature; $pH = 8.95 - 9.22$ Artificial seawater; Room temperature; $pH = 8.95 - 9.22$	Evans <i>et al.</i> , 2020 Evans <i>et al.</i> , 2020 Evans <i>et al.</i> , 2020		
Li B Na Mg	1.68 x 10 ⁻³ 3.5 x 10 ⁻² 2.6 x 10 ⁻³ 1.02 x 10 ⁻¹	0.5 mL/min**** 0.5 mL/min**** 0.5 mL/min**** 0.5 mL/min****	Artificial seawater; Room temperature; $pH = 8.95 - 9.22$ Artificial seawater; Room temperature; $pH = 8.95 - 9.22$ Artificial seawater; Room temperature; $pH = 8.95 - 9.22$ Artificial seawater; Room temperature; $pH = 8.95 - 9.22$	Evans <i>et al.</i> , 2020 Evans <i>et al.</i> , 2020 Evans <i>et al.</i> , 2020 Evans <i>et al.</i> , 2020		

Artificial seawater;

Artificial seawater;

Room temperature; pH = 8.95 - 9.22

Room temperature; pH = 8.95 - 9.22

*Growth rate

Ba

U

**Aragonite precipitation model calculations

 $1.94 \ge 10^{1}$

1.2 x 10⁻¹

***Distribution coefficient as a function of precipitation rate equation

0.5 mL/min****

0.5 mL/min****

****Titration rate

Evans et al., 2020

Evans et al., 2020

V. Scatterplot arrays of element-to-calcium ratios versus carbonate chemistry and other measured parameters

In this section, we present arrays of scatterplots for each of the organisms displaying all of the element-to-calcium ratio measurements plotted against carbonate chemistry and other measured parameters, including net calcification rates measured from Ries *et al.* (2009), seawater carbonate ion concentration, seawater pH, and boron-derived calcifying fluid pH from Liu *et al.* (2020). For each set of organismal data, two arrays are presented: 1) using linear regressions to fit the data and 2) using quadratic regressions to fit the data. Scatterplots with significant (p<0.05) relationships are highlighted with a red box. When relationships were significant, Akaike Information Criterion (AIC) values were compared to determine whether a linear or quadratic regression fit the data better. The summary of results of AIC comparisons can be found in the main text in Tables 2 - 4.

Figure S10. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of American lobster samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Ba/Ca against seawater carbonate ion concentration and seawater pH.

Figure S11. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of American lobster samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Ba/Ca against net calcification rate, seawater carbonate ion concentration, and seawater pH. Significant relationships absent from the linear regression analysis are Ba/Ca against the net calcification rate.

American Lobster – Quadratic Models

Figure S12. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of the American oyster samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Sr/Ca against the boron-derived calcifying fluid pH and Ba/Ca against the seawater carbonate ion concentration and seawater pH.

Figure S13. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of the American oyster samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Li/Ca and Ba/Ca against net calcification rate and Sr/Ca and Ba/Ca against seawater carbonate ion concentration, seawater pH, and boron-derived calcifying fluid pH. Significant relationships absent from the linear regression analysis are Li/Ca and Ba/Ca again net calcification rate; Sr/Ca against seawater carbonate ion concentration and seawater pH; and Ba/Ca against boron-derived internal calcifying fluid pH.

Figure S14. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of the bay scallop samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. No significant relationships are observed, possibly due to low sample replication.

Figure S15. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of the bay scallop samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. The significant relationship observed is Mg/Ca against net calcification rate, which is absent in the linear regression analysis.

Bay Scallop – Quadratic Models

Figure S16. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of the blue crab samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. No significant relationships are observed, potentially due to low sample replication.

Figure S17. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of the blue crab samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. No significant relationships are observed, potentially due to low sample replication.

Figure S18. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of the blue mussel samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. No significant relationships are observed, potentially due to low sample replication.

