Supporting Information

Synthesis and biological evaluation of natural product-inspired, aminoalkyl substituted 1-benzopyrans as novel antiplasmodial agents

Jan-Frederik Uth, ${ }^{\text {a) }}$ Frederik Börgel, ${ }^{\text {a }}$) Kirstin Lehmkuhl, ${ }^{\text {a) }}$ Dirk Schepmann, ${ }^{\text {a) }}$ Marcel Kaiser, ${ }^{\text {b) }}$ Valquiria A. P. Jabor, ${ }^{\text {c }}$ Maria Cristina Nonato, ${ }^{\text {c) }}$ R. Luise Krauth-Siegel, ${ }^{\text {d) }}$ Thomas J. Schmidt, ${ }^{\text {e) }}$ and Bernhard Wünsch ${ }^{*}$ a,f)
a Institut für Pharmazeutische und Medizinische Chemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany Swiss Tropical and Public Health Institute (Swiss TPH), Socinstraße 57, CH-4002 Basel, Switzerland
c Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café, s/n, 14040-903 Ribeirão Preto-SP, Brazil
d Biochemie-Zentrum der Universität Heidelberg (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
e Institut für Pharmazeutische Biologie und Phytochemie der Westfälischen Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany
f GRK 2515, Chemical biology of ion channels (Chembion), Westfälische WilhelmsUniversität Münster, Germany.

Content page

1. Purity data of the test compounds S2
2. Experimental, Chemistry S3
3. Experimental procedures to determine antiprotozoal activity in vitro S30
4. Mechanistic studies S33
5. Pharmacokinetic studies S38
6. References S42
7. NMR spectra S45
8. HPLC traces S147

1. Purity data of the test compounds

Most of the test compounds represent aminophenols. The purification of the amphoteric compounds appeared quite difficult due to strong tailing during chromatographic purification. Also the determination of the exact purity values was problematic due to the amphoteric character of the compounds. Nevertheless, the values are given here, but have to be interpreted critically. Thus, some of the given data show purity values below 95% at a detection wavelength of 210 nm .

Table S1: Purity of the prepared compounds

compd.	purity by HPLC
8a	94%
8b	96%
8c	89%
8d	95%
9a	92%
9b	86%
9c	95%
9d	98%
10a	90%
10b	91%
10c	95%
10d	98%
12a	96%
12b	95%
12c	96%
12d	94.40%
19a	94.44%
19c	94%
25	96%

2. Experimental, Chemistry

2.1. Chemistry, general

Oxygen and moisture sensitive reactions were carried out under nitrogen, dried with molecular sieves ($3 \AA$ and $4 \AA$) and in dry glassware (Schlenk flask or Schlenk tube). Reaction mixtures were stirred with magnetic stirrer MR 3001 K (Heidolph) or RCT CL (IKA). Temperatures were controlled with dry ice/acetone $\left(-78{ }^{\circ} \mathrm{C}\right)$, ice/water $\left(0^{\circ} \mathrm{C}\right)$, Cryostat (Julabo FT 901 or Huber TC100E-F), magnetic stirrer MR 3001 K (Heidolph) or RCT CL (IKA ${ }^{\circledR}$), together with temperature controller EKT HeiCon (Heidolph) or VT-5 (VWR) and PEG or silicone bath or IKA heating block. All solvents were of analytical grade quality. Demineralized water was used. Water free solvents were freshly distilled under N_{2} atmosphere prior to use or dried with molecular sieves. Thin layer chromatography (tlc): tlc silica gel $60 \mathrm{~F}_{254}$ on aluminum sheets (VWR). Flash chromatography (fc): Silica gel 60 (40-63 $\mu \mathrm{m}$, Machery-Nagel); parentheses include: diameter of the column (ø), length of the stationary phase (h), eluent, and fraction size (V). Automated flash chromatography: IsoleraTM Spektra One (Biotage ${ }^{\circledR}$). Silica gel 60 (40-63 $\quad 4 \mathrm{~m}$, Macherey-Nagel) in standard SNAP cartridges. Biotage ${ }^{\circledR}$ SNAP KP-Sil, SNAP HP-Sil and SNAP Ultra cartridges were used as supplied by the manufacturer; parentheses include: cartridge type and size, flow rate, eluent, fraction volume. All component ratios of mixed eluents are referring to a total of 100 parts. Kugelrohr distillation: Glass Oven B-585 (Büchi). Melting point: Melting point system MP50 (Mettler Toledo, Gießen, Germany), open capillary, uncorrected. MS: MicroTOFQII mass spectrometer (Bruker Daltonics, Bremen, Germany); deviations of the found exact masses from the calculated exact masses were 5 mDa or less; the data were analyzed with DataAnalysis ${ }^{\circledR}$ (Bruker Daltonics). NMR: NMR spectra were recorded in deuterated solvents on Agilent DD2 400 MHz and 600 MHz spectrometers (Agilent, Santa Clara CA, USA); chemical shifts (δ) are reported in parts per million (ppm) against the reference substance tetramethylsilane and calculated using the solvent residual peak of the undeuterated solvent; coupling constants are given with 0.5 Hz resolution; assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals was supported by 2-D NMR techniques where necessary. IR: FT/IR Affinity ${ }^{\circledR}$-1 spectrometer (Shimadzu, Düsseldorf, Germany) using ATR technique. HPLC was used to determine the purity of the synthesized compounds and was carried out at room temperature.

2.2. HPLC method for the determination of the purity

Equipment 1: Pump: L-7100, degasser: L-7614, autosampler: L-7200, UV detector: L7400, interface: D-7000, data transfer: D-line, data acquisition: HSM-Software (all from Merck Hitachi, Darmstadt, Germany); Equipment 2: Pump: LPG-3400SD, degasser: DG1210, autosampler: ACC-3000T, UV-detector: VWD-3400RS, interface: DIONEX UltiMate 3000, data acquisition: Chromeleon 7 (equipment and software from Thermo Fisher Scientific, Lauenstadt, Germany); column: LiChrospher ${ }^{\circledR} 60$ RP-select B $(5 \mu \mathrm{~m})$, LiChroCART ${ }^{\circledR} 250-4 \mathrm{~mm}$ cartridge; flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$; injection volume: 5.0 $\mu \mathrm{L}$; detection at $\lambda=210 \mathrm{~nm}$; solvents: A: demineralized water with $0.05 \%(\mathrm{~V} / \mathrm{V})$ trifluoroacetic acid, B: $\mathrm{CH}_{3} \mathrm{CN}$ with $0.05 \%(\mathrm{~V} / \mathrm{V})$ trifluoroacetic acid; gradient elution (\% A): 0-4 min: 90\%; 4-29 min: gradient from 90% to 0%; 29-31 min: 0%; 31 31.5 min : gradient from 0% to 90%; 31.5-40 min: 90%. Unless otherwise mentioned, the purity of all test compounds is greater than 95%.

2.3. Preparative HPLC to purify some compounds

Equipment: Pump: L-7150; autosampler: L-7200; UV-detector: L-7400; interface: D-7000, data acquisition: HSM-Software (all from LaChrom, Merck Hitachi); column: Phenomenex ${ }^{\circledR}$ Gemini ($5 \mu \mathrm{~m}$ C18 110 Å) LC Column $250 \times 21.2 \mathrm{~mm}$ AXIA packed; guard column: Phenomenex ${ }^{\circledR}$ SecurityGuard PREP Cartridge (Gemini C18) 15×21.2 mm ID, Phenomenex ${ }^{\circledR}$ SecurityGuard PREP Cartridge Holder Kit 21.2 mm ID. Method 1: Solvent: acetonitrile : $\mathrm{H}_{2} \mathrm{O} 60: 40+0.1 \%(\mathrm{~V} / \mathrm{V}) \mathrm{NH}_{3}$, aq, flow rate: 20.0 $\mathrm{mL} / \mathrm{min}$, injection volume: $400 \mu \mathrm{~L}$, detection wavelength: 210 nm .
Method 2: Solvent: acetonitrile : $\mathrm{H}_{2} \mathrm{O} 70: 30+0.1 \%(\mathrm{~V} / \mathrm{V}) \mathrm{NH}_{3}$, aq, flow rate: 19.0 $\mathrm{mL} / \mathrm{min}$, injection volume: $400 \mu \mathrm{~L}$, detection wavelength: 210 nm .
Method 3: Solvent: acetonitrile : $\mathrm{H}_{2} \mathrm{O} 70: 30+0.1 \%(\mathrm{~V} / \mathrm{V}) \mathrm{NH}_{3}$, aq, flow rate: 25.0 $\mathrm{mL} / \mathrm{min}$, injection volume: $400 \mu \mathrm{~L}$, detection wavelength: 210 nm .

2.4. Synthetic procedures

5-Hydroxy-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-6-carbaldehyde (5) and 7-Hydroxy-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-6-carbaldehyde (6) ${ }^{1,2}$
2,4-Dihydroxybenzaldehyde ($4,5.00 \mathrm{~g}, 36.2 \mathrm{mmol}$) was suspended in $\mathrm{CHCl}_{3}(160 \mathrm{~mL})$ and the mixture was warmed to $70^{\circ} \mathrm{C}$. Isoprene ($2.45 \mathrm{~g}, 36.0 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{H}_{3} \mathrm{PO}_{4}$ ($85 \mathrm{wt}-\%, 7.55 \mathrm{~g}, 65.5 \mathrm{mmol}, 1.8 \mathrm{eq}$) were added dropwise and the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 65 h . After cooling to ambient temperature, $\mathrm{H}_{2} \mathrm{O}$ was added and the
aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by repeated automated flash chromatography (1. SNAP 340 g , flow rate $100 \mathrm{~mL} / \mathrm{min}$, CyHex: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 50: 50 \rightarrow 20: 80, \mathrm{~V}=19 \mathrm{~mL}$, 2. SNAP 50 g , $50 \mathrm{~mL} / \mathrm{min}$, CyHex: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 50: 50 \rightarrow 20: 80, \mathrm{~V}=19 \mathrm{~mL}$). At first 5 , then 6 was eluted.

5: Colorless oil, $\mathrm{R}_{\mathrm{f}}=0.34$ (CyHex: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 20: 80$), yield 2.28 g ($11.0 \mathrm{mmol}, 31 \%$), $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ (206.2). Purity (HPLC): 99%, $\mathrm{t}_{\mathrm{R}}=21.1 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $(\mathrm{ppm})=1.36\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.82\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.69\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $4-\mathrm{CH}_{2}$), $6.42\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}\right), 7.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}\right), 9.66(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{O}$), $11.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=16.1$ (1C, C-4), 26.9 ($2 \mathrm{C}, 2 \times \mathrm{CH}_{3}$), 31.8 (1C, C-3), 76.3 (1C, C-2), 108.9 ($1 \mathrm{C}, \mathrm{C}-4 \mathrm{a}$), 110.4 (1C, C-8), 114.1 (1C, C-6), 132.6 (1C, C-7), 161.7 (1C, C-8a), 162.0 (1C, C-5), 194.5 (1C, CH=O). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2974(\mathrm{w}, \mathrm{CH}), 2936(\mathrm{w}, \mathrm{CH}), 2855(\mathrm{w}, \underline{\mathrm{H}-\mathrm{C}}=\mathrm{O}), 2832(\mathrm{w}, \underline{\mathrm{H}-\mathrm{C}=\mathrm{O}), 1620}$ (s, C=O), 1582 ($\mathrm{m}, \mathrm{C}=$ Car.), 1485 (s, C=Car.), 799 ($\mathrm{CH}_{\text {out of plane). }}$ HRMS (APCI): m/z = 207.1021 (calcd. 207.1016 for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

6: Colorless solid, $\mathrm{mp} 104{ }^{\circ} \mathrm{C}$ (ref. ${ }^{2}: 104{ }^{\circ} \mathrm{C}$), $\mathrm{Rf}_{\mathrm{f}}=0.26$ (CyHex: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 20: 80$), yield 2.71 g ($13.1 \mathrm{mmol}, 37 \%$), $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ (206.2). Purity (HPLC): $96 \%, \mathrm{t}_{\mathrm{R}}=20.2 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.36\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.83\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $3-\mathrm{CH}_{2}$), $2.75\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 6.32(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH}), 7.21(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{CH}), 9.66(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{O}$), $11.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=21.6(1 \mathrm{C}, \mathrm{C}-4)$, 27.1 (2C, $2 \times \mathrm{CH}_{3}$), 32.7 (1C, C-3), 76.4 (1C, C-2), 104.5 (1C, C-8), 113.9 (1C, C-4a), 115.4 (1C, C-6), 135.4 (1C, C-5), 162.2 (1C, C-7), 162.3 (1C, C-8a), 194.3 (1C, CH=O).
 $\mathrm{C}=\mathrm{O}$), 1582 ($\mathrm{m}, \mathrm{C}=\mathrm{Car}_{\text {r.) }}$, 1489 ($\mathrm{s}, \mathrm{C}=\mathrm{Car}$), 756 ($\mathrm{s}, \mathrm{CH}_{\text {out of plane) }) . \mathrm{HRMS}(\mathrm{APCl}): \mathrm{m} / \mathrm{z}=}$ 207.1029 (calcd. 207.1016 for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

7-Hydroxy-2,2-dimethyl-2H-1-benzopyran-6-carbaldehyde (7)

Under N_{2} atmosphere, aldehyde 6 ($370 \mathrm{mg}, 1.79 \mathrm{mmol}$) was dissolved in dry toluene (5 mL). 2,3-Dichloro-5,6-dicyano-1,4-bezoquinone (DDQ, $488 \mathrm{mg}, 2.15 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added and the reaction mixture was heated to $120{ }^{\circ} \mathrm{C}$ for 16 h . After cooling to rt the mixture was filtered through a sintered glass filter funnel (Por. 4) and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=3 \mathrm{~cm}$, $h=26 \mathrm{~cm}$, toluene:CyHex 90:10, $\mathrm{V}=10 \mathrm{~mL}$). Colorless crystals, $\mathrm{mp} 9{ }^{\circ} \mathrm{C}$ (ref. ${ }^{3}$: $94-$ $96{ }^{\circ} \mathrm{C}$), $\mathrm{R}_{\mathrm{f}}=0.30$ (toluene:CyHex 90:10), yield 227 mg ($1.11 \mathrm{mmol}, 62 \%$), $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{3}$
(204.2). Purity (HPLC): $87 \%, \mathrm{t}_{\mathrm{R}}=20.5 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.45$ (s, 6H, $2 \times \mathrm{CH}_{3}$), $5.59(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{CH}), 6.29(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}), 6.33$ (s, $1 \mathrm{H}, 8-\mathrm{CH}$), 7.11 (s, 1H,5-CH), 9.66 (s, 1H, CH=O), 11.43 (s, 1H, OH). ${ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=28.8\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{3}\right), 78.4(1 \mathrm{C}, \mathrm{C}-2), 104.3(1 \mathrm{C}, \mathrm{C}-8), 114.6(1 \mathrm{C}$, C-4a), 115.4 (1C, C-6), 120.8 (1C, C-4), 129.1 (1C, C-3), 131.5 (1C, C-5), 161.4 (1C, C8a), 164.4 (1C, C-7), 194.2 (1C, CH=O). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3055(\mathrm{w}, \mathrm{OH}), 2970(\mathrm{w}$,
 $\mathrm{C}=\mathrm{C}_{\text {ar. }}$), 775 ($\mathrm{CH}_{\text {out of plane) }} 760$ ($\mathrm{w}, \mathrm{CH}_{\text {out of plane) }}$. HRMS (APCI): m/z: 205.0857, (calcd. 205.0859 for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

6-[(Benzylamino)methyl]-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-5-ol (8a)

Under N_{2} atmosphere, aldehyde 5 ($244 \mathrm{mg}, 1.18 \mathrm{mmol}$) was dissolved in dry THF (10 mL). Benzylamine ($214 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.7 \mathrm{eq}$) and $\mathrm{Ti}(\mathrm{OEt}) 4(440 \mathrm{mg}, 1.93 \mathrm{mmol}, 1.6 \mathrm{eq})$ were added and the solution was heated to $75{ }^{\circ} \mathrm{C}$ for 18 h . After cooling to $0^{\circ} \mathrm{C}$, dry $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(46 \mathrm{mg}, 1.22 \mathrm{mmol}, 4.1 \mathrm{eq})$ were added and the reaction mixture was stirred for 26 h while warming to rt . $\mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 20 \mathrm{~mL}, 1 \times 40 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by automated flash chromatography (SNAP 25 g , flow rate $=25 \mathrm{~mL} / \mathrm{min}$, CyHex:EtOAC 70:30, V = 19 mL). Colorless resin, $\mathrm{R}_{\mathrm{f}}=0.22$ (CyHex:EtOAc 70:30), yield 60 mg ($0.20 \mathrm{mmol}, 17$ \%), $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}$ (297.4). Purity (HPLC): $94 \%, \mathrm{t}_{\mathrm{R}}=16.9 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.76\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\right.$ CH_{2}), 2.69 (t, ${ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}$), 3.87 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}$), 3.91 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ar}$), $6.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 6.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 7.28-7.33(\mathrm{~m}, 1 \mathrm{H}, p-$ $\mathrm{Ph}), 7.33-7.38$ (m, 4H,o-Ph, m-Ph). Signals for the OH - and NH-protons are not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=17.3(1 \mathrm{C}, \mathrm{C}-4), 26.8$ (2C, $2 \times \mathrm{CH}_{3}$), 32.4 (1C, C-3), 50.2 (1C, $\mathrm{NHCH}_{2} \mathrm{Ar}$), 51.8 (1C, $\mathrm{NHCH}_{2} \mathrm{Ph}$), 74.1 (1C C-2), 108.6 (1C C-8), 110.3 (1C, C-4a), 111.9 (1C, C-6), 127.6 (1C, C-7), 128.2 (1C, p-Ph), 129.0 (2C, m-Ph), 129.0 (2C, o-Ph), 136.3 (1C, Cq, Phenyl), 155.2 (1C, C-8a), 155.7 (1C, C-5). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3306(\mathrm{w}, \mathrm{NH} / \mathrm{OH}), 2970(\mathrm{w}, \mathrm{CH}), 2928(\mathrm{w}, \mathrm{CH}), 2847$ (w, CH), 1624 (m, C=Car.), 1589 (m, C=Car.), 1450 (s, C=Car.), 1161 (s, C-O), 1069 (s, C-O), 799 (m, CH out of plane). HRMS (APCI): $\mathrm{m} / \mathrm{z}=298.1817$ (calcd. 298.1802 for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

2,2-Dimethyl-6-\{[(2-phenylethyl)amino]methyl\}-3,4-dihydro-2H-1-benzopyran-5-ol

 (8b)Under N_{2} atmosphere, aldehyde $5(208 \mathrm{mg}, 1.01 \mathrm{mmol})$ was dissolved in dry THF (10 mL). 2-Phenylethan-1-amine ($176 \mathrm{mg} .1 .45 \mathrm{mmol}, 1.4 \mathrm{eq}$) and $\mathrm{Ti}(\mathrm{OEt})_{4}(355 \mathrm{mg}, 1.56$ $\mathrm{mmol}, 1.5 \mathrm{eq}$) were added dropwise and the reaction mixture was heated to $75^{\circ} \mathrm{C}$ for 20 h. After cooling to $0{ }^{\circ} \mathrm{C}$, dry $\mathrm{CH}_{3} \mathrm{OH}(2.5 \mathrm{~mL})$ and $\mathrm{NaBH}_{4}(44 \mathrm{mg}, 1.16 \mathrm{mmol}, 4.6 \mathrm{eq})$ were added. The reaction mixture was stirred for 24 h while slowly warming to rt . $\mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by automated flash chromatography (SNAP 25 g , flow rate $25 \mathrm{~mL} / \mathrm{min}$, CyHex:EtOAc 50:50, 19 mL). The resulting yellow oil was dissolved in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$, cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{NaBH}_{4}(29 \mathrm{mg}, 0.69 \mathrm{mmol}, 2.73 \mathrm{eq}$) was added. The reaction mixture was stirred for 21 h while slowly warming to rt . $\mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by repeated automated flash chromatography (1. SNAP 25 g , flow rate $25 \mathrm{~mL} / \mathrm{min}$, CyHex:EtOAc 70:30, V $=19 \mathrm{~mL}$, 2. SNAP Ultra 10 g , flow rate $36 \mathrm{~mL} / \mathrm{min}$, CyHex:EtOAc 90:10, $\mathrm{V}=19 \mathrm{~mL}$). Colorless solid, $\mathrm{mp} 67{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.15$ (CyHex:EtOAc 70:30), yield 29 mg ($0.09 \mathrm{mmol}, 9 \%$), $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}$ (311.4). Purity (HPLC): $96 \%, \mathrm{t}_{\mathrm{R}}=17.8 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $(\mathrm{ppm})=1.26\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.71\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.67\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $4-\mathrm{CH}_{2}$), $2.99\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.05\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, 3.95 (s, 2H, NHCH2Ar), 6.34 (d, ${ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}$), $6.85\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}\right.$), $7.16-7.26$ (m, 3H, o-Ph, $p-\mathrm{Ph}$), $7.27-7.32$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{m}-\mathrm{Ph}$). Signals for the $\mathrm{OH}-$ and NHprotons are not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=17.4$ (1C, C-4), 26.7 (2C, $2 \times \mathrm{CH}_{3}$), 32.2 (1C, C-3), 33.8 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 48.6 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 49.7 (1C, $\mathrm{NHCH}_{2} \mathrm{Ar}$), 74.2 (1C, C-2), 109.6 (1C, C-8), 111.0 (1C, C-6), 111.2 (1C, C-4a), 127.1 (1C, p-Ph), 128.6 (1C, C-7), 128.9 (2C, o-Ph), 129.0 (2C, mPh), 137.5 (1C, C_{q}, Phenyl), 154.9 (1C, C-5), 155.8 (1C, C-8a). FT-IR (neat): $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=$ 3279 (w, NH/OH), 2978 (w, CH), 2936 (w, CH), 2832 (w, CH), 1620 (m, C=Car.), 1589 (m, C=Car.), 1454 (s, C=Car.), 1161 (s, C-O), (1065 (s, C-O), 806 (s, CH out of plane). HRMS (APCI): m/z = 312.1956 (calcd. 312.1958 for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

