
Proceedings of

FEniCS 2021
22–26 March 2021

Editors
Igor Baratta

Jørgen S. Dokken
Chris Richardson

MatthewW. Scroggs

Hybridized discontinuous Galerkin methods for the
Stokes and Navier–Stokes equations in FEniCSx:

non‐simplex cells and curved geometries

Joseph P. Dean (r jpdean), University of Cambridge, United Kingdom
Sander Rhebergen, University of Waterloo, Canada
Chris N. Richardson (r chrisrichardson), University of Cambridge, United Kingdom
Garth N. Wells, University of Cambridge, United Kingdom

26 March 2021

We investigate hybridized discontinuous Galerkin (HDG) methods for the Stokes and incompressible
Navier–Stokes equations which yield approximate velocity fields that are pointwise divergence free in
each cell and globally 𝐻(div)-conforming. The analysis of a recently developed method is restricted to
simplex cells and affine geometries. Here, we explore the extension of the method to non-simplex cells
and curved boundaries, both of which are important for engineering applications. Static condensation is
used to reduce the size of the global system of equations. For the implementation, we make use of some
new features of FEniCSx, which is composed of DOLFINx, FFCx, Basix, and UFL. We use UFL and FFCx
to compile kernels for each block of the global matrix, which are then exposed to the Python interface
using CFFI. These kernels are called from a custom kernel (compiled by Numba) to carry out the static
condensation process. The smaller statically condensed system can then be solved using a block precon-
ditioned iterative solver. We present analysis and numerical results demonstrating that the approximate
velocity field is pointwise divergence free in each cell and globally 𝐻(div)-conforming on meshes with
non-simplex cells and curved boundaries.

You can cite this talk as:

Joseph P. Dean, Sander Rhebergen, Chris N. Richardson, and Garth N. Wells. “Hybridized discontinuous Galerkin
methods for the Stokes and Navier–Stokes equations in FEniCSx: non-simplex cells and curved geometries”. In:
Proceedings of FEniCS 2021, online, 22–26 March (eds Igor Baratta, Jørgen S. Dokken, Chris Richardson, Matthew
W. Scroggs) (2021), 722–741. DOI: 10.6084/m9.figshare.14495634.

BibTeX for this citation can be found at https://mscroggs.github.io/fenics2021/talks/dean.html .

722

https://github.com/jpdean
https://github.com/chrisrichardson
https://fenicsproject.org
https://github.com/FEniCS/dolfinx
https://github.com/FEniCS/ffcx
https://github.com/FEniCS/basix
https://github.com/FEniCS/ufl
https://numba.pydata.org/
https://dx.doi.org/10.6084/m9.figshare.14495634
https://mscroggs.github.io/fenics2021/talks/dean.html

Hybridized discontinuous Galerkin methods
for the Stokes and Navier-Stokes equations
in FEniCSx: non-simplex cells and curved
geometries

Joseph P. Dean1 Sander Rhebergen2 Chris N. Richardson1

Garth N. Wells1

1University of Cambridge 2University of Waterloo

723

Outline
1. The Stokes problem

2. Why not use conforming methods?

3. Hybridized discontinuous Galerkin

4. Non-simplex and curved cells

5. Implementation

6. Numerical results

7. The Navier-Stokes equations

8. Open questions

1/17

724

Problem statement
Stokes problem (weak form): Given f ∈ [L2(Ω)]d, find u ∈ V := [H1

0(Ω)]
d and p ∈ Q :=

L2
0(Ω) such that

a(u, v) + b(v, p) = F(v) ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q,

where

a(u, v) :=
∫

Ω

ν∇u : ∇v dx, b(v, p) := −
∫

Ω

p∇ · v dx, and F(v) :=
∫

Ω

f · v dx.

2/17

725

Some observations

1. The problem is well-posed and ∃β > 0 such that

inf
q∈Q

sup
v∈V

∫

Ω
q∇ · v dx

||v||1,Ω||q||0,Ω
≥ β

2. The following invariance property1 holds:

f → f +∇φ =⇒ (u, p) → (u, p + φ)

1Volker John et al. “On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows”. In:
SIAM Review 59.3 (2017), pp. 492–544. DOI: 10.1137/15m1047696.

3/17

726

Mass conservation?

Mass conservation (weak statement):

b(u, q) = 0 ∀q ∈ Q

• The weak statement implies exact mass conservation, meaning ||∇ · u||0,Ω = 0.

Mass conservation (discrete statement): Let uh ∈ Vh ⊂ V, then

b(uh, qh) = 0 ∀qh ∈ Qh ⊂ Q

• The discrete statement could imply global, local (cell), or exact mass conservation
depending on Vh and Qh. If∇ · Vh ⊆ Qh, mass is conserved exactly.