Figure S19. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of the blue mussel samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Sr/Ca and Cd/Ca against net calcification rate and Zn/Ca against the seawater carbonate ion concentration. All significant relationships observed here are absent in the linear regression analysis.

Figure S20. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of the conch samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. No significant relationships are observed, potentially due to low sample replication.

Figure S21. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of the conch samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships observed include Sr/Ca against seawater carbonate ion concentration and seawater pH and also Ba/Ca against seawater carbonate ion concentrations. All significant patterns here are absent in the linear analysis.

Figure S22. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of temperate coral samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Li/Ca and Zn/Ca against net calcification rate, seawater carbonate ion concentration, and seawater pH and U/Ca against seawater carbonate ion concentration.

Figure S23. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of temperate coral samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Li/Ca, Mg/Ca, and Zn/Ca against net calcification rate; Li/Ca, Zn/Ca, and U/Ca against seawater carbonate ion concentration and seawater pH; and Cd/Ca against boron-derived calcifying fluid pH. Significant relationships not present in the linear regression analysis include the Mg/Ca against net calcification rate; U/Ca again seawater pH; and Cd/Ca against boron-derived calcifying fluid pH.

Figure S24. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of coralline red algae samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include B/Ca and Zn/Ca against Carbonate Ion; B/Ca, Mg/Ca, Zn/Ca, and Na/Ca against Alkalinity; B/Ca, Zn/Ca, and Na/Ca against Seawater pH; and B/Ca, Mg/Ca, Zn/Ca, Ba/Ca and U/Ca against Boron-derived pH. Significant relationships absent from the quadratic regression analysis include Na/Ca against Seawater pH; and Mg/Ca and Ba/Ca against Boron-derived pH.

Figure S25. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of coralline red algae samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Ba/Ca against net calcification rate; B/Ca and Zn/Ca against seawater carbonate ion concentration and seawater pH; and B/Ca, Zn/Ca, Ba/Ca, and U/Ca against boron-derived calcifying fluid pH.

Gulf shrimp – Linear Models

Figure S26. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of the gulf shrimp samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. No significant relationships are observed.

Gulf Shrimp – Quadratic Models

Figure S27. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of the gulf shrimp samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. A significant relationship is observed for Zn/Ca against the seawater carbonate ion concentration, which is not observed in the linear regression analysis.

Figure S28. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of the halimeda green algae samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. No significant relationships are observed, potentially due to low sample replication.

Figure 29. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of the halimeda green algae samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. No significant relationships are observed, potentially due to low sample replication.

Figure S30. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of the hard clam samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Mg/Ca, Sr/Ca, Ba/Ca, and U/Ca with net calcification rate; Ba/Ca with seawater pH; and Sr/Ca with boron-derived calcifying fluid pH. The relationships observed here that are absent from the quadratic analysis include Ba/Ca against the seawater carbonate ion concentration and Mg/Ca, Sr/Ca, and U/Ca against the net calcification rate.

Figure S31. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of the hard clam samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Ba/Ca with net calcification rate, seawater carbonate ion concentration, and seawater pH as well as B/Ca and Sr/Ca with boronderived calcifying fluid pH. The relationships absent in the linear regression analysis include the Ba/Ca against seawater carbonate ion concentrations and B/Ca again the boron-derived calcifying fluid pH.

Figure S32. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of the limpet samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Li/Ca, Mg/Ca, and Sr/Ca against net calcification rate and B/Ca, Sr/Ca, and U/Ca against seawater carbonate ion concentration and seawater pH. The significant relationships between Sr/Ca and seawater carbonate ion concentration and pH are not present in the quadratic analysis.

Figure S33. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of the limpet samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Li/Ca, Mg/Ca, and Sr/Ca against net calcification rate and B/Ca and U/Ca against seawater carbonate ion concentration and seawater pH.

Figure S34. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of pencil urchin samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include B/Ca and U/Ca against net calcification rate, seawater carbonate ion concentration, and seawater pH and Sr/Ca against boron-derived calcifying fluid pH.