2,2-Dimethyl-6-\{[(3-phenylpropyl)amino]methyl\}-3,4-dihydro-2H-1-benzopyran-5-ol

 (8c)Under N_{2} atmosphere, aldehyde $5(112 \mathrm{mg}, 0.54 \mathrm{mmol})$ was dissolved in dry THF (10 $\mathrm{mL})$. 3-Phenylpropan-1-amine ($113 \mathrm{mg}, 0.84 \mathrm{mmol}, 1.6 \mathrm{eq}$) and $\mathrm{Ti}(\mathrm{OEt}) 4(188 \mathrm{mg}, 0.82$ $\mathrm{mmol}, 1.5 \mathrm{eq}$) were added, and the solution was heated to $75^{\circ} \mathrm{C}$ for 16 h . After cooling to $0{ }^{\circ} \mathrm{C} \mathrm{NaBH} 4$ ($34 \mathrm{mg}, 0.90 \mathrm{mmol}, 1.7 \mathrm{eq}$) was added and the reaction mixture was stirred at rt for 5 h . $\mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $x 10 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by automated flash chromatography (SNAP 25 g , flow rate $25 \mathrm{~mL} / \mathrm{min}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH} 100: 0+1 \%$ DMEA $\rightarrow 95: 5+1 \%$ DMEA, $V=19 \mathrm{~mL}$). The resulting yellow resin was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$ (10 mL), cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{NaBH}_{4}(10 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.9 \mathrm{eq})$ was added. The reaction mixture was slowly warmed to rt and stirred for 20 h , then it was cooled to $0{ }^{\circ} \mathrm{C}$ again and further $\mathrm{NaBH}_{4}(12 \mathrm{mg}, 0.32 \mathrm{mmol}, 2.4 \mathrm{eq})$ was added. After stirring for $144 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by repeated automated flash chromatography (1. SNAP 10g, flow rate $=12 \mathrm{~mL} / \mathrm{min}$, CyHex:EtOAc 60:40, V $=19 \mathrm{~mL}$, 2. SNAP 10 g , flow rate $=12 \mathrm{~mL} / \mathrm{min}$, CyHex:EtOAc 70:30, V = $19 \mathrm{~mL}, 3$. SNAP Ultra 10 g, flow rate $=36 \mathrm{~mL} / \mathrm{min}$, CyHex:EtOAc 90:10 $\rightarrow 80: 20, \mathrm{~V}=19 \mathrm{~mL}$). Colorless oil, $\mathrm{R}_{\mathrm{f}}=$ 0.12 (CyHex:EtOAc 70:30), yield 17 mg ($0.05 \mathrm{mmol}, 9 \%$), $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}$ (325.5). Purity (HPLC): $89 \%, \mathrm{t}_{\mathrm{R}}=18.5 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.30(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x}$ CH_{3}), 1.76 (t, ${ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}$), 1.95 (quint., ${ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.67 (t, ${ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), $2.69\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 2.73-2.78$ (m, $2 \mathrm{H} \mathrm{NHCH} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), $3.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ar}\right), 6.30\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}\right), 6.77$ (d, $\left.{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}\right), 7.13-7.22(\mathrm{~m}, 3 \mathrm{H}, o-\mathrm{Ph}, p-\mathrm{Ph}), 7.24-7.29(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{Ph})$. Signals for the OH - and NH-protons are not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=17.3(1 \mathrm{C}, \mathrm{C}-4), 26.8\left(2 \mathrm{C}, 2 \mathrm{x} \mathrm{CH}_{3}\right), 30.1$ (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 32.4 (1C, C-3), 33.3 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 47.4 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 50.9 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{Ar}$), 74.1 (1C, C-2), 108.6 (1C, C-8), 110.5 (1C, C-4a), 112.0 (1C, C-6), 126.2 (1C, p-Ph), 127.6 (1C, C-7), 128.5 (2C, o-Ph), 128.6 (2C, $m-\mathrm{Ph}), 141.1$ (1C, $\mathrm{C}_{\mathrm{q}, \text { Phenyl }}$), 155.2 (1C, C-8a), 155.7 (1C, C-5). FT-IR (neat): $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=$ 3314 (w, NH/OH), 2970 (w, CH), 2932 (w, CH), 2851 (w, CH), 1620 (m, C=Car.), 1593
(m, C=Car.), 1450 (s, C=Car.), 1161 (s, C-O), 1065 (s, C-O), 799 (m, CHout of plane). HRMS (APCI): m/z = 326.2108 (calcd. 326.2115 for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

2,2-Dimethyl-6-\{[(4-phenylbutyl)amino]methyl\}-3,4-dihydro-2H-1-benzopyran-5-ol

 (8d)Under N_{2} atmosphere, aldehyde 5 ($212 \mathrm{mg}, 1.03 \mathrm{mmol}$) was dissolved in dry THF (10 mL). 4-Phenylbutan-1-amine ($245 \mathrm{mg}, 1.64 \mathrm{mmol}, 1.6 \mathrm{eq}$) and Ti(OEt) 4 ($367 \mathrm{mg}, 1.61$ $\mathrm{mmol}, 1.6 \mathrm{eq}$) were added and the reaction mixture was heated to $75^{\circ} \mathrm{C}$ for 19 h . After cooling to $0{ }^{\circ} \mathrm{C}$, dry $\mathrm{CH}_{3} \mathrm{OH}\left(2.5 \mathrm{~mL}\right.$) and $\mathrm{NaBH}_{4}(47 \mathrm{mg}, 1.24 \mathrm{mmol}, 4.8 \mathrm{eq})$ were added. The reaction mixture was stirred for 24 h while warming slowly to rt . $\mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by automated flash chromatography (SNAP 25 g , CyHex:EtOAc 50:50, $\mathrm{V}=19 \mathrm{~mL}$). The resulting yellow solid was dissolved in dry $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$, cooled to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{NaBH}_{4}(24 \mathrm{mg}, 0.63 \mathrm{mmol}, 2.4 \mathrm{eq})$ was added. The reaction mixture was stirred for 3 h while warming to $\mathrm{rt} . \mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by repeated automated flash chromatography (1. SNAP 25 g , flow rate $=25 \mathrm{~mL} / \mathrm{min}$, CyHex:EtOAc 70:30, $\mathrm{V}=19 \mathrm{~mL}$, 2. SNAP Ultra 10 g , flow rate 36 $\mathrm{mL} / \mathrm{min}, \mathrm{V}=19 \mathrm{~mL}$). Yellow oil, $\mathrm{R}_{\mathrm{f}}=0.1$ (CyHex:EtOAc 80:20), yield 35 mg (0.10 mmol , 10 \%), $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2}$ (339.5). Purity (HPLC): 95%, $\mathrm{t}_{\mathrm{R}}=19.3 \mathrm{~min} .{ }^{1} \mathrm{H} \mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.62-1.72\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $1.76\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.62\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.68(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 2.73\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.90(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{NHCH}_{2} \mathrm{Ar}$), $6.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}\right), 6.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{CH}\right), 7.14-7.19$ (m, 3H, o-Ph, p-Ph), $7.25-7.30$ (m, 2H, m-Ph). Signals for the OH- and NH-protons are not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=17.3(1 \mathrm{C}, \mathrm{C}-4)$, 26.8 ($2 \mathrm{C}, 2 \times \mathrm{CH}_{3}$), 28.3 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 28.9 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 32.4 (1C, C-3), 35.7 ($1 \mathrm{C} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 47.9 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 51.1 (1C, $\mathrm{NHCH}_{2} \mathrm{Ar}$), 74.1 (1C, C-2), 108.4 (1C, C-8), 110.3 (1C, C-4a), 112.2 (1C, 1C, C-6), 126.0 (1C, p-Ph), 127.4 (1C, C-7), 128.5 (2C, m-Ph), 128.5 (2C, o-Ph), 142.0 (1C, Cq, Phenyl), 155.1 (1C, C-8a), 155.8 (1C, C-5). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3302$ (w, NH/OH), 2970 (w, CH), 2928 (w, CH), 2851 (w, CH), 1620 (m, C=Car.), 1593 (m, C=Car.), 1454 (s,
$\mathrm{C}=\mathrm{C}_{\text {ar. }}$), 1161 (s, C-O), 1069 (s, C-O), 799 (m, CH out of plane). HRMS (APCI): m/z = 340.2246 (calcd. 340.2271 for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

6-[(Benzylamino)methyl]-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-7-ol (9a)
Under N_{2}, aldehyde $6(100 \mathrm{mg}, 0.48 \mathrm{mmol})$ was dissolved in dry THF (10 mL). Benzylamine ($66 \mathrm{mg}, \quad 0.62 \mathrm{mmol}, \quad 1.3$ equiv.) and $\mathrm{Ti}(\mathrm{OEt})_{4}(155 \mathrm{mg}, 0.68 \mathrm{mmol}$, 1.4 equiv.) were added and the solution was heated to reflux under N_{2} for 14 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.79 \mathrm{mmol}, 1.6$ equiv.) was added and the mixture was stirred at it for 3 h . Water was added and the reaction mixture was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent was removed in vacuo and the residue was purified by flash column chromatography ($\varnothing=2.0 \mathrm{~cm}, h=24 \mathrm{~cm}$, CyHex:EtOAc 70:30 + 1\% NEt 3 , V $=10 \mathrm{~mL})$. Colorless solid, $\mathrm{mp} 104{ }^{\circ} \mathrm{C}\left(\mathrm{R}_{\mathrm{f}}=0.32\right.$, CyHex:EtOAc $\left.85: 15\right)$, yield 100 mg (71 \%), $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2}$ (297.4). Purity (HPLC): 92%, $\mathrm{t}_{\mathrm{R}}=17.5 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=1.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.64\left(\mathrm{dt},{ }^{3} \mathrm{~J}=6.8\right.$ $\mathrm{Hz},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}$), 3.79 (s, 2H, NHCH2Ph), 3.90 (s, 2H, NCH2-Ar), 6.16 (s, 1H, $8-\mathrm{CH}), 6.67\left(\mathrm{t},{ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}\right), 7.24-7.45(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}$ Phenyl). Signals for the $\mathrm{OH}-$ and NH-protons are not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta(\mathrm{ppm})=22.2$ (1C, C-4), 27.1 ($2 \mathrm{C}, \mathrm{CH}_{3}$), 33.6 ($1 \mathrm{C}, \mathrm{C}-3$), 52.0 ($1 \mathrm{C}, \mathrm{NCH}_{2}$-Ar), 53.0 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{Ph}$), 74.5 (1C, C-2), 104.6 (1C, C-8), 112.0 (1C, C-4a), 115.2 (1C, C-6), 127.9 ($1 \mathrm{C}, \mathrm{p}-\mathrm{Ph}$), 128.9 (2C, o-Ph), 129.1 (2C, m-Ph), 129.5 (1C, C-5), 139.5 (1C, Cq, Pheny), 154.9 (1C, C8a), 158.0 (1C, C-7). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] \tilde{v}=3313$ (m, NH/OH), 2974 (m, CH), 1624 (m, C=Car.), 1593 (m, C=Car.), 1492 (s, C=Car.), 733 (s, CHout of plane), 694 (m, CHout of plane).
HRMS (APCI): m/z = 298.1815 (calcd. 298.1802 for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

2,2-Dimethyl-6-\{[(2-phenylethyl)amino]methyl\}-3,4-dihydro-2H-1-benzopyran-7-ol (9b)

Under N_{2}, aldehyde $6(101 \mathrm{mg}, 0.49 \mathrm{mmol})$ was dissolved in dry THF (10 mL). 2-Phenylethan-1-amine $\left(81 \mathrm{mg}, \quad 0.67 \mathrm{mmol}, \quad 1.4\right.$ equiv.) and $\mathrm{Ti}(\mathrm{OEt})_{4}(181 \mathrm{mg}$, $0.79 \mathrm{mmol}, 1.6$ equiv.) were added and the solution was heated to reflux under N_{2} for 14 h . After cooling to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(29 \mathrm{mg}, 0.77 \mathrm{mmol}, 1.6$ equiv.) was added and the reaction mixture was stirred at rt for 3 h . Water was added and the mixture was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried with
anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}, h=19 \mathrm{~cm}$, CyHex:EtOAc 50:50, V = 10 mL). Yellow resin ($\mathrm{R}_{\mathrm{f}}=0.22$, CyHex:EtOAc $50: 50$), yield $75 \mathrm{mg}(49 \%), \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}$ (311.4). Purity (HPLC): $86 \%, \mathrm{t}_{\mathrm{R}}=18.3 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=1.27$ $\left(\mathrm{s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.73\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.62\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 2.83(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 2.92\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 3.86(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}-\mathrm{Ar}\right), 6.12$ (s, 1H, 8-CH), 6.64 (s, 1H, 5-CH), $7.12-7.25$ (m, 3H, o-Ph, p-Ph), 7.25 - 7.43 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{m}-\mathrm{Ph}$). Signals for the OH - and NH-protons are not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=22.2(1 \mathrm{C}, \mathrm{C}-4), 27.1\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 33.6$ (1C, C-3), 36.3 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 50.2 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 52.6 (1C, $\mathrm{NCH}_{2}-\mathrm{Ar}$), 74.5 (1C, C-2), 104.5 (1C, C-8), 111.8 (1C, C-4a), 115.4 (1C, C-6), 126.8 (1C, p-Ph), 129.1 (2C, m-Ph), 129.3 (3C, C-5, o-Ph), 140.1 (1C, Cq, Phenyl), 154.8 (1C, C-8a), 158.0 (1C, C7). FT-IR (neat): $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right] \tilde{v}=3290(\mathrm{w}, \mathrm{NH} / \mathrm{OH}), 2970(\mathrm{~m}, \mathrm{CH}), 1628$ (m, C=Car.), 1593 (m, $\mathrm{C}=$ Car.), 1493 ($\mathrm{s}, \mathrm{C}=\mathrm{C}_{\text {ar. }}$), 748 (m, CH out of plane), 698 ($\mathrm{s}, \mathrm{CH}_{\text {out of plane) }}$. HRMS (APCI): m/z= 312.1955 (calcd. 312.1958 for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

2,2-Dimethyl-6-\{[(3-phenylpropyl)amino]methyl\}-3,4-dihydro-2H-1-benzopyran-7-ol

 (9c)Under N_{2}, aldehyde 6 ($101 \mathrm{mg}, 0.49 \mathrm{mmol}$) was dissolved in dry THF (10 mL). 3-Phenylpropan-1-amine ($89 \mathrm{mg}, \quad 0.66 \mathrm{mmol}, 1.3$ equiv.) and Ti(OEt)4 (166 mg , $0.73 \mathrm{mmol}, 1.5$ equiv.) were added and the solution was heated to reflux under N_{2} for 12 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}$ ($32 \mathrm{mg}, 0.85 \mathrm{mmol}, 1.7$ equiv.) was added and the mixture was stirred at rt for 5 h . Then NaBH_{4} ($19 \mathrm{mg}, 0.49 \mathrm{mmol}$, 1 equiv.) was added and the solution was stirred at rt over night. Water was added and the mixture was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated in vacuo. The residue was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}, h=19 \mathrm{~cm}$, CyHex:EtOAc 70:30, V = 10 mL). Yellow resin ($\mathrm{R}_{\mathrm{f}}=0.08$, CyHex:EtOAc 70:30), yield 66 mg (41 \%), $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}$ (325.4). Purity (HPLC): 95%, $\mathrm{t}_{\mathrm{R}}=19.0 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=1.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 1.84$ (quint., ${ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), $2.61-2.70\left(\mathrm{~m}, 6 \mathrm{H}, 4-\mathrm{CH}_{2}\right.$, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 3.86 (s, 2H, $\mathrm{NCH}_{2}-\mathrm{Ar}$), 6.14 (s, 1H, $8-\mathrm{CH}$), 6.65 (t, ${ }^{4} \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\mathrm{CH}), 7.13-7.22(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{Ph}, o-\mathrm{Ph}), 7.22-7.31(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{Ph})$. Signals for the $\mathrm{OH}-$ and NH-protons are not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ
$(\mathrm{ppm})=22.2(1 \mathrm{C}, \mathrm{C}-4), 27.1\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 31.9\left(1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 33.6$ (1C, C-3), 34.0 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 48.7 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 52.7 (1C, $\mathrm{NCH}_{2}-\mathrm{Ar}$), 74.5 (1C, C-2), 104.5 (1C, C-8), 111.8 (1C, C-4a), 115.5 (1C, C-6), 126.4 (1C, p-Ph), 128.9 (2C, m-Ph), 128.9 (2C, o-Ph), 129.2 (1C, C-5), 142.5 (1C, Cq, Phenyl), 154.8 (1C, C-8a), 158.1 (1C, C-7). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right] \tilde{v}=3313(\mathrm{w}, \mathrm{NH} / \mathrm{OH}), 2970(\mathrm{~m}, \mathrm{CH}), 1628(\mathrm{~m}$, $\mathrm{C}=\mathrm{Car}$.) 1593 (m, C=Car.), 1493 (s, C=Car.), 806 (w, CHout of plane), 745 (m, CHout of plane), 698 (s, CHout of plane). HRMS (APCI): m/z = 326.2111 (calcd. 326.2115 for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{2}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

2,2-Dimethyl-6-\{[(4-phenylbutyl)amino]methyl\}-3,4-dihydro-2H-1-benzopyran-7-ol (9d)

Under N_{2} atmosphere, aldehyde 6 ($100 \mathrm{mg}, 0.48 \mathrm{mmol}$) was dissolved in dry THF (10 mL). 4-Phenylbutan-1-amine ($89 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.3 \mathrm{eq}$) and $\mathrm{Ti}(\mathrm{OEt}) 4$ (133 mg , $0.58 \mathrm{mmol}, 1.2 \mathrm{eq})$ were added, and the reaction mixture was heated to reflux for 14 h . After cooling to $0{ }^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(28 \mathrm{mg}, 0.74 \mathrm{mmol}, 1.5 \mathrm{eq})$ was added and the reaction mixture was stirred at rt for $3 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}, h=21 \mathrm{~cm}$, CyHex:EtOAc 30:70, V = 10 mL). Colorless resin, $\mathrm{R}_{\mathrm{f}}=0.22$ (CyHex:EtOAc 30:70), yield 112 mg ($0.33 \mathrm{mmol}, 69 \%$), $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{2}$ (339.5). Purity (HPLC): 98%, $\mathrm{t}=19.9 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=1.28(\mathrm{~s}, 6 \mathrm{H}$, $2 x \mathrm{CH}_{3}$), $1.51-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.60-1.69(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 1.74 ($\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}$), $2.59-2.68\left(\mathrm{~m}, 6 \mathrm{H}, 4-\mathrm{CH}_{2}\right.$, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), $3.86\left(\mathrm{~d},{ }^{4} \mathrm{~J}=0.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{NH}\right.$), $6.12(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH}), 6.65(\mathrm{t}$, ${ }^{4} \mathrm{~J}=0.9 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}$), 7.13-7.21 (m, 3H, o-Ph, p-Ph), $7.22-7.30$ (m, 2H, m-Ph). Signals for the $\mathrm{OH}-$ and NH -protons are not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=22.2$ (1C, C-4), $27.1\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{3}\right), 29.6$ (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 29.8 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 33.6 (1C, C-3), 36.2 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 49.0 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 52.7 ($1 \mathrm{C}, \mathrm{ArCH}_{2} \mathrm{NH}$), 74.4 (1C, C-2), 104.5 (1C, C-8), 111.8 (1C, C-4a), 115.5 (1C, C-6), 126.2 (1C, p-Ph), 128.8 (2C, m-Ph), 128.9 (2C, o-Ph), 129.2 (1C, C-5), 143.0 (1C, Cq, Phenyl), 154.7 (1C, C-8a), 158.2 (1C, C-7). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3298$ (w, NH/OH), 3024 (w, C-Har.), 2974 (w, CH), 2928 (w, CH), 2851 (w, CH), 1628 (m, C=Car.), 1593 (m, C=Car.), 1493 (s, C=Car.), 1153 (s, C-O), 1115 (s, C-O), 895 (w, CHout of plane), 841 (w, CHout of plane), 745 (m, CHout of
plane), 698 (s, CH out of plane). HRMS (APCI): m/z = 340.2276 (calcd. 340.2271 for $\left.\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$.

