Supporting Information

Melting Point Depression and Phase Identification of Sugar Alcohols Encapsulated in ZIF Nanopores

Hyungmook Kang^{1,2}, Chris Dames^{1*}, Jeffrey J. Urban^{2*}

¹ Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA.

² The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

* Corresponding authors: <u>cdames@berkeley.edu</u> (C. Dames), <u>jjurban@lbl.gov</u> (J. J. Urban)

Table S1. Force field parameters for ZIF-8 framework.

	Zn			atoms	σ (Å)	ε(kcal/mol)	partial charge (e)
				Zn	1.960	0.0125	0.6326
		H2		Ν	3.250	0.1700	-0.3591
H3	N			C1	3.400	0.0860	0.3961
¹¹³	CI 🦰			C2	3.400	0.0860	-0.0854
		C2		C3	3.400	0.1094	-0.5759
				H2	2.511	0.0150	0.1109
C3	· 🏏			H3	2.471	0.0157	0.1769
		v					
				angl	les	θo (deg)	K _θ (kcal/mol rad ²)
				C1-C.	3-H3	109.32	48.088
				C1-N	-C2	105.27	71.254
				C1-N	I-Zn	128.33	48.680
bonds	ro (Å)	Kr (kcal/mc	$h{\rm A}^2$)	C2-C	2-N	108.65	73.750
C1-C3	1.490	346.54	3	C2-C2	2-H2	125.67	49.451
C1-N	1.335	488.00	0	C2-N	-Zn	126.40	32.477
C2-C2	1.350	540.24	9	C3-C	1-N	123.92	66.015
C2-N	1.370	440.21	0	H3-C	3-H3	109.50	35.000
C2-H2	1.080	367.00	0	N-C	1-N	112.16	75.484
C3-H3	1.090	340.00	0	N-C2	-H2	125.68	49.954
Zn-N	2.011	78.500	78.500		n-N	109.48	35.240
torsions ^a y	o (deg)	K _{\u03c0} (kcal/mol)	n	impro	oper	ψo (deg)	K_{Ψ} (kcal/mol rad ²)
X-C1-N-X	180	5.000	2	N-C3-	C1-N	180	2
X-C2-N-X	180	2.325	2	C2-H2-	-C2-N	180	2
X-C2-C2-X	180	5.150	2	C2-Zn-	N-C1	180	2

The force field for ZIF-8 cites the results from Ref. S1.

^a X denotes wildcard atoms. i.e., X-A-B-X means any dihedral combination having A-B as central atoms. Unmentioned combinations are assumed as negligible torsional potential.

	field pulli		i i iiuiiio	work.			21
				atoms ^c	σ (Å)	ε(kcal/mol)	partial charge (e)
Zn		HAα		Zn	1.960	0.0125	0.6342
				Ν	3.250	0.1700	-0.3584
]	C Aα ΗΑ	ß	C4	3.400	0.0860	0.1712
N	C5		- P	C5	3.400	0.0860	0.1434
				CAa	3.400	0.0860	-0.1730
H4				САв	3.400	0.0860	-0.0953
	Т	CA β		H4	2.420	0.0150	0.0847
CI				HAα	2.511	0.0150	0.1004
C4				HAβ	2.511	0.0150	0.0964
—							
				angl		θo (deg)	Ke (kcal/mol rad ²)
	- 6	5		C4-N	-C5	105.33	71.254
				C4-N		128.33	48.680
				C5-C5-		120.00	63.000
				C5-C		108.65	73.750
bonds	ro (Å)	Kr (kcal/mo		C5-CA-	-CA ^b	120.00	63.000
C4-H4	1.080	367.0		C5-CA-		120.00	50.000
C4-N	1.335	488.0		CA-C5	5-N ^b	132.40	70.000
C5-C5	1.350	540.2	5	CA-CA	-CA ^b	120.00	63.000
C5-CA ^b	1.404	469.0	0	CA-CA-	CA-CA-HA ^b		50.000
C5-N	1.370	440.2		N-C4-	H4 ^b	120.00	50.000
CA-CA ^b	1.400	469.0		N-C 4	I-N	112.16	75.484
CA-HA ^b	1.080	367.0	367.00		I-N	109.48	35.240
Zn-N	2.011	78.50	78.50		-C5	126.40	32.477
torsions a	yo (deg)	Kφ (kcal/mol)	n	impro	oper	ψ0 (deg)	Ky (kcal/mol rad ²)
X-C4-N-X	180	5.000	2	C4-Zn-		180	2
X-C5-N-X	180	2.325	2	C5-CA-	-C5-N	180	2
X-C5-C5-X	180	5.150	2	C5-HA-C	CA-CA	180	2
X-C5-CA-X ^b	180	14.000	4	CA-CA-H	HA-CA	180	2
X-CA-CA-X ^b	180	14.500	4	N-H4-0	C4-N	180	2

Table S2. Force field parameters for ZIF-11 framework.