Figure S35. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of pencil urchin samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include B/Ca, Sr/Ca, and U/Ca against net calcification rate; B/Ca, Ba/Ca, and U/Ca against seawater carbonate ion concentration and seawater pH; and Sr/Ca and Ba/Ca against boron-derived calcifying fluid pH. Significant relationships include Sr/Ca against net calcification rate and Ba/Ca against seawater carbonate pH, and boron-derived calcifying fluid pH.

Periwinkle – Linear Models

Figure S36. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of periwinkle samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. The significant relationship of Ba/Ca against seawater pH is observed here, but not in the quadratic analysis.

Figure S37. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of periwinkle samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. No significant relationships are observed.

Purple Urchin – Linear Models

Figure S38. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of the temperate purple urchin samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships are observed for Ba/Ca against seawater carbonate ion concentration and seawater pH; neither are observed in the quadratic analysis.

Purple Urchin – Quadratic Models

Figure S39. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of the temperature purple urchin samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. No significant relationships are observed.

Figure S40. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of serpulid worm samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Ba/Ca against net calcification rate; Li/Ca, Mg/Ca, and Sr/Ca against seawater carbonate ion concentration; Mg/Ca against seawater pH; and B/Ca against boron-derived calcifying fluid pH.

Serpulid worm – Linear Models

Figure S41. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of serpulid worm samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Ba/Ca against net calcification rate, Mg/Ca, Zn/Ca, and Sr/Ca again seawater carbonate ion concentration and pH; and B/Ca against boron-derived calcifying fluid pH.

Figure S42. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of soft clam samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Zn/Ca, Sr/Ca and Cd/Ca against net calcification rate; Sr/Ca against seawater carbonate ion concentration; and Sr/Ca and Cd/Ca against seawater pH. The relationships of Zn/Ca and Cd/Ca against net calcification rate as well as Cd/Ca against seawater pH are not observed in the quadratic regression analysis.

Figure S43. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of soft clam samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Sr/Ca against net calcification rate, seawater carbonate ion concentration, and seawater pH.

Figure S44. Array of scatterplots fitted with linear regressions displaying trace element-to-calcium ratios of whelk samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with regressions that possess a p-value < 0.05 are outlined in red. Significant relationships include Mg/Ca and Sr/Ca against seawater carbonate ion concentration and seawater pH. The relationships of Sr/Ca against carbonate ion concentration and seawater pH are absent from the quadratic regression analysis.

Whelk – Quadratic Models

Figure S45. Array of scatterplots fitted with quadratic regressions displaying trace element-tocalcium ratios of whelk samples plotted against carbonate chemistry and other measured parameters. Bottom labels and labels going down the left side of the array signify x-axis parameters and y-axis parameters, respectively, for a given plot. Scatterplots with a regression that possess a p-value < 0.05 are outlined in red. Significant relationships include Mg/Ca and Ba/Ca against seawater carbonate ion concentration and Mg/Ca against seawater pH. Only the Ba/Ca against seawater carbonate ion chemistry is not observed in the linear regression analysis.
- VI. Links to GitHub repositories containing the code used to generate the plots
 - A. <u>Element-to-calcium ratio boxplots</u> (Figure 1)
 - B. <u>Scatterplots of element-to-calcium ratios vs. carbonate chemistry and other</u> <u>measured parameters with linear fits</u> (Figures S9 – S44, odd numbers)
 - C. Scatterplots of element-to-calcium ratios vs. carbonate chemistry and other measured parameters with quadratic fits (Figures S9 S44, even numbers)
 - D. <u>Akaike Information Criterion (AIC) analysis: comparisons between linear and quadratic fits</u> (Tables 5 7)
 - E. <u>Non-metric multidimensional scaling (NMDS) plots</u> (Figures 6 7)