6-[(Benzylamino)methyl]-2,2-dimethyl-2H-1-benzopyran-7-ol (10a)

Under N_{2} atmosphere, aldehyde 7 ($100 \mathrm{mg}, 0.49 \mathrm{mmol}$) was dissolved in dry THF (10 mL). Benzylamine ($100 \mathrm{mg}, 0.93 \mathrm{mmol}, 1.9 \mathrm{eq}$) and $\mathrm{Ti}(\mathrm{OEt}) 4(164 \mathrm{mg}, 0.72 \mathrm{mmol}, 1.5$ eq) were added dropwise, and the reaction mixture was heated to $80^{\circ} \mathrm{C}$ for 15 h . After cooling to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.79 \mathrm{mmol}, 1.6 \mathrm{eq})$ was added and the reaction mixture was stirred at rt for $5 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}, h=21 \mathrm{~cm}$, CyHex:EtOAc 60:40, V = 10 mL), followed by preparative HPLC (method 1). Colorless resin, $\mathrm{R}_{\mathrm{f}}=0.30$ (CyHex:EtOAc 60:40), yield 17 mg ($0.06 \mathrm{mmol}, 12 \%$), $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$ (295.4). Purity (HPLC): 90%, $\mathrm{tR}=17.4 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=1.38\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 3.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}\right), 3.90(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{Ph}$), $5.45\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{CH}\right.$), $6.21(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH}), 6.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{CH}$), 6.61 (s, 1H, 5-CH), $7.27-7.33$ (m, 3H, o-Ph, p-Ph), $7.33-7.45(\mathrm{~m}, 2 \mathrm{H}$, $m-\mathrm{Ph})$. Signals for the OH - and NH -protons are not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=28.3\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{3}\right), 51.8\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{Ph}\right), 52.9(1 \mathrm{C}$, $\mathrm{NHCH}_{2} \mathrm{Ph}$), 76.6 (1C, C-2), 104.7 (1C, C-8), 113.8 (1C, C-4a), 115.3 (1C, C-6), 122.3 (1C, C-4), 126.6 (1C, C-5), 128.0 (1C, p-Ph), 128.0 (1C, C-3), 128.9 (2C, o-Ph), 129.2 (2C, m-Ph), 139.3 (1C, Cq, Phenyl), 154.3 (1C, C-8a), 160.0 (1C, C-7). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-}\right.$ ${ }^{1}$] = 3302 (w, NH/OH), 3028 (w, NH/OH), 2970 (w, CH), 2924 (w, CH), 2847 (w, CH), 1620 (m, C=Car.), 1585 (m, C=Car.), 1489 (s, C=Car.), 1157 (m, C-O), 1123 (s, C-O), 891 ($\mathrm{m} \mathrm{CH}_{\text {out of plane })}$, 845 ($\mathrm{m}, \mathrm{CH}_{\text {out of plane) }} 756$ ($\mathrm{s}, \mathrm{CH}_{\text {out of plane) }} 698$ ($\mathrm{s}, \mathrm{CH}_{\text {out of plane) }}$. HRMS (APCI): m/z = 296.1644 (calcd. 296.1645 for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

2,2-Dimethyl-6-\{[(2-phenylethyl)amino]methyl\}-2H-1-benzopyran-7-ol (10b)

Under N_{2} atmosphere, aldehyde 7 ($100 \mathrm{mg}, 0.49 \mathrm{mmol}$) was dissolved in dry THF (10 mL). 2-Phenylethan-1-amine ($74 \mathrm{mg}, 0.61 \mathrm{mmol}, 1.2 \mathrm{eq}$) and $\mathrm{Ti}(\mathrm{OEt})_{4}(133 \mathrm{mg}$, $0.58 \mathrm{mmol}, 1.2 \mathrm{eq})$ were added, and the reaction mixed was heated to reflux for 15 h . After cooling to $0{ }^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.79 \mathrm{mmol}, 1.6 \mathrm{eq})$ was added and the reaction mixture was stirred at rt for $4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered,
and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}, h=22 \mathrm{~cm}$, CyHex:EtOAc 30:70, $\mathrm{V}=10 \mathrm{~mL}$), followed by preparative HPLC (method 2). Colorless resin, $R_{f}=0.32$ (CyHex:EtOAc 30:70), yield 13 mg ($0.04 \mathrm{mmol}, 8 \%$), $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$ (309.4). Purity (HPLC): $91 \%, \mathrm{t}_{\mathrm{R}}=18.6 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.37\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.93\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.99 (t, ${ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 3.91 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ar}$), 5.42 (d, $\left.{ }^{3} \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{CH}\right), 6.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}\right), 6.42(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH}), 6.62(\mathrm{~s}, 1 \mathrm{H}$, 5-CH), $7.12-7.25$ (m, 3H, o-Ph, $p-\mathrm{Ph}$), $7.25-7.32$ (m, 2H, m-Ph). ${ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=28.2(2 \mathrm{C}, 2 \mathrm{x} \mathrm{CH} 3), 34.6\left(1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 48.8$ (1 C , $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 50.5 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{Ar}$), 76.4 (1C, C-2), 105.0 (1C, C-8), 112.7 (1C, C-6), 113.8 (1C, C-4a), 121.7 (1C, C-4), 126.9 (1C, p-Ph), 127.1 (1C, C-5), 128.0 (1C, C-3), 128.9 (2C, o-Ph), 128.9 (2C, m-Ph), 138.2 (1C, C $\mathrm{C}_{\mathrm{q}, ~ P h e n y l}$), 154.6 (1C, C-8a), 158.4 (1C, C-7). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3314(\mathrm{w}, \mathrm{NH} / \mathrm{OH}), 3028(\mathrm{w}, \mathrm{NH} / \mathrm{OH}), 2970(\mathrm{w}, \mathrm{CH}), 2924$ (w, CH), 2851 (w, CH), 1620 (m, C=Car.), 1585 (m, C=Car.), 1489 (s, C=Car.), 1153 (m $\mathrm{C}-\mathrm{O}$), 1123 ($\mathrm{s}, \mathrm{C}-\mathrm{O}$), 891 ($\mathrm{w}, \mathrm{CH}_{\text {out of plane) }} 845$ ($\mathrm{w}, \mathrm{CH}_{\text {out of plane), }} 752$ ($\mathrm{m}, \mathrm{CH}_{\text {out of plane) }}$,
 $\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

2,2-Dimethyl-6-\{[(3-phenylpropyl)amino]methyl\}-2H-1-benzopyran-7-ol (10c)

Under N_{2}, aldehyde 7 ($101 \mathrm{mg}, 0.49 \mathrm{mmol}$) was dissolved in dry THF (10 mL). 3Phenylpropylamine ($87 \mathrm{mg}, 0.64 \mathrm{mmol}, 1.3$ equiv.) and $\mathrm{Ti}(\mathrm{OEt}) 4$ ($140 \mathrm{mg}, 0.61 \mathrm{mmol}$, 1.2 equiv.) were added and the solution was heated to reflux under N_{2} for 14 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.79 \mathrm{mmol}, 1.6$ equiv.) was added and the mixture was stirred for 3 h at rt . Water was added, and the reaction mixture was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was purified by flash chromatography ($\varnothing=2 \mathrm{~cm}, \quad h=21 \mathrm{~cm}$, CyHex:EtOAc 40:60, $\mathrm{V}=10 \mathrm{~mL}$). Yellow oil ($\mathrm{R}_{\mathrm{f}}=0.28$, CyHex/EtOAc 40/60), yield $97 \mathrm{mg}(61 \%), \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2}$ (323.4). Purity (HPLC): $87 \%, \mathrm{t}_{\mathrm{R}}=19.3 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=1.38$ (s, 6H, CH_{3}), 1.84 (quint., ${ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), $2.63-2.71$ (m, 4H, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 3.87 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2}-\mathrm{Ar}$), $5.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{CH}\right.$), $6.18(\mathrm{~s}, 1 \mathrm{H}$, $8-\mathrm{CH}), 6.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}\right), 6.59(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{CH}), 7.13-7.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{p}-\mathrm{Ph}, o-$ $\mathrm{Ph}), 7.23-7.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{m}-\mathrm{Ph})$. Signals for the OH - and NH-protons are not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=28.2\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 31.9$ (1C,
$\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 33.9 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 48.6 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 52.6 (1C, $\mathrm{NCH}_{2}-\mathrm{Ar}$), 76.6 (1C, C-2), 104.6 (1C, C-8), 113.6 (1C, C-4a), 115.7 (1C, C-6), 122.3 (1C, C-4), 126.4 (2C, C-5, p-Ph), 127.9 (1C, C-3), 128.9 (4C, o-Ph, m-Ph), 142.2
 NH/OH), 2970 (m, CH), 1620 (m, C=Car.), 1585 (m, C=Car.), 1489 (s, C=Car.), 802 (w, $\mathrm{CH}_{\text {out of plane }}$), 752 ($\mathrm{m}, \mathrm{CH}_{\text {out of plane) }}$, 698 ($\mathrm{s}, \mathrm{CH}_{\text {out of plane) }}$. HRMS (APCI): $\mathrm{m} / \mathrm{z}=324.1970$ (calcd. 324.1958 for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

2,2-Dimethyl-6-\{[(4-phenylbutyl)amino]methyl\}-2H-1-benzopyran-7-ol (10d)

Under N_{2} atmosphere, aldehyde $7(100 \mathrm{mg}, 0.49 \mathrm{mmol})$ was dissolved in dry THF (10 mL). 4-Phenylbutan-1-amine ($95 \mathrm{mg}, 0.64 \mathrm{mmol}, 1.3 \mathrm{eq}$) and $\mathrm{Ti}(\mathrm{OEt})_{4}(133 \mathrm{mg}$, $0.58 \mathrm{mmol}, 1.2 \mathrm{eq}$) were added and the solution was heated to $75^{\circ} \mathrm{C}$ for 15 h . After cooling to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(22 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.2 \mathrm{eq})$ was added and the reaction mixture was stirred at rt for $4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=3 \mathrm{~cm}, h=20.5 \mathrm{~cm}$, toluene:EtOAc 40:60 $+1 \% \mathrm{NEt}_{3}, \mathrm{~V}=10 \mathrm{~mL}$). Colorless resin, $\mathrm{R}_{\mathrm{f}}=0.26$ (toluene:EtOAc 40:60 $+1 \% \mathrm{NEt}_{3}$), yield $70 \mathrm{mg}(0.21 \mathrm{mmol}, 43$ \%), $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{2}$ (337.5). Purity (HPLC): $98 \%, \mathrm{t}_{\mathrm{R}}=20.1 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(p p m)=1.37\left(6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.50-1.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 1.60-1.68$ (m, 2H, NHCH2CH2CH2CH2Ph), 2.62 ($\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.66 (t , ${ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 3.87 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{Ar}$), $5.44\left(\mathrm{~d},{ }^{3} \mathrm{~J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $3-\mathrm{CH}$), 6.17 (s, 1H, 8-CH), 6.22 (d, ${ }^{3} \mathrm{~J}=9.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}$), 6.59 ($\mathrm{s}, 1 \mathrm{H}, 5-\mathrm{CH}$), $7.12-$ 7.22 ($\mathrm{m}, 3 \mathrm{H}, o-\mathrm{Ph}, p-\mathrm{Ph}$), $7.22-7.31$ (m, 2H, m-Ph). Signals for the OH- and NHprotons are not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=28.2$ (2C, $2 \times \mathrm{CH}_{3}$), $29.6\left(\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 29.7$ (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 36.2 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 48.9 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 52.6 (1C, $\mathrm{NCH}_{2} \mathrm{Ar}$), 76.5 (1C, C-2), 104.6 1C, C-8), 113.6 (1C, C-4a), 115.7 (1C, C-6), 122.3 (1C, C-4), 126.2 (1C, pPh), 126.4 (1C, C-5), 127.9 (1C, C-3), 128.8 (2C, m-Ph), 128.9 (2C, o-Ph), 143.0 (1C, $\mathrm{C}_{\mathrm{q}, \text { Phenyl) }} 154.2$ (1C, C-8a), 160.2 (1C, C-7). FT-IR (neat): $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=3024$ (w, NH/OH), 2970 (w, CH), 2928 (w, CH), 2855 (w, CH), 1620 (m C=Car.), 1585 (m, C=Car.), 1489 (s, $\mathrm{C}=$ Car.), 1153 (m, C-O), 1126 ($\mathrm{s}, \mathrm{C}-\mathrm{O}$), 891 (m, CH out of plane), 845 (m, CH out of plane), 748 (s, CH out of plane), 698 (s, CHout of plane). HRMS (APCI): m/z = 338.2091 (calcd. 338.2115 for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

2,2,8,8-Tetramethyl-3,4,9,10-tetrahydro-2H,8H-benzo[1,2-b:3,4-b']dipyran-6carbaldehyde (11)

2,4-Dihydroxybenzaldehyde ($4,2.50 \mathrm{~g}, 18.1 \mathrm{mmol}$) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$. Isoprene ($2.47 \mathrm{~g}, 36.2 \mathrm{mmol}, 2.0 \mathrm{eq}$) and $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \mathrm{wt}-\%, 3.78 \mathrm{~g}, 32.8 \mathrm{mmol}, 1.8 \mathrm{eq})$ were added dropwise, and the reaction mixture was stirred at rt for 120 h . Subsequently, the temperature was increased to $50^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 23 h . After cooling to $\mathrm{rt} \mathrm{H}_{2} \mathrm{O}$ was added, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x $30 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by automated flash chromatography (SNAP 340, flow rate $100 \mathrm{~mL} / \mathrm{min}$, CyHex:EtOAc 100:0 $\rightarrow 82: 18, \mathrm{~V}=$ 19 mL). Colorless solid, mp $99{ }^{\circ} \mathrm{C}$ (crystallized from CyHex:EtOAc 90:10) (ref. ${ }^{4}$: 76-77 ${ }^{\circ} \mathrm{C}$), $\mathrm{R}_{\mathrm{f}}=0.35$ (CyHex:EtOAc 85:15), yield $2.12 \mathrm{~g}(7.7 \mathrm{mmol}, 43 \%), \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3}(274.4)$. Purity (HPLC): $96 \%, \mathrm{t}_{\mathrm{R}}=24.2 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.34(\mathrm{~s}, 6 \mathrm{H}, 2$ $\left.x 2-\mathrm{CH}_{3}\right), 1.36\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times 8-\mathrm{CH}_{3}\right), 1.79\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 1.79\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}\right.$, $2 \mathrm{H}, 9-\mathrm{CH}_{2}$), $2.60\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right.$), $2.72\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 7.47(\mathrm{~s}$, $1 \mathrm{H}, 5-\mathrm{CH}$), $10.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{O}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=17.1$ (1C, $\mathrm{C}-$ 10), $21.8(1 \mathrm{C}, \mathrm{C}-4), 26.8\left(2 \mathrm{C}, 2 \times 8-\mathrm{CH}_{3}\right), 27.4\left(2 \mathrm{C}, 2 \times 2-\mathrm{CH}_{3}\right), 32.0(1 \mathrm{C}, \mathrm{C}-9), 32.8(1 \mathrm{C}$, C-3), 74.9 (1C, C-8), 75.9 (1C, C-2), 109.5 (1C, C-10a), 112.5 (1C, C-4a), 117.8 (1C, C6), 126.9 (1C, C-5), 156.7 (1C, C-6a), 158.2 (1C, C-10b), 189.2 (1C, C=O). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2978(\mathrm{w}, \mathrm{CH}), 2932(\mathrm{w}, \underline{\mathrm{H}-\mathrm{C}=\mathrm{O}), 2916(\mathrm{w}, \underline{\mathrm{H}-\mathrm{C}}=\mathrm{O}), 2847(\mathrm{w}, \mathrm{CH}), 1670(\mathrm{~m}, ~}$ $\mathrm{C}=\mathrm{O}$), 1601 ($\mathrm{m}, \mathrm{C}=$ Car.), 1582 ($\mathrm{m}, \mathrm{C}=$ Car.), 1153 (m, C-O), 1111 (s, C-O), 891 (w, CHout of plane). HRMS (APCI): m/z = 275.1666 (calcd. 275.1642 for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

N-Benzyl-1-(2,2,8,8-tetramethyl-3,4,9,10-tetrahydro-2H,8H-benzo[1,2-b:3,4$\left.b^{\prime}\right]$ dipyran-6-yl)methanamine (12a)

Under N_{2} atmosphere, benzodipyran 11 ($202 \mathrm{mg}, 0.74 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL). Benzylamine ($166 \mathrm{mg}, 1.55 \mathrm{mmol}, 2.1 \mathrm{eq}$) and conc. $\mathrm{CH}_{3} \mathrm{COOH}$ ($89 \mathrm{mg}, 1.48 \mathrm{mmol}, 2.0 \mathrm{eq}$) were added dropwise and the reaction mixture was stirred at rt. After $22 \mathrm{~h}, \mathrm{NaBH}(\mathrm{OAc})_{3}(315 \mathrm{mg}, 1.49 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added and the reaction mixture was further stirred at rt for 144 h . Saturated NaHCO_{3} solution was added, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by automated flash chromatography (SNAP 25 g , flow rate $25 \mathrm{~mL} / \mathrm{min}$, CyHex: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 50: 50+1 \% \mathrm{NEt}_{3} \rightarrow 10: 90+1 \% \mathrm{NEt}_{3}, \mathrm{~V}=19 \mathrm{~mL}\right)$. Colorless oil, $\mathrm{R}_{\mathrm{f}}=$
0.22 (CyHex: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 50: 50+1$ \% NEt 3), yield 224 mg ($0.61 \mathrm{mmol}, 82 \%$), $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{NO}_{2}$ (365.5). Purity (HPLC): $96 \%, \mathrm{t}_{\mathrm{R}}=22.7 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.27$ (s, 6H, $2 \times 8-\mathrm{CH}_{3}$), $1.31\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times 2-\mathrm{CH}_{3}\right), 1.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 1.76\left(\mathrm{t},{ }^{3} \mathrm{~J}=\right.$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}$), $2.60\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right), 2.68\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right)$, 3.76 (s, 2H, ArCH2NH), 3.81 (s, 2H, NHCH ${ }_{2} \mathrm{Ph}$), 6.76 (s, 1H, 5-CH), $7.30-7.34$ (m, 3H, $m-\mathrm{Ph}, p-\mathrm{Ph}), 7.34-7.38(\mathrm{~m}, 2 \mathrm{H}, o-\mathrm{Ph})$. A signal for the NH -proton is not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=17.3$ (1C, C-10), 22.1 (1C, C-4), 27.0 (2C, $2 \times 8-\mathrm{CH}_{3}$), 27.2 ($2 \mathrm{C}, 2 \times 2-\mathrm{CH}_{3}$), $32.3(1 \mathrm{C}, \mathrm{C}-9), 33.1$ (1C, $\mathrm{C}-3$), 49.1 (1 C , $\mathrm{ArCH}_{2} \mathrm{NH}$), 52.5 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{Ph}$), 74.1 (1C, C-8), 74.2 (1C, C-2), 109.7 (1C, C-10a), 111.0 (1C, C-4a), 117.2 (1C, C-6), 127.3 (1C, p-Ph), 128.3 (1C, C-5), 128.6 (2C, m-Ph), 128.7 (2C, o-Ph), 139.4 (1C, Cq, Phenyl), 151.0 (1C, C-6a), 151.5 (1C, C-10b). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3337(\mathrm{w}, \mathrm{NH}), 2970(\mathrm{w}, \mathrm{CH}), 2928(\mathrm{w}, \mathrm{CH}), 2847$ (w, CH), 1597 (w, $\mathrm{C}=$ Car.), 1450 (m, C=Car.), 1153 (s, C-O), 1111 (s, C-O), 887 (w, CHout of plane). HRMS $\left(\mathrm{APCl}^{+}\right): \mathrm{m} / \mathrm{z}=366.2460$ (calcd. 366.22428 for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

2-Phenyl-N-[(2,2,8,8-tetramethyl-3,4,9,10-tetrahydro-2H,8H-benzo[1,2-b:3,4-b']dipyran-6-yl)methyl]ethan-1-amine (12b)

Under N_{2} atmosphere, benzodipyran $11(202 \mathrm{mg}, 0.74 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL). 2-Phenylethan-1-amine ($180 \mathrm{mg}, 1.49 \mathrm{mmol}, 2.0 \mathrm{eq}$) and conc. $\mathrm{CH}_{3} \mathrm{COOH}(98 \mathrm{mg}, 1.63 \mathrm{mmol}, 2.2 \mathrm{eq}$) were added dropwise. The reaction mixture was stirred at rt for $21 \mathrm{~h} . \mathrm{NaBH}(\mathrm{OAc}) 3$ ($319 \mathrm{mg}, 1.51 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added, and the mixture was further stirred at rt. After 145 h saturated NaHCO_{3} solution was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by repeated automated flash chromatography (1.SNAP 25 g , flow rate 25 $\mathrm{mL} / \mathrm{min}$, CyHex: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 50: 50+1 \% \mathrm{NEt}_{3} \rightarrow 10: 90+1 \% \mathrm{NEt}_{3}, \mathrm{~V}=19 \mathrm{~mL}$, 2. SNAP Ultra 10 g , flow rate $36 \mathrm{~mL} / \mathrm{min}$, EtOAc: $\mathrm{CH}_{3} \mathrm{OH} 100: 0 \rightarrow 95: 5, \mathrm{~V}=19 \mathrm{~mL}$). Colorless oil, $\mathrm{R}_{\mathrm{f}}=$ 0.20 (CyHex: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 50: 50+1 \% \mathrm{NEt}_{3}$), yield 114 mg ($0.30 \mathrm{mmol}, 41 \%$), $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{2}$ (379.5). Purity (HPLC): $95 \%, \mathrm{t}_{\mathrm{R}}=23.1 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.13$ (s, 6H, $2 \times 8-\mathrm{CH}_{3}$), $1.29\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times 2-\mathrm{CH}_{3}\right), 1.66\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 1.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=\right.$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}$), $2.56\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right), 2.65\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right)$, 2.85 - 2.90 (m, 4H, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 3.71 (s, 2H, $\mathrm{ArCH}_{2} \mathrm{NH}$), 6.72 (s, 1H, 5-CH), $7.17-$ $7.22(\mathrm{~m}, 3 \mathrm{H}, o-\mathrm{Ph}, p-\mathrm{Ph}), 7.25-7.29(\mathrm{~m}, 2 \mathrm{H}, m-\mathrm{Ph})$. A signal for the NH -proton is not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=17.3(1 \mathrm{C}, \mathrm{C}-10), 22.0$
(1C, C-4), $26.7\left(2 \mathrm{C}, 2 \times 8-\mathrm{CH}_{3}\right), 27.2\left(2 \mathrm{C}, 2 \times 2-\mathrm{CH}_{3}\right), 32.3(1 \mathrm{C}, \mathrm{C}-9), 33.1$ (1C, C-3), 36.2 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 49.7 ($1 \mathrm{C}, \mathrm{ArCH}_{2} \mathrm{NH}$), 50.1 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 73.8 (1C, C8), 74.1 (1C, C-2), 109.5 (1C, C-10a), 110.8 (1C, C-4a), 117.8 (1C, C-6), 126.3 (1C, pPh), 128.0 (1C, C-5), 128.6 (2C, m-Ph), 128.9 (2C, o-Ph), 140.0 (1C, Cq, Phenyl), 150.9 (1C, C-6a), 151.30 (1C, C-10b). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3321$ (w, NH), $2970(\mathrm{w}, \mathrm{CH})$, 2928 (w, CH), 2847 (w, CH), 1597 (w, C=Car.), 1450 (m, C=Car.), 1153 (s, C-O), 1115 (s, C-O), 887 ($w, C_{\text {out of plane). }}$ HRMS (APCI): m/z = 380.2596 (calcd. 380.2584 for $\left.\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$.

