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We investigate hybridized discontinuous Galerkin (HDG) methods for the Stokes and incompressible
Navier—Stokes equations which yield approximate velocity fields that are pointwise divergence free in
each cell and globally H(div)-conforming. The analysis of a recently developed method is restricted to
simplex cells and affine geometries. Here, we explore the extension of the method to non-simplex cells
and curved boundaries, both of which are important for engineering applications. Static condensation is
used to reduce the size of the global system of equations. For the implementation, we make use of some
new features of FEniCSx, which is composed of DOLFINx, FFCx, Basix, and UFL. We use UFL and FFCx
to compile kernels for each block of the global matrix, which are then exposed to the Python interface
using CFFIL. These kernels are called from a custom kernel (compiled by Numba) to carry out the static
condensation process. The smaller statically condensed system can then be solved using a block precon-
ditioned iterative solver. We present analysis and numerical results demonstrating that the approximate
velocity field is pointwise divergence free in each cell and globally H(div)-conforming on meshes with
non-simplex cells and curved boundaries.
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Problem statement

Stokes problem (weak form): Given f € [L*(Q)]%, find u € V= [H§(Q)]* and p € Q ==
L3(Q) such that

a(u, v) + b(v,p) = F(v) Yve V,
b(u,q) =0  VgeQ,

where

a(u, v) ::/QZ/VU:Vvdx, b(v, p) ::—/pV-vd:r, and F(v) ::/f—vdsc.
Q Q

o0




Some observations

1. The problem is well-posed and 35 > 0 such that

Vv dr
inf supfﬂq— >
9€Q e v |[vl|1,0]|dl|o.0

2. The following invariance property' holds:

f=f+Vo = (u,p) = (u,p+ ¢)

Volker John et al. "On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows".



Mass conservation?
Mass conservation (weak statement):
b(u,q) =0 Vge @
® The weak statement implies exact mass conservation, meaning ||V - ul|o,o = 0.
Mass conservation (discrete statement): Let up, € V), C V, then
b(un, qn) =0 Van € Qn C Q

® The discrete statement could imply global, local (cell), or exact mass conservation
dependingon Vj, and Q. If V - Vj, C Qp, mass is conserved exactly.

With conforming methods, it is difficult to balance stability and incompressibility



Hybridized discontinuous Galerkin?

Let wy, := (up, up) € Vi and pr, == (pn, pr) € Qn, Where
Vh = Vh X Vh, Qh = Qh X Qh: and

Vi, = {vh € [L*(T)]% vl € Vi(K) VK € 77L} )

Vi = {@h € [LX(F))% wlp € ValF) VF € Fi, o = 0 on aQ} ,
Uhy Ph

Q= {an € L(Th): ailx € Qu(K) VK € Ta,

Qn = {@h € L*(Fn); tlr € Qu(F) VF € ‘Fh} ' Un, P
Uhs Ph

S. Rhebergen and G. N. Wells. "A hybridizable discontinuous Galerkin method for the Navier-Stokes equations
with pointwise divergence-free velocity field".



HDG formulation

Stokes problem (HDG formulation): Find (un, pr) € Vi X Qy such that

an(un, va) + bu(vn, pr) = F(vn) Von € Vi,
br(un, gn) =0 Yan € Qn,

where

h(Up, VL) Z/VVuh Vupdx — Z/ ((un — Un) + Onvn + Onuy, -

KeTy, KeTy,
a _
+ Z / v +— (up — un) - (vn — on) ds,
KeT, /oK K

and

b 'Uh,ph Z /phv vpdx + Z/ vp, - npr ds.

KeTy, KeTy,

(’Uh — T)h)) ds



Mapping functions

Let ’l/JK: Vh(K) — Vh(l()

Lemma

If ¢k is the pullback by the geometric mapping (as in the original method), and if

V- Va(K) C Qu(K) and Qun(F) 2 {wi|r - n; un € Vi(K)}, then the discrete velocity field is
exactly divergence free.

Problem: what if the geometric mapping is not affine?

Lemma

If Yk is }‘he contrAavarianE Pig/a transform, then theAabove conditions can be relaxed; if
V- Viu(K) C Qn(K) and Qn(F) 2 {on| - 1 o € Vi(K)} then the discrete velocity field is
exactly divergence free.

A similar idea can be applied to Scott-Vogelius elements on curved domains.®

Michael Neilan and M. Baris Otus. "Divergence—free Scott-Vogelius elements on curved domains”.



Suitable spaces

Simplex cells: If K is the reference simplex and if 1k is the contravariant Piola trans-
form, then the spaces

Vi(K) = [Pu(K)|Y,  Vi(F) = [P(F)]?,  Qu(K) :=Pr1(K) and Qu(F):=Py(F)

give an exactly divergence free velocity field even if the geometric mapping is not
affine.

Non-simplex cells: If K is the reference quadrilateral or hexahedron and if vk is the
contravariant Piola transform, then the spaces

Vi(K) = RTw(K), Viu(F) = [Qu(F)]?, QuK):=Qu(K), and Qu(F):=Qi(F)

give an exactly divergence free velocity field even if the geometric mapping is not
affine.