VII. Phylogenetic analysis

A. Methods and results of phylogenetic trees

Methods. We inferred the phylogeny among the 18 species in the dataset using BEAST 1.10 (Suchard et al. 2018). For each species, we compiled from genetic information for nuclear (18S) and mitochondrial loci (COI and Cytb). We selected from genbank (Benson, 2003) a single sequence per gene per species (Table 1). We performed sequence alignment within loci using Muscle 3.8 (Edgar 2004) under default parameters. Next, we removed highly ambiguous regions in alignments using Gblocks v. 0.91b (Castresana, 2000) under the less restrictive parameters. Finally, the three curated alignment files were concatenated using the SuperMatrix function implemented in the evobiR R package version 1.1 (Blackmon and Adams, 2015). The resulting concatenated alignment is provided in Data S1. The gene-based partition alignment was used as input to BEAST. We used a GTR+G model of molecular evolution for each gene partition. Molecular clocks (uncorrelated log-normal) also reflected the number of gene partitions. Nevertheless, we inferred a single tree across partitions. We used an ultrametric tree for the target taxa retrieved from Time Tree of Life (Hedges et al., 2006) to seed our topology search in BEAST. Note that while our taxonomic sampling is sparse (i.e. including species from different phyla), our molecular sampling is largely biased towards fast-evolving genes (e.g. mitochondrial COI and Cytb). At this deep taxonomic scale, fast-evolving gene regions are unlikely to resolve the higherlevel relationships among the species in our dataset. Furthermore, the only nuclear region (18S) is not available for all the target species (83% of 18 species). Using the Time Tree of Life database, we retrieved a phylogeny for all 18 species in our database. However, given that in nine cases, the target species were not excluded in the database, we used alternative taxa within the same target families that were sampled in the Time Tree of Life. Note that all 18 taxa belong to different families. Therefore, any species sampled in the Time Tree of Life will recover the stem group for the target family. Specifically, we sampled (1) Metagoniolithon chara instead of Neogoniolithon spectabile, (2) Arbacia lixula instead of Arbacia punctulata, (3) Prionocidaris bispinosa instead of Eucidaris tribuloides, (4) Metapenaeus ensis instead of Penaeus plebejus, (5) Phragmatopoma californica instead of Hydroides crucigera, (6) Rapana venosa instead of Urosalpinx cinerea, (7) Oculina patagonica instead of Oculina arbuscula, and (8) Strombus gigas instead of Strombus *alatus.* The resulting tree is provided in Data S2. Finally, we used the following priors in BEAST. We used a Yule model as the speciation prior. We constrained the age of multiple nodes across the phylogeny based on dates estimates listed in Time Tree of Life: (1) tree age (normal distribution, mean=1669 Ma, sigma=20), (2) Argopecten irradians + Mercenaria mercenaria (mean=492, sigma=40), and Crepidula fornicata + Urosalpinx cinerea (mean=296, sigma=30), Oculina arbuscula + Argopecten irradians (mean=796, sigma=20). We selected the same type of prior distribution for all nodes (a normal distribution) given all these age ranges reflect secondary calibrations (Heads 2005). We analyzed 3 independent BEAST runs, each consisting of a total 30 million generation, selecting a burnin of 10% and sampling each 3,000 generations. We examined MCMC convergence using Tracer 1.7.1 (Rambaut et al. 2018; ESS on all parameters was >200; Data S4), and summarized the post-burnin posterior distribution of BEAST trees using treeAnnotator v. 1.10 (Suchard et al. 2018). The resulting XML file used to run all BEAST analyses is provided in Section VII B of the SI.