3-Phenyl-N-[(2,2,8,8-tetramethyl-3,4,9,10-tetrahydro-2H,8H-benzo[1,2-b:3,4$\left.b^{\prime}\right]$ dipyran-6-yl)methyl]propan-1-amine (12c)

Under N_{2} atmosphere, benzodipyran 11 ($100 \mathrm{mg}, 036 \mathrm{mmol}$) was dissolved in dry THF (15 mL). 3-Phenylpropan-1-amine ($102 \mathrm{mg}, 0.75 \mathrm{mmol}, 2.1 \mathrm{eq}$) and conc. $\mathrm{CH}_{3} \mathrm{COOH}$ ($42 \mathrm{mg}, 0.70 \mathrm{mmol}, 1.9 \mathrm{eq}$) were added dropwise. The reaction mixture was stirred at rt for $26 \mathrm{~h} . \mathrm{NaBH}(\mathrm{OAc})_{3}(153 \mathrm{mg}, 0.72 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added and the mixture was further stirred at rt. After 96 h saturated NaHCO_{3}-solution was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=2 \mathrm{~cm}, h=16.5 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH} 98: 2+1 \% \mathrm{NEt}_{3}, \mathrm{~V}$ $=10 \mathrm{~mL}$), followed by automated flash column chromatography (SNAP Ultra 10 g , flow rate $36 \mathrm{~mL} / \mathrm{min}$, EtOAc: $\mathrm{CH}_{3} \mathrm{OH} 100: 0 \rightarrow 95: 5, \mathrm{~V}=19 \mathrm{~mL}$). Colorless oil, $\mathrm{Rf}_{\mathrm{f}}=0.36$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH} 98: 2+1 \% \mathrm{NEt}_{3}\right)$, yield $28 \mathrm{mg}(0.07 \mathrm{mmol}, 19 \%), \mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{2}$ (393.6). Purity (HPLC): $96 \%, \mathrm{t}_{\mathrm{R}}=23.6 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.29(\mathrm{~s}, 6 \mathrm{H}, 2$ $\left.x 8-\mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times 2-\mathrm{CH}_{3}\right), 1.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 1.75\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}\right.$, $2 \mathrm{H}, 3-\mathrm{CH}_{2}$), 1.98 (quint, ${ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), $2.59\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, 10-\right.$ CH_{2}), 2.61 - $2.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}, 4-\mathrm{CH}_{2}\right.$), $2.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 3.85 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ar}$), 6.81 (s, 1H, 5-CH), $7.12-7.20(\mathrm{~m}, 3 \mathrm{H}, \mathrm{o}-$ $\mathrm{Ph}, p-\mathrm{Ph}), 7.21-7.31(\mathrm{~m}, 2 \mathrm{H}, \mathrm{m}-\mathrm{Ph})$. A signal for the NH -proton is not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=17.2$ (1C, C-10), 22.0 (1C, C-4), 27.0 ($2 \mathrm{C}, 2 \times 8-\mathrm{CH}_{3}$), $27.2\left(2 \mathrm{C}, 2 \times 2-\mathrm{CH}_{3}\right), 29.9\left(1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right), 32.3$ (1C, C-9), 33.0 (1C, C-3), 33.3 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 46.9 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 48.3 (1C, $\mathrm{NHCH}_{2} \mathrm{Ar}$), 74.4 (1C, C-2), 74.6 (1C, C-8), 109.8 (1C, C-10a), 111.5 (1C, C-4a), 113.9 (1C, C-6), 126.1 (1C, p-Ph), 128.5 (2C, o-Ph), 128.6 (2C, m-Ph), 128.9 (1C, C-5), 141.2 (1C, C q, Pheny) , 151.0 (1C, C-6a), 152.2 (1C, C-10b). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3310$ (w,

NH), 2970 (w, CH), 2928 (w, CH), 2851 (w, CH), 1597 (w, C=Car.), 1454 (m, C=Car.), 1153 (s, COPhenol), 1115 (s, COPhenol), 887 ($\mathrm{w}, \mathrm{CH}_{\text {out of plane) }}$. HRMS (APCI): m/z = 394.2760 (calcd. 394.2741 for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

4-Phenyl-N-[(2,2,8,8-tetramethyl-3,4,9,10-tetrahydro-2H,8H-benzo[1,2-b:3,4-b']dipyran-6-yl)methyl]butan-1-amine (12d)

Under N_{2} atmosphere, benzodipyran 11 ($201 \mathrm{mg}, 0.73 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL). 4-Phenylbutan-1-amine ($221 \mathrm{mg}, 1.48 \mathrm{mmol}, 2.0 \mathrm{eq}$) and conc. $\mathrm{CH}_{3} \mathrm{COOH}(94 \mathrm{mg}, 1.57 \mathrm{mmol}, 2.2 \mathrm{eq}$) were added and the reaction mixture was stirred at rt for $20 \mathrm{~h} . \mathrm{NaBH}(\mathrm{OAc})_{3}(309 \mathrm{mg}, 1.46 \mathrm{mmol}, 2.0 \mathrm{eq})$ was added and the reaction mixture was further stirred at rt. After 147 h , saturated NaHCO_{3} solution was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and the solvent was removed in vacuo. The residue was purified by automated flash chromatography (SNAP 25 g , flow rate $25 \mathrm{~mL} / \mathrm{min}$, CyHex: $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 50: 50+1 \% \mathrm{NEt}_{3} \rightarrow 10: 90+1 \% \mathrm{NEt}_{3}, \mathrm{~V}=19 \mathrm{~mL}\right)$. Colorless oil, $\mathrm{R}_{\mathrm{f}}=$ 0.20 (CyHex: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 50: 50+1 \% \mathrm{NEt}_{3}$), yield 198 mg ($0.49 \mathrm{mmol}, 67 \%$), $\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{NO}_{2}$ (407.6). Purity (HPLC): $94.40 \%, \mathrm{t}_{\mathrm{R}}=24.5 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=$ 1.27 (s, 6H, $2 \times 8-\mathrm{CH}_{3}$), $1.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times 2-\mathrm{CH}_{3}\right.$), 1.57 (quint., ${ }^{3} \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 1.65 (quint., ${ }^{3} \mathrm{~J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 1.73 (t, ${ }^{3} \mathrm{~J}$ $\left.=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 1.75\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 2.56-2.64\left(\mathrm{~m}, 6 \mathrm{H}, 10-\mathrm{CH}_{2}\right.$, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.67 (t, ${ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}$), 3.67 (s, 2H, NHCH2Ar), 6.74 (s, 1H, 5-CH), 7.14-7.19 (m, 3H, o-Ph, p-Ph), $7.23-7.28$ (m, 2H, m-Ph). A signal for the NH -proton is not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=17.3$ (1C, C-10), 22.1 ($1 \mathrm{C}, \mathrm{C}-4$), $27.0\left(2 \mathrm{C}, 2 \times 8-\mathrm{CH}_{3}\right.$), $27.2\left(2 \mathrm{C}, 2 \times 2-\mathrm{CH}_{3}\right.$), 29.3 (1 C , $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 29.6 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 32.3 (1C, C-9), 33.1 (1C, C3), 35.9 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 48.6 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 49.4 (1C, $\mathrm{NHCH}_{2} \mathrm{Ar}$), 73.8 (1C, C-8), 74.1 (1C, C-2), 109.5 (1C, C-10a), 110.8 (1C, C-4a), 118.3 (1C, C-6), 125.8 (1C, $p-\mathrm{Ph}$), 128.0 (1C, C-5), 128.4 (2C, m-Ph), 128.5 (2C, o-Ph), 142.6 (1C, Ca, Phenyl), 150.9 (1C, C-6a), 151.2 (1C, C-10b). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2970(\mathrm{w}$, CH), 2927 (m, CH), 2851 (w, CH), 1597 (w, C=Car.), 1454 (m, C=Car.), 1153 (s, C-O), 1115 (s, C-O), 887 (w, CHout of plane). HRMS (APCI): m/z = 408.2933 (calcd. 408.2897 for $\left.\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$.

2,2-Dimethyl-3,4-dihydro-2H-1-benzopyran-7-ol (14)

Resorcinol ($13,2.55 \mathrm{~g}, 23.2 \mathrm{mmol}$,) was suspended in $\mathrm{CHCl}_{3}(80 \mathrm{~mL})$ and the mixture was heated to $70{ }^{\circ} \mathrm{C}$. Isoprene ($1.58 \mathrm{~g}, 23.2 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{H}_{3} \mathrm{PO}_{4}(85 \mathrm{wt}-\%, 4.91 \mathrm{~g}$, $42.6 \mathrm{mmol}, 1.8 \mathrm{eq})$ were added dropwise and the reaction mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 45 h . After cooling to ambient temperature $\mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with saturated NaHCO_{3} solution, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by automated flash chromatography (SNAP 100 g , flow rate $50 \mathrm{~mL} / \mathrm{min}$, CyHex:EtOAc 100:0 $\rightarrow 70: 30, \mathrm{~V}=19 \mathrm{~mL}$). Colorless solid, $\mathrm{mp} 64{ }^{\circ} \mathrm{C}$ (Ref5: 60-62 ${ }^{\circ} \mathrm{C}$), $\mathrm{R}_{\mathrm{f}}=0.33$ (CyHex:EtOAc 85:15), yield 3.16 g ($17.7 \mathrm{mmol}, 77 \%$), $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}$ (178.2). Purity (HPLC): $99 \%, \mathrm{t}_{\mathrm{R}}=17.4 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $(\mathrm{ppm})=1.32\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.77\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.69\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.4-\mathrm{CH}_{2}\right), 6.27\left(\mathrm{~d},{ }^{4} \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}\right), 6.34\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{CH}\right.$), $6.90\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}\right)$. A signal for the OH -proton is not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=21.9(1 \mathrm{C}, \mathrm{C}-4), 27.0\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{3}\right)$, 33.1 (1C, C-3), 74.5 (1C, C-2), 103.9 (1C, C-8), 107.4 (1C, C-6), 113.5 (1C, C-4a), 130.2 (1C, C-5), 154.9 (1C, C-7), 155.0 (1C, C-8a). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3213$ (m , OH), 2967 (w, CH), 2851 (w, CH), 1539 (m, C=Car.), 1504 (m, C=Car.), 1150 (s, C-O), 1115 ($\mathrm{s}, \mathrm{C}-\mathrm{O}$), 849 (m, CH out of plane), 799 ($\mathrm{m}, \mathrm{CH}_{\text {out of plane) }) \text {. HRMS (APCI): m/z = }}$ 179.1075 (calcd. 179.1067 for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

2-Chloro-1-(7-hydroxy-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-6-yl)ethan-1-one (15)

Under N_{2} atmosphere, benzopyran $14(3.00 \mathrm{~g}, 16.8 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(150 \mathrm{~mL})$ and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Chloroacetyl chloride ($2.08 \mathrm{~g}, 18.5 \mathrm{mmol}$, $1.1 \mathrm{eq})$ was added dropwise. Anhydrous $\mathrm{AlCl}_{3}(2.48 \mathrm{~g}, 18.6 \mathrm{mmol}, 1.1 \mathrm{eq})$ was then added stepwise within 30 min . The solution turned to an orange color after the first addition. The reaction mixture was stirred for 39 h while slowly warming to rt . $\mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The reside was purified by automated flash chromatography (SNAP 100 g , flow rate $50 \mathrm{~mL} / \mathrm{min}$, CyHex: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 50: 50 \rightarrow 0: 100, \mathrm{~V}=19 \mathrm{~mL}$). Colorless solid, mp $154{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.26$ (CyHex: $\mathrm{CH}_{2} \mathrm{Cl}_{2} 50: 50$), yield 2.95 g ($11.6 \mathrm{mmol}, 69 \%$), $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClO}_{3}$ (254.7). Purity (HPLC): $98 \%, \mathrm{t}_{\mathrm{R}}=21.3 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.36$
(s, 6H, $2 \times \mathrm{CH}_{3}$), $1.83\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.74\left(\mathrm{td},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $4-\mathrm{CH}_{2}$), $4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 6.35(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH}), 7.40\left(\mathrm{t},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}\right), 11.75(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=21.9(1 \mathrm{C}, \mathrm{C}-4), 27.1\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{3}\right)$, 32.8 (1C, C-3), 44.9 ($1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}$), 76.5 ($1 \mathrm{C}, \mathrm{C}-2$), 105.2 ($1 \mathrm{C}, \mathrm{C}-8$), 111.5 (1C, C-6), 113.6 (1C, C-4a), 131.3 (1C, C-5), 162.5 (1C, C-8a), 163.7 (1C, C-7), 194.4 (1C, C=O). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2982$ (w, CH), 2940 (w, CH), 1639 (s, C=O), 1581 (m, C=Car.), 1489 (s, C=Car.), 760 (s, CHout of plane). HRMS (APCI): m/z = 255.0802 (calcd. 255.0782 for $\left.\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{ClO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$.

2-Azido-1-(7-hydroxy-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-6-yl)ethan-1-one (16)

Chloroacetophenone 15 ($2.50 \mathrm{~g}, 9.8 \mathrm{mmol}$) was dissolved in DMF (40 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{NaN}_{3}(775 \mathrm{mg}, 11.9 \mathrm{mmol}, 1.2 \mathrm{eq})$ was added and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for $2 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added, and the precipitate was filtered off using a glass filter funnel (Por 4.), washed with a small amount of $\mathrm{H}_{2} \mathrm{O}$, and dried in vacuo. Colorless crystals, $m p 116{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.48$ (CyHex:EtOAc 85:15), yield 2.21 g ($8.5 \mathrm{mmol}, 87 \%$), $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ (261.3). Purity (HPLC): $96 \%, \mathrm{t}_{\mathrm{R}}=21.4 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=1.34\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.83\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\right.$ CH_{2}), 2.73 (t, ${ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}$), 4.49 (s, 2H, COCH N_{3}), $6.30(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH}), 7.30$ (s, 1H, 5-CH), $11.67(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=22.2$ (1C, C4), $27.3\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{3}\right), 33.1$ (1C, C-3), 54.4 (1C, $\mathrm{COCH}_{2} \mathrm{~N}_{3}$), 77.0 (1C, C-2), 105.2 (1C, C-8), 112.0 (1C, C-6), 114.3 (1C, C-4a), 131.0 (1C, C-5), 162.8 (1C, C-8a), 163.5 (1C, C-7), 197.1 (1C, C=O). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2978(\mathrm{w}, \mathrm{CH}), 2936$ (w, CH), 2889 (w, CH), 2099 (s, N_{3}), 1639 (s, C=O), 1612 (s, C=Car.), 1582 (s, C=Car.), 1489 (s, C=Car.), 760 (s, CHout of plane). HRMS (APCI): m/z = 262.1170 (calcd. 262.1186 for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}$ $\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

6-(2-Azido-1-hydroxyethyl)-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-7-ol (17)

Under N_{2} atmosphere, azidoacetophenone 16 ($604 \mathrm{mg}, 2.3 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{3} \mathrm{OH}(50 \mathrm{~mL})$ and the solution was cooled to $0^{\circ} \mathrm{C}$. $\mathrm{NaBH}_{4}(83 \mathrm{mg}, 2.2 \mathrm{mmol}, 3.8 \mathrm{eq})$ was added and the reaction mixture was stirred while warming to rt. After $20 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The product was used without further purification. Colorless solid, mp
$127{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.54$ (CyHex:EtOAc $85: 15$), yield 560 mg ($2.1 \mathrm{mmol}, 91 \%$), $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ (263.3). Purity (HPLC): $98 \%, \mathrm{t}_{\mathrm{R}}=17.5 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.31$ (s, 6H, $2 \times \mathrm{CH}_{3}$), $1.76\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.66\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 2.95$ (d, ${ }^{3} \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}$), $3.47\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 3.65\left(\mathrm{dd},{ }^{2} \mathrm{~J}\right.$ $=12.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}$), $4.88\left(\mathrm{dt},{ }^{3} \mathrm{~J}=9.2 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}\right), 6.30(\mathrm{~s}$, $1 \mathrm{H}, 8-\mathrm{CH}), 6.71(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{CH}), 7.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ 21.8 (1C, C-4), 27.0 (2C, $2 \times \mathrm{CH}_{3}$), 33.0 (1C, C-3), 56.7 (1C, $\mathrm{CH}_{2} \mathrm{~N}_{3}$), 74.1 (1C, CHOH), 74.6 (1C, C-2), 105.5 (1C, C-8), 113.1 (1C, C-4a), 115.8 (1C, C-6), 128.1 (1C, C-5), 154.6 (1C, C-7), 155.2 (1C, C-8a). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3348(\mathrm{w}, \mathrm{OH}), 2974(\mathrm{w}, \mathrm{CH})$, 2928 (w, CH), 2099 (s, N_{3}), 1593 (w, C=Car.), 1493 ($m, C=C a r$.), 883 (w, CH out of plane), 845 (w, CH out of plane). HRMS (APCI): $\mathrm{m} / \mathrm{z}=246.1246$ (calcd. 246.1237 for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{2}$ [M$\left.\mathrm{H}_{2} \mathrm{O}+\mathrm{H}^{+}\right]$).

6-(2-Amino-1-hydroxyethyl)-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-7-ol (18)

Under N_{2} atmosphere, a Schlenk flask was charged with Pd/C ($15 \mathrm{mg}, 10 \mathrm{wt}$ - $\%$) and dry $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ was added. Azide $17(150 \mathrm{mg}, 0.57 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{3} \mathrm{OH}$ $(15 \mathrm{~mL})$ and the solution was added to the flask. The reaction mixture was stirred under H_{2}-atmosphere (0.8 bar) at rt for 90 min . After filtration over Celite ${ }^{\circledR}$ the solvent was removed in vacuo. The product was used without further purification. Pale brown solid, mp could not be determined, decomposition above $150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.14\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} 100 \%\right)$, yield 129 mg ($0.54 \mathrm{mmol}, 95 \%$), $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$ (237.3). Purity (HPLC): $98 \%, \mathrm{t}_{\mathrm{R}}=17.5 \mathrm{~min}$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.75\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $3-\mathrm{CH}_{2}$), 2.64 (td, $\left.{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.9 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 2.93\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.7 \mathrm{~Hz}\right.$, ${ }^{3} \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}$), $3.24\left(\mathrm{dd},{ }^{2} \mathrm{~J}=12.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right.$), $4.67(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOH}\right), 6.33(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH}), 6.72(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{CH})$. Signals for the $\mathrm{OH}-\mathrm{and}$ NH-protons are not observed in the spectrum. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=$ 21.8 (1C, C-4), 27.0 (2C, $2 \times \mathrm{CH}_{3}$), 33.2 (1C, C-3), 46.2 (1C, $\mathrm{CH}_{2} \mathrm{NH}_{2}$), 74.3 (1C, C-2), 75.0 (1C, CHOH), 106.1 (1C, C-8), 111.8 (1C, C-4a), 119.6 (1C, C-6), 129.8 (1C, C-5), 155.1 (1C, C-8a), 155.3 (1C, C-7). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3449\left(\mathrm{w}, \mathrm{NH}_{2} / \mathrm{OH}\right), 3348$ (w, $\mathrm{NH}_{2} / \mathrm{OH}$), 2970 (w, CH), 2936 (w, CH), 2847 (w, CH), 1620 (m, C=Car.), 1516 (m, $\mathrm{C}=\mathrm{C}_{\text {ar. }}$), 1439 (m, C=Car.), 1150 (m, C-O), 1115 (s, C-O), 880 (s, CHout of plane), 833 (m , CH out of plane). HRMS (APCI): m/z=238.1419 (calcd. 238.1438 for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

6-[2-(Benzylamino)-1-hydroxyethyl]-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-7-ol (19a)