More about the non-simplex case

® H(div)-conforming finite elements are introduced following the same ideas as
divergence conforming DG* and HDG® methods.

e Other H(div)-conforming finite elements can be used, but care must be taken as some
lose optimal order approximation in [L?(€2)]? on general quadrilateral meshes.®

Bernardo Cockburn, Guido Kanschat, and Dominik Schotzau. "A Note on Discontinuous Galerkin Divergence-free
Solutions of the Navier-Stokes Equations”.

Christoph Lehrenfeld and Joachim Schaberl. "High order exactly divergence-free Hybrid Discontinuous Galerkin
Methods for unsteady incompressible flows".

Douglas N. Arnold, Daniele Boffi, and Richard S. Falk. "Quadrilateral H (div) Finite Elements".



Static condensation

The block structure of the element tensor is of the form

Aw BJ, AL, B, U F,
By 0 0 0 Pl o0
Auww 0 Aw O Ul 10
Bp, O 0 0 P 0

Eliminating the cell degrees of freedom gives the condensed element tensor
Agy — BAT'BT  —BAT'C"| (U\ _ [(-BA™'F
—cA—'BT  —catc”|\P) T \-CcAT'F)

gzz BSTH ,B:[Aau 0]’ C:|:B13 0},andF= <1€)">

where




Implementation

Features of FEniCSx:

® Create kernels generated from UFL that are callable from python

UFL expression

FFCx

® Create user defined kernels written in Python

Python function

Numba

Kernel

® User defined kernels can call generated kernels

Kernel
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Implementation

Create kernels for each block of the element tensor (A, ..., Aza):

# UFL expressions for each block of the element tensor
A_uu_form = nu * inner(grad(u), grad(v)) * dx + nu * gamma * inner(u, v) * ds \

- nu * (inner(u, dot(grad(v), n)) + inner(v, dot(grad(u), n))) * ds
A_ubar_ubar_form = nu * gamma * inner (ubar, vbar) * ds
# Compile forms with FFCx and expose to Python
forms = [A_uu_form, ..., A_ubar_ubar_form]
compiled_forms = ffcx.codegeneration.jit.compile_forms (forms)

A_uu_cell_kernel = compiled_forms[0] [0].create_cell_integral().tabulate_tensor

A_uu_facet_kernel = \
compiled_forms [0] [0].create_exterior_facet_integral().tabulate_tensor



Implementation

Define a custom kernel to compute the top left block of the condensed element tensor
(Koo = Aga — BA™'BY):

1 @numba.cfunc(c_signature)

2 def tabulate_KOO(KOO_, w_, c_, coords_, entity_local_index, ...):

3 KOO = numba.carray(K0OO_, (ubar_size, ubar_size))

4 A_uu = np.zeros((u_size, u_size))

5 .

6 # Compute cell integrals

7 A_uu_cell_kernel (ffi.from_buffer(A_uu), w_, c_, coords_, entity_local_index,
8 .

9 for j in range(n_facets):

# Compute facet integrals
A_uu_facet_kernel (ffi.from_buffer(A_uu), w_, c_, coords_, fj, ...)

# Static condensation
KOO += A_ubar_ubar - B @ np.linalg.solve(A, B.T)

This kernel is passed to DOLFINx to assemble over the mesh.



Implementation: further work

® The above FEnICSx implementation has been tested on simplices.

e Until recently, FEniCSx did not have support for quadrilateral/hexahedral
H(div)-conforming finite elements.

® Basix supports these elements, but some work is required to implement facet function
spaces in a more general manner.

® To demonstrate the HDG scheme on meshes containing quadrilaterals, the method
was also implemented in NGSolve.”

Joachim Schoberl. "C++ 11 implementation of finite elements in NGSolve".



Results: curved cells

(a) Velocity magnitude

(b) Pressure

Figure: Computed solution

N ey ev.u €[u]
Present method | 3870 | 6.17 x 10~ | 5.45 x 10715 | 4.68 x 10~ *
Original method | 3870 | 6.71 x 107% | 3.02 x 10~2 | 8.51 x 10~
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Figure: e, against v/N for k = 3 with piecewise
polynomial geometric mappings of degrees 1, 2, 3,
and 4.



Extension to the Navier-Stokes equations
Straightforward extension to the
Navier-Stokes equations
Divergence free velocity field on
affine and non-affine simplex and

non-simplex cells

@ Local momentum conservation

@ Arbitrarily high order

Figure: Velocity magnitude



Open questions

We are currently working on:
® Implementing a FEniCSx version of the method for meshes with quadrilateral and
hexahedral cells.

® Rigorous proofs of the discrete inf-sup condition and error estimates on non-affine
meshes.

® Optimal preconditioners and investigating the performance of the method at large
scale.

Any suggestions/advice about these topics would be very much appreciated!
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Thank you. Any questions?