Results. We inferred phylogenetic relationships among 18 species from seven phyla (Data S5). Phylogenetic relationships were congruent with previous studies (e.g. Scholl and Wiens, 2019). For instance, our tree recovers phylum-level monophylies for phyla with more than two sampled

species (Arthropoda, Mollusca, and Echinodermata). Land plants and algae are recovered as paraphyletic (Wodniok et al. 2011). Age estimates for different nodes were also similar to those in previous studies. For example, crown ages for Malacostraca (321–400 Ma), Mollusca (544–723 Ma), and Echinodermata (234–312 Ma) overlapped with date estimates in Bracken-Grissom et al. (2013), Zapata et al. (2014), and Nowak et al. (2013), respectively. The age of the root, representing the most recent common ancestor of red algae and land plants, was also similar to that in previous studies (1627–1705 Ma; Blair et al. 2005; Yang et al. 2016; Parfrey et al. 2011). **Table S7.** Tabulated ascension numbers used to access available gene sequences and build the time-calibrated phylogenetic tree.

Common name	Species	Taxonomy	COI	Cytb	18S
American Lobster	Homarus americanus	Arthropoda	KU564525		KF578397
Blue Crab	Callinectes sapidus	Arthropoda	MG515527	AY465916	AY743951
Gulf Shrimp	Penaeus plebejus	Arthropoda	AF279848		
Blue Mussel	Mytilus edulis	Mollusca	HM386487	EU332487	AY527062
Oyster	Crassostrea virginica	Mollusca	KF644323		XM_022486485
Hard Clam	Mercenaria mercenaria	Mollusca	MK091906		JN996711
Soft Clam	Mya arenaria	Mollusca	MG423079	GQ166619	AH001707
Bay Scallop	Argopecten irradians	Mollusca	GU120025	GQ166596	L11265
Conch	Strombus alatus	Mollusca	DQ525208		
Periwinkle	Littorina littorea	Mollusca	MG935071	EU875963	MK919696
Whelk	Urosalpinx cinerea	Mollusca	KF644187		
Limpet	Crepidula fornicata	Mollusca	MG934931		AY377660
Temperate (Purple) Urchin	Arbacia punctulata	Echinodermata	MN683883		AH001568
Tropical (Pencil) Urchin	Eucidaris tribuloides	Echinodermata	MN683935		AH001638
Coralline Red Algae	Neogoniolithon spectabile	Rhodophyta			AY234238
Halimeda Algae	Halimeda incrassata	Chlorophyta			AF525573
Serpulid worm	Hydroides crucigera	Annelida		KP178715	KP178701
Temperate Coral	Oculina arbuscula	Cnidaria			JX983594

B. Link to Nexus file for time-calibrated phylogeny for the target species

C. Additional phylogenetic signal scenarios and results

Table S8. Estimates of phylogenetic signal for X/Ca ratios from additional scenarios. An analysis for all X/Ca ratios was conducted with all X/Ca ratios together, as based on a phylogenetic principal component analysis in phytools (Revell, 2012; row="All"). Here, the goal was to explore the potential biases in the phylogenetic signal introduced by using values estimated by imputation. Cd/Ca and Na/Ca and the arthropods possess the most imputed values as elemental ratios and a

phylum of organisms, respectively. We do not observe any biases in phylogenetic signal introduced by the use of imputed values.

Multivariate	Scenario	Lambda
	All except Cd/Ca and Na/Ca	0.938
	All except Arthropods	0.968
	Mollusks only; B/Ca, Mg/Ca, Sr/Ca	0.9999
	Calcite only; B/Ca, Mg/Ca, Sr/Ca	0.957
	Aragonite only; B/Ca, Mg/Ca, Sr/Ca	0.988

D. Tabulated results of relative contribution comparison

Table S9. Comparison of the relative contributions of evolutionary history and mineralogy on differences in element-to-calcium ratios among species. Here, we used two alternative mineralogy categories. Mineralogy category 1 categorizes the organisms that produce either calcite, aragonite, or a mixture of the two. Mineralogy category 2 categorizes the organisms that produce either low-Mg calcite, high-Mg calcite, aragonite, or a mixture of calcite and aragonite. Below, we present the R² of the full phylogenetic regression model (R²_{full}) along with the partial contributions (partial R²s) of phylogeny (R²_{phylogeny}) and mineralogy (R²_{mineralogy}).