Under N_{2} atmosphere, amine 18 ($100 \mathrm{mg}, 0.42 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL). Benzaldehyde ($47 \mathrm{mg}, 0.44 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added and the solution was stirred at rt for $1 \mathrm{~h} . \mathrm{NaBH}(\mathrm{OAc})_{3}(97 \mathrm{mg}, 0.46 \mathrm{mmol}, 1.1 \mathrm{eq})$ was added and the reaction mixture was stirred at rt for further 13 d . The reaction mixture was poured into ice cold $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=3 \mathrm{~cm}$, $h=26 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH} 99: 1+1 \% \mathrm{NEt}_{3}, \mathrm{~V}=10 \mathrm{~mL}$), followed by automated flash chromatography (SNAP Ultra 10 g , flow rate $36 \mathrm{~mL} / \mathrm{min},{\mathrm{EtOAc}: \mathrm{CH}_{3} \mathrm{OH}}^{\mathrm{OH}} \mathbf{1 0 0 : 0} \rightarrow$ 95:5, V $=19 \mathrm{~mL}$). Colorless resin, $\mathrm{R}_{\mathrm{f}}=0.12$ (EtOAc 100%), yield 12 mg ($0.04 \mathrm{mmol}, 10 \%$), $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{3}$ (327.4). Purity (HPLC): 94.44 \%, $\mathrm{t}_{\mathrm{R}}=16.4 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $(\mathrm{ppm})=1.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.63\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $4-\mathrm{CH}_{2}$), 2.87 (dd, $\left.{ }^{2} \mathrm{~J}=12.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CHOHAr}\right), 3.16$ (dd, ${ }^{2} \mathrm{~J}=12.4 \mathrm{~Hz}$, $\left.{ }^{3} \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CHOHAr}\right), 3.87\left(\mathrm{~d},{ }^{2} \mathrm{~J}=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}\right), 3.92\left(\mathrm{~d},{ }^{2} \mathrm{~J}=\right.$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}$), 4.78 (t, $\left.{ }^{3} \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CHOHAr}\right), 6.33(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH})$, 6.70 (s, 1H, 5-CH), $7.26-7.33$ (m, 1H, p-Ph), $7.32-7.38$ (m, 4H, o-Ph, m-Ph). Signals for the NH - and OH -protons are not observed in the spectrum. ${ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=21.8\left(1 \mathrm{C}, 4-\mathrm{CH}_{2}\right), 27.0\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 27.0\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 33.2\left(1 \mathrm{C}, 3-\mathrm{CH}_{2}\right)$, 53.0 (1C, $\mathrm{NHCH}_{2} \mathrm{CHOHAr}$), 53.3 (1C, $\mathrm{NHCH}_{2} \mathrm{Ph}$), 73.3 (1C, $\mathrm{NHCH}_{2} \mathrm{CHOHAr}$), 74.3 (1C, C-2), 106.1 (1C, C-8), 111.7 (1C, C-4a), 119.0 (1C, C-6), 128.0 (1C, p-Ph), 128.7 (2C, o-Ph), 128.9 (2C, m-Ph), 130.0 (1C, C-5), 137.5 (1C, Cq, Phenyl), 155.2 (1C, C-8a), 155.5 (1C, C-7). FT-IR (neat): $\tilde{\mathrm{v}}\left[\mathrm{cm}^{-1}\right]=3298(\mathrm{w}, \mathrm{NH} / \mathrm{OH}), 2974(\mathrm{w}, \mathrm{CH}), 2932(\mathrm{w}, \mathrm{CH}), 2851$ (w, CH), 1624 (w, C=Car.), 1493 (m, C=Car.), 1450 ($\mathrm{m}, \mathrm{C}=\mathrm{Car}$.), 1153 (s, C-O), 1115 (s, CO), 887 (w, CH out of plane), 845 ($\mathrm{m}, \mathrm{CH}_{\text {out of plane }}$), 729 ($\mathrm{m}, \mathrm{CH}_{\text {out of plane }}$), $698\left(\mathrm{~m}, \mathrm{CH}_{\text {out of }}\right.$ plane). $\mathrm{HRMS}(\mathrm{APCI}): \mathrm{m} / \mathrm{z}=328.1912$ (calcd. 328.1907 for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

6-\{1-Hydroxy-2-[(3-phenylpropyl)amino]ethyl\}-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-7-ol (19c)

Under N_{2} atmosphere, amine 18 ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). 3-Phenylpropionaldehyde ($28 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.0 \mathrm{eq}$) and $\mathrm{NaBH}(\mathrm{OAc})_{3}(48 \mathrm{mg}$, $0.23 \mathrm{mmol}, 1.1 \mathrm{eq}$) were added and the reaction mixture was stirred at rt. After 120 h , it was poured into ice cold $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$
mL). The combined organic layers were washed with saturated NaHCO_{3} solution and $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by flash column chromatography ($\varnothing=1 \mathrm{~cm}, h=22 \mathrm{~cm}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH} 99: 1+1$ $\% \mathrm{NEt}_{3}, \mathrm{~V}=10 \mathrm{~mL}$), followed by preparative HPLC (method 3). Colorless resin, $\mathrm{R}_{\mathrm{f}}=$ $0.42\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CH}_{3} \mathrm{OH} 99: 1+1 \% \mathrm{NEt}_{3}\right)$, yield $8 \mathrm{mg}(0.02 \mathrm{mmol}, 10 \%), \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{3}$ (355.5). Purity (HPLC): $94 \%, \mathrm{t}_{\mathrm{R}}=17.9 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.29$ $\left(\mathrm{s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.73\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 1.85-2.02$ (m, 2H, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.58 - 2.69* (m, 4H, 4- $\mathrm{CH}_{2}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.70 - 2.81* (m , $2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 2.86* (broad s, $1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CHOHAr}$), 3.17^{*} (broad s, 1 H , $\mathrm{NHCH}_{2} \mathrm{CHOHAr}$), $4.73-4.93^{*}\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CHOHAr}\right), 6.29-6.36^{*}(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{CH})$, 6.72 (s, 1H, 5-CH), $7.12-7.21$ (m, 3H, o-Ph, $p-\mathrm{Ph})$), $7.21-7.32$ (m, 2H, m-Ph). Signals for the NH - and OH -protons are not observed in the spectrum. *Signal resolution is impaired due to residual salts from preparative HPLC. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $(\mathrm{ppm})=24.3(1 \mathrm{C}, \mathrm{C}-4), 29.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 29.5\left(1 \mathrm{C}, \mathrm{CH}_{3}\right), 32.7\left(1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, 35.7 (1C, C-3), 35.8 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 56.0 (1C, $\mathrm{NHCH}_{2} \mathrm{CHOHAr}$), 58.9 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$), 75.1 (1C, $\mathrm{NHCH}_{2} \mathrm{CHOHAr}$), 76.9 (1C, C-2), 108.6 (1C, C-8), 114.3 (1C, C-4a), 121.5 (1C, C-6), 128.7 (1C, p-Ph), 131.0 (2C, o-Ph), 131.1 (2C, m-Ph), 132.5 (1C, C-5), 143.7 (1C, C C, Phenyl), 157.7 (1C, C-8a), 157.9 (1C, C-7). FT-IR (neat): \tilde{v} [$\left.\mathrm{cm}^{-1}\right]=3024$ (w, CHar.), 2974 (w, CH), 2924 (w, CH), 2851 (w, CH), 1624 (m, C=Car.), 1493 (m, C=Car.), 1450 (m, C=Car.), 1150 (s, C-O), 1115 (s, C-O), 907 (m, CH out of plane), 849 ($\mathrm{w}, \mathrm{CH}_{\text {out of plane), }} 729$ (s, CH out of plane), 698 ($\mathrm{m}, \mathrm{CH}_{\text {out of plane) }}$. HRMS (APCI): m/z = 356.2233 (calcd. 356.2220 for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

7-(Methoxymethoxy)-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-6-carbaldehyde

 (20)Under N_{2}, aldehyde 6 ($700 \mathrm{mg}, 3.4 \mathrm{mmol}$) was dissolved in dry DMF (20 mL). Anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(1091 \mathrm{mg}, 10.3 \mathrm{mmol}, 3.0 \mathrm{eq})$ was added and the mixture was stirred at rt for $15 \mathrm{~min} . \mathrm{ClCH}_{2} \mathrm{OCH}_{3}(\mathrm{MOM}-\mathrm{Cl}, 810 \mathrm{mg}, 10.1 \mathrm{mmol}, 3.0 \mathrm{eq})$ was added dropwise and the mixture was stirred at rt for another $65 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified using automated flash chromatography (SNAP 100 g , flow rate $50 \mathrm{~mL} / \mathrm{min}, \mathrm{CH}_{2} \mathrm{Cl}_{2} 100 \%, \mathrm{~V}=19 \mathrm{~mL}$). Colorless solid, $\mathrm{mp} 58{ }^{\circ} \mathrm{C}, \mathrm{Rf}_{\mathrm{f}}=0.28$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, yield 770 mg ($3.1 \mathrm{mmol}, 91 \%$), $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ (250.3). Purity (HPLC): $98 \%, \mathrm{t}_{\mathrm{R}}=$
$20.5 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.35\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.81\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7\right.$ $\mathrm{Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}$), $2.74\left(\mathrm{td},{ }^{3} \mathrm{~J}=6.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.23$ (s, 2H, O-CH2-O), $6.57(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH}), 7.61\left(\mathrm{t},{ }^{3} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}\right), 10.30(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{O}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=21.6(1 \mathrm{C}, \mathrm{C}-4), 27.1\left(2 \mathrm{C}, \mathrm{CH}_{3}\right), 32.7$ (1C, C-3), $56.6\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 76.2(1 \mathrm{C}, \mathrm{C}-2), 94.8\left(1 \mathrm{C}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{O}\right), 103.2(1 \mathrm{C}, \mathrm{C}-8), 115.2$ (1C, C-4a), 119.0 (1C, C-6), 130.0 (1C, C-5), 159.8 (1C, C-7), 161.1 (1C, C-8a), 188.6 (1C, CH=O). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2974$ (w, CH), 2936 (w, CH), 2874 (w, CH), 1667 (s, C=O), 1609 (s, C=Car.), 1570 (s, C=Car.), 1485 (s, C=Car.), 1107 (s, C-O), 918 (m, CH ${ }_{\text {out of plane) }} 891$ ($\mathrm{m}, \mathrm{CH}_{\text {out of plane) }}$. HRMS (APCI): m/z=251.1275 (calcd. 251.1278 for $\left.\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$.
(E)- and (Z)-3-[7-(methoxymethoxy)-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-6yl]propenenitrile ((E)-21 and (Z)-21)
Under N_{2} atmosphere, aldehyde 20 ($401 \mathrm{mg}, 1.6 \mathrm{mmol}$) was dissolved in dry toluene (20 mL). (Triphenylphosporanylidene)acetonitrile ($966 \mathrm{mg}, 3.2 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added, and the reaction mixture was heated to $120^{\circ} \mathrm{C}$ for 112 h . After cooling to rt , the solvent was removed in vacuo, and the residue was purified by automated flash chromatography (SNAP 50 g , flow rate $25 \mathrm{~mL} / \mathrm{min}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{CyHex} 90: 10, \mathrm{~V}=19 \mathrm{~mL}$). At first (Z) - 21 was eluted, followed by a mixture of $(Z)-21$ and $(E)-21$. Then (E)-21 was eluted.
(Z)-21: Colorless solid, mp $79{ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.28\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}:\right.$ CyHex 90:10), yield 136 mg ($0.50 \mathrm{mmol}, 31$ \%), $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ (273.3). Purity (HPLC): 99%, t ($=21.0 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.34\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.81\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.77$ (t, $\left.{ }^{3} \mathrm{~J}=6.7, \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 5.23\left(\mathrm{~d},{ }^{3} \mathrm{~J}=\right.$ $12.3 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{ArCH}=\mathrm{CHCN}$), $6.56(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH}), 7.48\left(\mathrm{~d},{ }^{3} \mathrm{~J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{ArCH}=\mathrm{CHCN}$), $7.95(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{CH}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=21.9$ (1C, C4), $27.1\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{3}\right), 32.8(1 \mathrm{C}, \mathrm{C}-3), 56.5\left(1 \mathrm{C} \mathrm{OCH}_{3}\right), 75.6(1 \mathrm{C}, \mathrm{C}-2), 90.9(1 \mathrm{C}$, $\mathrm{ArCH}=\mathrm{CHCN}), 94.9\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 103.2(1 \mathrm{C}, \mathrm{C}-8), 114.8(1 \mathrm{C}, \mathrm{C}-4 \mathrm{a}), 116.0(1 \mathrm{C}, \mathrm{C}-$ 6), 118.7 (1C, CN), 129.1 (1C, C-5), 142.9 (1C, $\mathrm{ArCH}=\mathrm{CHCN}$), 155.4 (1C, C-7), 157.8 (1C, C-8a). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2974(\mathrm{w}, \mathrm{CH}), 2951(\mathrm{w}, \mathrm{CH}), 2928(\mathrm{w}, \mathrm{CH}), 2199(\mathrm{~m}$, CN), 1620 (m, C=Car.), 1597 (s, C=C), 1566 (m, C=Car.), 1489 (s, C=Car.), 1111 (s, C-O), 1069 (s, C-O), 918 (s, CH out of plane), 887 ($\mathrm{m}, \mathrm{CH}_{\text {out of plane). }}$ HRMS (APCI): $\mathrm{m} / \mathrm{z}=274.1450$ (calcd. 274.1438 for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).
(E)-21: Colorless resin, $\mathrm{R}_{\mathrm{f}}=0.20\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}:\right.$ CyHex 90:10), yield 55 mg ($0.20 \mathrm{mmol}, 13 \%$), $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ (273.3). Purity (HPLC): $91 \%, \mathrm{t}_{\mathrm{R}}=22.4 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $(\mathrm{ppm})=1.33\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.79\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.71\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $4-\mathrm{CH}_{2}$), 3.47 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 5.18 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}$), $5.85(\mathrm{~d}, \mathrm{~J}=16.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\operatorname{ArCH}=\mathrm{CHCN}), 6.56(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH}), 7.10(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{CH}), 7.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}=16.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\mathrm{ArCH}=\mathrm{CHCN}$). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=21.7$ (1C, C-4), $27.0(2 \mathrm{C}, 2 \mathrm{x}$ CH_{3}), $32.7(1 \mathrm{C}, \mathrm{C}-3), 56.5\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 75.6(1 \mathrm{C}, \mathrm{C}-2), 93.2(1 \mathrm{C}, \mathrm{ArCH}=\mathrm{CHCN}), 94.6$ (1C, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 103.5 (1C, C-8), 114.9 (1C, C-4a), 115.8 (1C, C-6), 119.9 ($1 \mathrm{C}, \mathrm{CN}$), 129.7 (1C, C-5), 146.3 (1C, $\mathrm{ArCH}=\mathrm{CHCN}$), 155.7 (1C, C-7), 157.9 (1C, C-8a). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2974(\mathrm{w}, \mathrm{CH}), 2932(\mathrm{w}, \mathrm{CH}), 2210(\mathrm{~m}, \mathrm{CN}), 1601$ (s, C=C), 1566 (s, $\mathrm{C}=\mathrm{C}_{\text {ar. }}$), 1489 ($\mathrm{s}, \mathrm{C}=\mathrm{C}_{\text {ar. }}$), 1115 (s, C-O), 1069 (s, C-O), 926 ($\mathrm{m}, \mathrm{CH}_{\text {out of plane), } 907 \text { (} \mathrm{m}, ~}^{\text {, }}$ CH out of plane). HRMS (APCI): $\mathrm{m} / \mathrm{z}=274.1469$ (calcd. 274.1438 for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).
Mixture of (Z)-21 and $(E)-\mathbf{2 1}$: Colorless resin, yield $222 \mathrm{mg}(0.81 \mathrm{mmol}, 51 \%)$, ratio (Z) 21 : (E)-21 = $1: 1$ (HPLC).

3-[7-(Methoxymethoxy)-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-6yl]propanenitrile (22)

Under N_{2}, a Schlenk flask was charged with Pd / C ($57 \mathrm{mg}, 10 \mathrm{wt}$-\%) and dry $\mathrm{CH}_{3} \mathrm{OH}$ (5 mL) was added. Acrylonitrile (E/Z)-21 ($553 \mathrm{mg}, 2.02 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in dry $\mathrm{CH}_{3} \mathrm{OH}(20 \mathrm{~mL})$ and the solution added slowly. The reaction mixture was stirred under H_{2} atmosphere (1 bar) for 6 h , followed by filtration. The solvent was removed in vacuo. ${ }^{1} \mathrm{H}$ NMR spectroscopy showed significant amounts of remaining starting material. Therefore, the mixture was hydrogenated once more as described above for further 4 h . Colorless oil, $\mathrm{R}_{\mathrm{f}}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}:\right.$ CyHex $\left.90: 10\right)$, yield 479 mg ($1.74 \mathrm{mmol}, 86 \%$), $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$ (275.4). Purity (HPLC): $67 \%, \mathrm{t}_{\mathrm{R}}=21.0 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $(\mathrm{ppm})=1.31\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.76\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right), 2.59\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), 2.68 ($\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}$), $2.87\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CN}\right.$), $3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.54(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH}), 6.84(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{CH})$. ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=18.2$ (1C, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), 21.8 (1C, C-4), 26.7 (1C, $\mathrm{ArCH}_{2} \mathrm{CH}_{2} \mathrm{CN}$), $27.0\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{3}\right), 33.0(1 \mathrm{C}, \mathrm{C}-3), 56.3$ (1C, OCH_{3}), 74.5 (1C, C2), $94.6\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 103.2$ ($1 \mathrm{C}, \mathrm{C}-8$), $114.0(1 \mathrm{C}, \mathrm{C}-4 \mathrm{a}), 118.5$ (1C, C-6), 120.0 (1C, CN), 130.7 (1C, C-5), 154.1 (1C, C-8a), 154.3 (1C, C-7). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=$ 2970 (m, CH), 1932 (m, CH), 2245 (w, CN), 1620 ($\mathrm{m}, \mathrm{C}=\mathrm{Car}$.), 1585 (m, C=Car.), 1497 (s,
$\mathrm{C}=\mathrm{C}_{\text {ar. }}$), 1115 (s, C-O), 1065 (s, C-O), 922 (m, CH ${ }_{\text {out of plane), }} 883$ (w, CH ${ }_{\text {out of plane). }}$ HRMS (APCI): m/z = 276.1569 (calcd. 276.1594 for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

3-[7-(Methoxymethoxy)-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-6-yl]propan-1amine (23)

Under N_{2}, propanenitrile 22 ($200 \mathrm{mg}, 0.73 \mathrm{mmol}, 1.0 \mathrm{eq}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$. After cooling to $0^{\circ} \mathrm{C}, \mathrm{LiAlH}_{4}(114 \mathrm{mg}, 3.00 \mathrm{mmol}, 4.1 \mathrm{eq})$ was added and the reaction mixture was stirred for 23 h while warming to rt. Saturated Na-K-tartrate solution was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by high-vacuum Kugelrohr distillation. Colorless oil, bp $160{ }^{\circ} \mathrm{C}$ at $5.5 \times 10^{-2} \mathrm{mbar}, \mathrm{R}_{\mathrm{f}}=0.12\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\mathrm{CyHex} 90: 10+$ 1 \% NEt 3), yield 155 mg ($0.55 \mathrm{mmol}, 75$ \%), $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{3}$ (279.4). Purity (HPLC): 93 \%, tr $=16.1 \mathrm{~min} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.31\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.71-1.78(\mathrm{~m}$, $4 \mathrm{H}, 3-\mathrm{CH}_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), 2.08 (broad s, 2H, NH_{2}), $2.56-2.60(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), $2.67\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 2.74\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), $3.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.52(\mathrm{~s} 1 \mathrm{H}, 8-\mathrm{CH}), 6.80$ (s, 1H, 5-CH). ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=21.9(1 \mathrm{C}, \mathrm{C}-4), 26.8$ (1 C , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), 27.0 (2C, $2 \times \mathrm{CH}_{3}$), 33.1 (1C, C-3), 34.0 (1C, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), 41.7 (1C, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), 56.2 (1C, OCH_{3}), 74.2 (1C, $\mathrm{C}-2$), 94.7 (1C, $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$), 103.2 (1C, C-8), 113.8 (1C, C-4a), 122.3 (1C, C-6), 130.3 (1C, C-5), 152.9 (1C, C-8a), 154.3 (1C, C-7). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3372\left(\mathrm{w}, \mathrm{NH}_{2}\right), 2970(\mathrm{w}, \mathrm{CH}), 2924(\mathrm{~m}, \mathrm{CH}), 2851(\mathrm{w}$, CH), 1620 (m, C=Car.), 1585 (m, C=Car.), 1493 (s, C=Car.), 1111 (s, C-O), 1067 (s, C-O), 922 ($\mathrm{m}, \mathrm{CH}_{\text {out of plane), }} 887$ ($\mathrm{w}, \mathrm{CH}_{\text {out of plane). }}$ HRMS (APCI): m/z=280.1912 (calcd. 280.1907 for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

N-Benzyl-3-[7-(methoxymethoxy)-2,2-dimethyl-3,4-dihydro-2H-1-benzopyran-6-yl]propan-1-amine (24)

Amine 23 ($204 \mathrm{mg}, 0.73 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and benzaldehyde (75 $\mathrm{mg}, 0.71 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added. The reaction mixture was stirred at rt for 20 h . The mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(97 \mathrm{mg}, 2.56 \mathrm{mmol}, 14.0 \mathrm{eq})$ was added, and the reaction mixture was stirred at rt for 119 h . After cooling to $0^{\circ} \mathrm{C}, \mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ was added and the mixture was stirred for 19 h while warming slowly to $\mathrm{rt} . \mathrm{H}_{2} \mathrm{O}$ was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic
layers were washed with $\mathrm{H}_{2} \mathrm{O}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by automated flash chromatography (SNAP 50 g , flow rate $50 \mathrm{~mL} / \mathrm{min}$, CyHex:EtOAc 70:30 + 1% DMEA, $\mathrm{V}=19 \mathrm{~mL}$). Colorless oil, $\mathrm{R}_{\mathrm{f}}=0.14$ (CyHex:EtOAc + 1 \% DMEA 70:30), yield 194 mg ($0.53 \mathrm{mmol}, 73 \%$), $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{3}$ (369.5). Purity (HPLC): $89 \%, t_{R}=19.7 \mathrm{~min} .{ }^{1} \mathrm{H} N M R\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.31$ (s, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), 1.76 (t, ${ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}$), 1.83 (quint, ${ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $2.54-2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right.$), $2.66\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{CH}_{2}\right)$, 2.66-2.71 (m, 2H, CH2CH2CH2NH), 3.43 (s, 3H, OCH ${ }_{2}$), 3.81 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{Ph}$), 5.10 $\left(\mathrm{s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right), 6.52(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{CH}), 6.78(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{CH}), 7.29-7.39(\mathrm{~m}, 5 \mathrm{H}$, Phenyl$\mathrm{CH})$. A signal for the NH -proton is not observed in the spectrum. ${ }^{13} \mathrm{C} \mathrm{NMR}(151 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=21.9(1 \mathrm{C}, \mathrm{C}-4), 27.0\left(2 \mathrm{C}, 2 \times \mathrm{CH}_{3}\right), 27.3\left(1 \mathrm{C}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 30.2$ (1C, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 33.1 (1C, C-3), 48.8 (1C, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 53.7 (1C, $\mathrm{NHCH}_{2} \mathrm{Ph}$), $56.1\left(1 \mathrm{C}, \mathrm{OCH}_{3}\right), 74.2(1 \mathrm{C}, \mathrm{C}-2), 94.7\left(1 \mathrm{C}, \mathrm{OCH}_{2} \mathrm{O}\right), 103.2(1 \mathrm{C}, \mathrm{C}-8), 113.7(1 \mathrm{C}, \mathrm{C}-4 \mathrm{a})$, 122.4 (1C, C-6), 127.3 (1C, p-Ph), 128.5 (2C, m-Ph), 128.6 (2C, o-Ph), 130.3 (1C, C-5), 139.5 (1C, Cq, Pheny), 152.9 (1C, C-8a), 154.3 (1C, C-7). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=2970(\mathrm{w}$, CH), 2928 (m, CH), 2851 (w, CH), 1620 (m, C=Car.), 1585 (m, C=Car.), 1493 (s, C=Car.), 1115 (s, COPhenol), 1065 (s, COPhenol), 922 ($\mathrm{m}, \mathrm{CH}_{\text {out of plane) }}$, 887 ($\mathrm{w}, \mathrm{CH}_{\text {out of plane) }}$, 733 (s, $\mathrm{CH}_{\text {out of plane) }} 698$ ($\mathrm{s}, \mathrm{CH}_{\text {out of plane) }}$. HRMS (APCI): $\mathrm{m} / \mathrm{z}=370.2376$ (calcd. 370.2377 for $\left.\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$.