^a X denotes wildcard atoms. i.e., X-A-B-X means any dihedral combination having A-B as central atoms. Unmentioned combinations are assumed as negligible torsional potential.

^b The force field for ZIF-11 except for b marked terms cites the results from Ref. S1. The b marked terms cite the general AMBER force field.

 $^{\rm c}$ Subscripts a and β correspond to the description for CA, HA in a benzene ring, which is expressed in the inset structure schema.

				atoms ^c	σ (Å)	ε (kcal/mol)	partial charge (e)
	Om	HOt		CTt	3.400	0.0125	0.145
	T			CTm	3.400	0.1700	0.205
HC		CTt		Ot	3.066	0.2104	-0.683
				Om	3.066	0.2104	-0.700
	СТ ТСТ	m		HOt	0.000	0.0000	0.418
	HC 🦲			HOm	0.000	0.0000	0.435
				HC	2.471	0.0157	0.060
Ot	Ψ _H	Om					
bonds	ro (Å)	Kr (kcal/m	ol A^2)	angl	les	θo (deg)	K θ (kcal/mol rad ²)
bonds CT-CT	ro (Å) 1.410	Kr (kcal/m 320.0		angl HC-C		θο (deg) 109.5	$\frac{\text{K}_{\theta} \text{ (kcal/mol rad}^2)}{35.0}$
)		Г-НС		
CT-CT	1.410	320.0)	HC-C	Г-НС `-НС	109.5	35.0
CT-CT CT-CT	1.410 1.526	320.0 310.0)	HC-CT	Г-НС `-НС •НО	109.5 109.5	35.0 50.0
CT-CT CT-CT CT-HC	1.410 1.526 1.090	320.0 310.0)	HC-C7 O-C7 CT-O	Г-НС `-НС •-НО Г-НС	109.5 109.5 108.5	35.0 50.0 55.0
СТ-СТ СТ-СТ СТ-НС О-НО	1.410 1.526 1.090 0.960	320.(310.(d)	HC-C O-CT CT-O CT-C	Г-НС `-НС)-НО Г-НС 'Т-О	109.5 109.5 108.5 109.5	35.0 50.0 55.0 50.0
CT-CT CT-CT CT-HC O-HO torsions ^a	1.410 1.526 1.090 0.960 γ₀ (deg)	320.(310.(_ d _ d _ Kφ (kcal/mol))) n	HC-C O-CT CT-O CT-C CT-C	Г-НС `-НС)-НО Г-НС 'Т-О	109.5 109.5 108.5 109.5 109.5	35.0 50.0 55.0 50.0 50.0 50.0
CT-CT CT-CT CT-HC O-HO torsions ^a X-CT-CT-X	1.410 1.526 1.090 0.960	320.(310.(_d _d _d _ K _φ (kcal/mol))	HC-C O-CT CT-O CT-C CT-C	Г-НС `-НС)-НО Г-НС 'Т-О	109.5 109.5 108.5 109.5 109.5	35.0 50.0 55.0 50.0 50.0 50.0
CT-CT CT-CT CT-HC O-HO torsions ^a	1.410 1.526 1.090 0.960 γ₀ (deg)	320.(310.(_ d _ d _ Kφ (kcal/mol))) n	HC-C O-CT CT-O CT-C CT-C	Г-НС `-НС)-НО Г-НС 'Т-О	109.5 109.5 108.5 109.5 109.5	35.0 50.0 55.0 50.0 50.0 50.0

Table S3. Force field parameters for erythritol.

The force field for erythritol cites the results from Ref. S2.

^a X denotes wildcard atoms. i.e., X-A-B-X means any dihedral combination having A-B as central atoms.

^c Subscripts *t* and *m* correspond to the terminal and mid CT, T, HO units in a carbon backbone. ^d The CT-HC and O-HO bonds are held rigid by the SHAKE method.

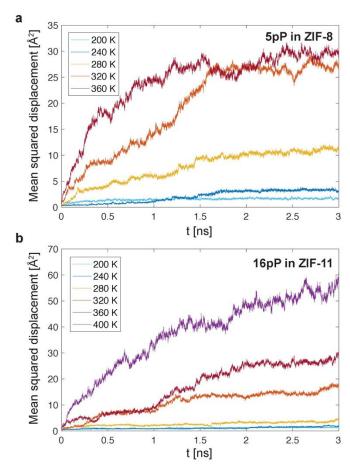


Figure S1. Mean squared displacement of erythritol molecules inside ZIF pores. (a) 5pP in ZIF-8. (b) 16pP in ZIF-11. The saturated trend of MSD at long times shows that erythritol molecules cannot diffuse between the ZIF pores, consistent with confined liquid behavior as depicted in Fig. 4a.

