
Proceedings of

FEniCS 2021
22–26 March 2021

Editors
Igor Baratta

Jørgen S. Dokken
Chris Richardson

MatthewW. Scroggs

Explicit dual space representation in UFL

India Marsden, Department of Computing, Imperial College London, United Kingdom
David A Ham, Department of Mathematics, Imperial College London, United Kingdom
Reuben Nixon‐Hill, Department of Mathematics, Imperial College London, United Kingdom

23 March 2021

This talk will discuss proposed changes to the Unified Form Language to include symbolic types repre-
senting dual spaces along with associated objects and functions. UFL represents forms over finite element
spaces, and operations on these forms naturally results in objects in the dual space, or operators mapping
to or from dual spaces. Since UFL currently does not have a representation of these objects, the language
is not closed, meaning these operations result in objects outside of the language, which these changes aim
to solve.

We will discuss the changes being made and their structure, the mathematical background and the
potential benefits, applications and simplifications that this work enables.

This talk was awarded a prize: Best talk by a PhD student or undergraduate (runner up).

You can cite this talk as:

India Marsden, David A Ham, and Reuben Nixon-Hill. “Explicit dual space representation in UFL”. In: Proceedings
of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew W. Scroggs)
(2021), 138–150. DOI: 10.6084/m9.figshare.14495250.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/marsden.html .

138

https://github.com/FEniCS/ufl
https://dx.doi.org/10.6084/m9.figshare.14495250
https://mscroggs.github.io/fenics2021/talks/marsden.html

Explicit Dual Space Representation in UFL

India Marsden1, David A. Ham2 and Reuben Nixon-Hill2,3

March 2021
1Department of Computing, Imperial College London
2Department of Mathematics, Imperial College London
3Science and Solutions for a Changing Planet DTP, Grantham Institute for Climate Change and the Environment,
Imperial College London

1

139

Context

UFL provides an intuitive way to represent mathematical forms
in code.
In particular, it is able to represent function spaces, finite
elements within function spaces and functions on these
spaces, among other things.

2

140

Problem

Typically, operations such as assemble are applied to the
defined forms in UFL. Doing this results in objects that are not
within UFL.

This means that the language is not closed.

element = F in i teE lement (” Lagrange ” , t r i ang le , 1)
u = T r i a l Func t i on (element)
v = TestFunct ion (element)
f = Coe f f i c i e n t (element)

a = (u*v − inner (grad (u) , grad (v))) * dx
L = f * v * dx
res = assemble (a)
res2 = assemble (L)

3

141

Examples of the problem

Operator Composition Where τ(u) is an external operator:

grad(u) · τ(u) · grad(v) ∗ dx

Interpolation Interpolation is not first class

interp(e,u) ∗ v ∗ dx

Adjoint Forward Operations

action(interp∗(ê,u), adjoint(u ∗ v ∗ dx))

Composing Assembled forms

assemble(v ∗ dx+ assemble(e ∗ dx))

4

142

Dual Space

These operations depend on objects in the dual to the
function space, the space of bounded linear functionals on V:

V∗ = V→ R

An example of an operation on a dual space is the Dirac Delta
functional (V∗ → R), ie point evaluation:

δx(v) = v(x)

5

143

Dual Basis

A function space can be represented by its (primal) basis. A
function in the space is then a set of coefficients of that basis:

v = viφi ∈ V

A dual space can be similarly represented by dual basis
functions, φ∗

∈ V→ R. Call the set of coefficients of a dual
space a cofunction:

u = uiφ∗

i ∈ V
∗

Writing u(v) would be evaluation of the dual basis and result
in a scalar.

6

144

1-Forms

In UFL, a 1-form represents a mathematical object with one
unknown,such as below, which we can write in terms of the
basis:

h(v) =
∫
Ω

v dx =
∫
Ω

φi dx vi

=

∫
Ω

φi dx Iijvj =
∫
Ω

φi dx φ∗

i (φj)vj

=

∫
Ω

φi dx φ∗

i (vjφj)

=

∫
Ω

φi dx φ∗

i (v)

Using the property φ∗

i (φj) = δij and the linearity of the dual
basis.

7

145

1-Forms

Therefore, we can see that 1-forms can be represented as
cofunctions with coefficients:

hi =
∫
Ω

φi dx

h = hiφ∗

This is a cofunction, an object in the dual space of V.
Computationally, we write:

L = v * dx
obj = assemble (L)

Obviously, obj is not a current UFL object.

8

146

Interpolation

Define interpolation from a space U to a space V as the
operator:

interp(u, v∗) : U→ V

We can write this as a form:

U× V∗ → R

As V = V∗∗ = V∗ → R. Then, taking the adjoint of this form we
get:

V∗ × U→ R = V∗ → U∗

which matches the expectation of linear operators.

9

147

Interpolation

Seeing interpolation as a function, we have the first argument
as u ∈ U and the second v∗ ∈ V. Interpolation is dual
evaluation of v∗:

interp(u, v∗) = v∗(u)

v∗ is termed a coargument, and in code would be:

v_s ta r = TestFunct ion (V . dual ())

Introducing Cofunctions makes the adjoint behave correctly.

10

148

Draft Additions

With these draft additions, users will be able to write code
such as:

V = FunctionSpace (domain , element)
v = TestFunct ion (V)
V_dual = V . dual ()
L = v * dx
obj = assemble (L)
a = Cofunct ion (V)
res = a + obj

where res would be a valid operation and V_dual is the
function space that is dual to V.

11

149

Further Implications

This change will need to be propagated into the
implementation of assemble and other similar operations.
This includes attaching data to these objects and adapting the
implementations to take into account pre-assembled sections.

12

150