6-[3-(Benzylamino)propyl]-2,2-dimethyl-3,4-dihydro-2H-benzopyran-7-ol (25)

The MOM-protected benzopyran 24 ($100 \mathrm{mg}, 0.27 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$ (40 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Conc. HClaq. (2 mL) was slowly added. The reaction mixture was stirred at rt for $23 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ was added and the solution was brought to $\mathrm{pH}=7-8$ using aqueous NaOH solution (1 M). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 20 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and the solvent was removed in vacuo. The residue was purified by automated flash chromatography (SNAP HP-Sil 10 g , flow rate $=12 \mathrm{~mL} / \mathrm{min}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}:$ EtOAc 100:0 $\rightarrow 0: 100, \mathrm{~V}=19 \mathrm{~mL}$). Colorless solid, $\mathrm{mp} 123{ }^{\circ} \mathrm{C}, \mathrm{Rf}_{\mathrm{f}}=0.20$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$:EtOAc $\left.0: 100\right)$, yield 37 mg ($0.11 \mathrm{mmol}, 41 \%$), $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{2}$ (325.5). Purity (HPLC): $96 \%, \mathrm{t}_{\mathrm{R}}=20.2 \mathrm{~min} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.31(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x}$ CH_{3}), $1.75\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{CH}_{2}\right.$), 1.83 (quint, ${ }^{3} \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 2.63 ($\mathrm{t},{ }^{3} \mathrm{~J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 2.64 - $2.70\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{CH}_{2}\right.$, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 3.80 (s, 2H, NHCH2Ph), 6.36 (s, 1H, $8-\mathrm{CH}$), 6.70 (s, 1H, $5-\mathrm{CH}$), 7.27

- 7.31 (m, 1H, p-Ph), 7.33-7.39 (m, 4H, o-Ph, m-Ph). Signals for the OH- and NHprotons are not observed in the spectrum. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=21.9$ (1C, C-4), 25.8 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 27.0 (2C, $2 \times \mathrm{CH}_{3}$), 29.5 (1C, $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 33.3 (1C, C-3), 45.1 ($1 \mathrm{C}, \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ar}$), 53.0 (1C, $\mathrm{NHCH}_{2} \mathrm{Ph}$), 73.9 (1C, C-2), 105.3 (1C, C-8), 112.5 (1C, C-4a), 119.0 (1C, C-6), 127.9 ($1 \mathrm{C}, \mathrm{p}-\mathrm{Ph}$), 128.9 (2C, o-Ph), 128.9 (2C, m-Ph), 130.7 (1C, C-5), 137.6 (1C, Cq, Phenyl), 153.5 (1C, C8a), 156.0 (1C, C-7). FT-IR (neat): $\tilde{v}\left[\mathrm{~cm}^{-1}\right]=3302$ (w, NH/OH), 2970 (m, CH), 2943 (w, CH), 2928 (w, CH), 1624 (m, C=Car.), 1585 (m, C=Car.), 1489 (s, C=Car.), 1157 (C-O), 1115 (C-O), 899 ($\mathrm{m}, \mathrm{CH}_{\text {out of plane) }}$, 849 ($\mathrm{m}, \mathrm{CH}_{\text {out of plane), }} 748$ ($\mathrm{s}, \mathrm{CH}_{\text {out of plane) }} 698$ (s, CH out of plane). HRMS (APCI): m/z = 326.2119 (calcd. 326.2115 for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{2}\left[\mathrm{M}+\mathrm{H}^{+}\right]$).

3. Experimental procedures to determine antiprotozoal activity in vitro

3.1. Investigation of the antiprotozoal activity in vitro

In vitro assays for activity against Trypanosoma brucei rhodesiense (bloodstream trypomastigote stage, STIB 900 strain), T. cruzi (intracellular amastigote stage, Tulahuen C4 strain), Leishmania donovani (axenic amastigote stage, MHOM/ET/67/L82) and Plasmodium falciparum (erythrocytic stage, NF54 strain) as well as cytotoxicity determinations against L6 rat skeletal myoblasts were carried out at the Swiss Tropical and Public Health Institute according to established standard protocols described earlier. ${ }^{6}$ Compounds used as positive controls were of commercial origin, with the exception of melarsoprol, which was a gift from WHO. Their purity (generally $>95 \%$) was specified by the manufacturers.

3.2. Activity against Trypanosoma brucei rhodesiense STIB900

This stock was isolated in 1982 from a human patient in Tanzania and after several mouse passages cloned and adapted to axenic culture conditions. ${ }^{7}$ Minimum Essential Medium (MMEM, $50 \mu \mathrm{~L}$) supplemented with 25 mM HEPES, $1 \mathrm{~g} / \mathrm{L}$ additional glucose, 1% MEM non-essential amino acids (100x), 0.2 mM 2 -mercaptoethanol, 1 mM Na-pyruvate and 15% heat inactivated horse serum was added to each well of a 96 -well microtiter plate. Serial drug dilutions of eleven 3-fold dilution steps covering a range from 100 to $0.002 \mu \mathrm{~g} / \mathrm{mL}$ were prepared. Then 4×10^{3} bloodstream forms of T. b. rhodesiense STIB 900 in $50 \mu \mathrm{~L}$ was added to each well and the plate incubated at $37^{\circ} \mathrm{C}$ under a $5 \% \mathrm{CO}_{2}$ atmosphere for $70 \mathrm{~h} .10 \mu \mathrm{~L}$ resazurin solution (resazurin, 12.5 mg in 100 mL doubledistilled water) was then added to each well and incubation continued for a further 2-4 h. ${ }^{8}$ Then the plates were read with a Spectramax Gemini XS microplate fluorometer (Molecular Devices Cooperation, Sunnyvale, CA, USA) using an excitation wave length of 536 nm and an emission wave length of 588 nm . Data were analyzed with the graphic programme Softmax Pro (Molecular Devices Cooperation, Sunnyvale, CA, USA), which calculated IC_{50} values by linear regression ${ }^{9}$ and 4-parameter logistic regression from the sigmoidal dose inhibition curves. Melarsoprol (Arsobal Sanofi-Aventis, received from WHO) is used as control.

3.3. Activity against Trypanosoma cruzi

Rat skeletal myoblasts (L-6 cells) were seeded in 96-well microtitre plates at 2000 cells/well in 100μ L RPMI 1640 medium with 10% FBS and 2 mM I-glutamine. After

24 h the medium was removed and replaced by $100 \mu \mathrm{~L}$ per well containing 5000 trypomastigote forms of T. cruzi Tulahuen strain C2C4 containing the β-galactosidase (Lac Z) gene. ${ }^{10}$ After 48 h the medium was removed from the wells and replaced by $100 \mu \mathrm{~L}$ fresh medium with or without a serial drug dilution of eleven 3-fold dilution steps covering a range from 100 to $0.002 \mu \mathrm{~g} / \mathrm{mL}$. After 96 h of incubation the plates were inspected under an inverted microscope to assure growth of the controls and sterility. Then the substrate CPRG/Nonidet ($50 \mu \mathrm{~L}$) was added to all wells. A color reaction developed within $2-6 \mathrm{~h}$ and could be read photometrically at 540 nm . Data were analyzed with the graphic programme Softmax Pro (Molecular Devices), which calculated IC_{50} values by linear regression ${ }^{9}$ and 4-parameter logistic regression from the sigmoidal dose inhibition curves. Benznidazole is used as control (IC50 $0.5 \pm 0.2 \mu \mathrm{~g} / \mathrm{mL}$).

3.4. Activity against Leishmania donovani axenic amastigotes

Amastigotes of L. donovani strain MHOM/ET/67/L82 are grown in axenic culture at $37{ }^{\circ} \mathrm{C}$ in SM medium ${ }^{11}$ at pH 5.4 supplemented with 10% heat-inactivated fetal bovine serum under an atmosphere of $5 \% \mathrm{CO}_{2}$ in air. One hundred microlitres of culture medium with 10^{5} amastigotes from axenic culture with or without a serial drug dilution are seeded in 96 -well microtitre plates. Serial drug dilutions of eleven 3 -fold dilution steps covering a range from 100 to $0.002 \mu \mathrm{~g} / \mathrm{mL}$ are prepared. After 70 h of incubation the plates are inspected under an inverted microscope to assure growth of the controls and sterile conditions. $10 \mu \mathrm{~L}$ of resazurin (12.5 mg resazurin dissolved in 100 mL distilled water) are then added to each well and the plates incubated for another 2 h . Then the plates are read with a Spectramax Gemini XS microplate fluorometer (Molecular Devices Cooperation, Sunnyvale, CA, USA) using an excitation wave length of 536 nm and an emission wave length of 588 nm . From the sigmoidal inhibition curves the IC_{50} values are calculated by linear regression ${ }^{9}$ and 4-parameter logistic regression using SoftmaxPro software (Molecular Devices Cooperation, Sunnyvale, CA, USA).

3.5. Cytotoxicity assay

Assays were performed in 96-well microtiter plates, each well containing $100 \mu \mathrm{~L}$ of RPMI 1640 medium supplemented with 1% L-glutamine (200 mM) and 10% fetal bovine serum, and 4000 L- 6 cells (a primary cell line derived from rat skeletal myoblasts). ${ }^{12,13}$ Serial drug dilutions of eleven 3-fold dilution steps covering a range from 100 to $0.002 \mu \mathrm{~g} / \mathrm{mL}$ were prepared. After 70 h of incubation the plates were inspected under an
inverted microscope to assure growth of the controls and sterile conditions. $10 \mu \mathrm{~L}$ of Alamar Blue was then added to each well and the plates incubated for another 2 h . Then the plates were read with a Spectramax Gemini XS microplate fluorimeter (Molecular Devices Cooperation, Sunnyvale, CA, USA) using an excitation wave length of 536 nm and an emission wave length of 588 nm . The IC50 values were calculated by non linear regression ${ }^{9}$ from the sigmoidal dose inhibition curves using SoftmaxPro ${ }^{\circledR}$ software (Molecular Devices Cooperation, Sunnyvale, CA, USA). Podophyllotoxin (Sigma P4405) is used as control.

4. Mechanistic studies

4.1. Inhibition of Plasmodium falciparum dihydroorotate dehyrogenase (PfDHODH)

PfDHODH activity was assessed using a colorimetric continuous assay that monitors 2,6-dichloroindophenol (DCIP) reduction. Change in absorbance at 600 nm was monitored in a range of 0 to 60 s at $25^{\circ} \mathrm{C}$ using a microplate reader (Molecular Devices, SpectraMax 384 Plus, California, USA). The enzymatic reaction was analyzed in a total volume of $195 \mu \mathrm{~L}$ containing 50 mM Tris, $\mathrm{pH} 8.15,150 \mathrm{mM}, \mathrm{KCl}, 0.1 \% ~(\mathrm{v} / \mathrm{v})$ Triton X-100, $500 \mu \mathrm{M}$ L-dihydroorotate, $18 \mu \mathrm{M}$ decylubiquinone (CoQd), and $60 \mu \mathrm{M}$ DCIP. The assay was started with $5 \mu \mathrm{~L}$ of $2.0 \mu \mathrm{M}$ stock of enzyme prepared in a buffer containing 50 mM HEPES, $\mathrm{pH} 7.7,400 \mathrm{mM} \mathrm{NaCl}, 10 \%(\mathrm{v} / \mathrm{v})$ glycerol, $0.05 \%(\mathrm{v} / \mathrm{v})$ Thesit ${ }^{\circledR}$, and 1 mM EDTA, which resulting in a final concentration of PfDHODH enzyme at 50 nM . A reference measurement was obtained by preparing the same solution without enzyme and atovaquone was used as control. Compounds were prepared as a 10 mM stock solution in DMSO. From this solution, dilutions were prepared in the assay mixture to achieve the compound final concentration of $10 \mu \mathrm{M}$ and $50 \mu \mathrm{M}$ and were analyzed in triplicate. Control enzyme activity in the absence of inhibitor was taken as $100 \% .{ }^{14}$

4.2. Inhibition of Plasmodium falciparum formate-nitrate-transporter (PfFNT)

The lactate transport inhibition assays were conducted by the group of Professor Beitz at the Christian-Albrechts-Universität of Kiel (Kiel, Germany). His contribution is gratefully acknowledged.

Codon-optimized PfFNT ${ }^{15}$ was constitutively expressed from the pDR196 plasmid in W303-1A jen1 Δ ady2 (MATa, can1-100, ade2-loc, his311-15, leu2-3,-112, trp1-1-1, ura3-1, jen1::kanMX4, ady2::hphMX4) yeast cells, kindly provided by M. Casal. ${ }^{16}$ Cells were grown at $29^{\circ} \mathrm{C}$ in uracil-free selective media with adenine, histidine, leucine, tryptophan and 2% glucose. For the transport assays, yeast cultures were harvested at an OD_{600} of 0.9 to 1.0 , and resuspended in 50 mM HEPES/Tris, $\mathrm{pH} 6.8 \pm 0.1$ to an OD_{600} of 50 ± 5. Aliquots of $80 \mu \mathrm{~L}$ yeast suspension in 1.5 ml reaction tubes were incubated for 15-20 min with $1 \mu \mathrm{~L}$ of DMSO alone or with DMSO-dissolved inhibitor to yield a final inhibitor concentration of $10 \mu \mathrm{M} .{ }^{17}$ To initiate transport, $20 \mu \mathrm{~L}$ of substrate solution (end concentration 1 mM L-lactate and $0.04 \mu \mathrm{Ci}\left[1-{ }^{14} \mathrm{C}\right]$-lactate, specific activity $55 \mathrm{mCi} \mathrm{mmol}^{-1}$; Hartmann Analytic) was added. Transport was stopped after 30 s by
adding 1 mL of ice-cold water and immediately transferring the samples onto a vacuum filtration unit with $0.45 \mu \mathrm{~m}$ GF/C filter membranes (Whatman). The filters were washed with 7 mL of ice-cold water and placed into scintillation vials containing 3 mL of scintillation cocktail (Quicksafe A; Zinsser Analytic) for analysis using a Packard TriCarb liquid scintillation counter (Perkin Elmer Inc). All measurements were done in triplicate and background radiolabel obtained from non-expressing yeast cells was subtracted. ${ }^{18}$

4.3. Inhibition of Trypanosoma brucei brudei trypanothione reductase

Recombinant T. brucei trypanothione reductase (TR) and trypanothione disulfide (TS_{2}) were prepared as described previously. ${ }^{19,20}$ Shortly, TR activity was measured at $25{ }^{\circ} \mathrm{C}$ in a total volume of 1 mL in the presence of $100 \mu \mathrm{M}$ NADPH and $5-20 \mathrm{mU}$ enzyme in TR assay buffer (40 mm HEPES, 1 mm EDTA, pH 7.5) containing 5% DMSO. The reaction was started by adding TS2, and NADPH consumption was followed spectrophotometrically at 340 nm . To determine the percentage of inhibition, the assays contained $100 \mu \mathrm{M}$ or $40 \mu \mathrm{M} \mathrm{TS}_{2}$, in the absence and presence of a fixed concentration of inhibitor. The type of inhibition was 1 determined by a Lineweaver-Burk plot. The inhibitor constants were calculated by a non-linear regression fit with the program GraphPad Prism (Version 5.04, GraphPad Software, Inc., CA, USA). ${ }^{21}$

Table S2: Inhibition of T. brucei trypanothione recuctase (TR) by compounds 9c and 10b.

compd.	c (inhibitor) $[\mu \mathrm{M}]$	$\mathrm{TS}_{2}[\mu \mathrm{M}]$	TR activity $[\mathrm{U} / \mathrm{ml}]$	TR activity $[\%]$	Inhibition $[\%]$
DMSO 5 \%	-	100	1.53	100	0
DMSO 5 \%	-	40	1.25	100	0
9c	200	100	1.55	100	0
9c	200	40	1.23	99.6	0.4
10b	200	100	1.43	95	5
10b	200	40	1.19	97	3

4.4. Affinity towards σ_{1} and σ_{2} receptors ${ }^{22-24}$

General procedures for the receptor binding assays

The test compound solutions were prepared by dissolving approximately $10 \mu \mathrm{~mol}$ (usually $2-4 \mathrm{mg}$) of test compound in DMSO so that a 10 mM stock solution was obtained. To obtain the required test solutions for the assay, the DMSO stock solution was diluted with the respective assay buffer. The filtermats were presoaked in 0.5 \% aqueous polyethylenimine solution for 2 h at rt before use. All binding experiments were carried out in duplicates in the 96 well multiplates. The concentrations given are the final concentration in the assay. Generally, the assays were performed by addition of $50 \mu \mathrm{~L}$ of the respective assay buffer, $50 \mu \mathrm{~L}$ of test compound solution in various concentrations $\left(10^{-5}, 10^{-6}, 10^{-7}, 10^{-8}, 10^{-9}\right.$ and $\left.10^{-10} \mathrm{~mol} / \mathrm{L}\right), 50 \mu \mathrm{~L}$ of the corresponding radioligand solution and $50 \mu \mathrm{~L}$ of the respective receptor preparation into each well of the multiplate (total volume $200 \mu \mathrm{~L}$). The receptor preparation was always added last. During the incubation, the multiplates were shaken at a speed of $500-600 \mathrm{rpm}$ at the specified temperature. Unless otherwise noted, the assays were terminated after 120 min by rapid filtration using the harvester. During the filtration, each well was washed five times with $300 \mu \mathrm{~L}$ of water. Subsequently, the filtermats were dried at $95^{\circ} \mathrm{C}$. The solid scintillator was melted on the dried filtermats at a temperature of $95^{\circ} \mathrm{C}$ for 5 min . After solidifying of the scintillator at rt, the trapped radioactivity in the filtermats was measured with the scintillation analyzer. Each position on the filtermat corresponding to one well of the multiplate was measured for 5 min with the $\left[{ }^{3} \mathrm{H}\right]$-counting protocol. The overall counting efficiency was 20%. The IC50 values were calculated with the program GraphPad Prism ${ }^{\circledR} 3.0$ (GraphPad Software, San Diego, CA, USA) by non-linear regression analysis. Subsequently, the $I C_{50}$ values were transformed into K_{i} values using the equation of Cheng and Prusoff. ${ }^{25}$ The K_{i} values are given as mean value \pm SEM from three independent experiments.

σ_{1} receptor assay

The assay was performed with the radioligand $\left[{ }^{3} \mathrm{H}\right]-(+)$-pentazocine $(22.0 \mathrm{Ci} / \mathrm{mmol}$; Perkin Elmer). The thawed membrane preparation of guinea pig brain (about $100 \mu \mathrm{~g}$ of the protein) was incubated with various concentrations of test compounds, 2 nM $\left[{ }^{3} \mathrm{H}\right]-(+)$-pentazocine, and TRIS buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$) at $37^{\circ} \mathrm{C}$. The non-specific binding was determined with $10 \mu \mathrm{M}$ unlabeled (+)-pentazocine. The K_{d} value of (+)-pentazocine is $2.9 \mathrm{nM} .{ }^{26}$

σ_{2} receptor assay

The assays were performed with the radioligand $\left[{ }^{3} \mathrm{H}\right]$ di-o-tolylguanidine (specific activity $50 \mathrm{Ci} / \mathrm{mmol}$; ARC, St. Louis, MO, USA). The thawed rat liver membrane preparation (about $100 \mu \mathrm{~g}$ protein) was incubated with various concentrations of the test compound, $3 \mathrm{nM} \quad\left[{ }^{3} \mathrm{H}\right]$ di-o-tolylguanidine and buffer containing (+)-pentazocine (500 nM (+)-pentazocine in TRIS buffer (50 mM TRIS, pH 8.0)) at rt. The non-specific binding was determined with $10 \mu \mathrm{M}$ non-labeled di-o-tolylguanidine. The K_{d} value of di-otolylguanidine is $17.9 \mathrm{nM} .{ }^{27}$

σ_{1} and σ_{2} receptor affinities of the synthesized 1-benzopyrans

Table S3: σ_{1} and σ_{2} receptor affinities of lead compounds and prepared amines.