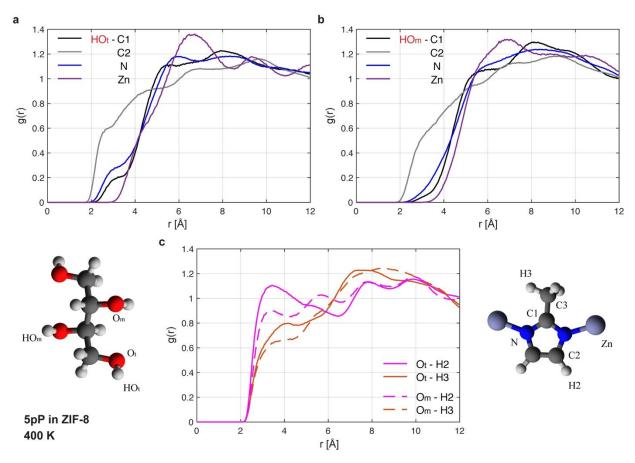


Figure S2. Radial distribution function at possible hydrogen bonding pairs between SAs and ZIF-8. If hydrogen bonds were present, a strong first peak would show up around 2 Å. (a) Pairs between HO_t atom in erythritol and four types of non-hydrogen atoms in ZIF-8. (b) Pairs between HO_m atom in erythritol and four types of non-hydrogen atoms in ZIF-8. (c) Pairs between oxygen atoms in erythritol and hydrogen atoms in ZIF-8. In all cases no hydrogen-bonding peaks are seen.

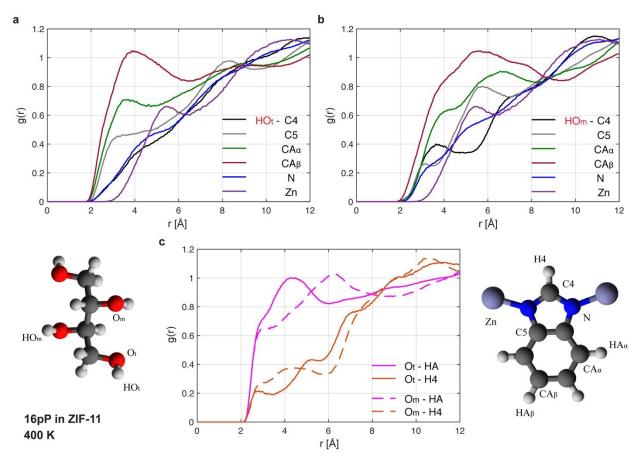


Figure S3. (Like Fig. S2 but here for ZIF-11). Radial distribution function at possible hydrogen bonding pairs between SAs and ZIF-11. If hydrogen bonds were present, a strong first peak would show up around 2 Å. (a) Pairs between HO_t atom in erythritol and six types of non-hydrogen atoms in ZIF-11. (b) Pairs between HO_m atom in erythritol and six types of non-hydrogen atoms in ZIF-11. (c) Pairs between oxygen atoms in erythritol and hydrogen atoms in ZIF-11. In all cases no hydrogen-bonding peaks are seen.

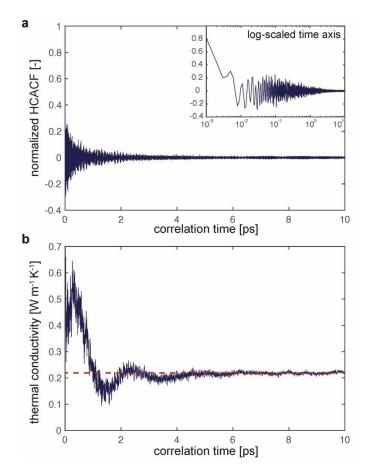


Figure S4. (a) Normalized heat current autocorrelation function and (b) thermal conductivity by using the Green-Kubo method as a function of correlation time, both for the pristine ZIF-8 at 400 K.

Supplementary references

S1. Zheng, B.; Sant, M.; Demontis, P.; Suffritti, G. B., Force field for molecular dynamics computations in flexible ZIF-8 framework. *The Journal of Physical Chemistry C* **2012**, *116* (1), 933-938.

S2. Inagaki, T.; Ishida, T., Computational analysis of sugar alcohols as phase-change material: insight into the molecular mechanism of thermal energy storage. *The Journal of Physical Chemistry C* **2016**, *120* (15), 7903-7915.