Mineralogy Category	Elemental Ratio	R^2 full	$\mathbf{R}^2_{phylogeny}$	\mathbf{R}^2 mineralogy	# Imputed Values
1	Li/Ca	0.337	9.99E-16	0.337	0
	B/Ca	0.118	0.079	0.042	4
	Mg/Ca	0.438	0.290	0.209	0
	Zn/Ca	0.135	0.000	0.135	0
	Sr/Ca	0.601	0.565	0.084	0
	Cd/Ca	0.638	0.455	0.335	5
	Ba/Ca	0.105	2.22E-16	0.105	4
	U/Ca	0.128	0.133	0.230	3
	Na/Ca	0.119	0.117	0.002	7
2	Li/Ca	0.337	-0.924	0.656	0
	B/Ca	0.118	0.070	0.247	4

Patterns of trace element incorporation recapitulate phylogeny - Ulrich et al., 2021

Mg/Ca	0.438	0.550	0.436	0
Zn/Ca	0.135	0.429	0.320	0
Sr/Ca	0.601	0.576	0.221	0
Cd/Ca	0.638	0.791	0.560	5
Ba/Ca	0.105	0.462	0.333	4
U/Ca	0.128	0.253	0.234	3
Na/Ca	0.119	0.157	0.010	7

- VIII. List of Supplementary Files
 - A. Supplementary File 1 A complete data sheet with tabs for the full dataset as well as the dataset with outliers removed.

IX. References

Benson, D.A., 2003. GenBank. Nucleic Acids Research, 31(1), pp.23-27.

Blair, J.E., Shah, P. & Hedges, S.B., 2005. BMC Bioinformatics, 6(1), p.53.

- Blackmon, H., and Adams, R. H. evobiR. Available from: <u>https://cran.r-</u> project.org/web/packages/evobiR/index.html
- Bracken-Grissom, H.D. et al., 2013. A comprehensive and integrative reconstruction of evolutionary history for Anomura (Crustacea: Decapoda). *BMC Evolutionary Biology*, 13(1), p.128.
- Castresana, J., 2000. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. *Molecular Biology and Evolution*, 17(4), pp.540–552.
- Crocket, J. H., & Winchester, J. W. (1966). Coprecipitation of zinc with calcium carbonate. *Geochimica et Cosmochimica Acta*, 30(10), 1093–1109. https://doi.org/10.1016/0016-7037(66)90119-0
- DeCarlo, T. M., Gaetani, G. A., Holcomb, M., & Cohen, A. L. (2015). Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: Implications for interpreting coral skeleton. *Geochimica et Cosmochimica Acta*, 162, 151–165. <u>https://doi.org/10.1016/j.gca.2015.04.016</u>
- Dinapoli, A. & Klussmann-Kolb, A., 2010. The long way to diversity Phylogeny and evolution of the Heterobranchia (Mollusca: Gastropoda). *Molecular Phylogenetics and Evolution*, 55(1), pp.60–76.
- Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research*, 32(5), pp.1792–1797.
- Füger, A., Konrad, F., Leis, A., Dietzel, M., & Mavromatis, V. (2019). Effect of growth rate and pH on lithium incorporation in calcite. *Geochimica et Cosmochimica Acta*, (248), 14–24. https://doi.org/10.1016/j.gca.2018.12.040
- Gabitov, R. I., Sadekov, A., & Leinweber, A. (2014). Crystal growth rate effect on Mg/Ca and Sr/Ca partitioning between calcite and fluid: An in situ approach. *Chemical Geology*, *367*, 70–82. https://doi.org/10.1016/j.chemgeo.2013.12.019
- Gabitov, R. I., Schmitt, A. K., Rosner, M., McKeegan, K. D., Gaetani, G. A., Cohen, A. L., ... Harrison, T. M. (2011). In situ δ7Li, Li/Ca, and Mg/Ca analyses of synthetic aragonites. *Geochemistry, Geophysics, Geosystems*, 12(3). https://doi.org/10.1029/2010GC003322
- Gabitov, R., Sadekov, A., Yapaskurt, V., Borrelli, C., Bychkov, A., Sabourin, K., & Perez-Huerta, A. (2019). Elemental uptake by calcite slowly grown from seawater solution: An In-situ study via depth profiling. *Frontiers in Earth Science*, 7. <u>https://doi.org/10.3389/feart.2019.00051</u>
- Heads, M., 2005. Dating nodes on molecular phylogenies: a critique of molecular biogeography. *Cladistics*, 21(1), pp.62–78.