		$K_{\mathrm{i}} \pm$ SEM $[\mathrm{nM}]$	
	n	σ_{1}	σ^{2}
rac-2	-	3290	3810
(R)-2	-	0%	$0 \%^{2}$
(S)-2	-	5100	$4 \%^{2}$
rac-3	-	184	745
8a	1	300	$14 \%^{\mathrm{a}}$
8b	2	1000	$0 \%^{\mathrm{a}}$
8c	3	450	$0 \%^{\mathrm{a}}$
8d	4	353	1200
9a	1	427	538
9b	2	168	1800
9c	3	74 ± 9	1000
9d	4	120	1050
10a	1	677	$5 \%^{\mathrm{a}}$
10b	2	282	930
10c	3	146	296
10d	4	141	8000
12a	1	336	$9 \%^{\mathrm{a}}$
12b	2	149	$11 \%^{\mathrm{a}}$
12c	3	631	$0 \%^{\mathrm{a}}$
12d	4	263	$0 \%^{\mathrm{a}}$
19a	1	222	3600
19c	3	614	$8 \%^{\mathrm{a}}$
23	-	414	$0 \%^{\mathrm{a}}$
24	-	5.6 ± 0.8	337
25	-	2.4 ± 0.7	1300

a: values in \% represent the inhibition of radioligand binding at a test compound concentration of $1 \mu \mathrm{M}$. Inhibition in \% is given for compounds with very low affinity.
${ }^{\text {b }}$: For low-affinity compounds ($K_{\mathrm{i}}>100 \mathrm{nM}$) the K_{i} values were recorded only once.
SEM: standard error of the mean.

5. Pharmacokinetic studies

General incubation procedure for in vitro metabolism

Liver microsomes (7.8 mg protein $/ \mathrm{mL}$ in case of mouse liver microsome batch $1,3.7 \mathrm{mg}$ protein $/ \mathrm{mL}$ in case of mouse liver microsome batch 2) were added to an Eppendorf cap filled with sodium phosphate buffer pH 7.4 (PBS, 0.1 M), MgCl_{2} solution (0.05 M), NADPH or UDPGA solution ($2 \mathrm{mg} / \mathrm{mL}$ in PBS) and DMSO stock solution, giving a total volume of $200 \mu \mathrm{~L}$. Final concentrations for the incubations were 75 mM PBS, 0.6 mM NADPH and/or 0.77 mM UDPGA, $1 \mathrm{mg} / \mathrm{mL}$ microsomal protein, $50 \mu \mathrm{M}$ of the respective compound, $12.5 \mathrm{mM} \mathrm{MgCl}_{2}$, and 0.5 \% DMSO. The suspension was mixed vigorously and incubated ($37^{\circ} \mathrm{C}$, $90 \mathrm{~min}, 900 \mathrm{rpm}$). Subsequently, the incubation was stopped by addition of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{3} \mathrm{OH}(1: 1,400 \mu \mathrm{~L})$, the caps were cooled down ($0^{\circ} \mathrm{C}, 10 \mathrm{~min}$) and the precipitated proteins were separated by centrifugation ($4^{\circ} \mathrm{C}, 15 \mathrm{~min}, 16000 \mathrm{rpm}$). Afterwards, the supernatant was analyzed by LC-MS (LC-qToF). With the same procedure, the empty value (without stock solution), blank value (without NADPH), buffer sample (parent incubated in PBS solution) and negative control (solvent ($599 \mu \mathrm{~L}$) and DMSO stock solution $(1 \mu \mathrm{~L})$) were prepared.

Identification of metabolites in vivo

During the in vivo efficacy study, blood samples were taken 1 h before the last treatment and $1 \mathrm{~h}, 2 \mathrm{~h}, 4 \mathrm{~h}, 8 \mathrm{~h}$, and 24 h after the last treatment. Sample acquisition was alternated between the respective subgroups for each route of administration (e.g. 1 h before treatment: A1; 1 h after treatment: A2, 2 h after treatment: A 1 etc.). The samples were frozen at $-80^{\circ} \mathrm{C}$ to inactivate the Plasmodium parasites. Afterwards samples were thawed and cold acetonitrile ($-20^{\circ} \mathrm{C}, 500 \mu \mathrm{~L}$) was added to each Eppendorf cap to induce protein precipitation. After vigorous stirring (5 s) of the suspension, the precipitated proteins were separated by centrifugation ($4{ }^{\circ} \mathrm{C}, 8 \mathrm{~min}, 13.000 \mathrm{rpm}$). The supernatant $(200 \mu \mathrm{~L})$ was analyzed by LC-MS (LC-qToF).

LC-qToF setup

For the determination of exact masses and for conducting MS/MS experiments, an LC system was coupled with a quadrupole time-of-flight (qToF) mass spectrometer.

HPLC-DAD (Thermo Fisher Scientific, Dreieich, Germany): Solvent rack (SRD 3600); pump (DGP-3600RS); autosampler (WPS-3000RS); column oven (TCC-3000RS); precolumn: SecurityGuard ${ }^{\text {TM }}$ Cartridge AQ C18 ($4.0 \times 2.0 \mathrm{~mm}, 4.0 \mu \mathrm{~m}$ particle size);
column: Synergi ${ }^{T M}$ Hydro-RP $\left(50 \times 2.1 \mathrm{~mm}, 2.5 \mu \mathrm{~m}\right.$ particle size, Phenomenex ${ }^{\circledR}$, Aschaffenburg, Germany); temperature: $30^{\circ} \mathrm{C}$ and DAD-detector (DAD-3000RS). The LC system was coupled with a micrOTOF-Q II (Bruker Daltonics, Bremen, Germany). The ESI-qToF was operated in positive ion polarity in the full scan mode ($\mathrm{m} / \mathrm{z} 70-700$, $200-1000$ or $500-1600$) with the following settings: capillary voltage 4500 V ; end plate offset -500 V ; collision cell RF 300.0 Vpp ; nebulizer 2.0 bar; dry heater $200{ }^{\circ} \mathrm{C}$; dry gas $9.0 \mathrm{~L} / \mathrm{min}$. To protect the MS from salts or other components of the matrices, a sixport valve was used to elute the first 2.0 min of each run into the waste (cut-off). In case of MS/MS experiments the isolation window of the first quadrupole was set to $10 \mathrm{~m} / \mathrm{z}$ units (for $\mathrm{m} / \mathrm{z}<600$) or $20 \mathrm{~m} / \mathrm{z}$ units (for $\mathrm{m} / \mathrm{z}>600$). The collision energy of the second quadrupole was set in the range of $10-35 \mathrm{eV}$ and is given for each experiment. For data handling and control of the system the software Data Analysis and Hystar from Bruker Daltonics (Bremen, Germany) was used. The calibration of the ToF spectra was achieved by injection of $\mathrm{LiHCO}_{2}\left(\mathrm{~m} / \mathrm{z}<700\right.$, i-propanol/ $\mathrm{H}_{2} \mathrm{O} 1: 1,10 \mathrm{mM}$) via a $20 \mu \mathrm{~L}$ sample loop within each LC run at $2.0-2.2 \mathrm{~min}$.

LC parameters: mobile phase $\mathrm{A}: \mathrm{CH}_{3} \mathrm{CN}^{2} \mathrm{H}_{2} \mathrm{O} 10: 90+0.1 \% \mathrm{HCO}_{2} \mathrm{H}$; mobile phase B : $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O} 90: 10+0.1 \% \mathrm{HCO}_{2} \mathrm{H}$; mobile phase $\mathrm{C}: \mathrm{H}_{2} \mathrm{O}+0.1 \% \mathrm{HCO}_{2} \mathrm{H}$; pump 1: flow rate: $0-3 \mathrm{~min}: 0.1 \mathrm{~mL} / \mathrm{min}, 3-3.1 \mathrm{~min}$: from $0.1 \mathrm{~mL} / \mathrm{min}$ to $0.4 \mathrm{~mL} / \mathrm{min}, 3.1-17.9 \mathrm{~min}$: $0.4 \mathrm{~mL} / \mathrm{min}, 17.9$ - 18 min : from $0.4 \mathrm{~mL} / \mathrm{min}$ to $0.1 \mathrm{~mL} / \mathrm{min}$; gradient elution: $(A \%$ in $B)$: 0-3.1 min: 100\%, 3.1-12 min: gradient from 100\% to 0\%, 12 - $14.5 \mathrm{~min}: 0 \%, 14.5-$ 15 min : gradient from 0% to 100%, $15-18 \mathrm{~min}$: 100%; pump 2: flow rate: $0-3 \mathrm{~min}$: $0.3 \mathrm{~mL} / \mathrm{min}, 3-3.1 \mathrm{~min}$: from $0.3 \mathrm{~mL} / \mathrm{min}$ to $0.0 \mathrm{~mL} / \mathrm{min}, 3.1-17.9 \mathrm{~min}: 0.0 \mathrm{~mL} / \mathrm{min}$, 17.9 - 18 min : from $0.0 \mathrm{~mL} / \mathrm{min}$ to $0.3 \mathrm{~mL} / \mathrm{min}$; isocratic: ($\mathrm{C} \%$): $0-18 \mathrm{~min}$: 100%.

Table S4: Exact mass, retention time (tR), and intensity (in mass counts/s) of 1-benzopyran-7-ol 9c and possible metabolites formed in vitro, measured in positive ion mode $\left(\mathrm{M}+\mathrm{H}^{+}\right)$

compd.	formula	exact mass	$\begin{gathered} \mathrm{t}_{\mathrm{R}} \\ {[\mathrm{~min}]} \end{gathered}$	intensity [counts/s]
	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{+}$	326.2115	9.73	1.1 * 10^{5}
	$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{3}{ }^{+}$	342.2064	8.71	7.1 * 10^{4}
	$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{9}{ }^{+}$	518.5825	8.06	0.88 * 10^{4}
	$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{NO}_{8}{ }^{+}$	502.2435	9.11	1.9 * 10^{4}

t_{R} : retention time

Fragmentation pattern

Scheme S1: Fragmentation pattern and corresponding m / z values of the parent compound 9c and the metabolites 9c-I and 9c-II.

6. References

(1) Schacht, M.; Boehlich, G. J.; de Vries, J.; Bertram, S.; Gabriel, G.; Zimmermann, P.; Heisig, P.; Schützenmeister, N. Protecting-Group-Free Total Syntheses of Rubrolide R and S. Eur. J. Org. Chem. 2017, 13, 1745-1748.
(2) Bell, J. C.; Bridge, W.; Robertson, A. Constituents of the Bark of Zanthoxylum Americanum(Mill). Part IV. The Constitution of Xanthyletin. J. Chem. Soc. 1937, 1, 1542-1545.
(3) Malik, N.; Zhang, Z.; Erhardt, P. Total Synthesis of (\pm)-Glyceollin II and a Dihydro Derivative. J. Nat. Prod. 2015, 78, 2940-2947.
(4) Ahluwalia, V. K.; Arora, K. K.; Jolly, R. S. Acid-Catalysed Condensation of 2-Methylbut-3-en-2-ol with Polyhydroxybenzaldehydes: Preparation of 6- and 8Formylchromans. Synthesis (Stuttg) 1981, 7, 527-529.
(5) Harel, D.; Khalid, S. A.; Kaiser, M.; Brun, R.; Wünsch, B.; Schmidt, T. J. Encecalol Angelate, an Unstable Chromene from Ageratum Conyzoides L.: Total Synthesis and Investigation of Its Antiprotozoal Activity. J. Ethnopharmacol. 2011, 137, 620-625.
(6) Bernal, F. A.; Kaiser, M.; Wünsch, B.; Schmidt, T. J. Structure-Activity Relationships of Cinnamate Ester Analogues as Potent Antiprotozoal Agents. ChemMedChem 2020, 15, 68-78.
(7) Baltz, T.; Baltz, D.; Giroud, C.; Crockett, J. Cultivation in a Semi-Defined Medium of Animal Infective Forms of Trypanosoma Brucei. Equiperdum, T.; Evansi, T.; Rhodesiense, T.; Gambiense, T. EMBO J. 1985, 4, 1273-1277.
(8) Räz, B.; Iten, M.; Grether-Bühler, Y.; Kaminsky, R.; Brun, R. The Alamar Blue® Assay to Determine Drug Sensitivity of African Trypanosomes (T.b. Rhodesiense and T.b. Gambiense) in Vitro. Acta Trop. 1997, 68, 139-147.
(9) Huber, W.; Koella, J. C. A Comparison of Three Methods of Estimating EC50 in Studies of Drug Resistance of Malaria Parasites. Acta Trop. 1993, 55, 257-261.
(10) Buckner, F. S.; Verlinde, C. L. M. J.; La Flamme, A. C.; Van Voorhis, W. C. Efficient Technique for Screening Drugs for Activity against Trypanosoma Cruzi Using Parasites Expressing Beta-Galactosidase. Antimicrob. Agents Chemother. 1996, 40, 2592-2597.
(11) Cunningham, I. New Culture Medium for Maintenance of Tsetse Tissues and Growth of Trypanosomatids. J. Protozool. 1977, 24, 325-329.
(12) Page, B.; Page, M.; Noel, C. A New Fluorimetric Assay for Cytotoxicity Measurements in Vitro. Int. J. Oncol. 1993, 3, 473-476.
(13) Ansar Ahmed, S.; Gogal, R. M.; Walsh, J. E. A New Rapid and Simple NonRadioactive Assay to Monitor and Determine the Proliferation of Lymphocytes: An Alternative to [3H]Thymidine Incorporation Assay. J. Immunol. Methods 1994, 170 (2), 211-224.
(14) Azeredo, L. F. S. P.; Coutinho, J. P.; Jabor, V. A. P.; Feliciano, P. R.; Nonato, M. C.; Kaiser, C. R.; Menezes, C. M. S.; Hammes, A. S. O.; Caffarena, E. R.; Hoelz, L. V. B.; de Souza, N. B.; Pereira, G. A. N.; Cerávolo, I. P.; Krettli, A. U.; Boechat, N. Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors. Eur. J. Med. Chem. 2016, 126, 72-83.
(15) Wu, B.; Rambow, J.; Bock, S.; Holm-Bertelsen, J.; Wiechert, M.; Soares, A. B.; Spielmann, T.; Beitz, E. Identity of a Plasmodium Lactate/H+ Symporter Structurally Unrelated to Human Transporters. Nat. Commun. 2015, 6, 1-8.
(16) Soares-Silva, I.; Paiva, S.; Diallinas, G.; Casal, M. The Conserved Sequence NXX[S/T]HX[S/T]QDXXXT of the Lactate/Pyruvate:H+ Symporter Subfamily Defines the Function of the Substrate Translocation Pathway. Mol. Membr. Biol. 2007, 24 (5-6), 464-474.
(17) Golldack, A. Henke, B. Bergmann, B. Wiechert, M. Erler, H. Blancke Soares, A. Spielmann, T. Beitz, E. Substrate-analogous inhibitors exert antimalarial action by targeting the plasmodium lactate transporter PfFNT at nanomolar scale. PLoS Pathog. 2017, 13, 1-18.
(18) Erler, H.; Ren, B.; Gupta, N.; Beitz, E. The Intracellular Parasite Toxoplasma Gondii Harbors Three Druggable FNT-Type Formate and I-Lactate Transporters in the Plasma Membrane. J. Biol. Chem. 2018, 293 (45), 17622-17630.
(19) Persch, E.; Bryson, S.; Todoroff, N. K.; Eberle, C.; Thelemann, J.; Dirdjaja, N.; Kaiser, M.; Weber, M.; Derbani, H.; Brun, R. M.; Schneider, G.; Pai, E. F.; KrauthSiegel, R. L.; Diederich, F. Binding to Large Enzyme Pockets. Small-Molecule Inhibitors of Trypanothione Reductase. ChemMedChem 2014, 9, 1880-1891.
(20) Comini, M. A.; Dirdjaja, N.; Kaschel, M.; Krauth-Siegel, R. L. Preparative enzymatic synthesis of trypanothione and trypanothione analogues. Intl. J. Parasitol. 2009, 39, 1059-1062.

Jockers-Scherübl, M. C.; Schirmer, R. H.; Krauth-Siegel, R. L. Trypanothione
reductase from Trypanosoma cruzi. Catalytic properties of the enzyme and inhibition studies with trypanocidal compounds. Eur. J. Biochem. 1989, 180, 267272.
(22) Hasebein, P.; Frehland, B.; Lehmkuhl, K.; Fröhlich, R.; Schepmann, D.; Wünsch, B. Synthesis and pharmacological evaluation of like- and unlike-configured tetrahydro-2-benzazepines with the α-substituted benzyl moiety in the 5-position. Org. Biomol. Chem. 2014, 12, 5407-5426.
(23) Meyer, C.; Neue, B.; Schepmann, D.; Yanagisawa, S.; Yamaguchi, J.; Würthwein, E.-U.; Itami, K.; Wünsch, B. Improvement of $\sigma 1$ receptor affinity by late-stage C-H-bond arylation of spirocyclic lactones. Bioorg. Med. Chem. 2013, 21, 18441856.
(24) Miyata, K.; Schepmann, D.; Wünsch, B. Synthesis and σ receptor affinity of regioisomeric spirocyclic furopyridines. Eur. J. Med. Chem. 2014, 83, 709-716.
(25) Cheng, Y.-C.; Prusoff, W.H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.
(26) DeHaven-Hudkins, D. L.; Fleissner, L. C.; Ford-Rice, F. Y. Characterization of the binding of $\left[{ }^{3} \mathrm{H}\right](+)$-pentazocine to σ recognition sites in guinea pig brain. Eur. J. Pharmacol. Mol. Pharmacol. 1992, 227, 371-378.
(27) Mach, R. H.; Smith, C. R.; Childers, S. R. Ibogaine possesses a selective affinity for σ_{2} receptors. Life Sci. 1995, 57, PL57-PL62.
(28) Peters, W. Chemotherapy and Drug Resistance in Malaria, Volume 1. Academic Press: London 1987.
(29) Franke-Fayard, B.; Trueman, H.; Ramesar, J.; Mendoza, J.; Van Der Keur, M.; Van Der Linden, R.; Sinden, R. E.; Waters, A. P.; Janse, C. J. A Plasmodium Berghei Reference Line That Constitutively Expresses GFP at a High Level throughout the Complete Life Cycle. Mol. Biochem. Parasitol. 2004, 137(1), 2333.

7. NMR spectra

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 5.

gHSQC-Spectrum (CDCl_{3}) of 5 .

gHMBC-Spectrum (CDCl_{3}) of 5 .

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 6.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 7.

${ }^{13} \mathrm{C}$ NMR_Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 7.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 7.
 gHSQC-Spectrum (CDCl_{3}) of 7 .

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 a}$.

i0	150	140	130	120	110	100	90	${ }^{80}$	70	60	50	40	30	20	10

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 a}$.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 a}$.

gHSQC-Spectrum (CDCl_{3}) of 8a.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 a}$.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 b}$.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 b}$.

gHSQC-Spectrum (CDCl_{3}) of $\mathbf{8 b}$.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 b}$.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 8 c .

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 c}$.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 c}$.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 c}$.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 c}$.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $8 \mathbf{d}$.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 d}$.

f1 (ppm)
gHSQC-Spectrum (CDCl_{3}) of 8d.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{8 d}$.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $9 \mathbf{a}$.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $9 \mathbf{a}$.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $9 \mathbf{a}$.

gHSQC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 9 a .

gHMBC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 9 a .

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $9 \mathbf{9}$.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $9 \mathbf{b}$.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{9 b}$.

gHSQC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $9 \mathbf{~}$.

gHMBC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $9 \mathbf{9}$.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $9 \mathbf{c}$.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $9 \mathbf{c}$.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 9 c .

gHSQC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $9 \mathbf{c}$.

gHMBC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $9 \mathbf{9}$.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 9 d .

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 9 d .

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{9 d}$.

gHSQC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 9 d .

gHMBC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $9 \mathbf{d}$.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 10a.

${ }^{13} \mathrm{C}$ NMR-Spektrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 10a.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{1 0 a}$.

gHSQC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 10a.

gHMBC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 10a.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0 b}$.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 0 b}$.

gHSQC-Spectrum (CDCl_{3}) of 10b.

gHMBC-Spectrum (CDCl_{3}) of 10b.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 10 c .

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{1 0 c}$.

gHMBC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 10c.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{1 0 d}$.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{1 0 d}$.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{1 0 d}$.

gHSQC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 10 d .

gHMBC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of $\mathbf{1 0 d}$.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 11.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum (CDCl_{3}) of 11.

gHSQC-Spectrum (CDCl_{3}) of 11 .

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 11.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 12a.

Whand

[^0]
${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2 a}$.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 12a.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 12a.

\% 0	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \mathrm{f}_{1}(\mathrm{ppm}) \end{gathered}$	70	60	50	40	30	20	10

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2 b}$.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2 b}$.
 gHSQC-Spectrum (CDCl_{3}) of 12b.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2 c}$.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 12c.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum (CDCl 3) of 12c.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 12c.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 12c.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 2 d}$.

[^1]${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 12d.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 12d.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 12d.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 12d.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 14.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 14.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 14.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 14.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 14.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 15.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 15.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 15.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 15.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 16.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 16.

gHSQC-Spectrum $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ of 16.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 17.

[^2]
${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 17.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 17.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 17.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 18.

; 0	150	140	130	120	110	100	90	$\begin{gathered} 80 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	70	60	50	40	30	20	10

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 18.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 18.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 18.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 18.

${ }^{1} \mathrm{H}$ NMR-Spectrum (CDCl3) of 19a.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 19a.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $\mathbf{1 9 a}$.

gHSQC-Spectrum (CDCl_{3}) of 19a.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 19a.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 19 c .

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 19 c .

gHSQC-Spectrum (CDCl_{3}) of 19c.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 20.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 20.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum (CDCl3) of 20.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 20.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 20.

${ }^{1} \mathrm{H}$ NMR-Spectrum (CDCl3) of (Z)-21.