With conforming methods, it is difficult to balance stability and incompressibility

4/17

727

Hybridized discontinuous Galerkin2

Let uh := (uh, ūh) ∈ Vh and ph := (ph, p̄h) ∈ Qh, where
Vh := Vh × V̄h,Qh := Qh × Q̄h, and

Vh :=
{

vh ∈ [L2(Th)]
d; vh|K ∈ Vh(K) ∀K ∈ Th

}

,

V̄h :=
{

v̄h ∈ [L2(Fh)]
d; v̄h|F ∈ V̄h(F) ∀F ∈ Fh, v̄h = 0 on ∂Ω

}

,

Qh :=
{

qh ∈ L2(Th); qh|K ∈ Qh(K) ∀K ∈ Th

}

,

Q̄h :=
{

q̄h ∈ L2(Fh); q̄h|F ∈ Q̄h(F) ∀F ∈ Fh

}

.

uh, ph

ūh, p̄h

2S. Rhebergen and G. N. Wells. “A hybridizable discontinuous Galerkin method for the Navier–Stokes equations
with pointwise divergence-free velocity field”. In: J. Sci. Comput. 76.3 (2018), pp. 1484–1501. DOI:
10.1007/s10915-018-0671-4.

5/17

728

HDG formulation

Stokes problem (HDG formulation): Find (uh,ph) ∈ Vh × Qh such that

ah(uh, vh) + bh(vh,ph) = F(vh) ∀vh ∈ Vh,

bh(uh, qh) = 0 ∀qh ∈ Qh,

where

ah(uh, vh) :=
∑

K∈Th

∫

K
ν∇uh : ∇vh dx −

∑

K∈Th

∫

∂K
ν
(

(uh − ūh) · ∂nvh + ∂nuh · (vh − v̄h)
)

ds

+
∑

K∈Th

∫

∂K
ν
α

hK
(uh − ūh) · (vh − v̄h) ds,

and
bh(vh,ph) := −

∑

K∈Th

∫

K
ph∇ · vh dx +

∑

K∈Th

∫

∂K
vh · np̄h ds.

6/17

729

Mapping functions
Let ψK : Vh(K) → Vh(K̂).

Lemma
If ψK is the pullback by the geometric mapping (as in the original method), and if
∇ · Vh(K) ⊆ Qh(K) and Q̄h(F) ⊇ {vh|F · n; vh ∈ Vh(K)}, then the discrete velocity field is
exactly divergence free.

Problem: what if the geometric mapping is not affine?

Lemma
If ψK is the contravariant Piola transform, then the above conditions can be relaxed; if
∇ · Vh(K̂) ⊆ Qh(K̂) and Q̄h(F̂) ⊇ {v̂h|F̂ · n̂; v̂h ∈ Vh(K̂)} then the discrete velocity field is
exactly divergence free.

A similar idea can be applied to Scott–Vogelius elements on curved domains.3

3Michael Neilan and M. Baris Otus. “Divergence–free Scott–Vogelius elements on curved domains”. In: (2020),
pp. 1–23. arXiv: 2008.06429. URL: http://arxiv.org/abs/2008.06429.

7/17

730

Suitable spaces

Simplex cells: If K̂ is the reference simplex and if ψK is the contravariant Piola trans‑
form, then the spaces

Vh(K̂) := [Pk(K̂)]d, V̄h(F̂) := [Pk(F̂)]d, Qh(K̂) := Pk−1(K̂) and Q̄h(F̂) := Pk(F̂)

give an exactly divergence free velocity field even if the geometric mapping is not
affine.

Non-simplex cells: If K̂ is the reference quadrilateral or hexahedron and if ψK is the
contravariant Piola transform, then the spaces

Vh(K̂) := RTk(K̂), V̄h(F̂) := [Qk(F̂)]d, Qh(K̂) := Qk(K̂), and Q̄h(F̂) := Qk(F̂)

give an exactly divergence free velocity field even if the geometric mapping is not
affine.

8/17

731

More about the non-simplex case

• H(div)-conforming finite elements are introduced following the same ideas as
divergence conforming DG4 and HDG5 methods.

• Other H(div)-conforming finite elements can be used, but care must be taken as some
lose optimal order approximation in [L2(Ω)]d on general quadrilateral meshes.6

4Bernardo Cockburn, Guido Kanschat, and Dominik Schötzau. “A Note on Discontinuous Galerkin Divergence-free
Solutions of the Navier-Stokes Equations”. In: Journal of Scientific Computing 31.1-2 (2007), pp. 61–73. DOI:
10.1007/s10915-006-9107-7.

5Christoph Lehrenfeld and Joachim Schöberl. “High order exactly divergence-free Hybrid Discontinuous Galerkin
Methods for unsteady incompressible flows”. In: Computer Methods in Applied Mechanics and Engineering 307
(2016), pp. 339–361. DOI: 10.1016/j.cma.2016.04.025.

6Douglas N. Arnold, Daniele Boffi, and Richard S. Falk. “Quadrilateral H (div) Finite Elements”. In: SIAM Journal on
Numerical Analysis 42.6 (2005), pp. 2429–2451. DOI: 10.1137/S0036142903431924.

