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In this presentation, we are going to talk about our experience implementing the finite elementmethod
on different architectures and accelerators using the FEniCSx libraries and the SYCL programming model.
Our main focus is on performance portability, we would like the FEM program to get consistent perfor-
mance on a wide variety of platforms, instead of being very efficient on a single one.

SYCL is a modern kernel-based parallel programming model that allows for one code to be written
which can run in multiple types of computational devices (eg CPUs and GPUs). A kernel describes a
single operation, that can be instantiated many times and applied to different input data (eg cell-wise
matrix assembly). This kernel-based model matches nicely with the new FEniCS data-centric design:
DOLFINx generates data to operate in parallel (geometry, topology, and dofmaps) and FFCx generates
efficient code that can be used as part of the parallel kernels.

We will discuss how different ways of expressing parallelism can affect the performance we ultimately
achieve, for instance, we consider different global assembly strategies and data structures. We will also
discuss how carefully arrangingmemory transfer and allocations can reduce latency and increase through-
put in different accelerators. Finally, we will show some performance results of simplified finite element
simulations on different architectures, ranging from Intel and AMD CPUs to NVIDIA GPUs.

You can cite this talk as:

Igor Baratta, Chris Richardson, andGarthWells. “Finite elements on accelerators: an experience using FEniCSx and
SYCL”. In: Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson,
Matthew W. Scroggs) (2021), 413–429. DOI: 10.6084/m9.figshare.14495385.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/baratta.html .
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What’s Performance Portability? 
And why do we care about it?

An application is performance portable if it:

     Achieves reasonable level of 
performance

     Requires minimal platform 
specific code

3
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Programming 
Model

SYCL is a high-level single source parallel 
programming model, that can target a range of 
heterogeneous platforms:

uses completely standard C++;
both host CPU and device code can be written in 
the same C++ source file;
open standard coordinated by the Khronos 
group.

SYCL implementations:

Intel 
SYCL* hipSYCL*

Compute
Cpp triSYCL*

*open source 4
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cl::sycl::queue q{cl::sycl::gpu_selector()};
 

int N = 100;

auto a = cl::sycl::malloc_device<double>(N, q);

auto b = cl::sycl::malloc_shared<double>(N, q);

auto e = q.fill(a, 3.0, N);

q.parallel_for(cl::sycl::range<1>(N), e,

[=](cl::sycl::id<1> Id) {

  int i = Id.get(0);

  b[i] = 2 * a[i];

});

q.wait();

for (int i = 0; i < N; i++)

  assert(b[i] == 6.);
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Simple Workflow

Interconnect

Copy input data 
from Host memory 
to Device memory

Launch kernels for 
execution on the 
Device

Wait for the 
execution queue 
to finish

Copy results 
back to Host 
from Device

~102 GB/s

Device Memory

 Local Memory  Local Memory 

 Local Memory  Local Memory 

~101 GB/s
CPU Memory

P0 P1 ... PN

6

Device Memory

 Local Memory  Local Memory 

 Local Memory  Local Memory 

Device Memory

 Local Memory  Local Memory 

 Local Memory  Local Memory 
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An idealised modular Finite Element worflow

element = FiniteElement("Lagrange", tetrahedron, 3)

...

a = inner(grad(u), grad(v)) * dx + k*inner(u, v) * dx
L = inner(f, v) * dx

UFL 
File ffcx --sycl_defines=True problem.ufl

Mesh/Coeffs
DofMap

Device

Assemble Solve

OutputInput Kernel

7
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~50% Total time

8

Data Transfer to 
Computation 
Ratio - P1

1 3
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9

Data Transfer to 
Computation 
Ratio - P3

~2% Total time

1 3

422



Matrix Assembly

For each cell:

Gather cell coordinates and coefficients

Compute element matrix

Update global CSR matrix

auto kernel = [=](cl::sycl::id<1> ID) {
   const int i = ID.get(0);
   ...
   double Ae [ndofs * nofs];

   // Gather cell coordinates and coefficients
   for (std::size_t j = 0; j < 4; ++j)
   {
     const std::size_t dmi = x_coor[i * 4 + j];
     for (int k = 0; k < gdim; ++k)
      cell_geom[j * gdim + k] = x[dmi * gdim + k];
   }
   ...
   // Compute element matrix
   tabulate_cell_a(Ae, coeffs, cell_geom);

   // Update global matrix - Binary Search
   for (int j = 0; j < ndofs; j++)
     for (int k = 0; k < ndofs; k++)
     {
       int ind = dofs[offset + k];
       int pos = find(indices, first, last, ind);
       atomic_ref atomic_A(data[pos]);
       atomic_A += Ae[j * ndofs + k];
     }
};

* atomic operations

Global assembly strategies:
- Binary Search*
- Lookup Table*
- Two Stage

01

02

03
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Matrix Assembly - CPU Performance

2 x Intel Xeon Skylake 6142 processors, 2.6GHz 16-core
Theoretical peak performance: 2.7 TFlop/s.
192GB RAM

Architectures
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Matrix Assembly - GPU Performance

Architectures

GPU Tesla P100 - 16GB
GPU Tesla V100 - 16GB

12
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Matrix Assembly - GPU Performance

12

Architectures

GPU Tesla P100 - 16GB
GPU Tesla V100 - 16GB
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Low Achieved Occupancy

Device Memory

 Local Memory  Local Memory 

 Local Memory  Local Memory 

x x x x x x x x

x x x x x x x x

Achieved Occupancy: ~25%
The occupancy limited by register usage.

Solution: 
Use shared memory for precomputed tables.

Each thread block (work-group) has shared memory visible to all 
threads (work-item) of the block.

Occupancy MCell/s

1st Version 25% 664 MCell/s

Shared Memory 63% 1660 MCell/s

Reference CUDA1 * 1627 MCells/s

[1] James Trotter - High-performance finite element computations - Performance modelling, optimisation,  GPU acceleration & automated code generation -  Phd Thesis 2021. 13
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Thank you!
The code and reproducibility 
instructions can be found at 
https://github.com/Excalibur-SLE/dolfinx.sycl

You can reach me via e-mail:
 ia397@cam.ac.uk
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Future/Ongoing Work

Different problems, 

and meshes

Profiling in a wider 

range of devices 

AMD GPU, A64FX

Multi-GPU

MPI-based distributed 

memory computations

Code transformation

Improve generated 

code

Linear Elasticity,  
Maxwell’s equations
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