150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of (Z)-21.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of (Z)-21.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of (Z)-21.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of (Z)-21.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of (E)-21.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of $(E)-21$.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of (E)-21.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of (E)-21.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of (E)-21.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 22.

| 0 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80
 $f 1(\mathrm{ppm})$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 6 |
| :--- |

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 22.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 22.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 22.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 22.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 23.

[^3]
${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 23.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 23.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 23.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 24.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 24.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 24.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 24.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 24.

${ }^{1} \mathrm{H}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 25.

${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 25.

${ }^{1} \mathrm{H} /{ }^{1} \mathrm{H}$ COSY-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 25.

gHSQC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 25.

gHMBC-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 25.

8. HPLC traces

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		20,335	1,591	8,634	0,19	0,25	n.a.
2		21,167	832,844	3425,616	99,66	99,60	n.a.
3		25,795	1,255	5,077	0,15	0,15	n.a.
Total:			835,690	3439,327	100,00	100,00	

HPLC trace of 5.

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		20,208	452,470	2190,732	96,77	97,77	n.a.
2		21,038	15,092	50,052	3,23	2,23	n.a.
Total:		$\mathbf{4 6 7 , 5 6 2}$	$\mathbf{2 2 4 0 , 7 8 4}$	$\mathbf{1 0 0 , 0 0}$	$\mathbf{1 0 0 , 0 0}$		

HPLC trace of 6.

Int	ation Res						
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		20,497	112,020	835,239	87,27	92,39	n.a.
2		21,062	12,135	32,534	9,45	3,60	n.a.
3		26,370	4,203	36,250	3,27	4,01	n.a.
Total:			128,358	904,024	100,00	100,00	

HPLC trace of 7.

Inte	ation Res						
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		12,457	0,371	2,628	0,06	0,09	n.a.
2		13,807	0,667	5,783	0,11	0,20	n.a.
3		16,917	560,181	2665,164	93,89	90,42	n.a.
4		17,567	0,780	6,789	0,13	0,23	n.a.
5		17,840	1,456	13,218	0,24	0,45	n.a.
6		19,022	1,588	10,685	0,27	0,36	n.a.
7		22,137	31,571	243,241	5,29	8,25	n.a.
Total:			596,615	2947,509	100,00	100,00	

HPLC trace of $\mathbf{8 a}$.

Int	tion Res						
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		17,827	559,175	2527,804	96,04	93,75	n.a.
2		18,510	2,401	17,671	0,41	0,66	n.a.
3		19,407	2,540	10,935	0,44	0,41	n.a.
4		22,480	16,162	124,613	2,78	4,62	n.a.
5		25,230	1,945	15,428	0,33	0,57	n.a.
Total:			582,224	2696,451	100,00	100,00	

HPLC trace of $\mathbf{8 b}$.

Chromatogram

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		11,210	0,771	5,984	0,11	0,19	n.a.
2		13,027	2,400	12,306	0,35	0,40	n.a.
3		16,088	1,031	3,879	0,15	0,13	n.a.
4		17,977	0,909	7,824	0,13	0,25	n.a.
5		18,508	613,864	2551,324	89,22	82,31	n.a.
6		19,865	7,536	35,486	1,10	1,14	n.a.
7		21,303	3,205	28,287	0,47	0,91	n.a.
8		22,640	7,285	58,668	1,06	1,89	n.a.
9		23,070	27,211	198,248	3,95	6,40	n.a.
10		24,363	18,848	152,763	2,74	4,93	n.a.
11		27,565	4,955	44,871	0,72	1,45	n.a.
Total:			688,015	3099,640	100,00	100,00	

HPLC trace of 8c.

Int	ation Res						
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		12,447	2,021	13,073	0,18	0,42	n.a.
2		18,162	3,843	13,201	0,35	0,42	n.a.
3		19,290	1033,409	2735,502	94,53	87,85	n.a.
4		20,163	1,624	13,671	0,15	0,44	n.a.
5		21,082	15,298	75,178	1,40	2,41	n.a.
6		22,327	1,641	13,923	0,15	0,45	n.a.
7		23,277	2,248	10,775	0,21	0,35	n.a.
8		23,730	29,134	209,995	2,67	6,74	n.a.
9		24,942	3,961	28,476	0,36	0,91	n.a.
Total:			1093,179	3113,792	100,00	100,00	

HPLC trace of 8d.

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		4,928	2,876	21,534	0,40	0,58	n.a.
2		12,549	1,432	13,516	0,20	0,36	n.a.
3		13,015	7,129	50,649	0,99	1,35	n.a.
4		13,761	6,315	52,107	0,88	1,39	n.a.
5		14,019	0,375	3,246	0,05	0,09	n.a.
6		16,840	662,688	3374,913	92,17	90,27	n.a.
7		17,665	2,970	20,511	0,41	0,55	n.a.
8		18,324	13,655	93,511	1,90	2,50	n.a.
9		18,736	0,550	2,919	0,08	0,08	n.a.
10		19,994	0,821	2,696	0,11	0,07	n.a.
11		20,732	6,558	22,626	0,91	0,61	n.a.
12		21,269	7,163	31,618	1,00	0,85	n.a.
13		21,807	4,153	33,685	0,58	0,90	n.a.
14		23,294	2,316	15,338	0,32	0,41	n.a.
Total:			719,002	$3738,869$	100,00	100,00	

HPLC trace of $\mathbf{9 a}$.

Chromatogram

Inte	ation Res						
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		7,774	5,262	25,842	0,99	0,90	n.a.
2		12,540	1,290	6,345	0,24	0,22	n.a.
3		14,469	3,020	25,787	0,57	0,90	n.a.
4		15,278	4,946	37,528	0,93	1,30	n.a.
5		17,111	1,255	7,536	0,24	0,26	n.a.
6		17,794	455,517	2331,045	86,03	81,03	n.a.
7		18,557	5,535	36,361	1,05	1,26	n.a.
8		18,836	0,982	4,526	0,19	0,16	n.a.
9		19,169	4,303	34,481	0,81	1,20	n.a.
10		21,357	7,923	58,058	1,50	2,02	n.a.
11		21,932	21,159	159,481	4,00	5,54	n.a.
12		22,228	10,091	84,648	1,91	2,94	n.a.
13		23,199	5,164	42,470	0,98	1,48	n.a.
14		25,719	1,153	6,348	0,22	0,22	n.a.
15		29,144	1,861	16,355	0,35	0,57	n.a.
Total:			529,461	2876,811	100,00	100,00	

HPLC trace of $\mathbf{9 b}$.

Inte	ation Res						
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		15,308	2,745	21,522	0,33	0,81	n.a.
2		18,565	0,546	5,058	0,07	0,19	n.a.
3		19,013	792,917	2361,201	95,09	89,02	n.a.
4		20,230	0,766	5,453	0,09	0,21	n.a.
5		20,523	6,543	45,074	0,78	1,70	n.a.
6		20,677	1,934	15,845	0,23	0,60	n.a.
7		22,402	1,195	9,796	0,14	0,37	n.a.
8		22,973	0,946	13,682	0,11	0,52	n.a.
9		23,080	12,294	82,709	1,47	3,12	n.a.
10		23,778	10,338	67,736	1,24	2,55	n.a.
11		26,413	3,660	24,350	0,44	0,92	n.a.
Total:			833,883	2652,424	100,00	100,00	

HPLC trace of 9c.

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		19,912	772,635	2383,640	98,29	95,52 n.a. 2	21,403
3	24,402	4,561	43,832	0,58	1,76	n.a.	
Total:		8,842	67,854	1,12	n.a.		

HPLC trace of 9d.

Integration Results

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		13,333	3,527	35,818	0,47	1,13	n.a.
2		14,892	1,879	14,450	0,25	0,46	n.a.
3		15,430	1,609	12,533	0,22	0,40	n.a.
4		16,948	1,269	11,942	0,17	0,38	n.a.
5		17,442	670,423	2580,410	90,09	81,57	n.a.
6		19,165	0,714	6,558	0,10	0,21	n.a.
7		19,748	12,298	106,705	1,65	3,37	n.a.
8		22,493	52,450	395,199	7,05	12,49	n.a.
Total:			744,171	$3163,614$	$100,00$	$100,00$	

HPLC trace of 10a.

Integration Results

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		18,642	128,188	854,490	91,25	87,94	n.a.
2		22,983	7,060	63,439	5,03	6,53	n.a.
3		24,528	4,116	42,912	2,93	4,42	n.a.
4		25,417	1,121	10,833	0,80	1,11	n.a.
Total:			140,485	971,674	100,00	100,00	

HPLC trace of 10b.

Inte	ation Resu						
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		17,757	0,883	7,659	0,19	0,36	n.a.
2		18,190	5,556	56,612	1,18	2,67	n.a.
3		19,223	448,010	1910,415	95,28	90,22	n.a.
4		20,425	11,061	101,137	2,35	4,78	n.a.
5		21,625	1,794	13,968	0,38	0,66	n.a.
6		23,678	2,882	27,820	0,61	1,31	n.a.
Total:			470,186	2117,611	100,00	100,00	

HPLC trace of 10c.

S161

Integration Results

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		19,413	2,192	15,352	0,70	1,01	n.a.
2		20,072	305,488	1476,549	98,02	96,78	n.a.
3		21,375	0,981	5,919	0,31	0,39	n.a.
4		22,617	0,508	4,713	0,16	0,31	n.a.
5		24,148	2,488	23,216	0,80	1,52	n.a.
Total:			311,658	1525,748	100,00	100,00	

HPLC trace of 10d.

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		18,323	2,279	8,448			
2	21,000	8,043	35,513	0,75	2,65	n.a.	
3		24,178	291,885	2215,765	96,15	1,56	97,63
4		25,332	0,453	4,146	0,15	n.a.	
5		25,595	0,676	5,637	0,22	n.a.	
6		27,455	0,236	0,000	0,08	n.a.	
Total:		$\mathbf{3 0 3 , 5 7 2}$	$\mathbf{2 2 6 9 , 5 0 9}$	$\mathbf{1 0 0 , 0 0}$	n.a.		

HPLC trace of 11.

Inte	ration Resu						
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		17,175	3,899	34,283	0,58	1,27	n.a.
2		22,012	3,216	18,886	0,48	0,70	n.a.
3		22,710	638,767	2526,283	95,72	93,81	n.a.
4		23,708	8,309	63,353	1,25	2,35	n.a.
5		24,455	6,411	27,473	0,96	1,02	n.a.
6		25,628	4,459	10,765	0,67	0,40	n.a.
7		29,498	2,278	11,972	0,34	0,44	n.a.
Total:			667,339	2693,015	100,00	100,00	

HPLC trace of 12a.

Integration Results

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		13,167	0,627	3,874	0,07	0,13	n.a.
2		16,800	0,584	4,584	0,06	0,15	n.a.
3		19,082	1,359	6,120	0,15	0,20	n.a.
4		20,188	0,672	6,621	0,07	0,22	n.a.
5		20,832	3,727	7,598	0,40	0,25	n.a.
6		23,080	877,291	2776,958	95,31	91,86	n.a.
7		24,348	11,025	73,573	1,20	2,43	n.a.
8		29,238	25,179	143,697	2,74	4,75	n.a.
Total:			920,464	3023,026	100,00	100,00	

HPLC trace of $\mathbf{1 2 b}$.

Integration Results

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		15,583	17,950	150,534	2,99	5,76	n.a.
2		18,855	1,553	4,828	0,26	0,18	n.a.
3		22,917	1,117	6,566	0,19	0,25	n.a.
4		23,603	575,167	2423,235	95,82	92,78	n.a.
5		24,152	0,478	4,818	0,08	0,18	n.a.
6		24,550	0,454	0,000	0,08	0,00	n.a.
7		26,737	3,543	21,881	0,59	0,84	n.a.
Total:			600,262	2611,862	100,00	100,00	

HPLC trace of 12c.

Chromatogram

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		19,805	7,964	66,659	1,15	2,48	n.a.
2		21,247	2,073	11,186	0,30	0,42	n.a.
3		23,737	8,347	49,882	1,21	1,86	n.a.
4		24,500	651,234	2450,336	94,40	91,31	n.a.
5		25,365	15,238	86,521	2,21	3,22	n.a.
6		28,018	5,016	18,993	0,73	0,71	n.a.
Total:			689,872	2683,576	100,00	100,00	

HPLC trace of 12d.

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		17,412	674,290	2516,359	99,58	99,48	n.a.
2		22,490	1,939	9,207	0,29	0,36	n.a.
3		23,027	0,396	2,303	0,06	0,09	n.a.
4	23,737	0,287	1,640	0,04	n.a.		
5		24,562	0,229	0,000	0,03	0,00	n.a.
Total:		$\mathbf{6 7 7 , 1 4 1}$	$\mathbf{2 5 2 9 , 5 0 8}$	$\mathbf{1 0 0 , 0 0}$	$\mathbf{1 0 0 , 0 0}$		

HPLC trace of 14.

Integration Results							
No.	Peak Name	Retention Time min	Area $m A U * m i n$	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		19,290	0,904				
2	21,345	289,982	4,743	0,31	0,27	n.a.	
3	22,120	5,470	1707,447	97,85	98,59	n.a.	
Total:		19,729	1,85	n.a.			

HPLC trace of 15.

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		15,777	3,353	22,171	0,98	0,76	n.a.
2		16,673	10,351	84,406	3,04	n.a.	
3	17,943	0,559	5,291	0,16	0,18	n.a.	
4	21,380	326,210	2788,329	95,81	96,14	n.a.	
Total:		$\mathbf{3 4 0 , 4 7 4}$	$\mathbf{2 9 0 0 , 1 9 8}$	$\mathbf{1 0 0 , 0 0}$	$\mathbf{1 0 0 , 0 0}$		

HPLC trace of 16.

Inte	ation Resu						
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		12,128	0,208	1,698	0,05	0,06	n.a.
2		17,528	428,189	3020,761	98,10	98,74	n.a.
3		18,542	2,053	10,318	0,47	0,34	n.a.
4		19,870	0,426	3,573	0,10	0,12	n.a.
5		21,478	0,119	3,156	0,03	0,10	n.a.
6		23,613	5,472	19,916	1,25	0,65	n.a.
Total:			436,466	3059,423	100,00	100,00	

HPLC trace of 17.

Integration Results							
No.	Peak Name	Retention Time min	Area mAU**in	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		12,032	243,071	1751,807	73,47	76,04	n.a.
2		12,692	2,154	18,864	0,65	0,82	n.a.
3		13,298	1,862	15,727	0,56	0,68	n.a.
4		13,620	1,738	11,619	0,53	0,50	n.a.
5		15,393	12,460	61,203	3,77	2,66	n.a.
6		15,745	5,986	53,365	1,81	2,32	n.a.
7		17,063	1,471	13,044	0,44	0,57	n.a.
8		17,437	6,145	36,322	1,86	1,58	n.a.
9		18,167	1,624	13,969	0,49	0,61	n.a.
10		18,337	3,745	23,967	1,13	1,04	n.a.
11		18,710	22,277	149,791	6,73	6,50	n.a.
12		20,577	8,706	26,180	2,63	1,14	n.a.
13		22,038	2,616	15,286	0,79	0,66	n.a.
14		23,095	15,210	96,566	4,60	4,19	n.a.
15		25,948	1,800	16,105	0,54	0,70	n.a.
Total:			330,865	2303,814	100,00	100,00	

HPLC trace of 18.

Integration Results

No.	Peak Name	Retention Time \min	Area $m A U * \min$	Height $m A U$	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		16,383	97,937	784,150	94,44	95,62	n.a.
2		16,925	1,175	12,101	1,13	1,48	
3		17,558	0,370	3,707	0,36	0,45	n.a.
4	18,338	3,609	14,931	3,48	n.a.		
5		22,123	0,612	5,213	0,59	0,64	n.a.
Total:		$\mathbf{1 0 3 , 7 0 4}$	$\mathbf{8 2 0 , 1 0 1}$	$\mathbf{1 0 0 , 0 0}$	$\mathbf{1 0 0 , 0 0}$		

HPLC trace of 19a.

Integration Results

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		17,937	299,237	1758,587	93,69	91,44	n.a.
2		18,380	2,980	16,891	0,93	0,88	n.a.
3		18,722	1,365	19,632	0,43	1,02	n.a.
4		18,805	7,897	61,578	2,47	3,20	n.a.
5		19,342	1,362	12,567	0,43	0,65	n.a.
6		20,122	1,066	7,769	0,33	0,40	n.a.
7		21,128	2,109	18,328	0,66	0,95	n.a.
8		21,532	1,139	6,955	0,36	0,36	n.a.
9		21,767	0,166	2,342	0,05	0,12	n.a.
10		21,985	0,969	9,519	0,30	0,49	n.a.
11		25,773	1,112	9,041	0,35	0,47	n.a.
Total:			319,403	1923,208	100,00	100,00	

HPLC trace of 19c.

Int	ation Res						
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		20,057	3,227	27,965	0,80	0,87	n.a.
2		20,513	396,388	3191,679	98,77	98,94	n.a.
3		21,118	1,727	6,296	0,43	0,20	n.a.
Total:			401,342	3225,940	100,00	100,00	

HPLC trace of $\mathbf{2 0}$.

Int	ation Res						
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		14,925	0,561	1,884	0,23	0,09	n.a.
2		20,955	0,953	3,674	0,40	0,18	n.a.
3		22,050	239,475	2043,221	99,37	99,73	n.a.
Total:			240,990	2048,780	100,00	100,00	

HPLC trace of (Z)-21.

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		20,953	1,284	4,038	0,62	0,22	n.a.
2		21,488	0,732				
3	22,052	104,272	4,234	897,001	0,35	0,23	n.a.
4		22,223	100,712	907,602	48,37	49,48	n.a.
Total		$\mathbf{2 0 7 , 0 0 0}$	$\mathbf{1 8 1 2 , 8 7 5}$	$\mathbf{1 0 0 , 0 0}$	n.a.		

HPLC trace of (Z/E)-21.

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		21,613	7,007	46,564	3,16	2,37	n.a.
2	22,217	13,568	144,861	6,11	7,37	n.a.	
3		22,352	201,366	1773,405	90,73	90,26	n.a.
Total:		$\mathbf{2 2 1 , 9 4 0}$	$\mathbf{1 9 6 4 , 8 3 0}$	$\mathbf{1 0 0 , 0 0}$	$\mathbf{1 0 0 , 0 0}$		

HPLC trace of (E)-21.

Inte	ation Res						
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		16,205	49,445	401,419	10,75	12,17	n.a.
2		16,825	1,529	12,714	0,33	0,39	n.a.
3		17,152	0,635	5,805	0,14	0,18	n.a.
4		17,583	0,219	2,163	0,05	0,07	n.a.
5		18,860	0,456	5,238	0,10	0,16	n.a.
6		18,952	2,038	14,042	0,44	0,43	n.a.
7		20,348	2,071	17,703	0,45	0,54	n.a.
8		20,598	2,021	13,715	0,44	0,42	n.a.
9		20,952	306,354	2187,853	66,61	66,33	n.a.
10		23,208	1,908	14,485	0,41	0,44	n.a.
11		23,355	83,828	567,101	18,23	17,19	n.a.
12		27,855	9,423	56,040	2,05	1,70	n.a.
Total:			459,926	3298,277	100,00	100,00	

HPLC trace of 22.

Integration Results							
No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		13,568	0,895	6,029	0,24	0,37	n.a.
2		14,098	0,290	1,992	0,08	0,12	n.a.
3		14,927	2,781	18,051	0,75	1,12	n.a.
4		15,678	1,057	8,548	0,29	0,53	n.a.
5		16,155	342,196	1503,746	92,83	93,08	n.a.
6		16,880	2,661	15,191	0,72	0,94	n.a.
7		17,490	9,468	23,564	2,57	1,46	n.a.
8		20,727	5,165	19,589	1,40	1,21	n.a.
9		22,558	4,095	18,764	1,11	1,16	n.a.
Total:			368,609	1615,474	100,00	100,00	

HPLC trace of 23.

Integration Results

No.	Peak Name	Retention Time min	Area mAU*min	Height mAU	Relative Area \%	Relative Height \%	Amount n.a.
1		10,907	30,234	206,141	8,69	11,66	n.a.
2		17,602	1,288	12,530	0,37	0,71	n.a.
3		18,355	2,890	11,882	0,83	0,67	n.a.
4		19,715	311,265	1526,974	89,47	86,39	n.a.
5		21,018	2,226	10,023	0,64	0,57	n.a.
Total:			347,904	1767,550	100,00	100,00	

HPLC trace of 24.

Integration Results

No.	Peak Name	Retention Time min	Area $m A U * m i n$	Height $m A U$	Relative Area $\%$	Relative Height $\%$	Amount n.a.
1		15,778	1,124	8,209	0,26	0,38	n.a.
2		16,427	1,999	17,622	0,46	0,81	n.a.
3		17,640	420,209	2080,420	96,08	n.a.	
4		18,157	3,971	23,043	0,91	n.a.	
5		20,522	1,973	9,898	0,45	0,45	n.a.
6		21,008	2,948	6,362	0,67	0,29	n.a.
7		23,300	4,627	36,991	1,06	n.a.	
8		23,732	0,512	3,580	0,12	n.a.	
Total		$\mathbf{4 3 7 , 3 6 4}$	$\mathbf{2 1 8 6 , 1 2 4}$	$\mathbf{1 0 0 , 0 0}$	$\mathbf{1 0 0 , 0 0}$		

HPLC trace of 25.

[^0]: ${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 12a.

[^1]: $\begin{array}{llllllllllllllll}{ }^{5} & 150 & 145 & 140 & 135 & 130 & 125 & 120 & 115 & 110 & 105 & 100 & 95 & 90 & 85 & 80 \\ f 1(\text { (pam })\end{array}$

[^2]: ${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 17.

[^3]: ${ }^{13} \mathrm{C}$ NMR-Spectrum $\left(\mathrm{CDCl}_{3}\right)$ of 23.