9/17

732

Static condensation

The block structure of the element tensor is of the form

Auu BT
pu AT

ūu BT
p̄u

Bpu 0 0 0
Aūu 0 Aūū 0
Bp̄u 0 0 0

U
P
Ū
P̄

=

Fu
0
0
0

.

Eliminating the cell degrees of freedom gives the condensed element tensor
[

Aūū − BA−1BT −BA−1CT

−CA−1BT −CA−1CT

](

Ū
P̄

)

=

(

−BA−1F
−CA−1F

)

,

where

A =

[

Auu BT
pu

Bpu 0

]

, B =
[

Aūu 0
]

, C =
[

Bp̄u 0
]

, and F =

(

Fu
0

)

.

10/17

733

Implementation

Features of FEniCSx:

• Create kernels generated from UFL that are callable from python

UFL expression Kernel
FFCx

• Create user defined kernels written in Python

Python function Kernel
Numba

• User defined kernels can call generated kernels

11/17

734

Implementation

Create kernels for each block of the element tensor (Auu, …, Aūū):

1 # UFL expressions for each block of the element tensor
2 A_uu_form = nu * inner(grad(u), grad(v)) * dx + nu * gamma * inner(u, v) * ds \
3 - nu * (inner(u, dot(grad(v), n)) + inner(v, dot(grad(u), n))) * ds
4 ...
5 A_ubar_ubar_form = nu * gamma * inner(ubar, vbar) * ds
6

7 # Compile forms with FFCx and expose to Python
8 forms = [A_uu_form, ..., A_ubar_ubar_form]
9 compiled_forms = ffcx.codegeneration.jit.compile_forms(forms)
10 A_uu_cell_kernel = compiled_forms[0][0].create_cell_integral().tabulate_tensor
11 A_uu_facet_kernel = \
12 compiled_forms[0][0].create_exterior_facet_integral().tabulate_tensor
13 ...
14

12/17

735

Implementation

Define a custom kernel to compute the top left block of the condensed element tensor
(K00 := Aūū − BA−1BT):

1 @numba.cfunc(c_signature)
2 def tabulate_K00(K00_, w_, c_, coords_, entity_local_index, ...):
3 K00 = numba.carray(K00_, (ubar_size, ubar_size))
4 A_uu = np.zeros((u_size, u_size))
5 ...
6 # Compute cell integrals
7 A_uu_cell_kernel(ffi.from_buffer(A_uu), w_, c_, coords_, entity_local_index, ...)
8 ...
9 for j in range(n_facets):
10 # Compute facet integrals
11 A_uu_facet_kernel(ffi.from_buffer(A_uu), w_, c_, coords_, fj, ...)
12 ...
13 # Static condensation
14 K00 += A_ubar_ubar - B @ np.linalg.solve(A, B.T)
15

This kernel is passed to DOLFINx to assemble over the mesh.

13/17

736

Implementation: further work

• The above FEniCSx implementation has been tested on simplices.
• Until recently, FEniCSx did not have support for quadrilateral/hexahedral

H(div)-conforming finite elements.
• Basix supports these elements, but some work is required to implement facet function
spaces in a more general manner.

• To demonstrate the HDG scheme on meshes containing quadrilaterals, the method
was also implemented in NGSolve.7

7Joachim Schöberl. “C++ 11 implementation of finite elements in NGSolve”. In: Technical Report ASC‑2014‑30,
Institute for Analysis and Scientific Computing (2014). URL:
https://www.asc.tuwien.ac.at/~schoeberl/wiki/publications/ngs-cpp11.pdf.

14/17

737

Results: curved cells

(a) Velocity magnitude (b) Pressure

Figure: Computed solution

N eu e∇·u eJuK

Present method 3870 6.17× 10−4
5.45× 10

−15 4.68× 10−14

Original method 3870 6.71× 10−4
3.02× 10

−2 8.51× 10−13

200 300 400

10−8

10−6

10−4

10−2

√
N

e u

1
2
3
4

Figure: eu against
√

N for k = 3 with piecewise
polynomial geometric mappings of degrees 1, 2, 3,
and 4.

15/17

738

Extension to the Navier-Stokes equations

✓ Straightforward extension to the

Navier-Stokes equations

✓ Divergence free velocity field on

affine and non-affine simplex and
non-simplex cells

✓ Local momentum conservation

✓ Arbitrarily high order

Figure: Velocity magnitude

16/17

739

Open questions

We are currently working on:

• Implementing a FEniCSx version of the method for meshes with quadrilateral and
hexahedral cells.

• Rigorous proofs of the discrete inf-sup condition and error estimates on non-affine
meshes.

• Optimal preconditioners and investigating the performance of the method at large
scale.

Any suggestions/advice about these topics would be very much appreciated!

17/17

740

Thank you. Any questions?

741