- Hedges, S.B., Dudley, J. & Kumar, S., 2006. TimeTree: a public knowledge-base of divergence times among organisms. *Bioinformatics*, 22(23), pp.2971–2972.
- Holcomb, M., DeCarlo, T. M., Gaetani, G. A., & McCulloch, M. (2016). Factors affecting B/Ca ratios in synthetic aragonite. *Chemical Geology*, 437, 67–76. https://doi.org/10.1016/j.chemgeo.2016.05.007
- Katsikopoulos, D., Fernandez-Gonzalez, Á., & Prieto, M. (2008). Crystallization of the (Cd,Ca)CO 3 solid solution in double diffusion systems: the partitioning behaviour of Cd 2+ in calcite at different supersaturation rates. *Mineralogical Magazine*, 72(1), 433–436. <u>https://doi.org/10.1180/minmag.2008.072.1.433</u>
- Liu, Y.-W. W., Sutton, J. N., Ries, J. B., & Eagle, R. A. (2020). Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. *Science Advances*, 6(5), 7–8. https://doi.org/10.1126/sciadv.aax1314
- Mavromatis, V., Goetschl, K. E., Grengg, C., Konrad, F., Purgstaller, B., & Dietzel, M. (2018). Barium partitioning in calcite and aragonite as a function of growth rate. *Geochimica et Cosmochimica Acta*, 237, 65–78. https://doi.org/10.1016/j.gca.2018.06.018
- Mavromatis, V., Montouillout, V., Noireaux, J., Gaillardet, J., & Schott, J. (2015). Characterization of boron incorporation and speciation in calcite and aragonite from co-precipitation experiments under controlled pH, temperature and precipitation rate. *Geochimica et Cosmochimica Acta*, 150, 299–313. <u>https://doi.org/10.1016/j.gca.2014.10.024</u>
- Nowak, M.D. et al., 2013. A Simple Method for Estimating Informative Node Age Priors for the Fossil Calibration of Molecular Divergence Time Analyses. *PLoS ONE*, 8(6).
- Parfrey, L.W. et al., 2011. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. *Proceedings of the National Academy of Sciences*, 108(33), pp.13624–13629.
- Rambaut, A. et al., 2018. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), pp.901–904.
- Ries, J. B., Cohen, A. L., & McCorkle, D. C. (2009). Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. *Geology*, 37(12), 1131–1134. <u>https://doi.org/10.1130/G30210A.1</u>
- Suchard, M.A. et al., 2018. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus Evolution*, 4(1).
- Weremeichik, J. M., Gabitov, R. I., Thien, B. M. J., & Sadekov, A. (2017). The effect of growth rate on uranium partitioning between individual calcite crystals and fluid. *Chemical Geology*, 450, 145–153. <u>https://doi.org/10.1016/j.chemgeo.2016.12.026</u>
- Wiens, J.J. & Scholl, J.P., 2019. Diversification rates, clade ages, and macroevolutionary methods. *Proceedings of the National Academy of Sciences*, 116(49), pp.24400– 24400.
- Wodniok, S. et al., 2011. Origin of land plants: Do conjugating green algae hold the key? *BMC Evolutionary Biology*, 11(1).

- Yang, E.C. et al., 2016. Divergence time estimates and the evolution of major lineages in the florideophyte red algae. *Scientific Reports*, 6(1).
- Zapata, F. et al., 2014. Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda. *Proceedings of the Royal Society B: Biological Sciences*, 281(1794), p.20141739.